1/* Build expressions with type checking for C compiler.
2   Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3   1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
4   Free Software Foundation, Inc.
5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
10Software Foundation; either version 2, or (at your option) any later
11version.
12
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16for more details.
17
18You should have received a copy of the GNU General Public License
19along with GCC; see the file COPYING.  If not, write to the Free
20Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
2102110-1301, USA.  */
22
23
24/* This file is part of the C front end.
25   It contains routines to build C expressions given their operands,
26   including computing the types of the result, C-specific error checks,
27   and some optimization.  */
28
29#include "config.h"
30#include "system.h"
31#include "coretypes.h"
32#include "tm.h"
33#include "rtl.h"
34#include "tree.h"
35#include "langhooks.h"
36#include "c-tree.h"
37#include "tm_p.h"
38#include "flags.h"
39#include "output.h"
40#include "expr.h"
41#include "toplev.h"
42#include "intl.h"
43#include "ggc.h"
44#include "target.h"
45#include "tree-iterator.h"
46#include "tree-gimple.h"
47#include "tree-flow.h"
48
49/* Possible cases of implicit bad conversions.  Used to select
50   diagnostic messages in convert_for_assignment.  */
51enum impl_conv {
52  ic_argpass,
53  ic_argpass_nonproto,
54  ic_assign,
55  ic_init,
56  ic_return
57};
58
59/* The level of nesting inside "__alignof__".  */
60int in_alignof;
61
62/* The level of nesting inside "sizeof".  */
63int in_sizeof;
64
65/* The level of nesting inside "typeof".  */
66int in_typeof;
67
68struct c_label_context_se *label_context_stack_se;
69struct c_label_context_vm *label_context_stack_vm;
70
71/* Nonzero if we've already printed a "missing braces around initializer"
72   message within this initializer.  */
73static int missing_braces_mentioned;
74
75static int require_constant_value;
76static int require_constant_elements;
77
78static bool null_pointer_constant_p (tree);
79static tree qualify_type (tree, tree);
80static int tagged_types_tu_compatible_p (tree, tree);
81static int comp_target_types (tree, tree);
82static int function_types_compatible_p (tree, tree);
83static int type_lists_compatible_p (tree, tree);
84static tree decl_constant_value_for_broken_optimization (tree);
85static tree lookup_field (tree, tree);
86static tree convert_arguments (tree, tree, tree, tree);
87static tree pointer_diff (tree, tree);
88static tree convert_for_assignment (tree, tree, enum impl_conv, tree, tree,
89				    int);
90static tree valid_compound_expr_initializer (tree, tree);
91static void push_string (const char *);
92static void push_member_name (tree);
93static int spelling_length (void);
94static char *print_spelling (char *);
95static void warning_init (const char *);
96static tree digest_init (tree, tree, bool, int);
97static void output_init_element (tree, bool, tree, tree, int);
98static void output_pending_init_elements (int);
99static int set_designator (int);
100static void push_range_stack (tree);
101static void add_pending_init (tree, tree);
102static void set_nonincremental_init (void);
103static void set_nonincremental_init_from_string (tree);
104static tree find_init_member (tree);
105static void readonly_error (tree, enum lvalue_use);
106static int lvalue_or_else (tree, enum lvalue_use);
107static int lvalue_p (tree);
108static void record_maybe_used_decl (tree);
109static int comptypes_internal (tree, tree);
110
111/* Return true if EXP is a null pointer constant, false otherwise.  */
112
113static bool
114null_pointer_constant_p (tree expr)
115{
116  /* This should really operate on c_expr structures, but they aren't
117     yet available everywhere required.  */
118  tree type = TREE_TYPE (expr);
119  return (TREE_CODE (expr) == INTEGER_CST
120	  && !TREE_CONSTANT_OVERFLOW (expr)
121	  && integer_zerop (expr)
122	  && (INTEGRAL_TYPE_P (type)
123	      || (TREE_CODE (type) == POINTER_TYPE
124		  && VOID_TYPE_P (TREE_TYPE (type))
125		  && TYPE_QUALS (TREE_TYPE (type)) == TYPE_UNQUALIFIED)));
126}
127/* This is a cache to hold if two types are compatible or not.  */
128
129struct tagged_tu_seen_cache {
130  const struct tagged_tu_seen_cache * next;
131  tree t1;
132  tree t2;
133  /* The return value of tagged_types_tu_compatible_p if we had seen
134     these two types already.  */
135  int val;
136};
137
138static const struct tagged_tu_seen_cache * tagged_tu_seen_base;
139static void free_all_tagged_tu_seen_up_to (const struct tagged_tu_seen_cache *);
140
141/* Do `exp = require_complete_type (exp);' to make sure exp
142   does not have an incomplete type.  (That includes void types.)  */
143
144tree
145require_complete_type (tree value)
146{
147  tree type = TREE_TYPE (value);
148
149  if (value == error_mark_node || type == error_mark_node)
150    return error_mark_node;
151
152  /* First, detect a valid value with a complete type.  */
153  if (COMPLETE_TYPE_P (type))
154    return value;
155
156  c_incomplete_type_error (value, type);
157  return error_mark_node;
158}
159
160/* Print an error message for invalid use of an incomplete type.
161   VALUE is the expression that was used (or 0 if that isn't known)
162   and TYPE is the type that was invalid.  */
163
164void
165c_incomplete_type_error (tree value, tree type)
166{
167  const char *type_code_string;
168
169  /* Avoid duplicate error message.  */
170  if (TREE_CODE (type) == ERROR_MARK)
171    return;
172
173  if (value != 0 && (TREE_CODE (value) == VAR_DECL
174		     || TREE_CODE (value) == PARM_DECL))
175    error ("%qD has an incomplete type", value);
176  else
177    {
178    retry:
179      /* We must print an error message.  Be clever about what it says.  */
180
181      switch (TREE_CODE (type))
182	{
183	case RECORD_TYPE:
184	  type_code_string = "struct";
185	  break;
186
187	case UNION_TYPE:
188	  type_code_string = "union";
189	  break;
190
191	case ENUMERAL_TYPE:
192	  type_code_string = "enum";
193	  break;
194
195	case VOID_TYPE:
196	  error ("invalid use of void expression");
197	  return;
198
199	case ARRAY_TYPE:
200	  if (TYPE_DOMAIN (type))
201	    {
202	      if (TYPE_MAX_VALUE (TYPE_DOMAIN (type)) == NULL)
203		{
204		  error ("invalid use of flexible array member");
205		  return;
206		}
207	      type = TREE_TYPE (type);
208	      goto retry;
209	    }
210	  error ("invalid use of array with unspecified bounds");
211	  return;
212
213	default:
214	  gcc_unreachable ();
215	}
216
217      if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
218	error ("invalid use of undefined type %<%s %E%>",
219	       type_code_string, TYPE_NAME (type));
220      else
221	/* If this type has a typedef-name, the TYPE_NAME is a TYPE_DECL.  */
222	error ("invalid use of incomplete typedef %qD", TYPE_NAME (type));
223    }
224}
225
226/* Given a type, apply default promotions wrt unnamed function
227   arguments and return the new type.  */
228
229tree
230c_type_promotes_to (tree type)
231{
232  if (TYPE_MAIN_VARIANT (type) == float_type_node)
233    return double_type_node;
234
235  if (c_promoting_integer_type_p (type))
236    {
237      /* Preserve unsignedness if not really getting any wider.  */
238      if (TYPE_UNSIGNED (type)
239	  && (TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node)))
240	return unsigned_type_node;
241      return integer_type_node;
242    }
243
244  return type;
245}
246
247/* Return a variant of TYPE which has all the type qualifiers of LIKE
248   as well as those of TYPE.  */
249
250static tree
251qualify_type (tree type, tree like)
252{
253  return c_build_qualified_type (type,
254				 TYPE_QUALS (type) | TYPE_QUALS (like));
255}
256
257/* Return true iff the given tree T is a variable length array.  */
258
259bool
260c_vla_type_p (tree t)
261{
262  if (TREE_CODE (t) == ARRAY_TYPE
263      && C_TYPE_VARIABLE_SIZE (t))
264    return true;
265  return false;
266}
267
268/* Return the composite type of two compatible types.
269
270   We assume that comptypes has already been done and returned
271   nonzero; if that isn't so, this may crash.  In particular, we
272   assume that qualifiers match.  */
273
274tree
275composite_type (tree t1, tree t2)
276{
277  enum tree_code code1;
278  enum tree_code code2;
279  tree attributes;
280
281  /* Save time if the two types are the same.  */
282
283  if (t1 == t2) return t1;
284
285  /* If one type is nonsense, use the other.  */
286  if (t1 == error_mark_node)
287    return t2;
288  if (t2 == error_mark_node)
289    return t1;
290
291  code1 = TREE_CODE (t1);
292  code2 = TREE_CODE (t2);
293
294  /* Merge the attributes.  */
295  attributes = targetm.merge_type_attributes (t1, t2);
296
297  /* If one is an enumerated type and the other is the compatible
298     integer type, the composite type might be either of the two
299     (DR#013 question 3).  For consistency, use the enumerated type as
300     the composite type.  */
301
302  if (code1 == ENUMERAL_TYPE && code2 == INTEGER_TYPE)
303    return t1;
304  if (code2 == ENUMERAL_TYPE && code1 == INTEGER_TYPE)
305    return t2;
306
307  gcc_assert (code1 == code2);
308
309  switch (code1)
310    {
311    case POINTER_TYPE:
312      /* For two pointers, do this recursively on the target type.  */
313      {
314	tree pointed_to_1 = TREE_TYPE (t1);
315	tree pointed_to_2 = TREE_TYPE (t2);
316	tree target = composite_type (pointed_to_1, pointed_to_2);
317	t1 = build_pointer_type (target);
318	t1 = build_type_attribute_variant (t1, attributes);
319	return qualify_type (t1, t2);
320      }
321
322    case ARRAY_TYPE:
323      {
324	tree elt = composite_type (TREE_TYPE (t1), TREE_TYPE (t2));
325	int quals;
326	tree unqual_elt;
327	tree d1 = TYPE_DOMAIN (t1);
328	tree d2 = TYPE_DOMAIN (t2);
329	bool d1_variable, d2_variable;
330	bool d1_zero, d2_zero;
331
332	/* We should not have any type quals on arrays at all.  */
333	gcc_assert (!TYPE_QUALS (t1) && !TYPE_QUALS (t2));
334
335	d1_zero = d1 == 0 || !TYPE_MAX_VALUE (d1);
336	d2_zero = d2 == 0 || !TYPE_MAX_VALUE (d2);
337
338	d1_variable = (!d1_zero
339		       && (TREE_CODE (TYPE_MIN_VALUE (d1)) != INTEGER_CST
340			   || TREE_CODE (TYPE_MAX_VALUE (d1)) != INTEGER_CST));
341	d2_variable = (!d2_zero
342		       && (TREE_CODE (TYPE_MIN_VALUE (d2)) != INTEGER_CST
343			   || TREE_CODE (TYPE_MAX_VALUE (d2)) != INTEGER_CST));
344	d1_variable = d1_variable || (d1_zero && c_vla_type_p (t1));
345	d2_variable = d2_variable || (d2_zero && c_vla_type_p (t2));
346
347	/* Save space: see if the result is identical to one of the args.  */
348	if (elt == TREE_TYPE (t1) && TYPE_DOMAIN (t1)
349	    && (d2_variable || d2_zero || !d1_variable))
350	  return build_type_attribute_variant (t1, attributes);
351	if (elt == TREE_TYPE (t2) && TYPE_DOMAIN (t2)
352	    && (d1_variable || d1_zero || !d2_variable))
353	  return build_type_attribute_variant (t2, attributes);
354
355	if (elt == TREE_TYPE (t1) && !TYPE_DOMAIN (t2) && !TYPE_DOMAIN (t1))
356	  return build_type_attribute_variant (t1, attributes);
357	if (elt == TREE_TYPE (t2) && !TYPE_DOMAIN (t2) && !TYPE_DOMAIN (t1))
358	  return build_type_attribute_variant (t2, attributes);
359
360	/* Merge the element types, and have a size if either arg has
361	   one.  We may have qualifiers on the element types.  To set
362	   up TYPE_MAIN_VARIANT correctly, we need to form the
363	   composite of the unqualified types and add the qualifiers
364	   back at the end.  */
365	quals = TYPE_QUALS (strip_array_types (elt));
366	unqual_elt = c_build_qualified_type (elt, TYPE_UNQUALIFIED);
367	t1 = build_array_type (unqual_elt,
368			       TYPE_DOMAIN ((TYPE_DOMAIN (t1)
369					     && (d2_variable
370						 || d2_zero
371						 || !d1_variable))
372					    ? t1
373					    : t2));
374	t1 = c_build_qualified_type (t1, quals);
375	return build_type_attribute_variant (t1, attributes);
376      }
377
378    case ENUMERAL_TYPE:
379    case RECORD_TYPE:
380    case UNION_TYPE:
381      if (attributes != NULL)
382	{
383	  /* Try harder not to create a new aggregate type.  */
384	  if (attribute_list_equal (TYPE_ATTRIBUTES (t1), attributes))
385	    return t1;
386	  if (attribute_list_equal (TYPE_ATTRIBUTES (t2), attributes))
387	    return t2;
388	}
389      return build_type_attribute_variant (t1, attributes);
390
391    case FUNCTION_TYPE:
392      /* Function types: prefer the one that specified arg types.
393	 If both do, merge the arg types.  Also merge the return types.  */
394      {
395	tree valtype = composite_type (TREE_TYPE (t1), TREE_TYPE (t2));
396	tree p1 = TYPE_ARG_TYPES (t1);
397	tree p2 = TYPE_ARG_TYPES (t2);
398	int len;
399	tree newargs, n;
400	int i;
401
402	/* Save space: see if the result is identical to one of the args.  */
403	if (valtype == TREE_TYPE (t1) && !TYPE_ARG_TYPES (t2))
404	  return build_type_attribute_variant (t1, attributes);
405	if (valtype == TREE_TYPE (t2) && !TYPE_ARG_TYPES (t1))
406	  return build_type_attribute_variant (t2, attributes);
407
408	/* Simple way if one arg fails to specify argument types.  */
409	if (TYPE_ARG_TYPES (t1) == 0)
410	 {
411	    t1 = build_function_type (valtype, TYPE_ARG_TYPES (t2));
412	    t1 = build_type_attribute_variant (t1, attributes);
413	    return qualify_type (t1, t2);
414	 }
415	if (TYPE_ARG_TYPES (t2) == 0)
416	 {
417	   t1 = build_function_type (valtype, TYPE_ARG_TYPES (t1));
418	   t1 = build_type_attribute_variant (t1, attributes);
419	   return qualify_type (t1, t2);
420	 }
421
422	/* If both args specify argument types, we must merge the two
423	   lists, argument by argument.  */
424	/* Tell global_bindings_p to return false so that variable_size
425	   doesn't die on VLAs in parameter types.  */
426	c_override_global_bindings_to_false = true;
427
428	len = list_length (p1);
429	newargs = 0;
430
431	for (i = 0; i < len; i++)
432	  newargs = tree_cons (NULL_TREE, NULL_TREE, newargs);
433
434	n = newargs;
435
436	for (; p1;
437	     p1 = TREE_CHAIN (p1), p2 = TREE_CHAIN (p2), n = TREE_CHAIN (n))
438	  {
439	    /* A null type means arg type is not specified.
440	       Take whatever the other function type has.  */
441	    if (TREE_VALUE (p1) == 0)
442	      {
443		TREE_VALUE (n) = TREE_VALUE (p2);
444		goto parm_done;
445	      }
446	    if (TREE_VALUE (p2) == 0)
447	      {
448		TREE_VALUE (n) = TREE_VALUE (p1);
449		goto parm_done;
450	      }
451
452	    /* Given  wait (union {union wait *u; int *i} *)
453	       and  wait (union wait *),
454	       prefer  union wait *  as type of parm.  */
455	    if (TREE_CODE (TREE_VALUE (p1)) == UNION_TYPE
456		&& TREE_VALUE (p1) != TREE_VALUE (p2))
457	      {
458		tree memb;
459		tree mv2 = TREE_VALUE (p2);
460		if (mv2 && mv2 != error_mark_node
461		    && TREE_CODE (mv2) != ARRAY_TYPE)
462		  mv2 = TYPE_MAIN_VARIANT (mv2);
463		for (memb = TYPE_FIELDS (TREE_VALUE (p1));
464		     memb; memb = TREE_CHAIN (memb))
465		  {
466		    tree mv3 = TREE_TYPE (memb);
467		    if (mv3 && mv3 != error_mark_node
468			&& TREE_CODE (mv3) != ARRAY_TYPE)
469		      mv3 = TYPE_MAIN_VARIANT (mv3);
470		    if (comptypes (mv3, mv2))
471		      {
472			TREE_VALUE (n) = composite_type (TREE_TYPE (memb),
473							 TREE_VALUE (p2));
474			if (pedantic)
475			  pedwarn ("function types not truly compatible in ISO C");
476			goto parm_done;
477		      }
478		  }
479	      }
480	    if (TREE_CODE (TREE_VALUE (p2)) == UNION_TYPE
481		&& TREE_VALUE (p2) != TREE_VALUE (p1))
482	      {
483		tree memb;
484		tree mv1 = TREE_VALUE (p1);
485		if (mv1 && mv1 != error_mark_node
486		    && TREE_CODE (mv1) != ARRAY_TYPE)
487		  mv1 = TYPE_MAIN_VARIANT (mv1);
488		for (memb = TYPE_FIELDS (TREE_VALUE (p2));
489		     memb; memb = TREE_CHAIN (memb))
490		  {
491		    tree mv3 = TREE_TYPE (memb);
492		    if (mv3 && mv3 != error_mark_node
493			&& TREE_CODE (mv3) != ARRAY_TYPE)
494		      mv3 = TYPE_MAIN_VARIANT (mv3);
495		    if (comptypes (mv3, mv1))
496		      {
497			TREE_VALUE (n) = composite_type (TREE_TYPE (memb),
498							 TREE_VALUE (p1));
499			if (pedantic)
500			  pedwarn ("function types not truly compatible in ISO C");
501			goto parm_done;
502		      }
503		  }
504	      }
505	    TREE_VALUE (n) = composite_type (TREE_VALUE (p1), TREE_VALUE (p2));
506	  parm_done: ;
507	  }
508
509	c_override_global_bindings_to_false = false;
510	t1 = build_function_type (valtype, newargs);
511	t1 = qualify_type (t1, t2);
512	/* ... falls through ...  */
513      }
514
515    default:
516      return build_type_attribute_variant (t1, attributes);
517    }
518
519}
520
521/* Return the type of a conditional expression between pointers to
522   possibly differently qualified versions of compatible types.
523
524   We assume that comp_target_types has already been done and returned
525   nonzero; if that isn't so, this may crash.  */
526
527static tree
528common_pointer_type (tree t1, tree t2)
529{
530  tree attributes;
531  tree pointed_to_1, mv1;
532  tree pointed_to_2, mv2;
533  tree target;
534
535  /* Save time if the two types are the same.  */
536
537  if (t1 == t2) return t1;
538
539  /* If one type is nonsense, use the other.  */
540  if (t1 == error_mark_node)
541    return t2;
542  if (t2 == error_mark_node)
543    return t1;
544
545  gcc_assert (TREE_CODE (t1) == POINTER_TYPE
546	      && TREE_CODE (t2) == POINTER_TYPE);
547
548  /* Merge the attributes.  */
549  attributes = targetm.merge_type_attributes (t1, t2);
550
551  /* Find the composite type of the target types, and combine the
552     qualifiers of the two types' targets.  Do not lose qualifiers on
553     array element types by taking the TYPE_MAIN_VARIANT.  */
554  mv1 = pointed_to_1 = TREE_TYPE (t1);
555  mv2 = pointed_to_2 = TREE_TYPE (t2);
556  if (TREE_CODE (mv1) != ARRAY_TYPE)
557    mv1 = TYPE_MAIN_VARIANT (pointed_to_1);
558  if (TREE_CODE (mv2) != ARRAY_TYPE)
559    mv2 = TYPE_MAIN_VARIANT (pointed_to_2);
560  target = composite_type (mv1, mv2);
561  t1 = build_pointer_type (c_build_qualified_type
562			   (target,
563			    TYPE_QUALS (pointed_to_1) |
564			    TYPE_QUALS (pointed_to_2)));
565  return build_type_attribute_variant (t1, attributes);
566}
567
568/* Return the common type for two arithmetic types under the usual
569   arithmetic conversions.  The default conversions have already been
570   applied, and enumerated types converted to their compatible integer
571   types.  The resulting type is unqualified and has no attributes.
572
573   This is the type for the result of most arithmetic operations
574   if the operands have the given two types.  */
575
576static tree
577c_common_type (tree t1, tree t2)
578{
579  enum tree_code code1;
580  enum tree_code code2;
581
582  /* If one type is nonsense, use the other.  */
583  if (t1 == error_mark_node)
584    return t2;
585  if (t2 == error_mark_node)
586    return t1;
587
588  if (TYPE_QUALS (t1) != TYPE_UNQUALIFIED)
589    t1 = TYPE_MAIN_VARIANT (t1);
590
591  if (TYPE_QUALS (t2) != TYPE_UNQUALIFIED)
592    t2 = TYPE_MAIN_VARIANT (t2);
593
594  if (TYPE_ATTRIBUTES (t1) != NULL_TREE)
595    t1 = build_type_attribute_variant (t1, NULL_TREE);
596
597  if (TYPE_ATTRIBUTES (t2) != NULL_TREE)
598    t2 = build_type_attribute_variant (t2, NULL_TREE);
599
600  /* Save time if the two types are the same.  */
601
602  if (t1 == t2) return t1;
603
604  code1 = TREE_CODE (t1);
605  code2 = TREE_CODE (t2);
606
607  gcc_assert (code1 == VECTOR_TYPE || code1 == COMPLEX_TYPE
608	      || code1 == REAL_TYPE || code1 == INTEGER_TYPE);
609  gcc_assert (code2 == VECTOR_TYPE || code2 == COMPLEX_TYPE
610	      || code2 == REAL_TYPE || code2 == INTEGER_TYPE);
611
612  /* When one operand is a decimal float type, the other operand cannot be
613     a generic float type or a complex type.  We also disallow vector types
614     here.  */
615  if ((DECIMAL_FLOAT_TYPE_P (t1) || DECIMAL_FLOAT_TYPE_P (t2))
616      && !(DECIMAL_FLOAT_TYPE_P (t1) && DECIMAL_FLOAT_TYPE_P (t2)))
617    {
618      if (code1 == VECTOR_TYPE || code2 == VECTOR_TYPE)
619	{
620	  error ("can%'t mix operands of decimal float and vector types");
621	  return error_mark_node;
622	}
623      if (code1 == COMPLEX_TYPE || code2 == COMPLEX_TYPE)
624	{
625	  error ("can%'t mix operands of decimal float and complex types");
626	  return error_mark_node;
627	}
628      if (code1 == REAL_TYPE && code2 == REAL_TYPE)
629	{
630	  error ("can%'t mix operands of decimal float and other float types");
631	  return error_mark_node;
632	}
633    }
634
635  /* If one type is a vector type, return that type.  (How the usual
636     arithmetic conversions apply to the vector types extension is not
637     precisely specified.)  */
638  if (code1 == VECTOR_TYPE)
639    return t1;
640
641  if (code2 == VECTOR_TYPE)
642    return t2;
643
644  /* If one type is complex, form the common type of the non-complex
645     components, then make that complex.  Use T1 or T2 if it is the
646     required type.  */
647  if (code1 == COMPLEX_TYPE || code2 == COMPLEX_TYPE)
648    {
649      tree subtype1 = code1 == COMPLEX_TYPE ? TREE_TYPE (t1) : t1;
650      tree subtype2 = code2 == COMPLEX_TYPE ? TREE_TYPE (t2) : t2;
651      tree subtype = c_common_type (subtype1, subtype2);
652
653      if (code1 == COMPLEX_TYPE && TREE_TYPE (t1) == subtype)
654	return t1;
655      else if (code2 == COMPLEX_TYPE && TREE_TYPE (t2) == subtype)
656	return t2;
657      else
658	return build_complex_type (subtype);
659    }
660
661  /* If only one is real, use it as the result.  */
662
663  if (code1 == REAL_TYPE && code2 != REAL_TYPE)
664    return t1;
665
666  if (code2 == REAL_TYPE && code1 != REAL_TYPE)
667    return t2;
668
669  /* If both are real and either are decimal floating point types, use
670     the decimal floating point type with the greater precision. */
671
672  if (code1 == REAL_TYPE && code2 == REAL_TYPE)
673    {
674      if (TYPE_MAIN_VARIANT (t1) == dfloat128_type_node
675	  || TYPE_MAIN_VARIANT (t2) == dfloat128_type_node)
676	return dfloat128_type_node;
677      else if (TYPE_MAIN_VARIANT (t1) == dfloat64_type_node
678	       || TYPE_MAIN_VARIANT (t2) == dfloat64_type_node)
679	return dfloat64_type_node;
680      else if (TYPE_MAIN_VARIANT (t1) == dfloat32_type_node
681	       || TYPE_MAIN_VARIANT (t2) == dfloat32_type_node)
682	return dfloat32_type_node;
683    }
684
685  /* Both real or both integers; use the one with greater precision.  */
686
687  if (TYPE_PRECISION (t1) > TYPE_PRECISION (t2))
688    return t1;
689  else if (TYPE_PRECISION (t2) > TYPE_PRECISION (t1))
690    return t2;
691
692  /* Same precision.  Prefer long longs to longs to ints when the
693     same precision, following the C99 rules on integer type rank
694     (which are equivalent to the C90 rules for C90 types).  */
695
696  if (TYPE_MAIN_VARIANT (t1) == long_long_unsigned_type_node
697      || TYPE_MAIN_VARIANT (t2) == long_long_unsigned_type_node)
698    return long_long_unsigned_type_node;
699
700  if (TYPE_MAIN_VARIANT (t1) == long_long_integer_type_node
701      || TYPE_MAIN_VARIANT (t2) == long_long_integer_type_node)
702    {
703      if (TYPE_UNSIGNED (t1) || TYPE_UNSIGNED (t2))
704	return long_long_unsigned_type_node;
705      else
706	return long_long_integer_type_node;
707    }
708
709  if (TYPE_MAIN_VARIANT (t1) == long_unsigned_type_node
710      || TYPE_MAIN_VARIANT (t2) == long_unsigned_type_node)
711    return long_unsigned_type_node;
712
713  if (TYPE_MAIN_VARIANT (t1) == long_integer_type_node
714      || TYPE_MAIN_VARIANT (t2) == long_integer_type_node)
715    {
716      /* But preserve unsignedness from the other type,
717	 since long cannot hold all the values of an unsigned int.  */
718      if (TYPE_UNSIGNED (t1) || TYPE_UNSIGNED (t2))
719	return long_unsigned_type_node;
720      else
721	return long_integer_type_node;
722    }
723
724  /* Likewise, prefer long double to double even if same size.  */
725  if (TYPE_MAIN_VARIANT (t1) == long_double_type_node
726      || TYPE_MAIN_VARIANT (t2) == long_double_type_node)
727    return long_double_type_node;
728
729  /* Otherwise prefer the unsigned one.  */
730
731  if (TYPE_UNSIGNED (t1))
732    return t1;
733  else
734    return t2;
735}
736
737/* Wrapper around c_common_type that is used by c-common.c and other
738   front end optimizations that remove promotions.  ENUMERAL_TYPEs
739   are allowed here and are converted to their compatible integer types.
740   BOOLEAN_TYPEs are allowed here and return either boolean_type_node or
741   preferably a non-Boolean type as the common type.  */
742tree
743common_type (tree t1, tree t2)
744{
745  if (TREE_CODE (t1) == ENUMERAL_TYPE)
746    t1 = c_common_type_for_size (TYPE_PRECISION (t1), 1);
747  if (TREE_CODE (t2) == ENUMERAL_TYPE)
748    t2 = c_common_type_for_size (TYPE_PRECISION (t2), 1);
749
750  /* If both types are BOOLEAN_TYPE, then return boolean_type_node.  */
751  if (TREE_CODE (t1) == BOOLEAN_TYPE
752      && TREE_CODE (t2) == BOOLEAN_TYPE)
753    return boolean_type_node;
754
755  /* If either type is BOOLEAN_TYPE, then return the other.  */
756  if (TREE_CODE (t1) == BOOLEAN_TYPE)
757    return t2;
758  if (TREE_CODE (t2) == BOOLEAN_TYPE)
759    return t1;
760
761  return c_common_type (t1, t2);
762}
763
764/* Return 1 if TYPE1 and TYPE2 are compatible types for assignment
765   or various other operations.  Return 2 if they are compatible
766   but a warning may be needed if you use them together.  */
767
768int
769comptypes (tree type1, tree type2)
770{
771  const struct tagged_tu_seen_cache * tagged_tu_seen_base1 = tagged_tu_seen_base;
772  int val;
773
774  val = comptypes_internal (type1, type2);
775  free_all_tagged_tu_seen_up_to (tagged_tu_seen_base1);
776
777  return val;
778}
779
780/* Return 1 if TYPE1 and TYPE2 are compatible types for assignment
781   or various other operations.  Return 2 if they are compatible
782   but a warning may be needed if you use them together.  This
783   differs from comptypes, in that we don't free the seen types.  */
784
785static int
786comptypes_internal (tree type1, tree type2)
787{
788  tree t1 = type1;
789  tree t2 = type2;
790  int attrval, val;
791
792  /* Suppress errors caused by previously reported errors.  */
793
794  if (t1 == t2 || !t1 || !t2
795      || TREE_CODE (t1) == ERROR_MARK || TREE_CODE (t2) == ERROR_MARK)
796    return 1;
797
798  /* If either type is the internal version of sizetype, return the
799     language version.  */
800  if (TREE_CODE (t1) == INTEGER_TYPE && TYPE_IS_SIZETYPE (t1)
801      && TYPE_ORIG_SIZE_TYPE (t1))
802    t1 = TYPE_ORIG_SIZE_TYPE (t1);
803
804  if (TREE_CODE (t2) == INTEGER_TYPE && TYPE_IS_SIZETYPE (t2)
805      && TYPE_ORIG_SIZE_TYPE (t2))
806    t2 = TYPE_ORIG_SIZE_TYPE (t2);
807
808
809  /* Enumerated types are compatible with integer types, but this is
810     not transitive: two enumerated types in the same translation unit
811     are compatible with each other only if they are the same type.  */
812
813  if (TREE_CODE (t1) == ENUMERAL_TYPE && TREE_CODE (t2) != ENUMERAL_TYPE)
814    t1 = c_common_type_for_size (TYPE_PRECISION (t1), TYPE_UNSIGNED (t1));
815  else if (TREE_CODE (t2) == ENUMERAL_TYPE && TREE_CODE (t1) != ENUMERAL_TYPE)
816    t2 = c_common_type_for_size (TYPE_PRECISION (t2), TYPE_UNSIGNED (t2));
817
818  if (t1 == t2)
819    return 1;
820
821  /* Different classes of types can't be compatible.  */
822
823  if (TREE_CODE (t1) != TREE_CODE (t2))
824    return 0;
825
826  /* Qualifiers must match. C99 6.7.3p9 */
827
828  if (TYPE_QUALS (t1) != TYPE_QUALS (t2))
829    return 0;
830
831  /* Allow for two different type nodes which have essentially the same
832     definition.  Note that we already checked for equality of the type
833     qualifiers (just above).  */
834
835  if (TREE_CODE (t1) != ARRAY_TYPE
836      && TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
837    return 1;
838
839  /* 1 if no need for warning yet, 2 if warning cause has been seen.  */
840  if (!(attrval = targetm.comp_type_attributes (t1, t2)))
841     return 0;
842
843  /* 1 if no need for warning yet, 2 if warning cause has been seen.  */
844  val = 0;
845
846  switch (TREE_CODE (t1))
847    {
848    case POINTER_TYPE:
849      /* Do not remove mode or aliasing information.  */
850      if (TYPE_MODE (t1) != TYPE_MODE (t2)
851	  || TYPE_REF_CAN_ALIAS_ALL (t1) != TYPE_REF_CAN_ALIAS_ALL (t2))
852	break;
853      val = (TREE_TYPE (t1) == TREE_TYPE (t2)
854	     ? 1 : comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2)));
855      break;
856
857    case FUNCTION_TYPE:
858      val = function_types_compatible_p (t1, t2);
859      break;
860
861    case ARRAY_TYPE:
862      {
863	tree d1 = TYPE_DOMAIN (t1);
864	tree d2 = TYPE_DOMAIN (t2);
865	bool d1_variable, d2_variable;
866	bool d1_zero, d2_zero;
867	val = 1;
868
869	/* Target types must match incl. qualifiers.  */
870	if (TREE_TYPE (t1) != TREE_TYPE (t2)
871	    && 0 == (val = comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2))))
872	  return 0;
873
874	/* Sizes must match unless one is missing or variable.  */
875	if (d1 == 0 || d2 == 0 || d1 == d2)
876	  break;
877
878	d1_zero = !TYPE_MAX_VALUE (d1);
879	d2_zero = !TYPE_MAX_VALUE (d2);
880
881	d1_variable = (!d1_zero
882		       && (TREE_CODE (TYPE_MIN_VALUE (d1)) != INTEGER_CST
883			   || TREE_CODE (TYPE_MAX_VALUE (d1)) != INTEGER_CST));
884	d2_variable = (!d2_zero
885		       && (TREE_CODE (TYPE_MIN_VALUE (d2)) != INTEGER_CST
886			   || TREE_CODE (TYPE_MAX_VALUE (d2)) != INTEGER_CST));
887	d1_variable = d1_variable || (d1_zero && c_vla_type_p (t1));
888	d2_variable = d2_variable || (d2_zero && c_vla_type_p (t2));
889
890	if (d1_variable || d2_variable)
891	  break;
892	if (d1_zero && d2_zero)
893	  break;
894	if (d1_zero || d2_zero
895	    || !tree_int_cst_equal (TYPE_MIN_VALUE (d1), TYPE_MIN_VALUE (d2))
896	    || !tree_int_cst_equal (TYPE_MAX_VALUE (d1), TYPE_MAX_VALUE (d2)))
897	  val = 0;
898
899	break;
900      }
901
902    case ENUMERAL_TYPE:
903    case RECORD_TYPE:
904    case UNION_TYPE:
905      if (val != 1 && !same_translation_unit_p (t1, t2))
906	{
907	  tree a1 = TYPE_ATTRIBUTES (t1);
908	  tree a2 = TYPE_ATTRIBUTES (t2);
909
910	  if (! attribute_list_contained (a1, a2)
911	      && ! attribute_list_contained (a2, a1))
912	    break;
913
914	  if (attrval != 2)
915	    return tagged_types_tu_compatible_p (t1, t2);
916	  val = tagged_types_tu_compatible_p (t1, t2);
917	}
918      break;
919
920    case VECTOR_TYPE:
921      val = TYPE_VECTOR_SUBPARTS (t1) == TYPE_VECTOR_SUBPARTS (t2)
922	    && comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2));
923      break;
924
925    default:
926      break;
927    }
928  return attrval == 2 && val == 1 ? 2 : val;
929}
930
931/* Return 1 if TTL and TTR are pointers to types that are equivalent,
932   ignoring their qualifiers.  */
933
934static int
935comp_target_types (tree ttl, tree ttr)
936{
937  int val;
938  tree mvl, mvr;
939
940  /* Do not lose qualifiers on element types of array types that are
941     pointer targets by taking their TYPE_MAIN_VARIANT.  */
942  mvl = TREE_TYPE (ttl);
943  mvr = TREE_TYPE (ttr);
944  if (TREE_CODE (mvl) != ARRAY_TYPE)
945    mvl = TYPE_MAIN_VARIANT (mvl);
946  if (TREE_CODE (mvr) != ARRAY_TYPE)
947    mvr = TYPE_MAIN_VARIANT (mvr);
948  val = comptypes (mvl, mvr);
949
950  if (val == 2 && pedantic)
951    pedwarn ("types are not quite compatible");
952  return val;
953}
954
955/* Subroutines of `comptypes'.  */
956
957/* Determine whether two trees derive from the same translation unit.
958   If the CONTEXT chain ends in a null, that tree's context is still
959   being parsed, so if two trees have context chains ending in null,
960   they're in the same translation unit.  */
961int
962same_translation_unit_p (tree t1, tree t2)
963{
964  while (t1 && TREE_CODE (t1) != TRANSLATION_UNIT_DECL)
965    switch (TREE_CODE_CLASS (TREE_CODE (t1)))
966      {
967      case tcc_declaration:
968	t1 = DECL_CONTEXT (t1); break;
969      case tcc_type:
970	t1 = TYPE_CONTEXT (t1); break;
971      case tcc_exceptional:
972	t1 = BLOCK_SUPERCONTEXT (t1); break;  /* assume block */
973      default: gcc_unreachable ();
974      }
975
976  while (t2 && TREE_CODE (t2) != TRANSLATION_UNIT_DECL)
977    switch (TREE_CODE_CLASS (TREE_CODE (t2)))
978      {
979      case tcc_declaration:
980	t2 = DECL_CONTEXT (t2); break;
981      case tcc_type:
982	t2 = TYPE_CONTEXT (t2); break;
983      case tcc_exceptional:
984	t2 = BLOCK_SUPERCONTEXT (t2); break;  /* assume block */
985      default: gcc_unreachable ();
986      }
987
988  return t1 == t2;
989}
990
991/* Allocate the seen two types, assuming that they are compatible. */
992
993static struct tagged_tu_seen_cache *
994alloc_tagged_tu_seen_cache (tree t1, tree t2)
995{
996  struct tagged_tu_seen_cache *tu = XNEW (struct tagged_tu_seen_cache);
997  tu->next = tagged_tu_seen_base;
998  tu->t1 = t1;
999  tu->t2 = t2;
1000
1001  tagged_tu_seen_base = tu;
1002
1003  /* The C standard says that two structures in different translation
1004     units are compatible with each other only if the types of their
1005     fields are compatible (among other things).  We assume that they
1006     are compatible until proven otherwise when building the cache.
1007     An example where this can occur is:
1008     struct a
1009     {
1010       struct a *next;
1011     };
1012     If we are comparing this against a similar struct in another TU,
1013     and did not assume they were compatible, we end up with an infinite
1014     loop.  */
1015  tu->val = 1;
1016  return tu;
1017}
1018
1019/* Free the seen types until we get to TU_TIL. */
1020
1021static void
1022free_all_tagged_tu_seen_up_to (const struct tagged_tu_seen_cache *tu_til)
1023{
1024  const struct tagged_tu_seen_cache *tu = tagged_tu_seen_base;
1025  while (tu != tu_til)
1026    {
1027      struct tagged_tu_seen_cache *tu1 = (struct tagged_tu_seen_cache*)tu;
1028      tu = tu1->next;
1029      free (tu1);
1030    }
1031  tagged_tu_seen_base = tu_til;
1032}
1033
1034/* Return 1 if two 'struct', 'union', or 'enum' types T1 and T2 are
1035   compatible.  If the two types are not the same (which has been
1036   checked earlier), this can only happen when multiple translation
1037   units are being compiled.  See C99 6.2.7 paragraph 1 for the exact
1038   rules.  */
1039
1040static int
1041tagged_types_tu_compatible_p (tree t1, tree t2)
1042{
1043  tree s1, s2;
1044  bool needs_warning = false;
1045
1046  /* We have to verify that the tags of the types are the same.  This
1047     is harder than it looks because this may be a typedef, so we have
1048     to go look at the original type.  It may even be a typedef of a
1049     typedef...
1050     In the case of compiler-created builtin structs the TYPE_DECL
1051     may be a dummy, with no DECL_ORIGINAL_TYPE.  Don't fault.  */
1052  while (TYPE_NAME (t1)
1053	 && TREE_CODE (TYPE_NAME (t1)) == TYPE_DECL
1054	 && DECL_ORIGINAL_TYPE (TYPE_NAME (t1)))
1055    t1 = DECL_ORIGINAL_TYPE (TYPE_NAME (t1));
1056
1057  while (TYPE_NAME (t2)
1058	 && TREE_CODE (TYPE_NAME (t2)) == TYPE_DECL
1059	 && DECL_ORIGINAL_TYPE (TYPE_NAME (t2)))
1060    t2 = DECL_ORIGINAL_TYPE (TYPE_NAME (t2));
1061
1062  /* C90 didn't have the requirement that the two tags be the same.  */
1063  if (flag_isoc99 && TYPE_NAME (t1) != TYPE_NAME (t2))
1064    return 0;
1065
1066  /* C90 didn't say what happened if one or both of the types were
1067     incomplete; we choose to follow C99 rules here, which is that they
1068     are compatible.  */
1069  if (TYPE_SIZE (t1) == NULL
1070      || TYPE_SIZE (t2) == NULL)
1071    return 1;
1072
1073  {
1074    const struct tagged_tu_seen_cache * tts_i;
1075    for (tts_i = tagged_tu_seen_base; tts_i != NULL; tts_i = tts_i->next)
1076      if (tts_i->t1 == t1 && tts_i->t2 == t2)
1077	return tts_i->val;
1078  }
1079
1080  switch (TREE_CODE (t1))
1081    {
1082    case ENUMERAL_TYPE:
1083      {
1084	struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2);
1085	/* Speed up the case where the type values are in the same order.  */
1086	tree tv1 = TYPE_VALUES (t1);
1087	tree tv2 = TYPE_VALUES (t2);
1088
1089	if (tv1 == tv2)
1090	  {
1091	    return 1;
1092	  }
1093
1094	for (;tv1 && tv2; tv1 = TREE_CHAIN (tv1), tv2 = TREE_CHAIN (tv2))
1095	  {
1096	    if (TREE_PURPOSE (tv1) != TREE_PURPOSE (tv2))
1097	      break;
1098	    if (simple_cst_equal (TREE_VALUE (tv1), TREE_VALUE (tv2)) != 1)
1099	      {
1100		tu->val = 0;
1101		return 0;
1102	      }
1103	  }
1104
1105	if (tv1 == NULL_TREE && tv2 == NULL_TREE)
1106	  {
1107	    return 1;
1108	  }
1109	if (tv1 == NULL_TREE || tv2 == NULL_TREE)
1110	  {
1111	    tu->val = 0;
1112	    return 0;
1113	  }
1114
1115	if (list_length (TYPE_VALUES (t1)) != list_length (TYPE_VALUES (t2)))
1116	  {
1117	    tu->val = 0;
1118	    return 0;
1119	  }
1120
1121	for (s1 = TYPE_VALUES (t1); s1; s1 = TREE_CHAIN (s1))
1122	  {
1123	    s2 = purpose_member (TREE_PURPOSE (s1), TYPE_VALUES (t2));
1124	    if (s2 == NULL
1125		|| simple_cst_equal (TREE_VALUE (s1), TREE_VALUE (s2)) != 1)
1126	      {
1127		tu->val = 0;
1128		return 0;
1129	      }
1130	  }
1131	return 1;
1132      }
1133
1134    case UNION_TYPE:
1135      {
1136	struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2);
1137	if (list_length (TYPE_FIELDS (t1)) != list_length (TYPE_FIELDS (t2)))
1138	  {
1139	    tu->val = 0;
1140	    return 0;
1141	  }
1142
1143	/*  Speed up the common case where the fields are in the same order. */
1144	for (s1 = TYPE_FIELDS (t1), s2 = TYPE_FIELDS (t2); s1 && s2;
1145	     s1 = TREE_CHAIN (s1), s2 = TREE_CHAIN (s2))
1146	  {
1147	    int result;
1148
1149
1150	    if (DECL_NAME (s1) == NULL
1151		|| DECL_NAME (s1) != DECL_NAME (s2))
1152	      break;
1153	    result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2));
1154	    if (result == 0)
1155	      {
1156		tu->val = 0;
1157		return 0;
1158	      }
1159	    if (result == 2)
1160	      needs_warning = true;
1161
1162	    if (TREE_CODE (s1) == FIELD_DECL
1163		&& simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
1164				     DECL_FIELD_BIT_OFFSET (s2)) != 1)
1165	      {
1166		tu->val = 0;
1167		return 0;
1168	      }
1169	  }
1170	if (!s1 && !s2)
1171	  {
1172	    tu->val = needs_warning ? 2 : 1;
1173	    return tu->val;
1174	  }
1175
1176	for (s1 = TYPE_FIELDS (t1); s1; s1 = TREE_CHAIN (s1))
1177	  {
1178	    bool ok = false;
1179
1180	    if (DECL_NAME (s1) != NULL)
1181	      for (s2 = TYPE_FIELDS (t2); s2; s2 = TREE_CHAIN (s2))
1182		if (DECL_NAME (s1) == DECL_NAME (s2))
1183		  {
1184		    int result;
1185		    result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2));
1186		    if (result == 0)
1187		      {
1188			tu->val = 0;
1189			return 0;
1190		      }
1191		    if (result == 2)
1192		      needs_warning = true;
1193
1194		    if (TREE_CODE (s1) == FIELD_DECL
1195			&& simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
1196					     DECL_FIELD_BIT_OFFSET (s2)) != 1)
1197		      break;
1198
1199		    ok = true;
1200		    break;
1201		  }
1202	    if (!ok)
1203	      {
1204		tu->val = 0;
1205		return 0;
1206	      }
1207	  }
1208	tu->val = needs_warning ? 2 : 10;
1209	return tu->val;
1210      }
1211
1212    case RECORD_TYPE:
1213      {
1214	struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2);
1215
1216	for (s1 = TYPE_FIELDS (t1), s2 = TYPE_FIELDS (t2);
1217	     s1 && s2;
1218	     s1 = TREE_CHAIN (s1), s2 = TREE_CHAIN (s2))
1219	  {
1220	    int result;
1221	    if (TREE_CODE (s1) != TREE_CODE (s2)
1222		|| DECL_NAME (s1) != DECL_NAME (s2))
1223	      break;
1224	    result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2));
1225	    if (result == 0)
1226	      break;
1227	    if (result == 2)
1228	      needs_warning = true;
1229
1230	    if (TREE_CODE (s1) == FIELD_DECL
1231		&& simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
1232				     DECL_FIELD_BIT_OFFSET (s2)) != 1)
1233	      break;
1234	  }
1235	if (s1 && s2)
1236	  tu->val = 0;
1237	else
1238	  tu->val = needs_warning ? 2 : 1;
1239	return tu->val;
1240      }
1241
1242    default:
1243      gcc_unreachable ();
1244    }
1245}
1246
1247/* Return 1 if two function types F1 and F2 are compatible.
1248   If either type specifies no argument types,
1249   the other must specify a fixed number of self-promoting arg types.
1250   Otherwise, if one type specifies only the number of arguments,
1251   the other must specify that number of self-promoting arg types.
1252   Otherwise, the argument types must match.  */
1253
1254static int
1255function_types_compatible_p (tree f1, tree f2)
1256{
1257  tree args1, args2;
1258  /* 1 if no need for warning yet, 2 if warning cause has been seen.  */
1259  int val = 1;
1260  int val1;
1261  tree ret1, ret2;
1262
1263  ret1 = TREE_TYPE (f1);
1264  ret2 = TREE_TYPE (f2);
1265
1266  /* 'volatile' qualifiers on a function's return type used to mean
1267     the function is noreturn.  */
1268  if (TYPE_VOLATILE (ret1) != TYPE_VOLATILE (ret2))
1269    pedwarn ("function return types not compatible due to %<volatile%>");
1270  if (TYPE_VOLATILE (ret1))
1271    ret1 = build_qualified_type (TYPE_MAIN_VARIANT (ret1),
1272				 TYPE_QUALS (ret1) & ~TYPE_QUAL_VOLATILE);
1273  if (TYPE_VOLATILE (ret2))
1274    ret2 = build_qualified_type (TYPE_MAIN_VARIANT (ret2),
1275				 TYPE_QUALS (ret2) & ~TYPE_QUAL_VOLATILE);
1276  val = comptypes_internal (ret1, ret2);
1277  if (val == 0)
1278    return 0;
1279
1280  args1 = TYPE_ARG_TYPES (f1);
1281  args2 = TYPE_ARG_TYPES (f2);
1282
1283  /* An unspecified parmlist matches any specified parmlist
1284     whose argument types don't need default promotions.  */
1285
1286  if (args1 == 0)
1287    {
1288      if (!self_promoting_args_p (args2))
1289	return 0;
1290      /* If one of these types comes from a non-prototype fn definition,
1291	 compare that with the other type's arglist.
1292	 If they don't match, ask for a warning (but no error).  */
1293      if (TYPE_ACTUAL_ARG_TYPES (f1)
1294	  && 1 != type_lists_compatible_p (args2, TYPE_ACTUAL_ARG_TYPES (f1)))
1295	val = 2;
1296      return val;
1297    }
1298  if (args2 == 0)
1299    {
1300      if (!self_promoting_args_p (args1))
1301	return 0;
1302      if (TYPE_ACTUAL_ARG_TYPES (f2)
1303	  && 1 != type_lists_compatible_p (args1, TYPE_ACTUAL_ARG_TYPES (f2)))
1304	val = 2;
1305      return val;
1306    }
1307
1308  /* Both types have argument lists: compare them and propagate results.  */
1309  val1 = type_lists_compatible_p (args1, args2);
1310  return val1 != 1 ? val1 : val;
1311}
1312
1313/* Check two lists of types for compatibility,
1314   returning 0 for incompatible, 1 for compatible,
1315   or 2 for compatible with warning.  */
1316
1317static int
1318type_lists_compatible_p (tree args1, tree args2)
1319{
1320  /* 1 if no need for warning yet, 2 if warning cause has been seen.  */
1321  int val = 1;
1322  int newval = 0;
1323
1324  while (1)
1325    {
1326      tree a1, mv1, a2, mv2;
1327      if (args1 == 0 && args2 == 0)
1328	return val;
1329      /* If one list is shorter than the other,
1330	 they fail to match.  */
1331      if (args1 == 0 || args2 == 0)
1332	return 0;
1333      mv1 = a1 = TREE_VALUE (args1);
1334      mv2 = a2 = TREE_VALUE (args2);
1335      if (mv1 && mv1 != error_mark_node && TREE_CODE (mv1) != ARRAY_TYPE)
1336	mv1 = TYPE_MAIN_VARIANT (mv1);
1337      if (mv2 && mv2 != error_mark_node && TREE_CODE (mv2) != ARRAY_TYPE)
1338	mv2 = TYPE_MAIN_VARIANT (mv2);
1339      /* A null pointer instead of a type
1340	 means there is supposed to be an argument
1341	 but nothing is specified about what type it has.
1342	 So match anything that self-promotes.  */
1343      if (a1 == 0)
1344	{
1345	  if (c_type_promotes_to (a2) != a2)
1346	    return 0;
1347	}
1348      else if (a2 == 0)
1349	{
1350	  if (c_type_promotes_to (a1) != a1)
1351	    return 0;
1352	}
1353      /* If one of the lists has an error marker, ignore this arg.  */
1354      else if (TREE_CODE (a1) == ERROR_MARK
1355	       || TREE_CODE (a2) == ERROR_MARK)
1356	;
1357      else if (!(newval = comptypes_internal (mv1, mv2)))
1358	{
1359	  /* Allow  wait (union {union wait *u; int *i} *)
1360	     and  wait (union wait *)  to be compatible.  */
1361	  if (TREE_CODE (a1) == UNION_TYPE
1362	      && (TYPE_NAME (a1) == 0
1363		  || TYPE_TRANSPARENT_UNION (a1))
1364	      && TREE_CODE (TYPE_SIZE (a1)) == INTEGER_CST
1365	      && tree_int_cst_equal (TYPE_SIZE (a1),
1366				     TYPE_SIZE (a2)))
1367	    {
1368	      tree memb;
1369	      for (memb = TYPE_FIELDS (a1);
1370		   memb; memb = TREE_CHAIN (memb))
1371		{
1372		  tree mv3 = TREE_TYPE (memb);
1373		  if (mv3 && mv3 != error_mark_node
1374		      && TREE_CODE (mv3) != ARRAY_TYPE)
1375		    mv3 = TYPE_MAIN_VARIANT (mv3);
1376		  if (comptypes_internal (mv3, mv2))
1377		    break;
1378		}
1379	      if (memb == 0)
1380		return 0;
1381	    }
1382	  else if (TREE_CODE (a2) == UNION_TYPE
1383		   && (TYPE_NAME (a2) == 0
1384		       || TYPE_TRANSPARENT_UNION (a2))
1385		   && TREE_CODE (TYPE_SIZE (a2)) == INTEGER_CST
1386		   && tree_int_cst_equal (TYPE_SIZE (a2),
1387					  TYPE_SIZE (a1)))
1388	    {
1389	      tree memb;
1390	      for (memb = TYPE_FIELDS (a2);
1391		   memb; memb = TREE_CHAIN (memb))
1392		{
1393		  tree mv3 = TREE_TYPE (memb);
1394		  if (mv3 && mv3 != error_mark_node
1395		      && TREE_CODE (mv3) != ARRAY_TYPE)
1396		    mv3 = TYPE_MAIN_VARIANT (mv3);
1397		  if (comptypes_internal (mv3, mv1))
1398		    break;
1399		}
1400	      if (memb == 0)
1401		return 0;
1402	    }
1403	  else
1404	    return 0;
1405	}
1406
1407      /* comptypes said ok, but record if it said to warn.  */
1408      if (newval > val)
1409	val = newval;
1410
1411      args1 = TREE_CHAIN (args1);
1412      args2 = TREE_CHAIN (args2);
1413    }
1414}
1415
1416/* Compute the size to increment a pointer by.  */
1417
1418static tree
1419c_size_in_bytes (tree type)
1420{
1421  enum tree_code code = TREE_CODE (type);
1422
1423  if (code == FUNCTION_TYPE || code == VOID_TYPE || code == ERROR_MARK)
1424    return size_one_node;
1425
1426  if (!COMPLETE_OR_VOID_TYPE_P (type))
1427    {
1428      error ("arithmetic on pointer to an incomplete type");
1429      return size_one_node;
1430    }
1431
1432  /* Convert in case a char is more than one unit.  */
1433  return size_binop (CEIL_DIV_EXPR, TYPE_SIZE_UNIT (type),
1434		     size_int (TYPE_PRECISION (char_type_node)
1435			       / BITS_PER_UNIT));
1436}
1437
1438/* Return either DECL or its known constant value (if it has one).  */
1439
1440tree
1441decl_constant_value (tree decl)
1442{
1443  if (/* Don't change a variable array bound or initial value to a constant
1444	 in a place where a variable is invalid.  Note that DECL_INITIAL
1445	 isn't valid for a PARM_DECL.  */
1446      current_function_decl != 0
1447      && TREE_CODE (decl) != PARM_DECL
1448      && !TREE_THIS_VOLATILE (decl)
1449      && TREE_READONLY (decl)
1450      && DECL_INITIAL (decl) != 0
1451      && TREE_CODE (DECL_INITIAL (decl)) != ERROR_MARK
1452      /* This is invalid if initial value is not constant.
1453	 If it has either a function call, a memory reference,
1454	 or a variable, then re-evaluating it could give different results.  */
1455      && TREE_CONSTANT (DECL_INITIAL (decl))
1456      /* Check for cases where this is sub-optimal, even though valid.  */
1457      && TREE_CODE (DECL_INITIAL (decl)) != CONSTRUCTOR)
1458    return DECL_INITIAL (decl);
1459  return decl;
1460}
1461
1462/* Return either DECL or its known constant value (if it has one), but
1463   return DECL if pedantic or DECL has mode BLKmode.  This is for
1464   bug-compatibility with the old behavior of decl_constant_value
1465   (before GCC 3.0); every use of this function is a bug and it should
1466   be removed before GCC 3.1.  It is not appropriate to use pedantic
1467   in a way that affects optimization, and BLKmode is probably not the
1468   right test for avoiding misoptimizations either.  */
1469
1470static tree
1471decl_constant_value_for_broken_optimization (tree decl)
1472{
1473  tree ret;
1474
1475  if (pedantic || DECL_MODE (decl) == BLKmode)
1476    return decl;
1477
1478  ret = decl_constant_value (decl);
1479  /* Avoid unwanted tree sharing between the initializer and current
1480     function's body where the tree can be modified e.g. by the
1481     gimplifier.  */
1482  if (ret != decl && TREE_STATIC (decl))
1483    ret = unshare_expr (ret);
1484  return ret;
1485}
1486
1487/* Convert the array expression EXP to a pointer.  */
1488static tree
1489array_to_pointer_conversion (tree exp)
1490{
1491  tree orig_exp = exp;
1492  tree type = TREE_TYPE (exp);
1493  tree adr;
1494  tree restype = TREE_TYPE (type);
1495  tree ptrtype;
1496
1497  gcc_assert (TREE_CODE (type) == ARRAY_TYPE);
1498
1499  STRIP_TYPE_NOPS (exp);
1500
1501  if (TREE_NO_WARNING (orig_exp))
1502    TREE_NO_WARNING (exp) = 1;
1503
1504  ptrtype = build_pointer_type (restype);
1505
1506  if (TREE_CODE (exp) == INDIRECT_REF)
1507    return convert (ptrtype, TREE_OPERAND (exp, 0));
1508
1509  if (TREE_CODE (exp) == VAR_DECL)
1510    {
1511      /* We are making an ADDR_EXPR of ptrtype.  This is a valid
1512	 ADDR_EXPR because it's the best way of representing what
1513	 happens in C when we take the address of an array and place
1514	 it in a pointer to the element type.  */
1515      adr = build1 (ADDR_EXPR, ptrtype, exp);
1516      if (!c_mark_addressable (exp))
1517	return error_mark_node;
1518      TREE_SIDE_EFFECTS (adr) = 0;   /* Default would be, same as EXP.  */
1519      return adr;
1520    }
1521
1522  /* This way is better for a COMPONENT_REF since it can
1523     simplify the offset for a component.  */
1524  adr = build_unary_op (ADDR_EXPR, exp, 1);
1525  return convert (ptrtype, adr);
1526}
1527
1528/* Convert the function expression EXP to a pointer.  */
1529static tree
1530function_to_pointer_conversion (tree exp)
1531{
1532  tree orig_exp = exp;
1533
1534  gcc_assert (TREE_CODE (TREE_TYPE (exp)) == FUNCTION_TYPE);
1535
1536  STRIP_TYPE_NOPS (exp);
1537
1538  if (TREE_NO_WARNING (orig_exp))
1539    TREE_NO_WARNING (exp) = 1;
1540
1541  return build_unary_op (ADDR_EXPR, exp, 0);
1542}
1543
1544/* Perform the default conversion of arrays and functions to pointers.
1545   Return the result of converting EXP.  For any other expression, just
1546   return EXP after removing NOPs.  */
1547
1548struct c_expr
1549default_function_array_conversion (struct c_expr exp)
1550{
1551  tree orig_exp = exp.value;
1552  tree type = TREE_TYPE (exp.value);
1553  enum tree_code code = TREE_CODE (type);
1554
1555  switch (code)
1556    {
1557    case ARRAY_TYPE:
1558      {
1559	bool not_lvalue = false;
1560	bool lvalue_array_p;
1561
1562	while ((TREE_CODE (exp.value) == NON_LVALUE_EXPR
1563		|| TREE_CODE (exp.value) == NOP_EXPR
1564		|| TREE_CODE (exp.value) == CONVERT_EXPR)
1565	       && TREE_TYPE (TREE_OPERAND (exp.value, 0)) == type)
1566	  {
1567	    if (TREE_CODE (exp.value) == NON_LVALUE_EXPR)
1568	      not_lvalue = true;
1569	    exp.value = TREE_OPERAND (exp.value, 0);
1570	  }
1571
1572	if (TREE_NO_WARNING (orig_exp))
1573	  TREE_NO_WARNING (exp.value) = 1;
1574
1575	lvalue_array_p = !not_lvalue && lvalue_p (exp.value);
1576	if (!flag_isoc99 && !lvalue_array_p)
1577	  {
1578	    /* Before C99, non-lvalue arrays do not decay to pointers.
1579	       Normally, using such an array would be invalid; but it can
1580	       be used correctly inside sizeof or as a statement expression.
1581	       Thus, do not give an error here; an error will result later.  */
1582	    return exp;
1583	  }
1584
1585	exp.value = array_to_pointer_conversion (exp.value);
1586      }
1587      break;
1588    case FUNCTION_TYPE:
1589      exp.value = function_to_pointer_conversion (exp.value);
1590      break;
1591    default:
1592      STRIP_TYPE_NOPS (exp.value);
1593      if (TREE_NO_WARNING (orig_exp))
1594	TREE_NO_WARNING (exp.value) = 1;
1595      break;
1596    }
1597
1598  return exp;
1599}
1600
1601
1602/* EXP is an expression of integer type.  Apply the integer promotions
1603   to it and return the promoted value.  */
1604
1605tree
1606perform_integral_promotions (tree exp)
1607{
1608  tree type = TREE_TYPE (exp);
1609  enum tree_code code = TREE_CODE (type);
1610
1611  gcc_assert (INTEGRAL_TYPE_P (type));
1612
1613  /* Normally convert enums to int,
1614     but convert wide enums to something wider.  */
1615  if (code == ENUMERAL_TYPE)
1616    {
1617      type = c_common_type_for_size (MAX (TYPE_PRECISION (type),
1618					  TYPE_PRECISION (integer_type_node)),
1619				     ((TYPE_PRECISION (type)
1620				       >= TYPE_PRECISION (integer_type_node))
1621				      && TYPE_UNSIGNED (type)));
1622
1623      return convert (type, exp);
1624    }
1625
1626  /* ??? This should no longer be needed now bit-fields have their
1627     proper types.  */
1628  if (TREE_CODE (exp) == COMPONENT_REF
1629      && DECL_C_BIT_FIELD (TREE_OPERAND (exp, 1))
1630      /* If it's thinner than an int, promote it like a
1631	 c_promoting_integer_type_p, otherwise leave it alone.  */
1632      && 0 > compare_tree_int (DECL_SIZE (TREE_OPERAND (exp, 1)),
1633			       TYPE_PRECISION (integer_type_node)))
1634    return convert (integer_type_node, exp);
1635
1636  if (c_promoting_integer_type_p (type))
1637    {
1638      /* Preserve unsignedness if not really getting any wider.  */
1639      if (TYPE_UNSIGNED (type)
1640	  && TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node))
1641	return convert (unsigned_type_node, exp);
1642
1643      return convert (integer_type_node, exp);
1644    }
1645
1646  return exp;
1647}
1648
1649
1650/* Perform default promotions for C data used in expressions.
1651   Enumeral types or short or char are converted to int.
1652   In addition, manifest constants symbols are replaced by their values.  */
1653
1654tree
1655default_conversion (tree exp)
1656{
1657  tree orig_exp;
1658  tree type = TREE_TYPE (exp);
1659  enum tree_code code = TREE_CODE (type);
1660
1661  /* Functions and arrays have been converted during parsing.  */
1662  gcc_assert (code != FUNCTION_TYPE);
1663  if (code == ARRAY_TYPE)
1664    return exp;
1665
1666  /* Constants can be used directly unless they're not loadable.  */
1667  if (TREE_CODE (exp) == CONST_DECL)
1668    exp = DECL_INITIAL (exp);
1669
1670  /* Replace a nonvolatile const static variable with its value unless
1671     it is an array, in which case we must be sure that taking the
1672     address of the array produces consistent results.  */
1673  else if (optimize && TREE_CODE (exp) == VAR_DECL && code != ARRAY_TYPE)
1674    {
1675      exp = decl_constant_value_for_broken_optimization (exp);
1676      type = TREE_TYPE (exp);
1677    }
1678
1679  /* Strip no-op conversions.  */
1680  orig_exp = exp;
1681  STRIP_TYPE_NOPS (exp);
1682
1683  if (TREE_NO_WARNING (orig_exp))
1684    TREE_NO_WARNING (exp) = 1;
1685
1686  if (INTEGRAL_TYPE_P (type))
1687    return perform_integral_promotions (exp);
1688
1689  if (code == VOID_TYPE)
1690    {
1691      error ("void value not ignored as it ought to be");
1692      return error_mark_node;
1693    }
1694  return exp;
1695}
1696
1697/* Look up COMPONENT in a structure or union DECL.
1698
1699   If the component name is not found, returns NULL_TREE.  Otherwise,
1700   the return value is a TREE_LIST, with each TREE_VALUE a FIELD_DECL
1701   stepping down the chain to the component, which is in the last
1702   TREE_VALUE of the list.  Normally the list is of length one, but if
1703   the component is embedded within (nested) anonymous structures or
1704   unions, the list steps down the chain to the component.  */
1705
1706static tree
1707lookup_field (tree decl, tree component)
1708{
1709  tree type = TREE_TYPE (decl);
1710  tree field;
1711
1712  /* If TYPE_LANG_SPECIFIC is set, then it is a sorted array of pointers
1713     to the field elements.  Use a binary search on this array to quickly
1714     find the element.  Otherwise, do a linear search.  TYPE_LANG_SPECIFIC
1715     will always be set for structures which have many elements.  */
1716
1717  if (TYPE_LANG_SPECIFIC (type) && TYPE_LANG_SPECIFIC (type)->s)
1718    {
1719      int bot, top, half;
1720      tree *field_array = &TYPE_LANG_SPECIFIC (type)->s->elts[0];
1721
1722      field = TYPE_FIELDS (type);
1723      bot = 0;
1724      top = TYPE_LANG_SPECIFIC (type)->s->len;
1725      while (top - bot > 1)
1726	{
1727	  half = (top - bot + 1) >> 1;
1728	  field = field_array[bot+half];
1729
1730	  if (DECL_NAME (field) == NULL_TREE)
1731	    {
1732	      /* Step through all anon unions in linear fashion.  */
1733	      while (DECL_NAME (field_array[bot]) == NULL_TREE)
1734		{
1735		  field = field_array[bot++];
1736		  if (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE
1737		      || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE)
1738		    {
1739		      tree anon = lookup_field (field, component);
1740
1741		      if (anon)
1742			return tree_cons (NULL_TREE, field, anon);
1743		    }
1744		}
1745
1746	      /* Entire record is only anon unions.  */
1747	      if (bot > top)
1748		return NULL_TREE;
1749
1750	      /* Restart the binary search, with new lower bound.  */
1751	      continue;
1752	    }
1753
1754	  if (DECL_NAME (field) == component)
1755	    break;
1756	  if (DECL_NAME (field) < component)
1757	    bot += half;
1758	  else
1759	    top = bot + half;
1760	}
1761
1762      if (DECL_NAME (field_array[bot]) == component)
1763	field = field_array[bot];
1764      else if (DECL_NAME (field) != component)
1765	return NULL_TREE;
1766    }
1767  else
1768    {
1769      for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1770	{
1771	  if (DECL_NAME (field) == NULL_TREE
1772	      && (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE
1773		  || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE))
1774	    {
1775	      tree anon = lookup_field (field, component);
1776
1777	      if (anon)
1778		return tree_cons (NULL_TREE, field, anon);
1779	    }
1780
1781	  if (DECL_NAME (field) == component)
1782	    break;
1783	}
1784
1785      if (field == NULL_TREE)
1786	return NULL_TREE;
1787    }
1788
1789  return tree_cons (NULL_TREE, field, NULL_TREE);
1790}
1791
1792/* Make an expression to refer to the COMPONENT field of
1793   structure or union value DATUM.  COMPONENT is an IDENTIFIER_NODE.  */
1794
1795tree
1796build_component_ref (tree datum, tree component)
1797{
1798  tree type = TREE_TYPE (datum);
1799  enum tree_code code = TREE_CODE (type);
1800  tree field = NULL;
1801  tree ref;
1802
1803  if (!objc_is_public (datum, component))
1804    return error_mark_node;
1805
1806  /* See if there is a field or component with name COMPONENT.  */
1807
1808  if (code == RECORD_TYPE || code == UNION_TYPE)
1809    {
1810      if (!COMPLETE_TYPE_P (type))
1811	{
1812	  c_incomplete_type_error (NULL_TREE, type);
1813	  return error_mark_node;
1814	}
1815
1816      field = lookup_field (datum, component);
1817
1818      if (!field)
1819	{
1820	  error ("%qT has no member named %qE", type, component);
1821	  return error_mark_node;
1822	}
1823
1824      /* Chain the COMPONENT_REFs if necessary down to the FIELD.
1825	 This might be better solved in future the way the C++ front
1826	 end does it - by giving the anonymous entities each a
1827	 separate name and type, and then have build_component_ref
1828	 recursively call itself.  We can't do that here.  */
1829      do
1830	{
1831	  tree subdatum = TREE_VALUE (field);
1832	  int quals;
1833	  tree subtype;
1834
1835	  if (TREE_TYPE (subdatum) == error_mark_node)
1836	    return error_mark_node;
1837
1838	  quals = TYPE_QUALS (strip_array_types (TREE_TYPE (subdatum)));
1839	  quals |= TYPE_QUALS (TREE_TYPE (datum));
1840	  subtype = c_build_qualified_type (TREE_TYPE (subdatum), quals);
1841
1842	  ref = build3 (COMPONENT_REF, subtype, datum, subdatum,
1843			NULL_TREE);
1844	  if (TREE_READONLY (datum) || TREE_READONLY (subdatum))
1845	    TREE_READONLY (ref) = 1;
1846	  if (TREE_THIS_VOLATILE (datum) || TREE_THIS_VOLATILE (subdatum))
1847	    TREE_THIS_VOLATILE (ref) = 1;
1848
1849	  if (TREE_DEPRECATED (subdatum))
1850	    warn_deprecated_use (subdatum);
1851
1852	  datum = ref;
1853
1854	  field = TREE_CHAIN (field);
1855	}
1856      while (field);
1857
1858      return ref;
1859    }
1860  else if (code != ERROR_MARK)
1861    error ("request for member %qE in something not a structure or union",
1862	   component);
1863
1864  return error_mark_node;
1865}
1866
1867/* Given an expression PTR for a pointer, return an expression
1868   for the value pointed to.
1869   ERRORSTRING is the name of the operator to appear in error messages.  */
1870
1871tree
1872build_indirect_ref (tree ptr, const char *errorstring)
1873{
1874  tree pointer = default_conversion (ptr);
1875  tree type = TREE_TYPE (pointer);
1876
1877  if (TREE_CODE (type) == POINTER_TYPE)
1878    {
1879      if (TREE_CODE (pointer) == ADDR_EXPR
1880	  && (TREE_TYPE (TREE_OPERAND (pointer, 0))
1881	      == TREE_TYPE (type)))
1882	return TREE_OPERAND (pointer, 0);
1883      else
1884	{
1885	  tree t = TREE_TYPE (type);
1886	  tree ref;
1887
1888	  ref = build1 (INDIRECT_REF, t, pointer);
1889
1890	  if (!COMPLETE_OR_VOID_TYPE_P (t) && TREE_CODE (t) != ARRAY_TYPE)
1891	    {
1892	      error ("dereferencing pointer to incomplete type");
1893	      return error_mark_node;
1894	    }
1895	  if (VOID_TYPE_P (t) && skip_evaluation == 0)
1896	    warning (0, "dereferencing %<void *%> pointer");
1897
1898	  /* We *must* set TREE_READONLY when dereferencing a pointer to const,
1899	     so that we get the proper error message if the result is used
1900	     to assign to.  Also, &* is supposed to be a no-op.
1901	     And ANSI C seems to specify that the type of the result
1902	     should be the const type.  */
1903	  /* A de-reference of a pointer to const is not a const.  It is valid
1904	     to change it via some other pointer.  */
1905	  TREE_READONLY (ref) = TYPE_READONLY (t);
1906	  TREE_SIDE_EFFECTS (ref)
1907	    = TYPE_VOLATILE (t) || TREE_SIDE_EFFECTS (pointer);
1908	  TREE_THIS_VOLATILE (ref) = TYPE_VOLATILE (t);
1909	  return ref;
1910	}
1911    }
1912  else if (TREE_CODE (pointer) != ERROR_MARK)
1913    error ("invalid type argument of %qs", errorstring);
1914  return error_mark_node;
1915}
1916
1917/* This handles expressions of the form "a[i]", which denotes
1918   an array reference.
1919
1920   This is logically equivalent in C to *(a+i), but we may do it differently.
1921   If A is a variable or a member, we generate a primitive ARRAY_REF.
1922   This avoids forcing the array out of registers, and can work on
1923   arrays that are not lvalues (for example, members of structures returned
1924   by functions).  */
1925
1926tree
1927build_array_ref (tree array, tree index)
1928{
1929  bool swapped = false;
1930  if (TREE_TYPE (array) == error_mark_node
1931      || TREE_TYPE (index) == error_mark_node)
1932    return error_mark_node;
1933
1934  if (TREE_CODE (TREE_TYPE (array)) != ARRAY_TYPE
1935      && TREE_CODE (TREE_TYPE (array)) != POINTER_TYPE)
1936    {
1937      tree temp;
1938      if (TREE_CODE (TREE_TYPE (index)) != ARRAY_TYPE
1939	  && TREE_CODE (TREE_TYPE (index)) != POINTER_TYPE)
1940	{
1941	  error ("subscripted value is neither array nor pointer");
1942	  return error_mark_node;
1943	}
1944      temp = array;
1945      array = index;
1946      index = temp;
1947      swapped = true;
1948    }
1949
1950  if (!INTEGRAL_TYPE_P (TREE_TYPE (index)))
1951    {
1952      error ("array subscript is not an integer");
1953      return error_mark_node;
1954    }
1955
1956  if (TREE_CODE (TREE_TYPE (TREE_TYPE (array))) == FUNCTION_TYPE)
1957    {
1958      error ("subscripted value is pointer to function");
1959      return error_mark_node;
1960    }
1961
1962  /* ??? Existing practice has been to warn only when the char
1963     index is syntactically the index, not for char[array].  */
1964  if (!swapped)
1965     warn_array_subscript_with_type_char (index);
1966
1967  /* Apply default promotions *after* noticing character types.  */
1968  index = default_conversion (index);
1969
1970  gcc_assert (TREE_CODE (TREE_TYPE (index)) == INTEGER_TYPE);
1971
1972  if (TREE_CODE (TREE_TYPE (array)) == ARRAY_TYPE)
1973    {
1974      tree rval, type;
1975
1976      /* An array that is indexed by a non-constant
1977	 cannot be stored in a register; we must be able to do
1978	 address arithmetic on its address.
1979	 Likewise an array of elements of variable size.  */
1980      if (TREE_CODE (index) != INTEGER_CST
1981	  || (COMPLETE_TYPE_P (TREE_TYPE (TREE_TYPE (array)))
1982	      && TREE_CODE (TYPE_SIZE (TREE_TYPE (TREE_TYPE (array)))) != INTEGER_CST))
1983	{
1984	  if (!c_mark_addressable (array))
1985	    return error_mark_node;
1986	}
1987      /* An array that is indexed by a constant value which is not within
1988	 the array bounds cannot be stored in a register either; because we
1989	 would get a crash in store_bit_field/extract_bit_field when trying
1990	 to access a non-existent part of the register.  */
1991      if (TREE_CODE (index) == INTEGER_CST
1992	  && TYPE_DOMAIN (TREE_TYPE (array))
1993	  && !int_fits_type_p (index, TYPE_DOMAIN (TREE_TYPE (array))))
1994	{
1995	  if (!c_mark_addressable (array))
1996	    return error_mark_node;
1997	}
1998
1999      if (pedantic)
2000	{
2001	  tree foo = array;
2002	  while (TREE_CODE (foo) == COMPONENT_REF)
2003	    foo = TREE_OPERAND (foo, 0);
2004	  if (TREE_CODE (foo) == VAR_DECL && C_DECL_REGISTER (foo))
2005	    pedwarn ("ISO C forbids subscripting %<register%> array");
2006	  else if (!flag_isoc99 && !lvalue_p (foo))
2007	    pedwarn ("ISO C90 forbids subscripting non-lvalue array");
2008	}
2009
2010      type = TREE_TYPE (TREE_TYPE (array));
2011      if (TREE_CODE (type) != ARRAY_TYPE)
2012	type = TYPE_MAIN_VARIANT (type);
2013      rval = build4 (ARRAY_REF, type, array, index, NULL_TREE, NULL_TREE);
2014      /* Array ref is const/volatile if the array elements are
2015	 or if the array is.  */
2016      TREE_READONLY (rval)
2017	|= (TYPE_READONLY (TREE_TYPE (TREE_TYPE (array)))
2018	    | TREE_READONLY (array));
2019      TREE_SIDE_EFFECTS (rval)
2020	|= (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (array)))
2021	    | TREE_SIDE_EFFECTS (array));
2022      TREE_THIS_VOLATILE (rval)
2023	|= (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (array)))
2024	    /* This was added by rms on 16 Nov 91.
2025	       It fixes  vol struct foo *a;  a->elts[1]
2026	       in an inline function.
2027	       Hope it doesn't break something else.  */
2028	    | TREE_THIS_VOLATILE (array));
2029      return require_complete_type (fold (rval));
2030    }
2031  else
2032    {
2033      tree ar = default_conversion (array);
2034
2035      if (ar == error_mark_node)
2036	return ar;
2037
2038      gcc_assert (TREE_CODE (TREE_TYPE (ar)) == POINTER_TYPE);
2039      gcc_assert (TREE_CODE (TREE_TYPE (TREE_TYPE (ar))) != FUNCTION_TYPE);
2040
2041      return build_indirect_ref (build_binary_op (PLUS_EXPR, ar, index, 0),
2042				 "array indexing");
2043    }
2044}
2045
2046/* Build an external reference to identifier ID.  FUN indicates
2047   whether this will be used for a function call.  LOC is the source
2048   location of the identifier.  */
2049tree
2050build_external_ref (tree id, int fun, location_t loc)
2051{
2052  tree ref;
2053  tree decl = lookup_name (id);
2054
2055  /* In Objective-C, an instance variable (ivar) may be preferred to
2056     whatever lookup_name() found.  */
2057  decl = objc_lookup_ivar (decl, id);
2058
2059  if (decl && decl != error_mark_node)
2060    ref = decl;
2061  else if (fun)
2062    /* Implicit function declaration.  */
2063    ref = implicitly_declare (id);
2064  else if (decl == error_mark_node)
2065    /* Don't complain about something that's already been
2066       complained about.  */
2067    return error_mark_node;
2068  else
2069    {
2070      undeclared_variable (id, loc);
2071      return error_mark_node;
2072    }
2073
2074  if (TREE_TYPE (ref) == error_mark_node)
2075    return error_mark_node;
2076
2077  if (TREE_DEPRECATED (ref))
2078    warn_deprecated_use (ref);
2079
2080  if (!skip_evaluation)
2081    assemble_external (ref);
2082  TREE_USED (ref) = 1;
2083
2084  if (TREE_CODE (ref) == FUNCTION_DECL && !in_alignof)
2085    {
2086      if (!in_sizeof && !in_typeof)
2087	C_DECL_USED (ref) = 1;
2088      else if (DECL_INITIAL (ref) == 0
2089	       && DECL_EXTERNAL (ref)
2090	       && !TREE_PUBLIC (ref))
2091	record_maybe_used_decl (ref);
2092    }
2093
2094  if (TREE_CODE (ref) == CONST_DECL)
2095    {
2096      used_types_insert (TREE_TYPE (ref));
2097      ref = DECL_INITIAL (ref);
2098      TREE_CONSTANT (ref) = 1;
2099      TREE_INVARIANT (ref) = 1;
2100    }
2101  else if (current_function_decl != 0
2102	   && !DECL_FILE_SCOPE_P (current_function_decl)
2103	   && (TREE_CODE (ref) == VAR_DECL
2104	       || TREE_CODE (ref) == PARM_DECL
2105	       || TREE_CODE (ref) == FUNCTION_DECL))
2106    {
2107      tree context = decl_function_context (ref);
2108
2109      if (context != 0 && context != current_function_decl)
2110	DECL_NONLOCAL (ref) = 1;
2111    }
2112
2113  return ref;
2114}
2115
2116/* Record details of decls possibly used inside sizeof or typeof.  */
2117struct maybe_used_decl
2118{
2119  /* The decl.  */
2120  tree decl;
2121  /* The level seen at (in_sizeof + in_typeof).  */
2122  int level;
2123  /* The next one at this level or above, or NULL.  */
2124  struct maybe_used_decl *next;
2125};
2126
2127static struct maybe_used_decl *maybe_used_decls;
2128
2129/* Record that DECL, an undefined static function reference seen
2130   inside sizeof or typeof, might be used if the operand of sizeof is
2131   a VLA type or the operand of typeof is a variably modified
2132   type.  */
2133
2134static void
2135record_maybe_used_decl (tree decl)
2136{
2137  struct maybe_used_decl *t = XOBNEW (&parser_obstack, struct maybe_used_decl);
2138  t->decl = decl;
2139  t->level = in_sizeof + in_typeof;
2140  t->next = maybe_used_decls;
2141  maybe_used_decls = t;
2142}
2143
2144/* Pop the stack of decls possibly used inside sizeof or typeof.  If
2145   USED is false, just discard them.  If it is true, mark them used
2146   (if no longer inside sizeof or typeof) or move them to the next
2147   level up (if still inside sizeof or typeof).  */
2148
2149void
2150pop_maybe_used (bool used)
2151{
2152  struct maybe_used_decl *p = maybe_used_decls;
2153  int cur_level = in_sizeof + in_typeof;
2154  while (p && p->level > cur_level)
2155    {
2156      if (used)
2157	{
2158	  if (cur_level == 0)
2159	    C_DECL_USED (p->decl) = 1;
2160	  else
2161	    p->level = cur_level;
2162	}
2163      p = p->next;
2164    }
2165  if (!used || cur_level == 0)
2166    maybe_used_decls = p;
2167}
2168
2169/* Return the result of sizeof applied to EXPR.  */
2170
2171struct c_expr
2172c_expr_sizeof_expr (struct c_expr expr)
2173{
2174  struct c_expr ret;
2175  if (expr.value == error_mark_node)
2176    {
2177      ret.value = error_mark_node;
2178      ret.original_code = ERROR_MARK;
2179      pop_maybe_used (false);
2180    }
2181  else
2182    {
2183      ret.value = c_sizeof (TREE_TYPE (expr.value));
2184      ret.original_code = ERROR_MARK;
2185      if (c_vla_type_p (TREE_TYPE (expr.value)))
2186	{
2187	  /* sizeof is evaluated when given a vla (C99 6.5.3.4p2).  */
2188	  ret.value = build2 (COMPOUND_EXPR, TREE_TYPE (ret.value), expr.value, ret.value);
2189	}
2190      pop_maybe_used (C_TYPE_VARIABLE_SIZE (TREE_TYPE (expr.value)));
2191    }
2192  return ret;
2193}
2194
2195/* Return the result of sizeof applied to T, a structure for the type
2196   name passed to sizeof (rather than the type itself).  */
2197
2198struct c_expr
2199c_expr_sizeof_type (struct c_type_name *t)
2200{
2201  tree type;
2202  struct c_expr ret;
2203  type = groktypename (t);
2204  ret.value = c_sizeof (type);
2205  ret.original_code = ERROR_MARK;
2206  pop_maybe_used (type != error_mark_node
2207		  ? C_TYPE_VARIABLE_SIZE (type) : false);
2208  return ret;
2209}
2210
2211/* Build a function call to function FUNCTION with parameters PARAMS.
2212   PARAMS is a list--a chain of TREE_LIST nodes--in which the
2213   TREE_VALUE of each node is a parameter-expression.
2214   FUNCTION's data type may be a function type or a pointer-to-function.  */
2215
2216tree
2217build_function_call (tree function, tree params)
2218{
2219  tree fntype, fundecl = 0;
2220  tree coerced_params;
2221  tree name = NULL_TREE, result;
2222  tree tem;
2223
2224  /* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue.  */
2225  STRIP_TYPE_NOPS (function);
2226
2227  /* Convert anything with function type to a pointer-to-function.  */
2228  if (TREE_CODE (function) == FUNCTION_DECL)
2229    {
2230      /* Implement type-directed function overloading for builtins.
2231	 resolve_overloaded_builtin and targetm.resolve_overloaded_builtin
2232	 handle all the type checking.  The result is a complete expression
2233	 that implements this function call.  */
2234      tem = resolve_overloaded_builtin (function, params);
2235      if (tem)
2236	return tem;
2237
2238      name = DECL_NAME (function);
2239      fundecl = function;
2240    }
2241  if (TREE_CODE (TREE_TYPE (function)) == FUNCTION_TYPE)
2242    function = function_to_pointer_conversion (function);
2243
2244  /* For Objective-C, convert any calls via a cast to OBJC_TYPE_REF
2245     expressions, like those used for ObjC messenger dispatches.  */
2246  function = objc_rewrite_function_call (function, params);
2247
2248  fntype = TREE_TYPE (function);
2249
2250  if (TREE_CODE (fntype) == ERROR_MARK)
2251    return error_mark_node;
2252
2253  if (!(TREE_CODE (fntype) == POINTER_TYPE
2254	&& TREE_CODE (TREE_TYPE (fntype)) == FUNCTION_TYPE))
2255    {
2256      error ("called object %qE is not a function", function);
2257      return error_mark_node;
2258    }
2259
2260  if (fundecl && TREE_THIS_VOLATILE (fundecl))
2261    current_function_returns_abnormally = 1;
2262
2263  /* fntype now gets the type of function pointed to.  */
2264  fntype = TREE_TYPE (fntype);
2265
2266  /* Check that the function is called through a compatible prototype.
2267     If it is not, replace the call by a trap, wrapped up in a compound
2268     expression if necessary.  This has the nice side-effect to prevent
2269     the tree-inliner from generating invalid assignment trees which may
2270     blow up in the RTL expander later.  */
2271  if ((TREE_CODE (function) == NOP_EXPR
2272       || TREE_CODE (function) == CONVERT_EXPR)
2273      && TREE_CODE (tem = TREE_OPERAND (function, 0)) == ADDR_EXPR
2274      && TREE_CODE (tem = TREE_OPERAND (tem, 0)) == FUNCTION_DECL
2275      && !comptypes (fntype, TREE_TYPE (tem)))
2276    {
2277      tree return_type = TREE_TYPE (fntype);
2278      tree trap = build_function_call (built_in_decls[BUILT_IN_TRAP],
2279				       NULL_TREE);
2280
2281      /* This situation leads to run-time undefined behavior.  We can't,
2282	 therefore, simply error unless we can prove that all possible
2283	 executions of the program must execute the code.  */
2284      warning (0, "function called through a non-compatible type");
2285
2286      /* We can, however, treat "undefined" any way we please.
2287	 Call abort to encourage the user to fix the program.  */
2288      inform ("if this code is reached, the program will abort");
2289
2290      if (VOID_TYPE_P (return_type))
2291	return trap;
2292      else
2293	{
2294	  tree rhs;
2295
2296	  if (AGGREGATE_TYPE_P (return_type))
2297	    rhs = build_compound_literal (return_type,
2298					  build_constructor (return_type, 0));
2299	  else
2300	    rhs = fold_convert (return_type, integer_zero_node);
2301
2302	  return build2 (COMPOUND_EXPR, return_type, trap, rhs);
2303	}
2304    }
2305
2306  /* Convert the parameters to the types declared in the
2307     function prototype, or apply default promotions.  */
2308
2309  coerced_params
2310    = convert_arguments (TYPE_ARG_TYPES (fntype), params, function, fundecl);
2311
2312  if (coerced_params == error_mark_node)
2313    return error_mark_node;
2314
2315  /* Check that the arguments to the function are valid.  */
2316
2317  check_function_arguments (TYPE_ATTRIBUTES (fntype), coerced_params,
2318			    TYPE_ARG_TYPES (fntype));
2319
2320  if (require_constant_value)
2321    {
2322      result = fold_build3_initializer (CALL_EXPR, TREE_TYPE (fntype),
2323					function, coerced_params, NULL_TREE);
2324
2325      if (TREE_CONSTANT (result)
2326	  && (name == NULL_TREE
2327	      || strncmp (IDENTIFIER_POINTER (name), "__builtin_", 10) != 0))
2328	pedwarn_init ("initializer element is not constant");
2329    }
2330  else
2331    result = fold_build3 (CALL_EXPR, TREE_TYPE (fntype),
2332			  function, coerced_params, NULL_TREE);
2333
2334  if (VOID_TYPE_P (TREE_TYPE (result)))
2335    return result;
2336  return require_complete_type (result);
2337}
2338
2339/* Convert the argument expressions in the list VALUES
2340   to the types in the list TYPELIST.  The result is a list of converted
2341   argument expressions, unless there are too few arguments in which
2342   case it is error_mark_node.
2343
2344   If TYPELIST is exhausted, or when an element has NULL as its type,
2345   perform the default conversions.
2346
2347   PARMLIST is the chain of parm decls for the function being called.
2348   It may be 0, if that info is not available.
2349   It is used only for generating error messages.
2350
2351   FUNCTION is a tree for the called function.  It is used only for
2352   error messages, where it is formatted with %qE.
2353
2354   This is also where warnings about wrong number of args are generated.
2355
2356   Both VALUES and the returned value are chains of TREE_LIST nodes
2357   with the elements of the list in the TREE_VALUE slots of those nodes.  */
2358
2359static tree
2360convert_arguments (tree typelist, tree values, tree function, tree fundecl)
2361{
2362  tree typetail, valtail;
2363  tree result = NULL;
2364  int parmnum;
2365  tree selector;
2366
2367  /* Change pointer to function to the function itself for
2368     diagnostics.  */
2369  if (TREE_CODE (function) == ADDR_EXPR
2370      && TREE_CODE (TREE_OPERAND (function, 0)) == FUNCTION_DECL)
2371    function = TREE_OPERAND (function, 0);
2372
2373  /* Handle an ObjC selector specially for diagnostics.  */
2374  selector = objc_message_selector ();
2375
2376  /* Scan the given expressions and types, producing individual
2377     converted arguments and pushing them on RESULT in reverse order.  */
2378
2379  for (valtail = values, typetail = typelist, parmnum = 0;
2380       valtail;
2381       valtail = TREE_CHAIN (valtail), parmnum++)
2382    {
2383      tree type = typetail ? TREE_VALUE (typetail) : 0;
2384      tree val = TREE_VALUE (valtail);
2385      tree rname = function;
2386      int argnum = parmnum + 1;
2387      const char *invalid_func_diag;
2388
2389      if (type == void_type_node)
2390	{
2391	  error ("too many arguments to function %qE", function);
2392	  break;
2393	}
2394
2395      if (selector && argnum > 2)
2396	{
2397	  rname = selector;
2398	  argnum -= 2;
2399	}
2400
2401      STRIP_TYPE_NOPS (val);
2402
2403      val = require_complete_type (val);
2404
2405      if (type != 0)
2406	{
2407	  /* Formal parm type is specified by a function prototype.  */
2408	  tree parmval;
2409
2410	  if (type == error_mark_node || !COMPLETE_TYPE_P (type))
2411	    {
2412	      error ("type of formal parameter %d is incomplete", parmnum + 1);
2413	      parmval = val;
2414	    }
2415	  else
2416	    {
2417	      /* Optionally warn about conversions that
2418		 differ from the default conversions.  */
2419	      if (warn_conversion || warn_traditional)
2420		{
2421		  unsigned int formal_prec = TYPE_PRECISION (type);
2422
2423		  if (INTEGRAL_TYPE_P (type)
2424		      && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
2425		    warning (0, "passing argument %d of %qE as integer "
2426			     "rather than floating due to prototype",
2427			     argnum, rname);
2428		  if (INTEGRAL_TYPE_P (type)
2429		      && TREE_CODE (TREE_TYPE (val)) == COMPLEX_TYPE)
2430		    warning (0, "passing argument %d of %qE as integer "
2431			     "rather than complex due to prototype",
2432			     argnum, rname);
2433		  else if (TREE_CODE (type) == COMPLEX_TYPE
2434			   && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
2435		    warning (0, "passing argument %d of %qE as complex "
2436			     "rather than floating due to prototype",
2437			     argnum, rname);
2438		  else if (TREE_CODE (type) == REAL_TYPE
2439			   && INTEGRAL_TYPE_P (TREE_TYPE (val)))
2440		    warning (0, "passing argument %d of %qE as floating "
2441			     "rather than integer due to prototype",
2442			     argnum, rname);
2443		  else if (TREE_CODE (type) == COMPLEX_TYPE
2444			   && INTEGRAL_TYPE_P (TREE_TYPE (val)))
2445		    warning (0, "passing argument %d of %qE as complex "
2446			     "rather than integer due to prototype",
2447			     argnum, rname);
2448		  else if (TREE_CODE (type) == REAL_TYPE
2449			   && TREE_CODE (TREE_TYPE (val)) == COMPLEX_TYPE)
2450		    warning (0, "passing argument %d of %qE as floating "
2451			     "rather than complex due to prototype",
2452			     argnum, rname);
2453		  /* ??? At some point, messages should be written about
2454		     conversions between complex types, but that's too messy
2455		     to do now.  */
2456		  else if (TREE_CODE (type) == REAL_TYPE
2457			   && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
2458		    {
2459		      /* Warn if any argument is passed as `float',
2460			 since without a prototype it would be `double'.  */
2461		      if (formal_prec == TYPE_PRECISION (float_type_node)
2462			  && type != dfloat32_type_node)
2463			warning (0, "passing argument %d of %qE as %<float%> "
2464				 "rather than %<double%> due to prototype",
2465				 argnum, rname);
2466
2467		      /* Warn if mismatch between argument and prototype
2468			 for decimal float types.  Warn of conversions with
2469			 binary float types and of precision narrowing due to
2470			 prototype. */
2471 		      else if (type != TREE_TYPE (val)
2472			       && (type == dfloat32_type_node
2473				   || type == dfloat64_type_node
2474				   || type == dfloat128_type_node
2475				   || TREE_TYPE (val) == dfloat32_type_node
2476				   || TREE_TYPE (val) == dfloat64_type_node
2477				   || TREE_TYPE (val) == dfloat128_type_node)
2478			       && (formal_prec
2479				   <= TYPE_PRECISION (TREE_TYPE (val))
2480				   || (type == dfloat128_type_node
2481				       && (TREE_TYPE (val)
2482					   != dfloat64_type_node
2483					   && (TREE_TYPE (val)
2484					       != dfloat32_type_node)))
2485				   || (type == dfloat64_type_node
2486				       && (TREE_TYPE (val)
2487					   != dfloat32_type_node))))
2488			warning (0, "passing argument %d of %qE as %qT "
2489				 "rather than %qT due to prototype",
2490				 argnum, rname, type, TREE_TYPE (val));
2491
2492		    }
2493		  /* Detect integer changing in width or signedness.
2494		     These warnings are only activated with
2495		     -Wconversion, not with -Wtraditional.  */
2496		  else if (warn_conversion && INTEGRAL_TYPE_P (type)
2497			   && INTEGRAL_TYPE_P (TREE_TYPE (val)))
2498		    {
2499		      tree would_have_been = default_conversion (val);
2500		      tree type1 = TREE_TYPE (would_have_been);
2501
2502		      if (TREE_CODE (type) == ENUMERAL_TYPE
2503			  && (TYPE_MAIN_VARIANT (type)
2504			      == TYPE_MAIN_VARIANT (TREE_TYPE (val))))
2505			/* No warning if function asks for enum
2506			   and the actual arg is that enum type.  */
2507			;
2508		      else if (formal_prec != TYPE_PRECISION (type1))
2509			warning (OPT_Wconversion, "passing argument %d of %qE "
2510				 "with different width due to prototype",
2511				 argnum, rname);
2512		      else if (TYPE_UNSIGNED (type) == TYPE_UNSIGNED (type1))
2513			;
2514		      /* Don't complain if the formal parameter type
2515			 is an enum, because we can't tell now whether
2516			 the value was an enum--even the same enum.  */
2517		      else if (TREE_CODE (type) == ENUMERAL_TYPE)
2518			;
2519		      else if (TREE_CODE (val) == INTEGER_CST
2520			       && int_fits_type_p (val, type))
2521			/* Change in signedness doesn't matter
2522			   if a constant value is unaffected.  */
2523			;
2524		      /* If the value is extended from a narrower
2525			 unsigned type, it doesn't matter whether we
2526			 pass it as signed or unsigned; the value
2527			 certainly is the same either way.  */
2528		      else if (TYPE_PRECISION (TREE_TYPE (val)) < TYPE_PRECISION (type)
2529			       && TYPE_UNSIGNED (TREE_TYPE (val)))
2530			;
2531		      else if (TYPE_UNSIGNED (type))
2532			warning (OPT_Wconversion, "passing argument %d of %qE "
2533				 "as unsigned due to prototype",
2534				 argnum, rname);
2535		      else
2536			warning (OPT_Wconversion, "passing argument %d of %qE "
2537				 "as signed due to prototype", argnum, rname);
2538		    }
2539		}
2540
2541	      parmval = convert_for_assignment (type, val, ic_argpass,
2542						fundecl, function,
2543						parmnum + 1);
2544
2545	      if (targetm.calls.promote_prototypes (fundecl ? TREE_TYPE (fundecl) : 0)
2546		  && INTEGRAL_TYPE_P (type)
2547		  && (TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node)))
2548		parmval = default_conversion (parmval);
2549	    }
2550	  result = tree_cons (NULL_TREE, parmval, result);
2551	}
2552      else if (TREE_CODE (TREE_TYPE (val)) == REAL_TYPE
2553	       && (TYPE_PRECISION (TREE_TYPE (val))
2554		   < TYPE_PRECISION (double_type_node))
2555	       && !DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (val))))
2556	/* Convert `float' to `double'.  */
2557	result = tree_cons (NULL_TREE, convert (double_type_node, val), result);
2558      else if ((invalid_func_diag =
2559		targetm.calls.invalid_arg_for_unprototyped_fn (typelist, fundecl, val)))
2560	{
2561	  error (invalid_func_diag);
2562	  return error_mark_node;
2563	}
2564      else
2565	/* Convert `short' and `char' to full-size `int'.  */
2566	result = tree_cons (NULL_TREE, default_conversion (val), result);
2567
2568      if (typetail)
2569	typetail = TREE_CHAIN (typetail);
2570    }
2571
2572  if (typetail != 0 && TREE_VALUE (typetail) != void_type_node)
2573    {
2574      error ("too few arguments to function %qE", function);
2575      return error_mark_node;
2576    }
2577
2578  return nreverse (result);
2579}
2580
2581/* This is the entry point used by the parser to build unary operators
2582   in the input.  CODE, a tree_code, specifies the unary operator, and
2583   ARG is the operand.  For unary plus, the C parser currently uses
2584   CONVERT_EXPR for code.  */
2585
2586struct c_expr
2587parser_build_unary_op (enum tree_code code, struct c_expr arg)
2588{
2589  struct c_expr result;
2590
2591  result.original_code = ERROR_MARK;
2592  result.value = build_unary_op (code, arg.value, 0);
2593  overflow_warning (result.value);
2594  return result;
2595}
2596
2597/* This is the entry point used by the parser to build binary operators
2598   in the input.  CODE, a tree_code, specifies the binary operator, and
2599   ARG1 and ARG2 are the operands.  In addition to constructing the
2600   expression, we check for operands that were written with other binary
2601   operators in a way that is likely to confuse the user.  */
2602
2603struct c_expr
2604parser_build_binary_op (enum tree_code code, struct c_expr arg1,
2605			struct c_expr arg2)
2606{
2607  struct c_expr result;
2608
2609  enum tree_code code1 = arg1.original_code;
2610  enum tree_code code2 = arg2.original_code;
2611
2612  result.value = build_binary_op (code, arg1.value, arg2.value, 1);
2613  result.original_code = code;
2614
2615  if (TREE_CODE (result.value) == ERROR_MARK)
2616    return result;
2617
2618  /* Check for cases such as x+y<<z which users are likely
2619     to misinterpret.  */
2620  if (warn_parentheses)
2621    {
2622      if (code == LSHIFT_EXPR || code == RSHIFT_EXPR)
2623	{
2624	  if (code1 == PLUS_EXPR || code1 == MINUS_EXPR
2625	      || code2 == PLUS_EXPR || code2 == MINUS_EXPR)
2626	    warning (OPT_Wparentheses,
2627		     "suggest parentheses around + or - inside shift");
2628	}
2629
2630      if (code == TRUTH_ORIF_EXPR)
2631	{
2632	  if (code1 == TRUTH_ANDIF_EXPR
2633	      || code2 == TRUTH_ANDIF_EXPR)
2634	    warning (OPT_Wparentheses,
2635		     "suggest parentheses around && within ||");
2636	}
2637
2638      if (code == BIT_IOR_EXPR)
2639	{
2640	  if (code1 == BIT_AND_EXPR || code1 == BIT_XOR_EXPR
2641	      || code1 == PLUS_EXPR || code1 == MINUS_EXPR
2642	      || code2 == BIT_AND_EXPR || code2 == BIT_XOR_EXPR
2643	      || code2 == PLUS_EXPR || code2 == MINUS_EXPR)
2644	    warning (OPT_Wparentheses,
2645		     "suggest parentheses around arithmetic in operand of |");
2646	  /* Check cases like x|y==z */
2647	  if (TREE_CODE_CLASS (code1) == tcc_comparison
2648	      || TREE_CODE_CLASS (code2) == tcc_comparison)
2649	    warning (OPT_Wparentheses,
2650		     "suggest parentheses around comparison in operand of |");
2651	}
2652
2653      if (code == BIT_XOR_EXPR)
2654	{
2655	  if (code1 == BIT_AND_EXPR
2656	      || code1 == PLUS_EXPR || code1 == MINUS_EXPR
2657	      || code2 == BIT_AND_EXPR
2658	      || code2 == PLUS_EXPR || code2 == MINUS_EXPR)
2659	    warning (OPT_Wparentheses,
2660		     "suggest parentheses around arithmetic in operand of ^");
2661	  /* Check cases like x^y==z */
2662	  if (TREE_CODE_CLASS (code1) == tcc_comparison
2663	      || TREE_CODE_CLASS (code2) == tcc_comparison)
2664	    warning (OPT_Wparentheses,
2665		     "suggest parentheses around comparison in operand of ^");
2666	}
2667
2668      if (code == BIT_AND_EXPR)
2669	{
2670	  if (code1 == PLUS_EXPR || code1 == MINUS_EXPR
2671	      || code2 == PLUS_EXPR || code2 == MINUS_EXPR)
2672	    warning (OPT_Wparentheses,
2673		     "suggest parentheses around + or - in operand of &");
2674	  /* Check cases like x&y==z */
2675	  if (TREE_CODE_CLASS (code1) == tcc_comparison
2676	      || TREE_CODE_CLASS (code2) == tcc_comparison)
2677	    warning (OPT_Wparentheses,
2678		     "suggest parentheses around comparison in operand of &");
2679	}
2680      /* Similarly, check for cases like 1<=i<=10 that are probably errors.  */
2681      if (TREE_CODE_CLASS (code) == tcc_comparison
2682	  && (TREE_CODE_CLASS (code1) == tcc_comparison
2683	      || TREE_CODE_CLASS (code2) == tcc_comparison))
2684	warning (OPT_Wparentheses, "comparisons like X<=Y<=Z do not "
2685		 "have their mathematical meaning");
2686
2687    }
2688
2689  /* Warn about comparisons against string literals, with the exception
2690     of testing for equality or inequality of a string literal with NULL.  */
2691  if (code == EQ_EXPR || code == NE_EXPR)
2692    {
2693      if ((code1 == STRING_CST && !integer_zerop (arg2.value))
2694	  || (code2 == STRING_CST && !integer_zerop (arg1.value)))
2695	warning (OPT_Waddress,
2696                 "comparison with string literal results in unspecified behaviour");
2697    }
2698  else if (TREE_CODE_CLASS (code) == tcc_comparison
2699	   && (code1 == STRING_CST || code2 == STRING_CST))
2700    warning (OPT_Waddress,
2701             "comparison with string literal results in unspecified behaviour");
2702
2703  overflow_warning (result.value);
2704
2705  return result;
2706}
2707
2708/* Return a tree for the difference of pointers OP0 and OP1.
2709   The resulting tree has type int.  */
2710
2711static tree
2712pointer_diff (tree op0, tree op1)
2713{
2714  tree restype = ptrdiff_type_node;
2715
2716  tree target_type = TREE_TYPE (TREE_TYPE (op0));
2717  tree con0, con1, lit0, lit1;
2718  tree orig_op1 = op1;
2719
2720  if (pedantic || warn_pointer_arith)
2721    {
2722      if (TREE_CODE (target_type) == VOID_TYPE)
2723	pedwarn ("pointer of type %<void *%> used in subtraction");
2724      if (TREE_CODE (target_type) == FUNCTION_TYPE)
2725	pedwarn ("pointer to a function used in subtraction");
2726    }
2727
2728  /* If the conversion to ptrdiff_type does anything like widening or
2729     converting a partial to an integral mode, we get a convert_expression
2730     that is in the way to do any simplifications.
2731     (fold-const.c doesn't know that the extra bits won't be needed.
2732     split_tree uses STRIP_SIGN_NOPS, which leaves conversions to a
2733     different mode in place.)
2734     So first try to find a common term here 'by hand'; we want to cover
2735     at least the cases that occur in legal static initializers.  */
2736  if ((TREE_CODE (op0) == NOP_EXPR || TREE_CODE (op0) == CONVERT_EXPR)
2737      && (TYPE_PRECISION (TREE_TYPE (op0))
2738	  == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op0, 0)))))
2739    con0 = TREE_OPERAND (op0, 0);
2740  else
2741    con0 = op0;
2742  if ((TREE_CODE (op1) == NOP_EXPR || TREE_CODE (op1) == CONVERT_EXPR)
2743      && (TYPE_PRECISION (TREE_TYPE (op1))
2744	  == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op1, 0)))))
2745    con1 = TREE_OPERAND (op1, 0);
2746  else
2747    con1 = op1;
2748
2749  if (TREE_CODE (con0) == PLUS_EXPR)
2750    {
2751      lit0 = TREE_OPERAND (con0, 1);
2752      con0 = TREE_OPERAND (con0, 0);
2753    }
2754  else
2755    lit0 = integer_zero_node;
2756
2757  if (TREE_CODE (con1) == PLUS_EXPR)
2758    {
2759      lit1 = TREE_OPERAND (con1, 1);
2760      con1 = TREE_OPERAND (con1, 0);
2761    }
2762  else
2763    lit1 = integer_zero_node;
2764
2765  if (operand_equal_p (con0, con1, 0))
2766    {
2767      op0 = lit0;
2768      op1 = lit1;
2769    }
2770
2771
2772  /* First do the subtraction as integers;
2773     then drop through to build the divide operator.
2774     Do not do default conversions on the minus operator
2775     in case restype is a short type.  */
2776
2777  op0 = build_binary_op (MINUS_EXPR, convert (restype, op0),
2778			 convert (restype, op1), 0);
2779  /* This generates an error if op1 is pointer to incomplete type.  */
2780  if (!COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (TREE_TYPE (orig_op1))))
2781    error ("arithmetic on pointer to an incomplete type");
2782
2783  /* This generates an error if op0 is pointer to incomplete type.  */
2784  op1 = c_size_in_bytes (target_type);
2785
2786  /* Divide by the size, in easiest possible way.  */
2787  return fold_build2 (EXACT_DIV_EXPR, restype, op0, convert (restype, op1));
2788}
2789
2790/* Construct and perhaps optimize a tree representation
2791   for a unary operation.  CODE, a tree_code, specifies the operation
2792   and XARG is the operand.
2793   For any CODE other than ADDR_EXPR, FLAG nonzero suppresses
2794   the default promotions (such as from short to int).
2795   For ADDR_EXPR, the default promotions are not applied; FLAG nonzero
2796   allows non-lvalues; this is only used to handle conversion of non-lvalue
2797   arrays to pointers in C99.  */
2798
2799tree
2800build_unary_op (enum tree_code code, tree xarg, int flag)
2801{
2802  /* No default_conversion here.  It causes trouble for ADDR_EXPR.  */
2803  tree arg = xarg;
2804  tree argtype = 0;
2805  enum tree_code typecode = TREE_CODE (TREE_TYPE (arg));
2806  tree val;
2807  int noconvert = flag;
2808  const char *invalid_op_diag;
2809
2810  if (typecode == ERROR_MARK)
2811    return error_mark_node;
2812  if (typecode == ENUMERAL_TYPE || typecode == BOOLEAN_TYPE)
2813    typecode = INTEGER_TYPE;
2814
2815  if ((invalid_op_diag
2816       = targetm.invalid_unary_op (code, TREE_TYPE (xarg))))
2817    {
2818      error (invalid_op_diag);
2819      return error_mark_node;
2820    }
2821
2822  switch (code)
2823    {
2824    case CONVERT_EXPR:
2825      /* This is used for unary plus, because a CONVERT_EXPR
2826	 is enough to prevent anybody from looking inside for
2827	 associativity, but won't generate any code.  */
2828      if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2829	    || typecode == COMPLEX_TYPE
2830	    || typecode == VECTOR_TYPE))
2831	{
2832	  error ("wrong type argument to unary plus");
2833	  return error_mark_node;
2834	}
2835      else if (!noconvert)
2836	arg = default_conversion (arg);
2837      arg = non_lvalue (arg);
2838      break;
2839
2840    case NEGATE_EXPR:
2841      if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2842	    || typecode == COMPLEX_TYPE
2843	    || typecode == VECTOR_TYPE))
2844	{
2845	  error ("wrong type argument to unary minus");
2846	  return error_mark_node;
2847	}
2848      else if (!noconvert)
2849	arg = default_conversion (arg);
2850      break;
2851
2852    case BIT_NOT_EXPR:
2853      if (typecode == INTEGER_TYPE || typecode == VECTOR_TYPE)
2854	{
2855	  if (!noconvert)
2856	    arg = default_conversion (arg);
2857	}
2858      else if (typecode == COMPLEX_TYPE)
2859	{
2860	  code = CONJ_EXPR;
2861	  if (pedantic)
2862	    pedwarn ("ISO C does not support %<~%> for complex conjugation");
2863	  if (!noconvert)
2864	    arg = default_conversion (arg);
2865	}
2866      else
2867	{
2868	  error ("wrong type argument to bit-complement");
2869	  return error_mark_node;
2870	}
2871      break;
2872
2873    case ABS_EXPR:
2874      if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE))
2875	{
2876	  error ("wrong type argument to abs");
2877	  return error_mark_node;
2878	}
2879      else if (!noconvert)
2880	arg = default_conversion (arg);
2881      break;
2882
2883    case CONJ_EXPR:
2884      /* Conjugating a real value is a no-op, but allow it anyway.  */
2885      if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2886	    || typecode == COMPLEX_TYPE))
2887	{
2888	  error ("wrong type argument to conjugation");
2889	  return error_mark_node;
2890	}
2891      else if (!noconvert)
2892	arg = default_conversion (arg);
2893      break;
2894
2895    case TRUTH_NOT_EXPR:
2896      if (typecode != INTEGER_TYPE
2897	  && typecode != REAL_TYPE && typecode != POINTER_TYPE
2898	  && typecode != COMPLEX_TYPE)
2899	{
2900	  error ("wrong type argument to unary exclamation mark");
2901	  return error_mark_node;
2902	}
2903      arg = c_objc_common_truthvalue_conversion (arg);
2904      return invert_truthvalue (arg);
2905
2906    case REALPART_EXPR:
2907      if (TREE_CODE (arg) == COMPLEX_CST)
2908	return TREE_REALPART (arg);
2909      else if (TREE_CODE (TREE_TYPE (arg)) == COMPLEX_TYPE)
2910	return fold_build1 (REALPART_EXPR, TREE_TYPE (TREE_TYPE (arg)), arg);
2911      else
2912	return arg;
2913
2914    case IMAGPART_EXPR:
2915      if (TREE_CODE (arg) == COMPLEX_CST)
2916	return TREE_IMAGPART (arg);
2917      else if (TREE_CODE (TREE_TYPE (arg)) == COMPLEX_TYPE)
2918	return fold_build1 (IMAGPART_EXPR, TREE_TYPE (TREE_TYPE (arg)), arg);
2919      else
2920	return convert (TREE_TYPE (arg), integer_zero_node);
2921
2922    case PREINCREMENT_EXPR:
2923    case POSTINCREMENT_EXPR:
2924    case PREDECREMENT_EXPR:
2925    case POSTDECREMENT_EXPR:
2926
2927      /* Increment or decrement the real part of the value,
2928	 and don't change the imaginary part.  */
2929      if (typecode == COMPLEX_TYPE)
2930	{
2931	  tree real, imag;
2932
2933	  if (pedantic)
2934	    pedwarn ("ISO C does not support %<++%> and %<--%>"
2935		     " on complex types");
2936
2937	  arg = stabilize_reference (arg);
2938	  real = build_unary_op (REALPART_EXPR, arg, 1);
2939	  imag = build_unary_op (IMAGPART_EXPR, arg, 1);
2940	  return build2 (COMPLEX_EXPR, TREE_TYPE (arg),
2941			 build_unary_op (code, real, 1), imag);
2942	}
2943
2944      /* Report invalid types.  */
2945
2946      if (typecode != POINTER_TYPE
2947	  && typecode != INTEGER_TYPE && typecode != REAL_TYPE)
2948	{
2949	  if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
2950	    error ("wrong type argument to increment");
2951	  else
2952	    error ("wrong type argument to decrement");
2953
2954	  return error_mark_node;
2955	}
2956
2957      {
2958	tree inc;
2959	tree result_type = TREE_TYPE (arg);
2960
2961	arg = get_unwidened (arg, 0);
2962	argtype = TREE_TYPE (arg);
2963
2964	/* Compute the increment.  */
2965
2966	if (typecode == POINTER_TYPE)
2967	  {
2968	    /* If pointer target is an undefined struct,
2969	       we just cannot know how to do the arithmetic.  */
2970	    if (!COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (result_type)))
2971	      {
2972		if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
2973		  error ("increment of pointer to unknown structure");
2974		else
2975		  error ("decrement of pointer to unknown structure");
2976	      }
2977	    else if ((pedantic || warn_pointer_arith)
2978		     && (TREE_CODE (TREE_TYPE (result_type)) == FUNCTION_TYPE
2979			 || TREE_CODE (TREE_TYPE (result_type)) == VOID_TYPE))
2980	      {
2981		if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
2982		  pedwarn ("wrong type argument to increment");
2983		else
2984		  pedwarn ("wrong type argument to decrement");
2985	      }
2986
2987	    inc = c_size_in_bytes (TREE_TYPE (result_type));
2988	  }
2989	else
2990	  inc = integer_one_node;
2991
2992	inc = convert (argtype, inc);
2993
2994	/* Complain about anything else that is not a true lvalue.  */
2995	if (!lvalue_or_else (arg, ((code == PREINCREMENT_EXPR
2996				    || code == POSTINCREMENT_EXPR)
2997				   ? lv_increment
2998				   : lv_decrement)))
2999	  return error_mark_node;
3000
3001	/* Report a read-only lvalue.  */
3002	if (TREE_READONLY (arg))
3003	  {
3004	    readonly_error (arg,
3005			    ((code == PREINCREMENT_EXPR
3006			      || code == POSTINCREMENT_EXPR)
3007			     ? lv_increment : lv_decrement));
3008	    return error_mark_node;
3009	  }
3010
3011	if (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE)
3012	  val = boolean_increment (code, arg);
3013	else
3014	  val = build2 (code, TREE_TYPE (arg), arg, inc);
3015	TREE_SIDE_EFFECTS (val) = 1;
3016	val = convert (result_type, val);
3017	if (TREE_CODE (val) != code)
3018	  TREE_NO_WARNING (val) = 1;
3019	return val;
3020      }
3021
3022    case ADDR_EXPR:
3023      /* Note that this operation never does default_conversion.  */
3024
3025      /* Let &* cancel out to simplify resulting code.  */
3026      if (TREE_CODE (arg) == INDIRECT_REF)
3027	{
3028	  /* Don't let this be an lvalue.  */
3029	  if (lvalue_p (TREE_OPERAND (arg, 0)))
3030	    return non_lvalue (TREE_OPERAND (arg, 0));
3031	  return TREE_OPERAND (arg, 0);
3032	}
3033
3034      /* For &x[y], return x+y */
3035      if (TREE_CODE (arg) == ARRAY_REF)
3036	{
3037	  tree op0 = TREE_OPERAND (arg, 0);
3038	  if (!c_mark_addressable (op0))
3039	    return error_mark_node;
3040	  return build_binary_op (PLUS_EXPR,
3041				  (TREE_CODE (TREE_TYPE (op0)) == ARRAY_TYPE
3042				   ? array_to_pointer_conversion (op0)
3043				   : op0),
3044				  TREE_OPERAND (arg, 1), 1);
3045	}
3046
3047      /* Anything not already handled and not a true memory reference
3048	 or a non-lvalue array is an error.  */
3049      else if (typecode != FUNCTION_TYPE && !flag
3050	       && !lvalue_or_else (arg, lv_addressof))
3051	return error_mark_node;
3052
3053      /* Ordinary case; arg is a COMPONENT_REF or a decl.  */
3054      argtype = TREE_TYPE (arg);
3055
3056      /* If the lvalue is const or volatile, merge that into the type
3057	 to which the address will point.  Note that you can't get a
3058	 restricted pointer by taking the address of something, so we
3059	 only have to deal with `const' and `volatile' here.  */
3060      if ((DECL_P (arg) || REFERENCE_CLASS_P (arg))
3061	  && (TREE_READONLY (arg) || TREE_THIS_VOLATILE (arg)))
3062	  argtype = c_build_type_variant (argtype,
3063					  TREE_READONLY (arg),
3064					  TREE_THIS_VOLATILE (arg));
3065
3066      if (!c_mark_addressable (arg))
3067	return error_mark_node;
3068
3069      gcc_assert (TREE_CODE (arg) != COMPONENT_REF
3070		  || !DECL_C_BIT_FIELD (TREE_OPERAND (arg, 1)));
3071
3072      argtype = build_pointer_type (argtype);
3073
3074      /* ??? Cope with user tricks that amount to offsetof.  Delete this
3075	 when we have proper support for integer constant expressions.  */
3076      val = get_base_address (arg);
3077      if (val && TREE_CODE (val) == INDIRECT_REF
3078          && TREE_CONSTANT (TREE_OPERAND (val, 0)))
3079	{
3080	  tree op0 = fold_convert (argtype, fold_offsetof (arg, val)), op1;
3081
3082	  op1 = fold_convert (argtype, TREE_OPERAND (val, 0));
3083	  return fold_build2 (PLUS_EXPR, argtype, op0, op1);
3084	}
3085
3086      val = build1 (ADDR_EXPR, argtype, arg);
3087
3088      return val;
3089
3090    default:
3091      gcc_unreachable ();
3092    }
3093
3094  if (argtype == 0)
3095    argtype = TREE_TYPE (arg);
3096  return require_constant_value ? fold_build1_initializer (code, argtype, arg)
3097				: fold_build1 (code, argtype, arg);
3098}
3099
3100/* Return nonzero if REF is an lvalue valid for this language.
3101   Lvalues can be assigned, unless their type has TYPE_READONLY.
3102   Lvalues can have their address taken, unless they have C_DECL_REGISTER.  */
3103
3104static int
3105lvalue_p (tree ref)
3106{
3107  enum tree_code code = TREE_CODE (ref);
3108
3109  switch (code)
3110    {
3111    case REALPART_EXPR:
3112    case IMAGPART_EXPR:
3113    case COMPONENT_REF:
3114      return lvalue_p (TREE_OPERAND (ref, 0));
3115
3116    case COMPOUND_LITERAL_EXPR:
3117    case STRING_CST:
3118      return 1;
3119
3120    case INDIRECT_REF:
3121    case ARRAY_REF:
3122    case VAR_DECL:
3123    case PARM_DECL:
3124    case RESULT_DECL:
3125    case ERROR_MARK:
3126      return (TREE_CODE (TREE_TYPE (ref)) != FUNCTION_TYPE
3127	      && TREE_CODE (TREE_TYPE (ref)) != METHOD_TYPE);
3128
3129    case BIND_EXPR:
3130      return TREE_CODE (TREE_TYPE (ref)) == ARRAY_TYPE;
3131
3132    default:
3133      return 0;
3134    }
3135}
3136
3137/* Give an error for storing in something that is 'const'.  */
3138
3139static void
3140readonly_error (tree arg, enum lvalue_use use)
3141{
3142  gcc_assert (use == lv_assign || use == lv_increment || use == lv_decrement
3143	      || use == lv_asm);
3144  /* Using this macro rather than (for example) arrays of messages
3145     ensures that all the format strings are checked at compile
3146     time.  */
3147#define READONLY_MSG(A, I, D, AS) (use == lv_assign ? (A)		\
3148				   : (use == lv_increment ? (I)		\
3149				   : (use == lv_decrement ? (D) : (AS))))
3150  if (TREE_CODE (arg) == COMPONENT_REF)
3151    {
3152      if (TYPE_READONLY (TREE_TYPE (TREE_OPERAND (arg, 0))))
3153	readonly_error (TREE_OPERAND (arg, 0), use);
3154      else
3155	error (READONLY_MSG (G_("assignment of read-only member %qD"),
3156			     G_("increment of read-only member %qD"),
3157			     G_("decrement of read-only member %qD"),
3158			     G_("read-only member %qD used as %<asm%> output")),
3159	       TREE_OPERAND (arg, 1));
3160    }
3161  else if (TREE_CODE (arg) == VAR_DECL)
3162    error (READONLY_MSG (G_("assignment of read-only variable %qD"),
3163			 G_("increment of read-only variable %qD"),
3164			 G_("decrement of read-only variable %qD"),
3165			 G_("read-only variable %qD used as %<asm%> output")),
3166	   arg);
3167  else
3168    error (READONLY_MSG (G_("assignment of read-only location"),
3169			 G_("increment of read-only location"),
3170			 G_("decrement of read-only location"),
3171			 G_("read-only location used as %<asm%> output")));
3172}
3173
3174
3175/* Return nonzero if REF is an lvalue valid for this language;
3176   otherwise, print an error message and return zero.  USE says
3177   how the lvalue is being used and so selects the error message.  */
3178
3179static int
3180lvalue_or_else (tree ref, enum lvalue_use use)
3181{
3182  int win = lvalue_p (ref);
3183
3184  if (!win)
3185    lvalue_error (use);
3186
3187  return win;
3188}
3189
3190/* Mark EXP saying that we need to be able to take the
3191   address of it; it should not be allocated in a register.
3192   Returns true if successful.  */
3193
3194bool
3195c_mark_addressable (tree exp)
3196{
3197  tree x = exp;
3198
3199  while (1)
3200    switch (TREE_CODE (x))
3201      {
3202      case COMPONENT_REF:
3203	if (DECL_C_BIT_FIELD (TREE_OPERAND (x, 1)))
3204	  {
3205	    error
3206	      ("cannot take address of bit-field %qD", TREE_OPERAND (x, 1));
3207	    return false;
3208	  }
3209
3210	/* ... fall through ...  */
3211
3212      case ADDR_EXPR:
3213      case ARRAY_REF:
3214      case REALPART_EXPR:
3215      case IMAGPART_EXPR:
3216	x = TREE_OPERAND (x, 0);
3217	break;
3218
3219      case COMPOUND_LITERAL_EXPR:
3220      case CONSTRUCTOR:
3221	TREE_ADDRESSABLE (x) = 1;
3222	return true;
3223
3224      case VAR_DECL:
3225      case CONST_DECL:
3226      case PARM_DECL:
3227      case RESULT_DECL:
3228	if (C_DECL_REGISTER (x)
3229	    && DECL_NONLOCAL (x))
3230	  {
3231	    if (TREE_PUBLIC (x) || TREE_STATIC (x) || DECL_EXTERNAL (x))
3232	      {
3233		error
3234		  ("global register variable %qD used in nested function", x);
3235		return false;
3236	      }
3237	    pedwarn ("register variable %qD used in nested function", x);
3238	  }
3239	else if (C_DECL_REGISTER (x))
3240	  {
3241	    if (TREE_PUBLIC (x) || TREE_STATIC (x) || DECL_EXTERNAL (x))
3242	      error ("address of global register variable %qD requested", x);
3243	    else
3244	      error ("address of register variable %qD requested", x);
3245	    return false;
3246	  }
3247
3248	/* drops in */
3249      case FUNCTION_DECL:
3250	TREE_ADDRESSABLE (x) = 1;
3251	/* drops out */
3252      default:
3253	return true;
3254    }
3255}
3256
3257/* Build and return a conditional expression IFEXP ? OP1 : OP2.  */
3258
3259tree
3260build_conditional_expr (tree ifexp, tree op1, tree op2)
3261{
3262  tree type1;
3263  tree type2;
3264  enum tree_code code1;
3265  enum tree_code code2;
3266  tree result_type = NULL;
3267  tree orig_op1 = op1, orig_op2 = op2;
3268
3269  /* Promote both alternatives.  */
3270
3271  if (TREE_CODE (TREE_TYPE (op1)) != VOID_TYPE)
3272    op1 = default_conversion (op1);
3273  if (TREE_CODE (TREE_TYPE (op2)) != VOID_TYPE)
3274    op2 = default_conversion (op2);
3275
3276  if (TREE_CODE (ifexp) == ERROR_MARK
3277      || TREE_CODE (TREE_TYPE (op1)) == ERROR_MARK
3278      || TREE_CODE (TREE_TYPE (op2)) == ERROR_MARK)
3279    return error_mark_node;
3280
3281  type1 = TREE_TYPE (op1);
3282  code1 = TREE_CODE (type1);
3283  type2 = TREE_TYPE (op2);
3284  code2 = TREE_CODE (type2);
3285
3286  /* C90 does not permit non-lvalue arrays in conditional expressions.
3287     In C99 they will be pointers by now.  */
3288  if (code1 == ARRAY_TYPE || code2 == ARRAY_TYPE)
3289    {
3290      error ("non-lvalue array in conditional expression");
3291      return error_mark_node;
3292    }
3293
3294  /* Quickly detect the usual case where op1 and op2 have the same type
3295     after promotion.  */
3296  if (TYPE_MAIN_VARIANT (type1) == TYPE_MAIN_VARIANT (type2))
3297    {
3298      if (type1 == type2)
3299	result_type = type1;
3300      else
3301	result_type = TYPE_MAIN_VARIANT (type1);
3302    }
3303  else if ((code1 == INTEGER_TYPE || code1 == REAL_TYPE
3304	    || code1 == COMPLEX_TYPE)
3305	   && (code2 == INTEGER_TYPE || code2 == REAL_TYPE
3306	       || code2 == COMPLEX_TYPE))
3307    {
3308      result_type = c_common_type (type1, type2);
3309
3310      /* If -Wsign-compare, warn here if type1 and type2 have
3311	 different signedness.  We'll promote the signed to unsigned
3312	 and later code won't know it used to be different.
3313	 Do this check on the original types, so that explicit casts
3314	 will be considered, but default promotions won't.  */
3315      if (warn_sign_compare && !skip_evaluation)
3316	{
3317	  int unsigned_op1 = TYPE_UNSIGNED (TREE_TYPE (orig_op1));
3318	  int unsigned_op2 = TYPE_UNSIGNED (TREE_TYPE (orig_op2));
3319
3320	  if (unsigned_op1 ^ unsigned_op2)
3321	    {
3322	      bool ovf;
3323
3324	      /* Do not warn if the result type is signed, since the
3325		 signed type will only be chosen if it can represent
3326		 all the values of the unsigned type.  */
3327	      if (!TYPE_UNSIGNED (result_type))
3328		/* OK */;
3329	      /* Do not warn if the signed quantity is an unsuffixed
3330		 integer literal (or some static constant expression
3331		 involving such literals) and it is non-negative.  */
3332	      else if ((unsigned_op2
3333			&& tree_expr_nonnegative_warnv_p (op1, &ovf))
3334		       || (unsigned_op1
3335			   && tree_expr_nonnegative_warnv_p (op2, &ovf)))
3336		/* OK */;
3337	      else
3338		warning (0, "signed and unsigned type in conditional expression");
3339	    }
3340	}
3341    }
3342  else if (code1 == VOID_TYPE || code2 == VOID_TYPE)
3343    {
3344      if (pedantic && (code1 != VOID_TYPE || code2 != VOID_TYPE))
3345	pedwarn ("ISO C forbids conditional expr with only one void side");
3346      result_type = void_type_node;
3347    }
3348  else if (code1 == POINTER_TYPE && code2 == POINTER_TYPE)
3349    {
3350      if (comp_target_types (type1, type2))
3351	result_type = common_pointer_type (type1, type2);
3352      else if (null_pointer_constant_p (orig_op1))
3353	result_type = qualify_type (type2, type1);
3354      else if (null_pointer_constant_p (orig_op2))
3355	result_type = qualify_type (type1, type2);
3356      else if (VOID_TYPE_P (TREE_TYPE (type1)))
3357	{
3358	  if (pedantic && TREE_CODE (TREE_TYPE (type2)) == FUNCTION_TYPE)
3359	    pedwarn ("ISO C forbids conditional expr between "
3360		     "%<void *%> and function pointer");
3361	  result_type = build_pointer_type (qualify_type (TREE_TYPE (type1),
3362							  TREE_TYPE (type2)));
3363	}
3364      else if (VOID_TYPE_P (TREE_TYPE (type2)))
3365	{
3366	  if (pedantic && TREE_CODE (TREE_TYPE (type1)) == FUNCTION_TYPE)
3367	    pedwarn ("ISO C forbids conditional expr between "
3368		     "%<void *%> and function pointer");
3369	  result_type = build_pointer_type (qualify_type (TREE_TYPE (type2),
3370							  TREE_TYPE (type1)));
3371	}
3372      else
3373	{
3374	  pedwarn ("pointer type mismatch in conditional expression");
3375	  result_type = build_pointer_type (void_type_node);
3376	}
3377    }
3378  else if (code1 == POINTER_TYPE && code2 == INTEGER_TYPE)
3379    {
3380      if (!null_pointer_constant_p (orig_op2))
3381	pedwarn ("pointer/integer type mismatch in conditional expression");
3382      else
3383	{
3384	  op2 = null_pointer_node;
3385	}
3386      result_type = type1;
3387    }
3388  else if (code2 == POINTER_TYPE && code1 == INTEGER_TYPE)
3389    {
3390      if (!null_pointer_constant_p (orig_op1))
3391	pedwarn ("pointer/integer type mismatch in conditional expression");
3392      else
3393	{
3394	  op1 = null_pointer_node;
3395	}
3396      result_type = type2;
3397    }
3398
3399  if (!result_type)
3400    {
3401      if (flag_cond_mismatch)
3402	result_type = void_type_node;
3403      else
3404	{
3405	  error ("type mismatch in conditional expression");
3406	  return error_mark_node;
3407	}
3408    }
3409
3410  /* Merge const and volatile flags of the incoming types.  */
3411  result_type
3412    = build_type_variant (result_type,
3413			  TREE_READONLY (op1) || TREE_READONLY (op2),
3414			  TREE_THIS_VOLATILE (op1) || TREE_THIS_VOLATILE (op2));
3415
3416  if (result_type != TREE_TYPE (op1))
3417    op1 = convert_and_check (result_type, op1);
3418  if (result_type != TREE_TYPE (op2))
3419    op2 = convert_and_check (result_type, op2);
3420
3421  return fold_build3 (COND_EXPR, result_type, ifexp, op1, op2);
3422}
3423
3424/* Return a compound expression that performs two expressions and
3425   returns the value of the second of them.  */
3426
3427tree
3428build_compound_expr (tree expr1, tree expr2)
3429{
3430  if (!TREE_SIDE_EFFECTS (expr1))
3431    {
3432      /* The left-hand operand of a comma expression is like an expression
3433	 statement: with -Wextra or -Wunused, we should warn if it doesn't have
3434	 any side-effects, unless it was explicitly cast to (void).  */
3435      if (warn_unused_value)
3436	{
3437	  if (VOID_TYPE_P (TREE_TYPE (expr1))
3438	      && (TREE_CODE (expr1) == NOP_EXPR
3439		  || TREE_CODE (expr1) == CONVERT_EXPR))
3440	    ; /* (void) a, b */
3441	  else if (VOID_TYPE_P (TREE_TYPE (expr1))
3442		   && TREE_CODE (expr1) == COMPOUND_EXPR
3443		   && (TREE_CODE (TREE_OPERAND (expr1, 1)) == CONVERT_EXPR
3444		       || TREE_CODE (TREE_OPERAND (expr1, 1)) == NOP_EXPR))
3445	    ; /* (void) a, (void) b, c */
3446	  else
3447	    warning (0, "left-hand operand of comma expression has no effect");
3448	}
3449    }
3450
3451  /* With -Wunused, we should also warn if the left-hand operand does have
3452     side-effects, but computes a value which is not used.  For example, in
3453     `foo() + bar(), baz()' the result of the `+' operator is not used,
3454     so we should issue a warning.  */
3455  else if (warn_unused_value)
3456    warn_if_unused_value (expr1, input_location);
3457
3458  if (expr2 == error_mark_node)
3459    return error_mark_node;
3460
3461  return build2 (COMPOUND_EXPR, TREE_TYPE (expr2), expr1, expr2);
3462}
3463
3464/* Build an expression representing a cast to type TYPE of expression EXPR.  */
3465
3466tree
3467build_c_cast (tree type, tree expr)
3468{
3469  tree value = expr;
3470
3471  if (type == error_mark_node || expr == error_mark_node)
3472    return error_mark_node;
3473
3474  /* The ObjC front-end uses TYPE_MAIN_VARIANT to tie together types differing
3475     only in <protocol> qualifications.  But when constructing cast expressions,
3476     the protocols do matter and must be kept around.  */
3477  if (objc_is_object_ptr (type) && objc_is_object_ptr (TREE_TYPE (expr)))
3478    return build1 (NOP_EXPR, type, expr);
3479
3480  type = TYPE_MAIN_VARIANT (type);
3481
3482  if (TREE_CODE (type) == ARRAY_TYPE)
3483    {
3484      error ("cast specifies array type");
3485      return error_mark_node;
3486    }
3487
3488  if (TREE_CODE (type) == FUNCTION_TYPE)
3489    {
3490      error ("cast specifies function type");
3491      return error_mark_node;
3492    }
3493
3494  if (type == TYPE_MAIN_VARIANT (TREE_TYPE (value)))
3495    {
3496      if (pedantic)
3497	{
3498	  if (TREE_CODE (type) == RECORD_TYPE
3499	      || TREE_CODE (type) == UNION_TYPE)
3500	    pedwarn ("ISO C forbids casting nonscalar to the same type");
3501	}
3502    }
3503  else if (TREE_CODE (type) == UNION_TYPE)
3504    {
3505      tree field;
3506
3507      for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
3508	if (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (field)),
3509		       TYPE_MAIN_VARIANT (TREE_TYPE (value))))
3510	  break;
3511
3512      if (field)
3513	{
3514	  tree t;
3515
3516	  if (pedantic)
3517	    pedwarn ("ISO C forbids casts to union type");
3518	  t = digest_init (type,
3519			   build_constructor_single (type, field, value),
3520			   true, 0);
3521	  TREE_CONSTANT (t) = TREE_CONSTANT (value);
3522	  TREE_INVARIANT (t) = TREE_INVARIANT (value);
3523	  return t;
3524	}
3525      error ("cast to union type from type not present in union");
3526      return error_mark_node;
3527    }
3528  else
3529    {
3530      tree otype, ovalue;
3531
3532      if (type == void_type_node)
3533	return build1 (CONVERT_EXPR, type, value);
3534
3535      otype = TREE_TYPE (value);
3536
3537      /* Optionally warn about potentially worrisome casts.  */
3538
3539      if (warn_cast_qual
3540	  && TREE_CODE (type) == POINTER_TYPE
3541	  && TREE_CODE (otype) == POINTER_TYPE)
3542	{
3543	  tree in_type = type;
3544	  tree in_otype = otype;
3545	  int added = 0;
3546	  int discarded = 0;
3547
3548	  /* Check that the qualifiers on IN_TYPE are a superset of
3549	     the qualifiers of IN_OTYPE.  The outermost level of
3550	     POINTER_TYPE nodes is uninteresting and we stop as soon
3551	     as we hit a non-POINTER_TYPE node on either type.  */
3552	  do
3553	    {
3554	      in_otype = TREE_TYPE (in_otype);
3555	      in_type = TREE_TYPE (in_type);
3556
3557	      /* GNU C allows cv-qualified function types.  'const'
3558		 means the function is very pure, 'volatile' means it
3559		 can't return.  We need to warn when such qualifiers
3560		 are added, not when they're taken away.  */
3561	      if (TREE_CODE (in_otype) == FUNCTION_TYPE
3562		  && TREE_CODE (in_type) == FUNCTION_TYPE)
3563		added |= (TYPE_QUALS (in_type) & ~TYPE_QUALS (in_otype));
3564	      else
3565		discarded |= (TYPE_QUALS (in_otype) & ~TYPE_QUALS (in_type));
3566	    }
3567	  while (TREE_CODE (in_type) == POINTER_TYPE
3568		 && TREE_CODE (in_otype) == POINTER_TYPE);
3569
3570	  if (added)
3571	    warning (0, "cast adds new qualifiers to function type");
3572
3573	  if (discarded)
3574	    /* There are qualifiers present in IN_OTYPE that are not
3575	       present in IN_TYPE.  */
3576	    warning (0, "cast discards qualifiers from pointer target type");
3577	}
3578
3579      /* Warn about possible alignment problems.  */
3580      if (STRICT_ALIGNMENT
3581	  && TREE_CODE (type) == POINTER_TYPE
3582	  && TREE_CODE (otype) == POINTER_TYPE
3583	  && TREE_CODE (TREE_TYPE (otype)) != VOID_TYPE
3584	  && TREE_CODE (TREE_TYPE (otype)) != FUNCTION_TYPE
3585	  /* Don't warn about opaque types, where the actual alignment
3586	     restriction is unknown.  */
3587	  && !((TREE_CODE (TREE_TYPE (otype)) == UNION_TYPE
3588		|| TREE_CODE (TREE_TYPE (otype)) == RECORD_TYPE)
3589	       && TYPE_MODE (TREE_TYPE (otype)) == VOIDmode)
3590	  && TYPE_ALIGN (TREE_TYPE (type)) > TYPE_ALIGN (TREE_TYPE (otype)))
3591	warning (OPT_Wcast_align,
3592		 "cast increases required alignment of target type");
3593
3594      if (TREE_CODE (type) == INTEGER_TYPE
3595	  && TREE_CODE (otype) == POINTER_TYPE
3596	  && TYPE_PRECISION (type) != TYPE_PRECISION (otype))
3597      /* Unlike conversion of integers to pointers, where the
3598         warning is disabled for converting constants because
3599         of cases such as SIG_*, warn about converting constant
3600         pointers to integers. In some cases it may cause unwanted
3601         sign extension, and a warning is appropriate.  */
3602	warning (OPT_Wpointer_to_int_cast,
3603		 "cast from pointer to integer of different size");
3604
3605      if (TREE_CODE (value) == CALL_EXPR
3606	  && TREE_CODE (type) != TREE_CODE (otype))
3607	warning (OPT_Wbad_function_cast, "cast from function call of type %qT "
3608		 "to non-matching type %qT", otype, type);
3609
3610      if (TREE_CODE (type) == POINTER_TYPE
3611	  && TREE_CODE (otype) == INTEGER_TYPE
3612	  && TYPE_PRECISION (type) != TYPE_PRECISION (otype)
3613	  /* Don't warn about converting any constant.  */
3614	  && !TREE_CONSTANT (value))
3615	warning (OPT_Wint_to_pointer_cast, "cast to pointer from integer "
3616		 "of different size");
3617
3618      strict_aliasing_warning (otype, type, expr);
3619
3620      /* If pedantic, warn for conversions between function and object
3621	 pointer types, except for converting a null pointer constant
3622	 to function pointer type.  */
3623      if (pedantic
3624	  && TREE_CODE (type) == POINTER_TYPE
3625	  && TREE_CODE (otype) == POINTER_TYPE
3626	  && TREE_CODE (TREE_TYPE (otype)) == FUNCTION_TYPE
3627	  && TREE_CODE (TREE_TYPE (type)) != FUNCTION_TYPE)
3628	pedwarn ("ISO C forbids conversion of function pointer to object pointer type");
3629
3630      if (pedantic
3631	  && TREE_CODE (type) == POINTER_TYPE
3632	  && TREE_CODE (otype) == POINTER_TYPE
3633	  && TREE_CODE (TREE_TYPE (type)) == FUNCTION_TYPE
3634	  && TREE_CODE (TREE_TYPE (otype)) != FUNCTION_TYPE
3635	  && !null_pointer_constant_p (value))
3636	pedwarn ("ISO C forbids conversion of object pointer to function pointer type");
3637
3638      ovalue = value;
3639      value = convert (type, value);
3640
3641      /* Ignore any integer overflow caused by the cast.  */
3642      if (TREE_CODE (value) == INTEGER_CST)
3643	{
3644	  if (CONSTANT_CLASS_P (ovalue)
3645	      && (TREE_OVERFLOW (ovalue) || TREE_CONSTANT_OVERFLOW (ovalue)))
3646	    {
3647	      /* Avoid clobbering a shared constant.  */
3648	      value = copy_node (value);
3649	      TREE_OVERFLOW (value) = TREE_OVERFLOW (ovalue);
3650	      TREE_CONSTANT_OVERFLOW (value) = TREE_CONSTANT_OVERFLOW (ovalue);
3651	    }
3652	  else if (TREE_OVERFLOW (value) || TREE_CONSTANT_OVERFLOW (value))
3653	    /* Reset VALUE's overflow flags, ensuring constant sharing.  */
3654	    value = build_int_cst_wide (TREE_TYPE (value),
3655					TREE_INT_CST_LOW (value),
3656					TREE_INT_CST_HIGH (value));
3657	}
3658    }
3659
3660  /* Don't let a cast be an lvalue.  */
3661  if (value == expr)
3662    value = non_lvalue (value);
3663
3664  return value;
3665}
3666
3667/* Interpret a cast of expression EXPR to type TYPE.  */
3668tree
3669c_cast_expr (struct c_type_name *type_name, tree expr)
3670{
3671  tree type;
3672  int saved_wsp = warn_strict_prototypes;
3673
3674  /* This avoids warnings about unprototyped casts on
3675     integers.  E.g. "#define SIG_DFL (void(*)())0".  */
3676  if (TREE_CODE (expr) == INTEGER_CST)
3677    warn_strict_prototypes = 0;
3678  type = groktypename (type_name);
3679  warn_strict_prototypes = saved_wsp;
3680
3681  return build_c_cast (type, expr);
3682}
3683
3684/* Build an assignment expression of lvalue LHS from value RHS.
3685   MODIFYCODE is the code for a binary operator that we use
3686   to combine the old value of LHS with RHS to get the new value.
3687   Or else MODIFYCODE is NOP_EXPR meaning do a simple assignment.  */
3688
3689tree
3690build_modify_expr (tree lhs, enum tree_code modifycode, tree rhs)
3691{
3692  tree result;
3693  tree newrhs;
3694  tree lhstype = TREE_TYPE (lhs);
3695  tree olhstype = lhstype;
3696
3697  /* Types that aren't fully specified cannot be used in assignments.  */
3698  lhs = require_complete_type (lhs);
3699
3700  /* Avoid duplicate error messages from operands that had errors.  */
3701  if (TREE_CODE (lhs) == ERROR_MARK || TREE_CODE (rhs) == ERROR_MARK)
3702    return error_mark_node;
3703
3704  if (!lvalue_or_else (lhs, lv_assign))
3705    return error_mark_node;
3706
3707  STRIP_TYPE_NOPS (rhs);
3708
3709  newrhs = rhs;
3710
3711  /* If a binary op has been requested, combine the old LHS value with the RHS
3712     producing the value we should actually store into the LHS.  */
3713
3714  if (modifycode != NOP_EXPR)
3715    {
3716      lhs = stabilize_reference (lhs);
3717      newrhs = build_binary_op (modifycode, lhs, rhs, 1);
3718    }
3719
3720  /* Give an error for storing in something that is 'const'.  */
3721
3722  if (TREE_READONLY (lhs) || TYPE_READONLY (lhstype)
3723      || ((TREE_CODE (lhstype) == RECORD_TYPE
3724	   || TREE_CODE (lhstype) == UNION_TYPE)
3725	  && C_TYPE_FIELDS_READONLY (lhstype)))
3726    {
3727      readonly_error (lhs, lv_assign);
3728      return error_mark_node;
3729    }
3730
3731  /* If storing into a structure or union member,
3732     it has probably been given type `int'.
3733     Compute the type that would go with
3734     the actual amount of storage the member occupies.  */
3735
3736  if (TREE_CODE (lhs) == COMPONENT_REF
3737      && (TREE_CODE (lhstype) == INTEGER_TYPE
3738	  || TREE_CODE (lhstype) == BOOLEAN_TYPE
3739	  || TREE_CODE (lhstype) == REAL_TYPE
3740	  || TREE_CODE (lhstype) == ENUMERAL_TYPE))
3741    lhstype = TREE_TYPE (get_unwidened (lhs, 0));
3742
3743  /* If storing in a field that is in actuality a short or narrower than one,
3744     we must store in the field in its actual type.  */
3745
3746  if (lhstype != TREE_TYPE (lhs))
3747    {
3748      lhs = copy_node (lhs);
3749      TREE_TYPE (lhs) = lhstype;
3750    }
3751
3752  /* Convert new value to destination type.  */
3753
3754  newrhs = convert_for_assignment (lhstype, newrhs, ic_assign,
3755				   NULL_TREE, NULL_TREE, 0);
3756  if (TREE_CODE (newrhs) == ERROR_MARK)
3757    return error_mark_node;
3758
3759  /* Emit ObjC write barrier, if necessary.  */
3760  if (c_dialect_objc () && flag_objc_gc)
3761    {
3762      result = objc_generate_write_barrier (lhs, modifycode, newrhs);
3763      if (result)
3764	return result;
3765    }
3766
3767  /* Scan operands.  */
3768
3769  result = build2 (MODIFY_EXPR, lhstype, lhs, newrhs);
3770  TREE_SIDE_EFFECTS (result) = 1;
3771
3772  /* If we got the LHS in a different type for storing in,
3773     convert the result back to the nominal type of LHS
3774     so that the value we return always has the same type
3775     as the LHS argument.  */
3776
3777  if (olhstype == TREE_TYPE (result))
3778    return result;
3779  return convert_for_assignment (olhstype, result, ic_assign,
3780				 NULL_TREE, NULL_TREE, 0);
3781}
3782
3783/* Convert value RHS to type TYPE as preparation for an assignment
3784   to an lvalue of type TYPE.
3785   The real work of conversion is done by `convert'.
3786   The purpose of this function is to generate error messages
3787   for assignments that are not allowed in C.
3788   ERRTYPE says whether it is argument passing, assignment,
3789   initialization or return.
3790
3791   FUNCTION is a tree for the function being called.
3792   PARMNUM is the number of the argument, for printing in error messages.  */
3793
3794static tree
3795convert_for_assignment (tree type, tree rhs, enum impl_conv errtype,
3796			tree fundecl, tree function, int parmnum)
3797{
3798  enum tree_code codel = TREE_CODE (type);
3799  tree rhstype;
3800  enum tree_code coder;
3801  tree rname = NULL_TREE;
3802  bool objc_ok = false;
3803
3804  if (errtype == ic_argpass || errtype == ic_argpass_nonproto)
3805    {
3806      tree selector;
3807      /* Change pointer to function to the function itself for
3808	 diagnostics.  */
3809      if (TREE_CODE (function) == ADDR_EXPR
3810	  && TREE_CODE (TREE_OPERAND (function, 0)) == FUNCTION_DECL)
3811	function = TREE_OPERAND (function, 0);
3812
3813      /* Handle an ObjC selector specially for diagnostics.  */
3814      selector = objc_message_selector ();
3815      rname = function;
3816      if (selector && parmnum > 2)
3817	{
3818	  rname = selector;
3819	  parmnum -= 2;
3820	}
3821    }
3822
3823  /* This macro is used to emit diagnostics to ensure that all format
3824     strings are complete sentences, visible to gettext and checked at
3825     compile time.  */
3826#define WARN_FOR_ASSIGNMENT(AR, AS, IN, RE)	\
3827  do {						\
3828    switch (errtype)				\
3829      {						\
3830      case ic_argpass:				\
3831	pedwarn (AR, parmnum, rname);		\
3832	break;					\
3833      case ic_argpass_nonproto:			\
3834	warning (0, AR, parmnum, rname);		\
3835	break;					\
3836      case ic_assign:				\
3837	pedwarn (AS);				\
3838	break;					\
3839      case ic_init:				\
3840	pedwarn (IN);				\
3841	break;					\
3842      case ic_return:				\
3843	pedwarn (RE);				\
3844	break;					\
3845      default:					\
3846	gcc_unreachable ();			\
3847      }						\
3848  } while (0)
3849
3850  STRIP_TYPE_NOPS (rhs);
3851
3852  if (optimize && TREE_CODE (rhs) == VAR_DECL
3853	   && TREE_CODE (TREE_TYPE (rhs)) != ARRAY_TYPE)
3854    rhs = decl_constant_value_for_broken_optimization (rhs);
3855
3856  rhstype = TREE_TYPE (rhs);
3857  coder = TREE_CODE (rhstype);
3858
3859  if (coder == ERROR_MARK)
3860    return error_mark_node;
3861
3862  if (c_dialect_objc ())
3863    {
3864      int parmno;
3865
3866      switch (errtype)
3867	{
3868	case ic_return:
3869	  parmno = 0;
3870	  break;
3871
3872	case ic_assign:
3873	  parmno = -1;
3874	  break;
3875
3876	case ic_init:
3877	  parmno = -2;
3878	  break;
3879
3880	default:
3881	  parmno = parmnum;
3882	  break;
3883	}
3884
3885      objc_ok = objc_compare_types (type, rhstype, parmno, rname);
3886    }
3887
3888  if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (rhstype))
3889    {
3890      overflow_warning (rhs);
3891      return rhs;
3892    }
3893
3894  if (coder == VOID_TYPE)
3895    {
3896      /* Except for passing an argument to an unprototyped function,
3897	 this is a constraint violation.  When passing an argument to
3898	 an unprototyped function, it is compile-time undefined;
3899	 making it a constraint in that case was rejected in
3900	 DR#252.  */
3901      error ("void value not ignored as it ought to be");
3902      return error_mark_node;
3903    }
3904  /* A type converts to a reference to it.
3905     This code doesn't fully support references, it's just for the
3906     special case of va_start and va_copy.  */
3907  if (codel == REFERENCE_TYPE
3908      && comptypes (TREE_TYPE (type), TREE_TYPE (rhs)) == 1)
3909    {
3910      if (!lvalue_p (rhs))
3911	{
3912	  error ("cannot pass rvalue to reference parameter");
3913	  return error_mark_node;
3914	}
3915      if (!c_mark_addressable (rhs))
3916	return error_mark_node;
3917      rhs = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (rhs)), rhs);
3918
3919      /* We already know that these two types are compatible, but they
3920	 may not be exactly identical.  In fact, `TREE_TYPE (type)' is
3921	 likely to be __builtin_va_list and `TREE_TYPE (rhs)' is
3922	 likely to be va_list, a typedef to __builtin_va_list, which
3923	 is different enough that it will cause problems later.  */
3924      if (TREE_TYPE (TREE_TYPE (rhs)) != TREE_TYPE (type))
3925	rhs = build1 (NOP_EXPR, build_pointer_type (TREE_TYPE (type)), rhs);
3926
3927      rhs = build1 (NOP_EXPR, type, rhs);
3928      return rhs;
3929    }
3930  /* Some types can interconvert without explicit casts.  */
3931  else if (codel == VECTOR_TYPE && coder == VECTOR_TYPE
3932	   && vector_types_convertible_p (type, TREE_TYPE (rhs)))
3933    return convert (type, rhs);
3934  /* Arithmetic types all interconvert, and enum is treated like int.  */
3935  else if ((codel == INTEGER_TYPE || codel == REAL_TYPE
3936	    || codel == ENUMERAL_TYPE || codel == COMPLEX_TYPE
3937	    || codel == BOOLEAN_TYPE)
3938	   && (coder == INTEGER_TYPE || coder == REAL_TYPE
3939	       || coder == ENUMERAL_TYPE || coder == COMPLEX_TYPE
3940	       || coder == BOOLEAN_TYPE))
3941    return convert_and_check (type, rhs);
3942
3943  /* Aggregates in different TUs might need conversion.  */
3944  if ((codel == RECORD_TYPE || codel == UNION_TYPE)
3945      && codel == coder
3946      && comptypes (type, rhstype))
3947    return convert_and_check (type, rhs);
3948
3949  /* Conversion to a transparent union from its member types.
3950     This applies only to function arguments.  */
3951  if (codel == UNION_TYPE && TYPE_TRANSPARENT_UNION (type)
3952      && (errtype == ic_argpass || errtype == ic_argpass_nonproto))
3953    {
3954      tree memb, marginal_memb = NULL_TREE;
3955
3956      for (memb = TYPE_FIELDS (type); memb ; memb = TREE_CHAIN (memb))
3957	{
3958	  tree memb_type = TREE_TYPE (memb);
3959
3960	  if (comptypes (TYPE_MAIN_VARIANT (memb_type),
3961			 TYPE_MAIN_VARIANT (rhstype)))
3962	    break;
3963
3964	  if (TREE_CODE (memb_type) != POINTER_TYPE)
3965	    continue;
3966
3967	  if (coder == POINTER_TYPE)
3968	    {
3969	      tree ttl = TREE_TYPE (memb_type);
3970	      tree ttr = TREE_TYPE (rhstype);
3971
3972	      /* Any non-function converts to a [const][volatile] void *
3973		 and vice versa; otherwise, targets must be the same.
3974		 Meanwhile, the lhs target must have all the qualifiers of
3975		 the rhs.  */
3976	      if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
3977		  || comp_target_types (memb_type, rhstype))
3978		{
3979		  /* If this type won't generate any warnings, use it.  */
3980		  if (TYPE_QUALS (ttl) == TYPE_QUALS (ttr)
3981		      || ((TREE_CODE (ttr) == FUNCTION_TYPE
3982			   && TREE_CODE (ttl) == FUNCTION_TYPE)
3983			  ? ((TYPE_QUALS (ttl) | TYPE_QUALS (ttr))
3984			     == TYPE_QUALS (ttr))
3985			  : ((TYPE_QUALS (ttl) | TYPE_QUALS (ttr))
3986			     == TYPE_QUALS (ttl))))
3987		    break;
3988
3989		  /* Keep looking for a better type, but remember this one.  */
3990		  if (!marginal_memb)
3991		    marginal_memb = memb;
3992		}
3993	    }
3994
3995	  /* Can convert integer zero to any pointer type.  */
3996	  if (null_pointer_constant_p (rhs))
3997	    {
3998	      rhs = null_pointer_node;
3999	      break;
4000	    }
4001	}
4002
4003      if (memb || marginal_memb)
4004	{
4005	  if (!memb)
4006	    {
4007	      /* We have only a marginally acceptable member type;
4008		 it needs a warning.  */
4009	      tree ttl = TREE_TYPE (TREE_TYPE (marginal_memb));
4010	      tree ttr = TREE_TYPE (rhstype);
4011
4012	      /* Const and volatile mean something different for function
4013		 types, so the usual warnings are not appropriate.  */
4014	      if (TREE_CODE (ttr) == FUNCTION_TYPE
4015		  && TREE_CODE (ttl) == FUNCTION_TYPE)
4016		{
4017		  /* Because const and volatile on functions are
4018		     restrictions that say the function will not do
4019		     certain things, it is okay to use a const or volatile
4020		     function where an ordinary one is wanted, but not
4021		     vice-versa.  */
4022		  if (TYPE_QUALS (ttl) & ~TYPE_QUALS (ttr))
4023		    WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE "
4024					    "makes qualified function "
4025					    "pointer from unqualified"),
4026					 G_("assignment makes qualified "
4027					    "function pointer from "
4028					    "unqualified"),
4029					 G_("initialization makes qualified "
4030					    "function pointer from "
4031					    "unqualified"),
4032					 G_("return makes qualified function "
4033					    "pointer from unqualified"));
4034		}
4035	      else if (TYPE_QUALS (ttr) & ~TYPE_QUALS (ttl))
4036		WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE discards "
4037					"qualifiers from pointer target type"),
4038				     G_("assignment discards qualifiers "
4039					"from pointer target type"),
4040				     G_("initialization discards qualifiers "
4041					"from pointer target type"),
4042				     G_("return discards qualifiers from "
4043					"pointer target type"));
4044
4045	      memb = marginal_memb;
4046	    }
4047
4048	  if (pedantic && (!fundecl || !DECL_IN_SYSTEM_HEADER (fundecl)))
4049	    pedwarn ("ISO C prohibits argument conversion to union type");
4050
4051	  return build_constructor_single (type, memb, rhs);
4052	}
4053    }
4054
4055  /* Conversions among pointers */
4056  else if ((codel == POINTER_TYPE || codel == REFERENCE_TYPE)
4057	   && (coder == codel))
4058    {
4059      tree ttl = TREE_TYPE (type);
4060      tree ttr = TREE_TYPE (rhstype);
4061      tree mvl = ttl;
4062      tree mvr = ttr;
4063      bool is_opaque_pointer;
4064      int target_cmp = 0;   /* Cache comp_target_types () result.  */
4065
4066      if (TREE_CODE (mvl) != ARRAY_TYPE)
4067	mvl = TYPE_MAIN_VARIANT (mvl);
4068      if (TREE_CODE (mvr) != ARRAY_TYPE)
4069	mvr = TYPE_MAIN_VARIANT (mvr);
4070      /* Opaque pointers are treated like void pointers.  */
4071      is_opaque_pointer = (targetm.vector_opaque_p (type)
4072			   || targetm.vector_opaque_p (rhstype))
4073	&& TREE_CODE (ttl) == VECTOR_TYPE
4074	&& TREE_CODE (ttr) == VECTOR_TYPE;
4075
4076      /* C++ does not allow the implicit conversion void* -> T*.  However,
4077	 for the purpose of reducing the number of false positives, we
4078	 tolerate the special case of
4079
4080		int *p = NULL;
4081
4082	 where NULL is typically defined in C to be '(void *) 0'.  */
4083      if (VOID_TYPE_P (ttr) && rhs != null_pointer_node && !VOID_TYPE_P (ttl))
4084	warning (OPT_Wc___compat, "request for implicit conversion from "
4085		 "%qT to %qT not permitted in C++", rhstype, type);
4086
4087      /* Check if the right-hand side has a format attribute but the
4088	 left-hand side doesn't.  */
4089      if (warn_missing_format_attribute
4090	  && check_missing_format_attribute (type, rhstype))
4091	{
4092	  switch (errtype)
4093	  {
4094	  case ic_argpass:
4095	  case ic_argpass_nonproto:
4096	    warning (OPT_Wmissing_format_attribute,
4097		     "argument %d of %qE might be "
4098		     "a candidate for a format attribute",
4099		     parmnum, rname);
4100	    break;
4101	  case ic_assign:
4102	    warning (OPT_Wmissing_format_attribute,
4103		     "assignment left-hand side might be "
4104		     "a candidate for a format attribute");
4105	    break;
4106	  case ic_init:
4107	    warning (OPT_Wmissing_format_attribute,
4108		     "initialization left-hand side might be "
4109		     "a candidate for a format attribute");
4110	    break;
4111	  case ic_return:
4112	    warning (OPT_Wmissing_format_attribute,
4113		     "return type might be "
4114		     "a candidate for a format attribute");
4115	    break;
4116	  default:
4117	    gcc_unreachable ();
4118	  }
4119	}
4120
4121      /* Any non-function converts to a [const][volatile] void *
4122	 and vice versa; otherwise, targets must be the same.
4123	 Meanwhile, the lhs target must have all the qualifiers of the rhs.  */
4124      if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
4125	  || (target_cmp = comp_target_types (type, rhstype))
4126	  || is_opaque_pointer
4127	  || (c_common_unsigned_type (mvl)
4128	      == c_common_unsigned_type (mvr)))
4129	{
4130	  if (pedantic
4131	      && ((VOID_TYPE_P (ttl) && TREE_CODE (ttr) == FUNCTION_TYPE)
4132		  ||
4133		  (VOID_TYPE_P (ttr)
4134		   && !null_pointer_constant_p (rhs)
4135		   && TREE_CODE (ttl) == FUNCTION_TYPE)))
4136	    WARN_FOR_ASSIGNMENT (G_("ISO C forbids passing argument %d of "
4137				    "%qE between function pointer "
4138				    "and %<void *%>"),
4139				 G_("ISO C forbids assignment between "
4140				    "function pointer and %<void *%>"),
4141				 G_("ISO C forbids initialization between "
4142				    "function pointer and %<void *%>"),
4143				 G_("ISO C forbids return between function "
4144				    "pointer and %<void *%>"));
4145	  /* Const and volatile mean something different for function types,
4146	     so the usual warnings are not appropriate.  */
4147	  else if (TREE_CODE (ttr) != FUNCTION_TYPE
4148		   && TREE_CODE (ttl) != FUNCTION_TYPE)
4149	    {
4150	      if (TYPE_QUALS (ttr) & ~TYPE_QUALS (ttl))
4151		{
4152		  /* Types differing only by the presence of the 'volatile'
4153		     qualifier are acceptable if the 'volatile' has been added
4154		     in by the Objective-C EH machinery.  */
4155		  if (!objc_type_quals_match (ttl, ttr))
4156		    WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE discards "
4157					    "qualifiers from pointer target type"),
4158					 G_("assignment discards qualifiers "
4159					    "from pointer target type"),
4160					 G_("initialization discards qualifiers "
4161					    "from pointer target type"),
4162					 G_("return discards qualifiers from "
4163					    "pointer target type"));
4164		}
4165	      /* If this is not a case of ignoring a mismatch in signedness,
4166		 no warning.  */
4167	      else if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
4168		       || target_cmp)
4169		;
4170	      /* If there is a mismatch, do warn.  */
4171	      else if (warn_pointer_sign)
4172		WARN_FOR_ASSIGNMENT (G_("pointer targets in passing argument "
4173					"%d of %qE differ in signedness"),
4174				     G_("pointer targets in assignment "
4175					"differ in signedness"),
4176				     G_("pointer targets in initialization "
4177					"differ in signedness"),
4178				     G_("pointer targets in return differ "
4179					"in signedness"));
4180	    }
4181	  else if (TREE_CODE (ttl) == FUNCTION_TYPE
4182		   && TREE_CODE (ttr) == FUNCTION_TYPE)
4183	    {
4184	      /* Because const and volatile on functions are restrictions
4185		 that say the function will not do certain things,
4186		 it is okay to use a const or volatile function
4187		 where an ordinary one is wanted, but not vice-versa.  */
4188	      if (TYPE_QUALS (ttl) & ~TYPE_QUALS (ttr))
4189		WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE makes "
4190					"qualified function pointer "
4191					"from unqualified"),
4192				     G_("assignment makes qualified function "
4193					"pointer from unqualified"),
4194				     G_("initialization makes qualified "
4195					"function pointer from unqualified"),
4196				     G_("return makes qualified function "
4197					"pointer from unqualified"));
4198	    }
4199	}
4200      else
4201	/* Avoid warning about the volatile ObjC EH puts on decls.  */
4202	if (!objc_ok)
4203	  WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE from "
4204				  "incompatible pointer type"),
4205			       G_("assignment from incompatible pointer type"),
4206			       G_("initialization from incompatible "
4207				  "pointer type"),
4208			       G_("return from incompatible pointer type"));
4209
4210      return convert (type, rhs);
4211    }
4212  else if (codel == POINTER_TYPE && coder == ARRAY_TYPE)
4213    {
4214      /* ??? This should not be an error when inlining calls to
4215	 unprototyped functions.  */
4216      error ("invalid use of non-lvalue array");
4217      return error_mark_node;
4218    }
4219  else if (codel == POINTER_TYPE && coder == INTEGER_TYPE)
4220    {
4221      /* An explicit constant 0 can convert to a pointer,
4222	 or one that results from arithmetic, even including
4223	 a cast to integer type.  */
4224      if (!null_pointer_constant_p (rhs))
4225	WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE makes "
4226				"pointer from integer without a cast"),
4227			     G_("assignment makes pointer from integer "
4228				"without a cast"),
4229			     G_("initialization makes pointer from "
4230				"integer without a cast"),
4231			     G_("return makes pointer from integer "
4232				"without a cast"));
4233
4234      return convert (type, rhs);
4235    }
4236  else if (codel == INTEGER_TYPE && coder == POINTER_TYPE)
4237    {
4238      WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE makes integer "
4239			      "from pointer without a cast"),
4240			   G_("assignment makes integer from pointer "
4241			      "without a cast"),
4242			   G_("initialization makes integer from pointer "
4243			      "without a cast"),
4244			   G_("return makes integer from pointer "
4245			      "without a cast"));
4246      return convert (type, rhs);
4247    }
4248  else if (codel == BOOLEAN_TYPE && coder == POINTER_TYPE)
4249    return convert (type, rhs);
4250
4251  switch (errtype)
4252    {
4253    case ic_argpass:
4254    case ic_argpass_nonproto:
4255      /* ??? This should not be an error when inlining calls to
4256	 unprototyped functions.  */
4257      error ("incompatible type for argument %d of %qE", parmnum, rname);
4258      break;
4259    case ic_assign:
4260      error ("incompatible types in assignment");
4261      break;
4262    case ic_init:
4263      error ("incompatible types in initialization");
4264      break;
4265    case ic_return:
4266      error ("incompatible types in return");
4267      break;
4268    default:
4269      gcc_unreachable ();
4270    }
4271
4272  return error_mark_node;
4273}
4274
4275/* Convert VALUE for assignment into inlined parameter PARM.  ARGNUM
4276   is used for error and warning reporting and indicates which argument
4277   is being processed.  */
4278
4279tree
4280c_convert_parm_for_inlining (tree parm, tree value, tree fn, int argnum)
4281{
4282  tree ret, type;
4283
4284  /* If FN was prototyped at the call site, the value has been converted
4285     already in convert_arguments.
4286     However, we might see a prototype now that was not in place when
4287     the function call was seen, so check that the VALUE actually matches
4288     PARM before taking an early exit.  */
4289  if (!value
4290      || (TYPE_ARG_TYPES (TREE_TYPE (fn))
4291	  && (TYPE_MAIN_VARIANT (TREE_TYPE (parm))
4292	      == TYPE_MAIN_VARIANT (TREE_TYPE (value)))))
4293    return value;
4294
4295  type = TREE_TYPE (parm);
4296  ret = convert_for_assignment (type, value,
4297				ic_argpass_nonproto, fn,
4298				fn, argnum);
4299  if (targetm.calls.promote_prototypes (TREE_TYPE (fn))
4300      && INTEGRAL_TYPE_P (type)
4301      && (TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node)))
4302    ret = default_conversion (ret);
4303  return ret;
4304}
4305
4306/* If VALUE is a compound expr all of whose expressions are constant, then
4307   return its value.  Otherwise, return error_mark_node.
4308
4309   This is for handling COMPOUND_EXPRs as initializer elements
4310   which is allowed with a warning when -pedantic is specified.  */
4311
4312static tree
4313valid_compound_expr_initializer (tree value, tree endtype)
4314{
4315  if (TREE_CODE (value) == COMPOUND_EXPR)
4316    {
4317      if (valid_compound_expr_initializer (TREE_OPERAND (value, 0), endtype)
4318	  == error_mark_node)
4319	return error_mark_node;
4320      return valid_compound_expr_initializer (TREE_OPERAND (value, 1),
4321					      endtype);
4322    }
4323  else if (!initializer_constant_valid_p (value, endtype))
4324    return error_mark_node;
4325  else
4326    return value;
4327}
4328
4329/* Perform appropriate conversions on the initial value of a variable,
4330   store it in the declaration DECL,
4331   and print any error messages that are appropriate.
4332   If the init is invalid, store an ERROR_MARK.  */
4333
4334void
4335store_init_value (tree decl, tree init)
4336{
4337  tree value, type;
4338
4339  /* If variable's type was invalidly declared, just ignore it.  */
4340
4341  type = TREE_TYPE (decl);
4342  if (TREE_CODE (type) == ERROR_MARK)
4343    return;
4344
4345  /* Digest the specified initializer into an expression.  */
4346
4347  value = digest_init (type, init, true, TREE_STATIC (decl));
4348
4349  /* Store the expression if valid; else report error.  */
4350
4351  if (!in_system_header
4352      && AGGREGATE_TYPE_P (TREE_TYPE (decl)) && !TREE_STATIC (decl))
4353    warning (OPT_Wtraditional, "traditional C rejects automatic "
4354	     "aggregate initialization");
4355
4356  DECL_INITIAL (decl) = value;
4357
4358  /* ANSI wants warnings about out-of-range constant initializers.  */
4359  STRIP_TYPE_NOPS (value);
4360  constant_expression_warning (value);
4361
4362  /* Check if we need to set array size from compound literal size.  */
4363  if (TREE_CODE (type) == ARRAY_TYPE
4364      && TYPE_DOMAIN (type) == 0
4365      && value != error_mark_node)
4366    {
4367      tree inside_init = init;
4368
4369      STRIP_TYPE_NOPS (inside_init);
4370      inside_init = fold (inside_init);
4371
4372      if (TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
4373	{
4374	  tree cldecl = COMPOUND_LITERAL_EXPR_DECL (inside_init);
4375
4376	  if (TYPE_DOMAIN (TREE_TYPE (cldecl)))
4377	    {
4378	      /* For int foo[] = (int [3]){1}; we need to set array size
4379		 now since later on array initializer will be just the
4380		 brace enclosed list of the compound literal.  */
4381	      type = build_distinct_type_copy (TYPE_MAIN_VARIANT (type));
4382	      TREE_TYPE (decl) = type;
4383	      TYPE_DOMAIN (type) = TYPE_DOMAIN (TREE_TYPE (cldecl));
4384	      layout_type (type);
4385	      layout_decl (cldecl, 0);
4386	    }
4387	}
4388    }
4389}
4390
4391/* Methods for storing and printing names for error messages.  */
4392
4393/* Implement a spelling stack that allows components of a name to be pushed
4394   and popped.  Each element on the stack is this structure.  */
4395
4396struct spelling
4397{
4398  int kind;
4399  union
4400    {
4401      unsigned HOST_WIDE_INT i;
4402      const char *s;
4403    } u;
4404};
4405
4406#define SPELLING_STRING 1
4407#define SPELLING_MEMBER 2
4408#define SPELLING_BOUNDS 3
4409
4410static struct spelling *spelling;	/* Next stack element (unused).  */
4411static struct spelling *spelling_base;	/* Spelling stack base.  */
4412static int spelling_size;		/* Size of the spelling stack.  */
4413
4414/* Macros to save and restore the spelling stack around push_... functions.
4415   Alternative to SAVE_SPELLING_STACK.  */
4416
4417#define SPELLING_DEPTH() (spelling - spelling_base)
4418#define RESTORE_SPELLING_DEPTH(DEPTH) (spelling = spelling_base + (DEPTH))
4419
4420/* Push an element on the spelling stack with type KIND and assign VALUE
4421   to MEMBER.  */
4422
4423#define PUSH_SPELLING(KIND, VALUE, MEMBER)				\
4424{									\
4425  int depth = SPELLING_DEPTH ();					\
4426									\
4427  if (depth >= spelling_size)						\
4428    {									\
4429      spelling_size += 10;						\
4430      spelling_base = XRESIZEVEC (struct spelling, spelling_base,	\
4431				  spelling_size);			\
4432      RESTORE_SPELLING_DEPTH (depth);					\
4433    }									\
4434									\
4435  spelling->kind = (KIND);						\
4436  spelling->MEMBER = (VALUE);						\
4437  spelling++;								\
4438}
4439
4440/* Push STRING on the stack.  Printed literally.  */
4441
4442static void
4443push_string (const char *string)
4444{
4445  PUSH_SPELLING (SPELLING_STRING, string, u.s);
4446}
4447
4448/* Push a member name on the stack.  Printed as '.' STRING.  */
4449
4450static void
4451push_member_name (tree decl)
4452{
4453  const char *const string
4454    = DECL_NAME (decl) ? IDENTIFIER_POINTER (DECL_NAME (decl)) : "<anonymous>";
4455  PUSH_SPELLING (SPELLING_MEMBER, string, u.s);
4456}
4457
4458/* Push an array bounds on the stack.  Printed as [BOUNDS].  */
4459
4460static void
4461push_array_bounds (unsigned HOST_WIDE_INT bounds)
4462{
4463  PUSH_SPELLING (SPELLING_BOUNDS, bounds, u.i);
4464}
4465
4466/* Compute the maximum size in bytes of the printed spelling.  */
4467
4468static int
4469spelling_length (void)
4470{
4471  int size = 0;
4472  struct spelling *p;
4473
4474  for (p = spelling_base; p < spelling; p++)
4475    {
4476      if (p->kind == SPELLING_BOUNDS)
4477	size += 25;
4478      else
4479	size += strlen (p->u.s) + 1;
4480    }
4481
4482  return size;
4483}
4484
4485/* Print the spelling to BUFFER and return it.  */
4486
4487static char *
4488print_spelling (char *buffer)
4489{
4490  char *d = buffer;
4491  struct spelling *p;
4492
4493  for (p = spelling_base; p < spelling; p++)
4494    if (p->kind == SPELLING_BOUNDS)
4495      {
4496	sprintf (d, "[" HOST_WIDE_INT_PRINT_UNSIGNED "]", p->u.i);
4497	d += strlen (d);
4498      }
4499    else
4500      {
4501	const char *s;
4502	if (p->kind == SPELLING_MEMBER)
4503	  *d++ = '.';
4504	for (s = p->u.s; (*d = *s++); d++)
4505	  ;
4506      }
4507  *d++ = '\0';
4508  return buffer;
4509}
4510
4511/* Issue an error message for a bad initializer component.
4512   MSGID identifies the message.
4513   The component name is taken from the spelling stack.  */
4514
4515void
4516error_init (const char *msgid)
4517{
4518  char *ofwhat;
4519
4520  error ("%s", _(msgid));
4521  ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4522  if (*ofwhat)
4523    error ("(near initialization for %qs)", ofwhat);
4524}
4525
4526/* Issue a pedantic warning for a bad initializer component.
4527   MSGID identifies the message.
4528   The component name is taken from the spelling stack.  */
4529
4530void
4531pedwarn_init (const char *msgid)
4532{
4533  char *ofwhat;
4534
4535  pedwarn ("%s", _(msgid));
4536  ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4537  if (*ofwhat)
4538    pedwarn ("(near initialization for %qs)", ofwhat);
4539}
4540
4541/* Issue a warning for a bad initializer component.
4542   MSGID identifies the message.
4543   The component name is taken from the spelling stack.  */
4544
4545static void
4546warning_init (const char *msgid)
4547{
4548  char *ofwhat;
4549
4550  warning (0, "%s", _(msgid));
4551  ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4552  if (*ofwhat)
4553    warning (0, "(near initialization for %qs)", ofwhat);
4554}
4555
4556/* If TYPE is an array type and EXPR is a parenthesized string
4557   constant, warn if pedantic that EXPR is being used to initialize an
4558   object of type TYPE.  */
4559
4560void
4561maybe_warn_string_init (tree type, struct c_expr expr)
4562{
4563  if (pedantic
4564      && TREE_CODE (type) == ARRAY_TYPE
4565      && TREE_CODE (expr.value) == STRING_CST
4566      && expr.original_code != STRING_CST)
4567    pedwarn_init ("array initialized from parenthesized string constant");
4568}
4569
4570/* Digest the parser output INIT as an initializer for type TYPE.
4571   Return a C expression of type TYPE to represent the initial value.
4572
4573   If INIT is a string constant, STRICT_STRING is true if it is
4574   unparenthesized or we should not warn here for it being parenthesized.
4575   For other types of INIT, STRICT_STRING is not used.
4576
4577   REQUIRE_CONSTANT requests an error if non-constant initializers or
4578   elements are seen.  */
4579
4580static tree
4581digest_init (tree type, tree init, bool strict_string, int require_constant)
4582{
4583  enum tree_code code = TREE_CODE (type);
4584  tree inside_init = init;
4585
4586  if (type == error_mark_node
4587      || !init
4588      || init == error_mark_node
4589      || TREE_TYPE (init) == error_mark_node)
4590    return error_mark_node;
4591
4592  STRIP_TYPE_NOPS (inside_init);
4593
4594  inside_init = fold (inside_init);
4595
4596  /* Initialization of an array of chars from a string constant
4597     optionally enclosed in braces.  */
4598
4599  if (code == ARRAY_TYPE && inside_init
4600      && TREE_CODE (inside_init) == STRING_CST)
4601    {
4602      tree typ1 = TYPE_MAIN_VARIANT (TREE_TYPE (type));
4603      /* Note that an array could be both an array of character type
4604	 and an array of wchar_t if wchar_t is signed char or unsigned
4605	 char.  */
4606      bool char_array = (typ1 == char_type_node
4607			 || typ1 == signed_char_type_node
4608			 || typ1 == unsigned_char_type_node);
4609      bool wchar_array = !!comptypes (typ1, wchar_type_node);
4610      if (char_array || wchar_array)
4611	{
4612	  struct c_expr expr;
4613	  bool char_string;
4614	  expr.value = inside_init;
4615	  expr.original_code = (strict_string ? STRING_CST : ERROR_MARK);
4616	  maybe_warn_string_init (type, expr);
4617
4618	  char_string
4619	    = (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (inside_init)))
4620	       == char_type_node);
4621
4622	  if (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
4623			 TYPE_MAIN_VARIANT (type)))
4624	    return inside_init;
4625
4626	  if (!wchar_array && !char_string)
4627	    {
4628	      error_init ("char-array initialized from wide string");
4629	      return error_mark_node;
4630	    }
4631	  if (char_string && !char_array)
4632	    {
4633	      error_init ("wchar_t-array initialized from non-wide string");
4634	      return error_mark_node;
4635	    }
4636
4637	  TREE_TYPE (inside_init) = type;
4638	  if (TYPE_DOMAIN (type) != 0
4639	      && TYPE_SIZE (type) != 0
4640	      && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
4641	      /* Subtract 1 (or sizeof (wchar_t))
4642		 because it's ok to ignore the terminating null char
4643		 that is counted in the length of the constant.  */
4644	      && 0 > compare_tree_int (TYPE_SIZE_UNIT (type),
4645				       TREE_STRING_LENGTH (inside_init)
4646				       - ((TYPE_PRECISION (typ1)
4647					   != TYPE_PRECISION (char_type_node))
4648					  ? (TYPE_PRECISION (wchar_type_node)
4649					     / BITS_PER_UNIT)
4650					  : 1)))
4651	    pedwarn_init ("initializer-string for array of chars is too long");
4652
4653	  return inside_init;
4654	}
4655      else if (INTEGRAL_TYPE_P (typ1))
4656	{
4657	  error_init ("array of inappropriate type initialized "
4658		      "from string constant");
4659	  return error_mark_node;
4660	}
4661    }
4662
4663  /* Build a VECTOR_CST from a *constant* vector constructor.  If the
4664     vector constructor is not constant (e.g. {1,2,3,foo()}) then punt
4665     below and handle as a constructor.  */
4666  if (code == VECTOR_TYPE
4667      && TREE_CODE (TREE_TYPE (inside_init)) == VECTOR_TYPE
4668      && vector_types_convertible_p (TREE_TYPE (inside_init), type)
4669      && TREE_CONSTANT (inside_init))
4670    {
4671      if (TREE_CODE (inside_init) == VECTOR_CST
4672	  && comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
4673			TYPE_MAIN_VARIANT (type)))
4674	return inside_init;
4675
4676      if (TREE_CODE (inside_init) == CONSTRUCTOR)
4677	{
4678	  unsigned HOST_WIDE_INT ix;
4679	  tree value;
4680	  bool constant_p = true;
4681
4682	  /* Iterate through elements and check if all constructor
4683	     elements are *_CSTs.  */
4684	  FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (inside_init), ix, value)
4685	    if (!CONSTANT_CLASS_P (value))
4686	      {
4687		constant_p = false;
4688		break;
4689	      }
4690
4691	  if (constant_p)
4692	    return build_vector_from_ctor (type,
4693					   CONSTRUCTOR_ELTS (inside_init));
4694	}
4695    }
4696
4697  /* Any type can be initialized
4698     from an expression of the same type, optionally with braces.  */
4699
4700  if (inside_init && TREE_TYPE (inside_init) != 0
4701      && (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
4702		     TYPE_MAIN_VARIANT (type))
4703	  || (code == ARRAY_TYPE
4704	      && comptypes (TREE_TYPE (inside_init), type))
4705	  || (code == VECTOR_TYPE
4706	      && comptypes (TREE_TYPE (inside_init), type))
4707	  || (code == POINTER_TYPE
4708	      && TREE_CODE (TREE_TYPE (inside_init)) == ARRAY_TYPE
4709	      && comptypes (TREE_TYPE (TREE_TYPE (inside_init)),
4710			    TREE_TYPE (type)))))
4711    {
4712      if (code == POINTER_TYPE)
4713	{
4714	  if (TREE_CODE (TREE_TYPE (inside_init)) == ARRAY_TYPE)
4715	    {
4716	      if (TREE_CODE (inside_init) == STRING_CST
4717		  || TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
4718		inside_init = array_to_pointer_conversion (inside_init);
4719	      else
4720		{
4721		  error_init ("invalid use of non-lvalue array");
4722		  return error_mark_node;
4723		}
4724	    }
4725	}
4726
4727      if (code == VECTOR_TYPE)
4728	/* Although the types are compatible, we may require a
4729	   conversion.  */
4730	inside_init = convert (type, inside_init);
4731
4732      if (require_constant
4733	  && (code == VECTOR_TYPE || !flag_isoc99)
4734	  && TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
4735	{
4736	  /* As an extension, allow initializing objects with static storage
4737	     duration with compound literals (which are then treated just as
4738	     the brace enclosed list they contain).  Also allow this for
4739	     vectors, as we can only assign them with compound literals.  */
4740	  tree decl = COMPOUND_LITERAL_EXPR_DECL (inside_init);
4741	  inside_init = DECL_INITIAL (decl);
4742	}
4743
4744      if (code == ARRAY_TYPE && TREE_CODE (inside_init) != STRING_CST
4745	  && TREE_CODE (inside_init) != CONSTRUCTOR)
4746	{
4747	  error_init ("array initialized from non-constant array expression");
4748	  return error_mark_node;
4749	}
4750
4751      if (optimize && TREE_CODE (inside_init) == VAR_DECL)
4752	inside_init = decl_constant_value_for_broken_optimization (inside_init);
4753
4754      /* Compound expressions can only occur here if -pedantic or
4755	 -pedantic-errors is specified.  In the later case, we always want
4756	 an error.  In the former case, we simply want a warning.  */
4757      if (require_constant && pedantic
4758	  && TREE_CODE (inside_init) == COMPOUND_EXPR)
4759	{
4760	  inside_init
4761	    = valid_compound_expr_initializer (inside_init,
4762					       TREE_TYPE (inside_init));
4763	  if (inside_init == error_mark_node)
4764	    error_init ("initializer element is not constant");
4765	  else
4766	    pedwarn_init ("initializer element is not constant");
4767	  if (flag_pedantic_errors)
4768	    inside_init = error_mark_node;
4769	}
4770      else if (require_constant
4771	       && !initializer_constant_valid_p (inside_init,
4772						 TREE_TYPE (inside_init)))
4773	{
4774	  error_init ("initializer element is not constant");
4775	  inside_init = error_mark_node;
4776	}
4777
4778      /* Added to enable additional -Wmissing-format-attribute warnings.  */
4779      if (TREE_CODE (TREE_TYPE (inside_init)) == POINTER_TYPE)
4780	inside_init = convert_for_assignment (type, inside_init, ic_init, NULL_TREE,
4781					      NULL_TREE, 0);
4782      return inside_init;
4783    }
4784
4785  /* Handle scalar types, including conversions.  */
4786
4787  if (code == INTEGER_TYPE || code == REAL_TYPE || code == POINTER_TYPE
4788      || code == ENUMERAL_TYPE || code == BOOLEAN_TYPE || code == COMPLEX_TYPE
4789      || code == VECTOR_TYPE)
4790    {
4791      if (TREE_CODE (TREE_TYPE (init)) == ARRAY_TYPE
4792	  && (TREE_CODE (init) == STRING_CST
4793	      || TREE_CODE (init) == COMPOUND_LITERAL_EXPR))
4794	init = array_to_pointer_conversion (init);
4795      inside_init
4796	= convert_for_assignment (type, init, ic_init,
4797				  NULL_TREE, NULL_TREE, 0);
4798
4799      /* Check to see if we have already given an error message.  */
4800      if (inside_init == error_mark_node)
4801	;
4802      else if (require_constant && !TREE_CONSTANT (inside_init))
4803	{
4804	  error_init ("initializer element is not constant");
4805	  inside_init = error_mark_node;
4806	}
4807      else if (require_constant
4808	       && !initializer_constant_valid_p (inside_init,
4809						 TREE_TYPE (inside_init)))
4810	{
4811	  error_init ("initializer element is not computable at load time");
4812	  inside_init = error_mark_node;
4813	}
4814
4815      return inside_init;
4816    }
4817
4818  /* Come here only for records and arrays.  */
4819
4820  if (COMPLETE_TYPE_P (type) && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4821    {
4822      error_init ("variable-sized object may not be initialized");
4823      return error_mark_node;
4824    }
4825
4826  error_init ("invalid initializer");
4827  return error_mark_node;
4828}
4829
4830/* Handle initializers that use braces.  */
4831
4832/* Type of object we are accumulating a constructor for.
4833   This type is always a RECORD_TYPE, UNION_TYPE or ARRAY_TYPE.  */
4834static tree constructor_type;
4835
4836/* For a RECORD_TYPE or UNION_TYPE, this is the chain of fields
4837   left to fill.  */
4838static tree constructor_fields;
4839
4840/* For an ARRAY_TYPE, this is the specified index
4841   at which to store the next element we get.  */
4842static tree constructor_index;
4843
4844/* For an ARRAY_TYPE, this is the maximum index.  */
4845static tree constructor_max_index;
4846
4847/* For a RECORD_TYPE, this is the first field not yet written out.  */
4848static tree constructor_unfilled_fields;
4849
4850/* For an ARRAY_TYPE, this is the index of the first element
4851   not yet written out.  */
4852static tree constructor_unfilled_index;
4853
4854/* In a RECORD_TYPE, the byte index of the next consecutive field.
4855   This is so we can generate gaps between fields, when appropriate.  */
4856static tree constructor_bit_index;
4857
4858/* If we are saving up the elements rather than allocating them,
4859   this is the list of elements so far (in reverse order,
4860   most recent first).  */
4861static VEC(constructor_elt,gc) *constructor_elements;
4862
4863/* 1 if constructor should be incrementally stored into a constructor chain,
4864   0 if all the elements should be kept in AVL tree.  */
4865static int constructor_incremental;
4866
4867/* 1 if so far this constructor's elements are all compile-time constants.  */
4868static int constructor_constant;
4869
4870/* 1 if so far this constructor's elements are all valid address constants.  */
4871static int constructor_simple;
4872
4873/* 1 if this constructor is erroneous so far.  */
4874static int constructor_erroneous;
4875
4876/* 1 if this constructor is a zero init. */
4877static int constructor_zeroinit;
4878
4879/* Structure for managing pending initializer elements, organized as an
4880   AVL tree.  */
4881
4882struct init_node
4883{
4884  struct init_node *left, *right;
4885  struct init_node *parent;
4886  int balance;
4887  tree purpose;
4888  tree value;
4889};
4890
4891/* Tree of pending elements at this constructor level.
4892   These are elements encountered out of order
4893   which belong at places we haven't reached yet in actually
4894   writing the output.
4895   Will never hold tree nodes across GC runs.  */
4896static struct init_node *constructor_pending_elts;
4897
4898/* The SPELLING_DEPTH of this constructor.  */
4899static int constructor_depth;
4900
4901/* DECL node for which an initializer is being read.
4902   0 means we are reading a constructor expression
4903   such as (struct foo) {...}.  */
4904static tree constructor_decl;
4905
4906/* Nonzero if this is an initializer for a top-level decl.  */
4907static int constructor_top_level;
4908
4909/* Nonzero if there were any member designators in this initializer.  */
4910static int constructor_designated;
4911
4912/* Nesting depth of designator list.  */
4913static int designator_depth;
4914
4915/* Nonzero if there were diagnosed errors in this designator list.  */
4916static int designator_erroneous;
4917
4918
4919/* This stack has a level for each implicit or explicit level of
4920   structuring in the initializer, including the outermost one.  It
4921   saves the values of most of the variables above.  */
4922
4923struct constructor_range_stack;
4924
4925struct constructor_stack
4926{
4927  struct constructor_stack *next;
4928  tree type;
4929  tree fields;
4930  tree index;
4931  tree max_index;
4932  tree unfilled_index;
4933  tree unfilled_fields;
4934  tree bit_index;
4935  VEC(constructor_elt,gc) *elements;
4936  struct init_node *pending_elts;
4937  int offset;
4938  int depth;
4939  /* If value nonzero, this value should replace the entire
4940     constructor at this level.  */
4941  struct c_expr replacement_value;
4942  struct constructor_range_stack *range_stack;
4943  char constant;
4944  char simple;
4945  char implicit;
4946  char erroneous;
4947  char outer;
4948  char incremental;
4949  char designated;
4950};
4951
4952static struct constructor_stack *constructor_stack;
4953
4954/* This stack represents designators from some range designator up to
4955   the last designator in the list.  */
4956
4957struct constructor_range_stack
4958{
4959  struct constructor_range_stack *next, *prev;
4960  struct constructor_stack *stack;
4961  tree range_start;
4962  tree index;
4963  tree range_end;
4964  tree fields;
4965};
4966
4967static struct constructor_range_stack *constructor_range_stack;
4968
4969/* This stack records separate initializers that are nested.
4970   Nested initializers can't happen in ANSI C, but GNU C allows them
4971   in cases like { ... (struct foo) { ... } ... }.  */
4972
4973struct initializer_stack
4974{
4975  struct initializer_stack *next;
4976  tree decl;
4977  struct constructor_stack *constructor_stack;
4978  struct constructor_range_stack *constructor_range_stack;
4979  VEC(constructor_elt,gc) *elements;
4980  struct spelling *spelling;
4981  struct spelling *spelling_base;
4982  int spelling_size;
4983  char top_level;
4984  char require_constant_value;
4985  char require_constant_elements;
4986};
4987
4988static struct initializer_stack *initializer_stack;
4989
4990/* Prepare to parse and output the initializer for variable DECL.  */
4991
4992void
4993start_init (tree decl, tree asmspec_tree ATTRIBUTE_UNUSED, int top_level)
4994{
4995  const char *locus;
4996  struct initializer_stack *p = XNEW (struct initializer_stack);
4997
4998  p->decl = constructor_decl;
4999  p->require_constant_value = require_constant_value;
5000  p->require_constant_elements = require_constant_elements;
5001  p->constructor_stack = constructor_stack;
5002  p->constructor_range_stack = constructor_range_stack;
5003  p->elements = constructor_elements;
5004  p->spelling = spelling;
5005  p->spelling_base = spelling_base;
5006  p->spelling_size = spelling_size;
5007  p->top_level = constructor_top_level;
5008  p->next = initializer_stack;
5009  initializer_stack = p;
5010
5011  constructor_decl = decl;
5012  constructor_designated = 0;
5013  constructor_top_level = top_level;
5014
5015  if (decl != 0 && decl != error_mark_node)
5016    {
5017      require_constant_value = TREE_STATIC (decl);
5018      require_constant_elements
5019	= ((TREE_STATIC (decl) || (pedantic && !flag_isoc99))
5020	   /* For a scalar, you can always use any value to initialize,
5021	      even within braces.  */
5022	   && (TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE
5023	       || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE
5024	       || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
5025	       || TREE_CODE (TREE_TYPE (decl)) == QUAL_UNION_TYPE));
5026      locus = IDENTIFIER_POINTER (DECL_NAME (decl));
5027    }
5028  else
5029    {
5030      require_constant_value = 0;
5031      require_constant_elements = 0;
5032      locus = "(anonymous)";
5033    }
5034
5035  constructor_stack = 0;
5036  constructor_range_stack = 0;
5037
5038  constructor_zeroinit = 0;
5039  missing_braces_mentioned = 0;
5040
5041  spelling_base = 0;
5042  spelling_size = 0;
5043  RESTORE_SPELLING_DEPTH (0);
5044
5045  if (locus)
5046    push_string (locus);
5047}
5048
5049void
5050finish_init (void)
5051{
5052  struct initializer_stack *p = initializer_stack;
5053
5054  /* Free the whole constructor stack of this initializer.  */
5055  while (constructor_stack)
5056    {
5057      struct constructor_stack *q = constructor_stack;
5058      constructor_stack = q->next;
5059      free (q);
5060    }
5061
5062  gcc_assert (!constructor_range_stack);
5063
5064  /* Pop back to the data of the outer initializer (if any).  */
5065  free (spelling_base);
5066
5067  constructor_decl = p->decl;
5068  require_constant_value = p->require_constant_value;
5069  require_constant_elements = p->require_constant_elements;
5070  constructor_stack = p->constructor_stack;
5071  constructor_range_stack = p->constructor_range_stack;
5072  constructor_elements = p->elements;
5073  spelling = p->spelling;
5074  spelling_base = p->spelling_base;
5075  spelling_size = p->spelling_size;
5076  constructor_top_level = p->top_level;
5077  initializer_stack = p->next;
5078  free (p);
5079}
5080
5081/* Call here when we see the initializer is surrounded by braces.
5082   This is instead of a call to push_init_level;
5083   it is matched by a call to pop_init_level.
5084
5085   TYPE is the type to initialize, for a constructor expression.
5086   For an initializer for a decl, TYPE is zero.  */
5087
5088void
5089really_start_incremental_init (tree type)
5090{
5091  struct constructor_stack *p = XNEW (struct constructor_stack);
5092
5093  if (type == 0)
5094    type = TREE_TYPE (constructor_decl);
5095
5096  if (targetm.vector_opaque_p (type))
5097    error ("opaque vector types cannot be initialized");
5098
5099  p->type = constructor_type;
5100  p->fields = constructor_fields;
5101  p->index = constructor_index;
5102  p->max_index = constructor_max_index;
5103  p->unfilled_index = constructor_unfilled_index;
5104  p->unfilled_fields = constructor_unfilled_fields;
5105  p->bit_index = constructor_bit_index;
5106  p->elements = constructor_elements;
5107  p->constant = constructor_constant;
5108  p->simple = constructor_simple;
5109  p->erroneous = constructor_erroneous;
5110  p->pending_elts = constructor_pending_elts;
5111  p->depth = constructor_depth;
5112  p->replacement_value.value = 0;
5113  p->replacement_value.original_code = ERROR_MARK;
5114  p->implicit = 0;
5115  p->range_stack = 0;
5116  p->outer = 0;
5117  p->incremental = constructor_incremental;
5118  p->designated = constructor_designated;
5119  p->next = 0;
5120  constructor_stack = p;
5121
5122  constructor_constant = 1;
5123  constructor_simple = 1;
5124  constructor_depth = SPELLING_DEPTH ();
5125  constructor_elements = 0;
5126  constructor_pending_elts = 0;
5127  constructor_type = type;
5128  constructor_incremental = 1;
5129  constructor_designated = 0;
5130  designator_depth = 0;
5131  designator_erroneous = 0;
5132
5133  if (TREE_CODE (constructor_type) == RECORD_TYPE
5134      || TREE_CODE (constructor_type) == UNION_TYPE)
5135    {
5136      constructor_fields = TYPE_FIELDS (constructor_type);
5137      /* Skip any nameless bit fields at the beginning.  */
5138      while (constructor_fields != 0 && DECL_C_BIT_FIELD (constructor_fields)
5139	     && DECL_NAME (constructor_fields) == 0)
5140	constructor_fields = TREE_CHAIN (constructor_fields);
5141
5142      constructor_unfilled_fields = constructor_fields;
5143      constructor_bit_index = bitsize_zero_node;
5144    }
5145  else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5146    {
5147      if (TYPE_DOMAIN (constructor_type))
5148	{
5149	  constructor_max_index
5150	    = TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type));
5151
5152	  /* Detect non-empty initializations of zero-length arrays.  */
5153	  if (constructor_max_index == NULL_TREE
5154	      && TYPE_SIZE (constructor_type))
5155	    constructor_max_index = build_int_cst (NULL_TREE, -1);
5156
5157	  /* constructor_max_index needs to be an INTEGER_CST.  Attempts
5158	     to initialize VLAs will cause a proper error; avoid tree
5159	     checking errors as well by setting a safe value.  */
5160	  if (constructor_max_index
5161	      && TREE_CODE (constructor_max_index) != INTEGER_CST)
5162	    constructor_max_index = build_int_cst (NULL_TREE, -1);
5163
5164	  constructor_index
5165	    = convert (bitsizetype,
5166		       TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
5167	}
5168      else
5169	{
5170	  constructor_index = bitsize_zero_node;
5171	  constructor_max_index = NULL_TREE;
5172	}
5173
5174      constructor_unfilled_index = constructor_index;
5175    }
5176  else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
5177    {
5178      /* Vectors are like simple fixed-size arrays.  */
5179      constructor_max_index =
5180	build_int_cst (NULL_TREE, TYPE_VECTOR_SUBPARTS (constructor_type) - 1);
5181      constructor_index = bitsize_zero_node;
5182      constructor_unfilled_index = constructor_index;
5183    }
5184  else
5185    {
5186      /* Handle the case of int x = {5}; */
5187      constructor_fields = constructor_type;
5188      constructor_unfilled_fields = constructor_type;
5189    }
5190}
5191
5192/* Push down into a subobject, for initialization.
5193   If this is for an explicit set of braces, IMPLICIT is 0.
5194   If it is because the next element belongs at a lower level,
5195   IMPLICIT is 1 (or 2 if the push is because of designator list).  */
5196
5197void
5198push_init_level (int implicit)
5199{
5200  struct constructor_stack *p;
5201  tree value = NULL_TREE;
5202
5203  /* If we've exhausted any levels that didn't have braces,
5204     pop them now.  If implicit == 1, this will have been done in
5205     process_init_element; do not repeat it here because in the case
5206     of excess initializers for an empty aggregate this leads to an
5207     infinite cycle of popping a level and immediately recreating
5208     it.  */
5209  if (implicit != 1)
5210    {
5211      while (constructor_stack->implicit)
5212	{
5213	  if ((TREE_CODE (constructor_type) == RECORD_TYPE
5214	       || TREE_CODE (constructor_type) == UNION_TYPE)
5215	      && constructor_fields == 0)
5216	    process_init_element (pop_init_level (1));
5217	  else if (TREE_CODE (constructor_type) == ARRAY_TYPE
5218		   && constructor_max_index
5219		   && tree_int_cst_lt (constructor_max_index,
5220				       constructor_index))
5221	    process_init_element (pop_init_level (1));
5222	  else
5223	    break;
5224	}
5225    }
5226
5227  /* Unless this is an explicit brace, we need to preserve previous
5228     content if any.  */
5229  if (implicit)
5230    {
5231      if ((TREE_CODE (constructor_type) == RECORD_TYPE
5232	   || TREE_CODE (constructor_type) == UNION_TYPE)
5233	  && constructor_fields)
5234	value = find_init_member (constructor_fields);
5235      else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5236	value = find_init_member (constructor_index);
5237    }
5238
5239  p = XNEW (struct constructor_stack);
5240  p->type = constructor_type;
5241  p->fields = constructor_fields;
5242  p->index = constructor_index;
5243  p->max_index = constructor_max_index;
5244  p->unfilled_index = constructor_unfilled_index;
5245  p->unfilled_fields = constructor_unfilled_fields;
5246  p->bit_index = constructor_bit_index;
5247  p->elements = constructor_elements;
5248  p->constant = constructor_constant;
5249  p->simple = constructor_simple;
5250  p->erroneous = constructor_erroneous;
5251  p->pending_elts = constructor_pending_elts;
5252  p->depth = constructor_depth;
5253  p->replacement_value.value = 0;
5254  p->replacement_value.original_code = ERROR_MARK;
5255  p->implicit = implicit;
5256  p->outer = 0;
5257  p->incremental = constructor_incremental;
5258  p->designated = constructor_designated;
5259  p->next = constructor_stack;
5260  p->range_stack = 0;
5261  constructor_stack = p;
5262
5263  constructor_constant = 1;
5264  constructor_simple = 1;
5265  constructor_depth = SPELLING_DEPTH ();
5266  constructor_elements = 0;
5267  constructor_incremental = 1;
5268  constructor_designated = 0;
5269  constructor_pending_elts = 0;
5270  if (!implicit)
5271    {
5272      p->range_stack = constructor_range_stack;
5273      constructor_range_stack = 0;
5274      designator_depth = 0;
5275      designator_erroneous = 0;
5276    }
5277
5278  /* Don't die if an entire brace-pair level is superfluous
5279     in the containing level.  */
5280  if (constructor_type == 0)
5281    ;
5282  else if (TREE_CODE (constructor_type) == RECORD_TYPE
5283	   || TREE_CODE (constructor_type) == UNION_TYPE)
5284    {
5285      /* Don't die if there are extra init elts at the end.  */
5286      if (constructor_fields == 0)
5287	constructor_type = 0;
5288      else
5289	{
5290	  constructor_type = TREE_TYPE (constructor_fields);
5291	  push_member_name (constructor_fields);
5292	  constructor_depth++;
5293	}
5294    }
5295  else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5296    {
5297      constructor_type = TREE_TYPE (constructor_type);
5298      push_array_bounds (tree_low_cst (constructor_index, 1));
5299      constructor_depth++;
5300    }
5301
5302  if (constructor_type == 0)
5303    {
5304      error_init ("extra brace group at end of initializer");
5305      constructor_fields = 0;
5306      constructor_unfilled_fields = 0;
5307      return;
5308    }
5309
5310  if (value && TREE_CODE (value) == CONSTRUCTOR)
5311    {
5312      constructor_constant = TREE_CONSTANT (value);
5313      constructor_simple = TREE_STATIC (value);
5314      constructor_elements = CONSTRUCTOR_ELTS (value);
5315      if (!VEC_empty (constructor_elt, constructor_elements)
5316	  && (TREE_CODE (constructor_type) == RECORD_TYPE
5317	      || TREE_CODE (constructor_type) == ARRAY_TYPE))
5318	set_nonincremental_init ();
5319    }
5320
5321  if (TREE_CODE (constructor_type) == RECORD_TYPE
5322	   || TREE_CODE (constructor_type) == UNION_TYPE)
5323    {
5324      constructor_fields = TYPE_FIELDS (constructor_type);
5325      /* Skip any nameless bit fields at the beginning.  */
5326      while (constructor_fields != 0 && DECL_C_BIT_FIELD (constructor_fields)
5327	     && DECL_NAME (constructor_fields) == 0)
5328	constructor_fields = TREE_CHAIN (constructor_fields);
5329
5330      constructor_unfilled_fields = constructor_fields;
5331      constructor_bit_index = bitsize_zero_node;
5332    }
5333  else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
5334    {
5335      /* Vectors are like simple fixed-size arrays.  */
5336      constructor_max_index =
5337	build_int_cst (NULL_TREE, TYPE_VECTOR_SUBPARTS (constructor_type) - 1);
5338      constructor_index = convert (bitsizetype, integer_zero_node);
5339      constructor_unfilled_index = constructor_index;
5340    }
5341  else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5342    {
5343      if (TYPE_DOMAIN (constructor_type))
5344	{
5345	  constructor_max_index
5346	    = TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type));
5347
5348	  /* Detect non-empty initializations of zero-length arrays.  */
5349	  if (constructor_max_index == NULL_TREE
5350	      && TYPE_SIZE (constructor_type))
5351	    constructor_max_index = build_int_cst (NULL_TREE, -1);
5352
5353	  /* constructor_max_index needs to be an INTEGER_CST.  Attempts
5354	     to initialize VLAs will cause a proper error; avoid tree
5355	     checking errors as well by setting a safe value.  */
5356	  if (constructor_max_index
5357	      && TREE_CODE (constructor_max_index) != INTEGER_CST)
5358	    constructor_max_index = build_int_cst (NULL_TREE, -1);
5359
5360	  constructor_index
5361	    = convert (bitsizetype,
5362		       TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
5363	}
5364      else
5365	constructor_index = bitsize_zero_node;
5366
5367      constructor_unfilled_index = constructor_index;
5368      if (value && TREE_CODE (value) == STRING_CST)
5369	{
5370	  /* We need to split the char/wchar array into individual
5371	     characters, so that we don't have to special case it
5372	     everywhere.  */
5373	  set_nonincremental_init_from_string (value);
5374	}
5375    }
5376  else
5377    {
5378      if (constructor_type != error_mark_node)
5379	warning_init ("braces around scalar initializer");
5380      constructor_fields = constructor_type;
5381      constructor_unfilled_fields = constructor_type;
5382    }
5383}
5384
5385/* At the end of an implicit or explicit brace level,
5386   finish up that level of constructor.  If a single expression
5387   with redundant braces initialized that level, return the
5388   c_expr structure for that expression.  Otherwise, the original_code
5389   element is set to ERROR_MARK.
5390   If we were outputting the elements as they are read, return 0 as the value
5391   from inner levels (process_init_element ignores that),
5392   but return error_mark_node as the value from the outermost level
5393   (that's what we want to put in DECL_INITIAL).
5394   Otherwise, return a CONSTRUCTOR expression as the value.  */
5395
5396struct c_expr
5397pop_init_level (int implicit)
5398{
5399  struct constructor_stack *p;
5400  struct c_expr ret;
5401  ret.value = 0;
5402  ret.original_code = ERROR_MARK;
5403
5404  if (implicit == 0)
5405    {
5406      /* When we come to an explicit close brace,
5407	 pop any inner levels that didn't have explicit braces.  */
5408      while (constructor_stack->implicit)
5409	process_init_element (pop_init_level (1));
5410
5411      gcc_assert (!constructor_range_stack);
5412    }
5413
5414  /* Now output all pending elements.  */
5415  constructor_incremental = 1;
5416  output_pending_init_elements (1);
5417
5418  p = constructor_stack;
5419
5420  /* Error for initializing a flexible array member, or a zero-length
5421     array member in an inappropriate context.  */
5422  if (constructor_type && constructor_fields
5423      && TREE_CODE (constructor_type) == ARRAY_TYPE
5424      && TYPE_DOMAIN (constructor_type)
5425      && !TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type)))
5426    {
5427      /* Silently discard empty initializations.  The parser will
5428	 already have pedwarned for empty brackets.  */
5429      if (integer_zerop (constructor_unfilled_index))
5430	constructor_type = NULL_TREE;
5431      else
5432	{
5433	  gcc_assert (!TYPE_SIZE (constructor_type));
5434
5435	  if (constructor_depth > 2)
5436	    error_init ("initialization of flexible array member in a nested context");
5437	  else if (pedantic)
5438	    pedwarn_init ("initialization of a flexible array member");
5439
5440	  /* We have already issued an error message for the existence
5441	     of a flexible array member not at the end of the structure.
5442	     Discard the initializer so that we do not die later.  */
5443	  if (TREE_CHAIN (constructor_fields) != NULL_TREE)
5444	    constructor_type = NULL_TREE;
5445	}
5446    }
5447
5448  if (VEC_length (constructor_elt,constructor_elements) == 0)
5449     constructor_zeroinit = 1;
5450  else if (VEC_length (constructor_elt,constructor_elements) == 1 &&
5451      initializer_zerop (VEC_index (constructor_elt,constructor_elements,0)->value))
5452     constructor_zeroinit = 1;
5453  else
5454     constructor_zeroinit = 0;
5455
5456  /* only warn for missing braces unless it is { 0 } */
5457  if (p->implicit == 1 && warn_missing_braces && !missing_braces_mentioned &&
5458      !constructor_zeroinit)
5459    {
5460      missing_braces_mentioned = 1;
5461      warning_init ("missing braces around initializer");
5462    }
5463
5464  /* Warn when some struct elements are implicitly initialized to zero.  */
5465  if (warn_missing_field_initializers
5466      && constructor_type
5467      && TREE_CODE (constructor_type) == RECORD_TYPE
5468      && constructor_unfilled_fields)
5469    {
5470	/* Do not warn for flexible array members or zero-length arrays.  */
5471	while (constructor_unfilled_fields
5472	       && (!DECL_SIZE (constructor_unfilled_fields)
5473		   || integer_zerop (DECL_SIZE (constructor_unfilled_fields))))
5474	  constructor_unfilled_fields = TREE_CHAIN (constructor_unfilled_fields);
5475
5476	/* Do not warn if this level of the initializer uses member
5477	   designators; it is likely to be deliberate.  */
5478	if (constructor_unfilled_fields && !constructor_designated)
5479	  {
5480	    push_member_name (constructor_unfilled_fields);
5481	    warning_init ("missing initializer");
5482	    RESTORE_SPELLING_DEPTH (constructor_depth);
5483	  }
5484    }
5485
5486  /* Pad out the end of the structure.  */
5487  if (p->replacement_value.value)
5488    /* If this closes a superfluous brace pair,
5489       just pass out the element between them.  */
5490    ret = p->replacement_value;
5491  else if (constructor_type == 0)
5492    ;
5493  else if (TREE_CODE (constructor_type) != RECORD_TYPE
5494	   && TREE_CODE (constructor_type) != UNION_TYPE
5495	   && TREE_CODE (constructor_type) != ARRAY_TYPE
5496	   && TREE_CODE (constructor_type) != VECTOR_TYPE)
5497    {
5498      /* A nonincremental scalar initializer--just return
5499	 the element, after verifying there is just one.  */
5500      if (VEC_empty (constructor_elt,constructor_elements))
5501	{
5502	  if (!constructor_erroneous)
5503	    error_init ("empty scalar initializer");
5504	  ret.value = error_mark_node;
5505	}
5506      else if (VEC_length (constructor_elt,constructor_elements) != 1)
5507	{
5508	  error_init ("extra elements in scalar initializer");
5509	  ret.value = VEC_index (constructor_elt,constructor_elements,0)->value;
5510	}
5511      else
5512	ret.value = VEC_index (constructor_elt,constructor_elements,0)->value;
5513    }
5514  else
5515    {
5516      if (constructor_erroneous)
5517	ret.value = error_mark_node;
5518      else
5519	{
5520	  ret.value = build_constructor (constructor_type,
5521					 constructor_elements);
5522	  if (constructor_constant)
5523	    TREE_CONSTANT (ret.value) = TREE_INVARIANT (ret.value) = 1;
5524	  if (constructor_constant && constructor_simple)
5525	    TREE_STATIC (ret.value) = 1;
5526	}
5527    }
5528
5529  constructor_type = p->type;
5530  constructor_fields = p->fields;
5531  constructor_index = p->index;
5532  constructor_max_index = p->max_index;
5533  constructor_unfilled_index = p->unfilled_index;
5534  constructor_unfilled_fields = p->unfilled_fields;
5535  constructor_bit_index = p->bit_index;
5536  constructor_elements = p->elements;
5537  constructor_constant = p->constant;
5538  constructor_simple = p->simple;
5539  constructor_erroneous = p->erroneous;
5540  constructor_incremental = p->incremental;
5541  constructor_designated = p->designated;
5542  constructor_pending_elts = p->pending_elts;
5543  constructor_depth = p->depth;
5544  if (!p->implicit)
5545    constructor_range_stack = p->range_stack;
5546  RESTORE_SPELLING_DEPTH (constructor_depth);
5547
5548  constructor_stack = p->next;
5549  free (p);
5550
5551  if (ret.value == 0 && constructor_stack == 0)
5552    ret.value = error_mark_node;
5553  return ret;
5554}
5555
5556/* Common handling for both array range and field name designators.
5557   ARRAY argument is nonzero for array ranges.  Returns zero for success.  */
5558
5559static int
5560set_designator (int array)
5561{
5562  tree subtype;
5563  enum tree_code subcode;
5564
5565  /* Don't die if an entire brace-pair level is superfluous
5566     in the containing level.  */
5567  if (constructor_type == 0)
5568    return 1;
5569
5570  /* If there were errors in this designator list already, bail out
5571     silently.  */
5572  if (designator_erroneous)
5573    return 1;
5574
5575  if (!designator_depth)
5576    {
5577      gcc_assert (!constructor_range_stack);
5578
5579      /* Designator list starts at the level of closest explicit
5580	 braces.  */
5581      while (constructor_stack->implicit)
5582	process_init_element (pop_init_level (1));
5583      constructor_designated = 1;
5584      return 0;
5585    }
5586
5587  switch (TREE_CODE (constructor_type))
5588    {
5589    case  RECORD_TYPE:
5590    case  UNION_TYPE:
5591      subtype = TREE_TYPE (constructor_fields);
5592      if (subtype != error_mark_node)
5593	subtype = TYPE_MAIN_VARIANT (subtype);
5594      break;
5595    case ARRAY_TYPE:
5596      subtype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
5597      break;
5598    default:
5599      gcc_unreachable ();
5600    }
5601
5602  subcode = TREE_CODE (subtype);
5603  if (array && subcode != ARRAY_TYPE)
5604    {
5605      error_init ("array index in non-array initializer");
5606      return 1;
5607    }
5608  else if (!array && subcode != RECORD_TYPE && subcode != UNION_TYPE)
5609    {
5610      error_init ("field name not in record or union initializer");
5611      return 1;
5612    }
5613
5614  constructor_designated = 1;
5615  push_init_level (2);
5616  return 0;
5617}
5618
5619/* If there are range designators in designator list, push a new designator
5620   to constructor_range_stack.  RANGE_END is end of such stack range or
5621   NULL_TREE if there is no range designator at this level.  */
5622
5623static void
5624push_range_stack (tree range_end)
5625{
5626  struct constructor_range_stack *p;
5627
5628  p = GGC_NEW (struct constructor_range_stack);
5629  p->prev = constructor_range_stack;
5630  p->next = 0;
5631  p->fields = constructor_fields;
5632  p->range_start = constructor_index;
5633  p->index = constructor_index;
5634  p->stack = constructor_stack;
5635  p->range_end = range_end;
5636  if (constructor_range_stack)
5637    constructor_range_stack->next = p;
5638  constructor_range_stack = p;
5639}
5640
5641/* Within an array initializer, specify the next index to be initialized.
5642   FIRST is that index.  If LAST is nonzero, then initialize a range
5643   of indices, running from FIRST through LAST.  */
5644
5645void
5646set_init_index (tree first, tree last)
5647{
5648  if (set_designator (1))
5649    return;
5650
5651  designator_erroneous = 1;
5652
5653  if (!INTEGRAL_TYPE_P (TREE_TYPE (first))
5654      || (last && !INTEGRAL_TYPE_P (TREE_TYPE (last))))
5655    {
5656      error_init ("array index in initializer not of integer type");
5657      return;
5658    }
5659
5660  if (TREE_CODE (first) != INTEGER_CST)
5661    error_init ("nonconstant array index in initializer");
5662  else if (last != 0 && TREE_CODE (last) != INTEGER_CST)
5663    error_init ("nonconstant array index in initializer");
5664  else if (TREE_CODE (constructor_type) != ARRAY_TYPE)
5665    error_init ("array index in non-array initializer");
5666  else if (tree_int_cst_sgn (first) == -1)
5667    error_init ("array index in initializer exceeds array bounds");
5668  else if (constructor_max_index
5669	   && tree_int_cst_lt (constructor_max_index, first))
5670    error_init ("array index in initializer exceeds array bounds");
5671  else
5672    {
5673      constructor_index = convert (bitsizetype, first);
5674
5675      if (last)
5676	{
5677	  if (tree_int_cst_equal (first, last))
5678	    last = 0;
5679	  else if (tree_int_cst_lt (last, first))
5680	    {
5681	      error_init ("empty index range in initializer");
5682	      last = 0;
5683	    }
5684	  else
5685	    {
5686	      last = convert (bitsizetype, last);
5687	      if (constructor_max_index != 0
5688		  && tree_int_cst_lt (constructor_max_index, last))
5689		{
5690		  error_init ("array index range in initializer exceeds array bounds");
5691		  last = 0;
5692		}
5693	    }
5694	}
5695
5696      designator_depth++;
5697      designator_erroneous = 0;
5698      if (constructor_range_stack || last)
5699	push_range_stack (last);
5700    }
5701}
5702
5703/* Within a struct initializer, specify the next field to be initialized.  */
5704
5705void
5706set_init_label (tree fieldname)
5707{
5708  tree anon = NULL_TREE;
5709  tree tail;
5710
5711  if (set_designator (0))
5712    return;
5713
5714  designator_erroneous = 1;
5715
5716  if (TREE_CODE (constructor_type) != RECORD_TYPE
5717      && TREE_CODE (constructor_type) != UNION_TYPE)
5718    {
5719      error_init ("field name not in record or union initializer");
5720      return;
5721    }
5722
5723  for (tail = TYPE_FIELDS (constructor_type); tail;
5724       tail = TREE_CHAIN (tail))
5725    {
5726      if (DECL_NAME (tail) == NULL_TREE
5727	  && (TREE_CODE (TREE_TYPE (tail)) == RECORD_TYPE
5728	      || TREE_CODE (TREE_TYPE (tail)) == UNION_TYPE))
5729	{
5730	  anon = lookup_field (tail, fieldname);
5731	  if (anon)
5732	    break;
5733	}
5734
5735      if (DECL_NAME (tail) == fieldname)
5736	break;
5737    }
5738
5739  if (tail == 0)
5740    error ("unknown field %qE specified in initializer", fieldname);
5741
5742  while (tail)
5743    {
5744      constructor_fields = tail;
5745      designator_depth++;
5746      designator_erroneous = 0;
5747      if (constructor_range_stack)
5748	push_range_stack (NULL_TREE);
5749
5750      if (anon)
5751	{
5752	  if (set_designator (0))
5753	    return;
5754	  tail = TREE_VALUE(anon);
5755	  anon = TREE_CHAIN(anon);
5756	}
5757      else
5758	tail = NULL_TREE;
5759    }
5760}
5761
5762/* Add a new initializer to the tree of pending initializers.  PURPOSE
5763   identifies the initializer, either array index or field in a structure.
5764   VALUE is the value of that index or field.  */
5765
5766static void
5767add_pending_init (tree purpose, tree value)
5768{
5769  struct init_node *p, **q, *r;
5770
5771  q = &constructor_pending_elts;
5772  p = 0;
5773
5774  if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5775    {
5776      while (*q != 0)
5777	{
5778	  p = *q;
5779	  if (tree_int_cst_lt (purpose, p->purpose))
5780	    q = &p->left;
5781	  else if (tree_int_cst_lt (p->purpose, purpose))
5782	    q = &p->right;
5783	  else
5784	    {
5785	      if (TREE_SIDE_EFFECTS (p->value))
5786		warning_init ("initialized field with side-effects overwritten");
5787	      else if (warn_override_init)
5788		warning_init ("initialized field overwritten");
5789	      p->value = value;
5790	      return;
5791	    }
5792	}
5793    }
5794  else
5795    {
5796      tree bitpos;
5797
5798      bitpos = bit_position (purpose);
5799      while (*q != NULL)
5800	{
5801	  p = *q;
5802	  if (tree_int_cst_lt (bitpos, bit_position (p->purpose)))
5803	    q = &p->left;
5804	  else if (p->purpose != purpose)
5805	    q = &p->right;
5806	  else
5807	    {
5808	      if (TREE_SIDE_EFFECTS (p->value))
5809		warning_init ("initialized field with side-effects overwritten");
5810	      else if (warn_override_init)
5811		warning_init ("initialized field overwritten");
5812	      p->value = value;
5813	      return;
5814	    }
5815	}
5816    }
5817
5818  r = GGC_NEW (struct init_node);
5819  r->purpose = purpose;
5820  r->value = value;
5821
5822  *q = r;
5823  r->parent = p;
5824  r->left = 0;
5825  r->right = 0;
5826  r->balance = 0;
5827
5828  while (p)
5829    {
5830      struct init_node *s;
5831
5832      if (r == p->left)
5833	{
5834	  if (p->balance == 0)
5835	    p->balance = -1;
5836	  else if (p->balance < 0)
5837	    {
5838	      if (r->balance < 0)
5839		{
5840		  /* L rotation.  */
5841		  p->left = r->right;
5842		  if (p->left)
5843		    p->left->parent = p;
5844		  r->right = p;
5845
5846		  p->balance = 0;
5847		  r->balance = 0;
5848
5849		  s = p->parent;
5850		  p->parent = r;
5851		  r->parent = s;
5852		  if (s)
5853		    {
5854		      if (s->left == p)
5855			s->left = r;
5856		      else
5857			s->right = r;
5858		    }
5859		  else
5860		    constructor_pending_elts = r;
5861		}
5862	      else
5863		{
5864		  /* LR rotation.  */
5865		  struct init_node *t = r->right;
5866
5867		  r->right = t->left;
5868		  if (r->right)
5869		    r->right->parent = r;
5870		  t->left = r;
5871
5872		  p->left = t->right;
5873		  if (p->left)
5874		    p->left->parent = p;
5875		  t->right = p;
5876
5877		  p->balance = t->balance < 0;
5878		  r->balance = -(t->balance > 0);
5879		  t->balance = 0;
5880
5881		  s = p->parent;
5882		  p->parent = t;
5883		  r->parent = t;
5884		  t->parent = s;
5885		  if (s)
5886		    {
5887		      if (s->left == p)
5888			s->left = t;
5889		      else
5890			s->right = t;
5891		    }
5892		  else
5893		    constructor_pending_elts = t;
5894		}
5895	      break;
5896	    }
5897	  else
5898	    {
5899	      /* p->balance == +1; growth of left side balances the node.  */
5900	      p->balance = 0;
5901	      break;
5902	    }
5903	}
5904      else /* r == p->right */
5905	{
5906	  if (p->balance == 0)
5907	    /* Growth propagation from right side.  */
5908	    p->balance++;
5909	  else if (p->balance > 0)
5910	    {
5911	      if (r->balance > 0)
5912		{
5913		  /* R rotation.  */
5914		  p->right = r->left;
5915		  if (p->right)
5916		    p->right->parent = p;
5917		  r->left = p;
5918
5919		  p->balance = 0;
5920		  r->balance = 0;
5921
5922		  s = p->parent;
5923		  p->parent = r;
5924		  r->parent = s;
5925		  if (s)
5926		    {
5927		      if (s->left == p)
5928			s->left = r;
5929		      else
5930			s->right = r;
5931		    }
5932		  else
5933		    constructor_pending_elts = r;
5934		}
5935	      else /* r->balance == -1 */
5936		{
5937		  /* RL rotation */
5938		  struct init_node *t = r->left;
5939
5940		  r->left = t->right;
5941		  if (r->left)
5942		    r->left->parent = r;
5943		  t->right = r;
5944
5945		  p->right = t->left;
5946		  if (p->right)
5947		    p->right->parent = p;
5948		  t->left = p;
5949
5950		  r->balance = (t->balance < 0);
5951		  p->balance = -(t->balance > 0);
5952		  t->balance = 0;
5953
5954		  s = p->parent;
5955		  p->parent = t;
5956		  r->parent = t;
5957		  t->parent = s;
5958		  if (s)
5959		    {
5960		      if (s->left == p)
5961			s->left = t;
5962		      else
5963			s->right = t;
5964		    }
5965		  else
5966		    constructor_pending_elts = t;
5967		}
5968	      break;
5969	    }
5970	  else
5971	    {
5972	      /* p->balance == -1; growth of right side balances the node.  */
5973	      p->balance = 0;
5974	      break;
5975	    }
5976	}
5977
5978      r = p;
5979      p = p->parent;
5980    }
5981}
5982
5983/* Build AVL tree from a sorted chain.  */
5984
5985static void
5986set_nonincremental_init (void)
5987{
5988  unsigned HOST_WIDE_INT ix;
5989  tree index, value;
5990
5991  if (TREE_CODE (constructor_type) != RECORD_TYPE
5992      && TREE_CODE (constructor_type) != ARRAY_TYPE)
5993    return;
5994
5995  FOR_EACH_CONSTRUCTOR_ELT (constructor_elements, ix, index, value)
5996    add_pending_init (index, value);
5997  constructor_elements = 0;
5998  if (TREE_CODE (constructor_type) == RECORD_TYPE)
5999    {
6000      constructor_unfilled_fields = TYPE_FIELDS (constructor_type);
6001      /* Skip any nameless bit fields at the beginning.  */
6002      while (constructor_unfilled_fields != 0
6003	     && DECL_C_BIT_FIELD (constructor_unfilled_fields)
6004	     && DECL_NAME (constructor_unfilled_fields) == 0)
6005	constructor_unfilled_fields = TREE_CHAIN (constructor_unfilled_fields);
6006
6007    }
6008  else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6009    {
6010      if (TYPE_DOMAIN (constructor_type))
6011	constructor_unfilled_index
6012	    = convert (bitsizetype,
6013		       TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
6014      else
6015	constructor_unfilled_index = bitsize_zero_node;
6016    }
6017  constructor_incremental = 0;
6018}
6019
6020/* Build AVL tree from a string constant.  */
6021
6022static void
6023set_nonincremental_init_from_string (tree str)
6024{
6025  tree value, purpose, type;
6026  HOST_WIDE_INT val[2];
6027  const char *p, *end;
6028  int byte, wchar_bytes, charwidth, bitpos;
6029
6030  gcc_assert (TREE_CODE (constructor_type) == ARRAY_TYPE);
6031
6032  if (TYPE_PRECISION (TREE_TYPE (TREE_TYPE (str)))
6033      == TYPE_PRECISION (char_type_node))
6034    wchar_bytes = 1;
6035  else
6036    {
6037      gcc_assert (TYPE_PRECISION (TREE_TYPE (TREE_TYPE (str)))
6038		  == TYPE_PRECISION (wchar_type_node));
6039      wchar_bytes = TYPE_PRECISION (wchar_type_node) / BITS_PER_UNIT;
6040    }
6041  charwidth = TYPE_PRECISION (char_type_node);
6042  type = TREE_TYPE (constructor_type);
6043  p = TREE_STRING_POINTER (str);
6044  end = p + TREE_STRING_LENGTH (str);
6045
6046  for (purpose = bitsize_zero_node;
6047       p < end && !tree_int_cst_lt (constructor_max_index, purpose);
6048       purpose = size_binop (PLUS_EXPR, purpose, bitsize_one_node))
6049    {
6050      if (wchar_bytes == 1)
6051	{
6052	  val[1] = (unsigned char) *p++;
6053	  val[0] = 0;
6054	}
6055      else
6056	{
6057	  val[0] = 0;
6058	  val[1] = 0;
6059	  for (byte = 0; byte < wchar_bytes; byte++)
6060	    {
6061	      if (BYTES_BIG_ENDIAN)
6062		bitpos = (wchar_bytes - byte - 1) * charwidth;
6063	      else
6064		bitpos = byte * charwidth;
6065	      val[bitpos < HOST_BITS_PER_WIDE_INT]
6066		|= ((unsigned HOST_WIDE_INT) ((unsigned char) *p++))
6067		   << (bitpos % HOST_BITS_PER_WIDE_INT);
6068	    }
6069	}
6070
6071      if (!TYPE_UNSIGNED (type))
6072	{
6073	  bitpos = ((wchar_bytes - 1) * charwidth) + HOST_BITS_PER_CHAR;
6074	  if (bitpos < HOST_BITS_PER_WIDE_INT)
6075	    {
6076	      if (val[1] & (((HOST_WIDE_INT) 1) << (bitpos - 1)))
6077		{
6078		  val[1] |= ((HOST_WIDE_INT) -1) << bitpos;
6079		  val[0] = -1;
6080		}
6081	    }
6082	  else if (bitpos == HOST_BITS_PER_WIDE_INT)
6083	    {
6084	      if (val[1] < 0)
6085		val[0] = -1;
6086	    }
6087	  else if (val[0] & (((HOST_WIDE_INT) 1)
6088			     << (bitpos - 1 - HOST_BITS_PER_WIDE_INT)))
6089	    val[0] |= ((HOST_WIDE_INT) -1)
6090		      << (bitpos - HOST_BITS_PER_WIDE_INT);
6091	}
6092
6093      value = build_int_cst_wide (type, val[1], val[0]);
6094      add_pending_init (purpose, value);
6095    }
6096
6097  constructor_incremental = 0;
6098}
6099
6100/* Return value of FIELD in pending initializer or zero if the field was
6101   not initialized yet.  */
6102
6103static tree
6104find_init_member (tree field)
6105{
6106  struct init_node *p;
6107
6108  if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6109    {
6110      if (constructor_incremental
6111	  && tree_int_cst_lt (field, constructor_unfilled_index))
6112	set_nonincremental_init ();
6113
6114      p = constructor_pending_elts;
6115      while (p)
6116	{
6117	  if (tree_int_cst_lt (field, p->purpose))
6118	    p = p->left;
6119	  else if (tree_int_cst_lt (p->purpose, field))
6120	    p = p->right;
6121	  else
6122	    return p->value;
6123	}
6124    }
6125  else if (TREE_CODE (constructor_type) == RECORD_TYPE)
6126    {
6127      tree bitpos = bit_position (field);
6128
6129      if (constructor_incremental
6130	  && (!constructor_unfilled_fields
6131	      || tree_int_cst_lt (bitpos,
6132				  bit_position (constructor_unfilled_fields))))
6133	set_nonincremental_init ();
6134
6135      p = constructor_pending_elts;
6136      while (p)
6137	{
6138	  if (field == p->purpose)
6139	    return p->value;
6140	  else if (tree_int_cst_lt (bitpos, bit_position (p->purpose)))
6141	    p = p->left;
6142	  else
6143	    p = p->right;
6144	}
6145    }
6146  else if (TREE_CODE (constructor_type) == UNION_TYPE)
6147    {
6148      if (!VEC_empty (constructor_elt, constructor_elements)
6149	  && (VEC_last (constructor_elt, constructor_elements)->index
6150	      == field))
6151	return VEC_last (constructor_elt, constructor_elements)->value;
6152    }
6153  return 0;
6154}
6155
6156/* "Output" the next constructor element.
6157   At top level, really output it to assembler code now.
6158   Otherwise, collect it in a list from which we will make a CONSTRUCTOR.
6159   TYPE is the data type that the containing data type wants here.
6160   FIELD is the field (a FIELD_DECL) or the index that this element fills.
6161   If VALUE is a string constant, STRICT_STRING is true if it is
6162   unparenthesized or we should not warn here for it being parenthesized.
6163   For other types of VALUE, STRICT_STRING is not used.
6164
6165   PENDING if non-nil means output pending elements that belong
6166   right after this element.  (PENDING is normally 1;
6167   it is 0 while outputting pending elements, to avoid recursion.)  */
6168
6169static void
6170output_init_element (tree value, bool strict_string, tree type, tree field,
6171		     int pending)
6172{
6173  constructor_elt *celt;
6174
6175  if (type == error_mark_node || value == error_mark_node)
6176    {
6177      constructor_erroneous = 1;
6178      return;
6179    }
6180  if (TREE_CODE (TREE_TYPE (value)) == ARRAY_TYPE
6181      && (TREE_CODE (value) == STRING_CST
6182	  || TREE_CODE (value) == COMPOUND_LITERAL_EXPR)
6183      && !(TREE_CODE (value) == STRING_CST
6184	   && TREE_CODE (type) == ARRAY_TYPE
6185	   && INTEGRAL_TYPE_P (TREE_TYPE (type)))
6186      && !comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (value)),
6187		     TYPE_MAIN_VARIANT (type)))
6188    value = array_to_pointer_conversion (value);
6189
6190  if (TREE_CODE (value) == COMPOUND_LITERAL_EXPR
6191      && require_constant_value && !flag_isoc99 && pending)
6192    {
6193      /* As an extension, allow initializing objects with static storage
6194	 duration with compound literals (which are then treated just as
6195	 the brace enclosed list they contain).  */
6196      tree decl = COMPOUND_LITERAL_EXPR_DECL (value);
6197      value = DECL_INITIAL (decl);
6198    }
6199
6200  if (value == error_mark_node)
6201    constructor_erroneous = 1;
6202  else if (!TREE_CONSTANT (value))
6203    constructor_constant = 0;
6204  else if (!initializer_constant_valid_p (value, TREE_TYPE (value))
6205	   || ((TREE_CODE (constructor_type) == RECORD_TYPE
6206		|| TREE_CODE (constructor_type) == UNION_TYPE)
6207	       && DECL_C_BIT_FIELD (field)
6208	       && TREE_CODE (value) != INTEGER_CST))
6209    constructor_simple = 0;
6210
6211  if (!initializer_constant_valid_p (value, TREE_TYPE (value)))
6212    {
6213      if (require_constant_value)
6214	{
6215	  error_init ("initializer element is not constant");
6216	  value = error_mark_node;
6217	}
6218      else if (require_constant_elements)
6219	pedwarn ("initializer element is not computable at load time");
6220    }
6221
6222  /* If this field is empty (and not at the end of structure),
6223     don't do anything other than checking the initializer.  */
6224  if (field
6225      && (TREE_TYPE (field) == error_mark_node
6226	  || (COMPLETE_TYPE_P (TREE_TYPE (field))
6227	      && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))
6228	      && (TREE_CODE (constructor_type) == ARRAY_TYPE
6229		  || TREE_CHAIN (field)))))
6230    return;
6231
6232  value = digest_init (type, value, strict_string, require_constant_value);
6233  if (value == error_mark_node)
6234    {
6235      constructor_erroneous = 1;
6236      return;
6237    }
6238
6239  /* If this element doesn't come next in sequence,
6240     put it on constructor_pending_elts.  */
6241  if (TREE_CODE (constructor_type) == ARRAY_TYPE
6242      && (!constructor_incremental
6243	  || !tree_int_cst_equal (field, constructor_unfilled_index)))
6244    {
6245      if (constructor_incremental
6246	  && tree_int_cst_lt (field, constructor_unfilled_index))
6247	set_nonincremental_init ();
6248
6249      add_pending_init (field, value);
6250      return;
6251    }
6252  else if (TREE_CODE (constructor_type) == RECORD_TYPE
6253	   && (!constructor_incremental
6254	       || field != constructor_unfilled_fields))
6255    {
6256      /* We do this for records but not for unions.  In a union,
6257	 no matter which field is specified, it can be initialized
6258	 right away since it starts at the beginning of the union.  */
6259      if (constructor_incremental)
6260	{
6261	  if (!constructor_unfilled_fields)
6262	    set_nonincremental_init ();
6263	  else
6264	    {
6265	      tree bitpos, unfillpos;
6266
6267	      bitpos = bit_position (field);
6268	      unfillpos = bit_position (constructor_unfilled_fields);
6269
6270	      if (tree_int_cst_lt (bitpos, unfillpos))
6271		set_nonincremental_init ();
6272	    }
6273	}
6274
6275      add_pending_init (field, value);
6276      return;
6277    }
6278  else if (TREE_CODE (constructor_type) == UNION_TYPE
6279	   && !VEC_empty (constructor_elt, constructor_elements))
6280    {
6281      if (TREE_SIDE_EFFECTS (VEC_last (constructor_elt,
6282				       constructor_elements)->value))
6283	warning_init ("initialized field with side-effects overwritten");
6284      else if (warn_override_init)
6285	warning_init ("initialized field overwritten");
6286
6287      /* We can have just one union field set.  */
6288      constructor_elements = 0;
6289    }
6290
6291  /* Otherwise, output this element either to
6292     constructor_elements or to the assembler file.  */
6293
6294  celt = VEC_safe_push (constructor_elt, gc, constructor_elements, NULL);
6295  celt->index = field;
6296  celt->value = value;
6297
6298  /* Advance the variable that indicates sequential elements output.  */
6299  if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6300    constructor_unfilled_index
6301      = size_binop (PLUS_EXPR, constructor_unfilled_index,
6302		    bitsize_one_node);
6303  else if (TREE_CODE (constructor_type) == RECORD_TYPE)
6304    {
6305      constructor_unfilled_fields
6306	= TREE_CHAIN (constructor_unfilled_fields);
6307
6308      /* Skip any nameless bit fields.  */
6309      while (constructor_unfilled_fields != 0
6310	     && DECL_C_BIT_FIELD (constructor_unfilled_fields)
6311	     && DECL_NAME (constructor_unfilled_fields) == 0)
6312	constructor_unfilled_fields =
6313	  TREE_CHAIN (constructor_unfilled_fields);
6314    }
6315  else if (TREE_CODE (constructor_type) == UNION_TYPE)
6316    constructor_unfilled_fields = 0;
6317
6318  /* Now output any pending elements which have become next.  */
6319  if (pending)
6320    output_pending_init_elements (0);
6321}
6322
6323/* Output any pending elements which have become next.
6324   As we output elements, constructor_unfilled_{fields,index}
6325   advances, which may cause other elements to become next;
6326   if so, they too are output.
6327
6328   If ALL is 0, we return when there are
6329   no more pending elements to output now.
6330
6331   If ALL is 1, we output space as necessary so that
6332   we can output all the pending elements.  */
6333
6334static void
6335output_pending_init_elements (int all)
6336{
6337  struct init_node *elt = constructor_pending_elts;
6338  tree next;
6339
6340 retry:
6341
6342  /* Look through the whole pending tree.
6343     If we find an element that should be output now,
6344     output it.  Otherwise, set NEXT to the element
6345     that comes first among those still pending.  */
6346
6347  next = 0;
6348  while (elt)
6349    {
6350      if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6351	{
6352	  if (tree_int_cst_equal (elt->purpose,
6353				  constructor_unfilled_index))
6354	    output_init_element (elt->value, true,
6355				 TREE_TYPE (constructor_type),
6356				 constructor_unfilled_index, 0);
6357	  else if (tree_int_cst_lt (constructor_unfilled_index,
6358				    elt->purpose))
6359	    {
6360	      /* Advance to the next smaller node.  */
6361	      if (elt->left)
6362		elt = elt->left;
6363	      else
6364		{
6365		  /* We have reached the smallest node bigger than the
6366		     current unfilled index.  Fill the space first.  */
6367		  next = elt->purpose;
6368		  break;
6369		}
6370	    }
6371	  else
6372	    {
6373	      /* Advance to the next bigger node.  */
6374	      if (elt->right)
6375		elt = elt->right;
6376	      else
6377		{
6378		  /* We have reached the biggest node in a subtree.  Find
6379		     the parent of it, which is the next bigger node.  */
6380		  while (elt->parent && elt->parent->right == elt)
6381		    elt = elt->parent;
6382		  elt = elt->parent;
6383		  if (elt && tree_int_cst_lt (constructor_unfilled_index,
6384					      elt->purpose))
6385		    {
6386		      next = elt->purpose;
6387		      break;
6388		    }
6389		}
6390	    }
6391	}
6392      else if (TREE_CODE (constructor_type) == RECORD_TYPE
6393	       || TREE_CODE (constructor_type) == UNION_TYPE)
6394	{
6395	  tree ctor_unfilled_bitpos, elt_bitpos;
6396
6397	  /* If the current record is complete we are done.  */
6398	  if (constructor_unfilled_fields == 0)
6399	    break;
6400
6401	  ctor_unfilled_bitpos = bit_position (constructor_unfilled_fields);
6402	  elt_bitpos = bit_position (elt->purpose);
6403	  /* We can't compare fields here because there might be empty
6404	     fields in between.  */
6405	  if (tree_int_cst_equal (elt_bitpos, ctor_unfilled_bitpos))
6406	    {
6407	      constructor_unfilled_fields = elt->purpose;
6408	      output_init_element (elt->value, true, TREE_TYPE (elt->purpose),
6409				   elt->purpose, 0);
6410	    }
6411	  else if (tree_int_cst_lt (ctor_unfilled_bitpos, elt_bitpos))
6412	    {
6413	      /* Advance to the next smaller node.  */
6414	      if (elt->left)
6415		elt = elt->left;
6416	      else
6417		{
6418		  /* We have reached the smallest node bigger than the
6419		     current unfilled field.  Fill the space first.  */
6420		  next = elt->purpose;
6421		  break;
6422		}
6423	    }
6424	  else
6425	    {
6426	      /* Advance to the next bigger node.  */
6427	      if (elt->right)
6428		elt = elt->right;
6429	      else
6430		{
6431		  /* We have reached the biggest node in a subtree.  Find
6432		     the parent of it, which is the next bigger node.  */
6433		  while (elt->parent && elt->parent->right == elt)
6434		    elt = elt->parent;
6435		  elt = elt->parent;
6436		  if (elt
6437		      && (tree_int_cst_lt (ctor_unfilled_bitpos,
6438					   bit_position (elt->purpose))))
6439		    {
6440		      next = elt->purpose;
6441		      break;
6442		    }
6443		}
6444	    }
6445	}
6446    }
6447
6448  /* Ordinarily return, but not if we want to output all
6449     and there are elements left.  */
6450  if (!(all && next != 0))
6451    return;
6452
6453  /* If it's not incremental, just skip over the gap, so that after
6454     jumping to retry we will output the next successive element.  */
6455  if (TREE_CODE (constructor_type) == RECORD_TYPE
6456      || TREE_CODE (constructor_type) == UNION_TYPE)
6457    constructor_unfilled_fields = next;
6458  else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6459    constructor_unfilled_index = next;
6460
6461  /* ELT now points to the node in the pending tree with the next
6462     initializer to output.  */
6463  goto retry;
6464}
6465
6466/* Add one non-braced element to the current constructor level.
6467   This adjusts the current position within the constructor's type.
6468   This may also start or terminate implicit levels
6469   to handle a partly-braced initializer.
6470
6471   Once this has found the correct level for the new element,
6472   it calls output_init_element.  */
6473
6474void
6475process_init_element (struct c_expr value)
6476{
6477  tree orig_value = value.value;
6478  int string_flag = orig_value != 0 && TREE_CODE (orig_value) == STRING_CST;
6479  bool strict_string = value.original_code == STRING_CST;
6480
6481  designator_depth = 0;
6482  designator_erroneous = 0;
6483
6484  /* Handle superfluous braces around string cst as in
6485     char x[] = {"foo"}; */
6486  if (string_flag
6487      && constructor_type
6488      && TREE_CODE (constructor_type) == ARRAY_TYPE
6489      && INTEGRAL_TYPE_P (TREE_TYPE (constructor_type))
6490      && integer_zerop (constructor_unfilled_index))
6491    {
6492      if (constructor_stack->replacement_value.value)
6493	error_init ("excess elements in char array initializer");
6494      constructor_stack->replacement_value = value;
6495      return;
6496    }
6497
6498  if (constructor_stack->replacement_value.value != 0)
6499    {
6500      error_init ("excess elements in struct initializer");
6501      return;
6502    }
6503
6504  /* Ignore elements of a brace group if it is entirely superfluous
6505     and has already been diagnosed.  */
6506  if (constructor_type == 0)
6507    return;
6508
6509  /* If we've exhausted any levels that didn't have braces,
6510     pop them now.  */
6511  while (constructor_stack->implicit)
6512    {
6513      if ((TREE_CODE (constructor_type) == RECORD_TYPE
6514	   || TREE_CODE (constructor_type) == UNION_TYPE)
6515	  && constructor_fields == 0)
6516	process_init_element (pop_init_level (1));
6517      else if (TREE_CODE (constructor_type) == ARRAY_TYPE
6518	       && (constructor_max_index == 0
6519		   || tree_int_cst_lt (constructor_max_index,
6520				       constructor_index)))
6521	process_init_element (pop_init_level (1));
6522      else
6523	break;
6524    }
6525
6526  /* In the case of [LO ... HI] = VALUE, only evaluate VALUE once.  */
6527  if (constructor_range_stack)
6528    {
6529      /* If value is a compound literal and we'll be just using its
6530	 content, don't put it into a SAVE_EXPR.  */
6531      if (TREE_CODE (value.value) != COMPOUND_LITERAL_EXPR
6532	  || !require_constant_value
6533	  || flag_isoc99)
6534	value.value = save_expr (value.value);
6535    }
6536
6537  while (1)
6538    {
6539      if (TREE_CODE (constructor_type) == RECORD_TYPE)
6540	{
6541	  tree fieldtype;
6542	  enum tree_code fieldcode;
6543
6544	  if (constructor_fields == 0)
6545	    {
6546	      pedwarn_init ("excess elements in struct initializer");
6547	      break;
6548	    }
6549
6550	  fieldtype = TREE_TYPE (constructor_fields);
6551	  if (fieldtype != error_mark_node)
6552	    fieldtype = TYPE_MAIN_VARIANT (fieldtype);
6553	  fieldcode = TREE_CODE (fieldtype);
6554
6555	  /* Error for non-static initialization of a flexible array member.  */
6556	  if (fieldcode == ARRAY_TYPE
6557	      && !require_constant_value
6558	      && TYPE_SIZE (fieldtype) == NULL_TREE
6559	      && TREE_CHAIN (constructor_fields) == NULL_TREE)
6560	    {
6561	      error_init ("non-static initialization of a flexible array member");
6562	      break;
6563	    }
6564
6565	  /* Accept a string constant to initialize a subarray.  */
6566	  if (value.value != 0
6567	      && fieldcode == ARRAY_TYPE
6568	      && INTEGRAL_TYPE_P (TREE_TYPE (fieldtype))
6569	      && string_flag)
6570	    value.value = orig_value;
6571	  /* Otherwise, if we have come to a subaggregate,
6572	     and we don't have an element of its type, push into it.  */
6573	  else if (value.value != 0
6574		   && value.value != error_mark_node
6575		   && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != fieldtype
6576		   && (fieldcode == RECORD_TYPE || fieldcode == ARRAY_TYPE
6577		       || fieldcode == UNION_TYPE))
6578	    {
6579	      push_init_level (1);
6580	      continue;
6581	    }
6582
6583	  if (value.value)
6584	    {
6585	      push_member_name (constructor_fields);
6586	      output_init_element (value.value, strict_string,
6587				   fieldtype, constructor_fields, 1);
6588	      RESTORE_SPELLING_DEPTH (constructor_depth);
6589	    }
6590	  else
6591	    /* Do the bookkeeping for an element that was
6592	       directly output as a constructor.  */
6593	    {
6594	      /* For a record, keep track of end position of last field.  */
6595	      if (DECL_SIZE (constructor_fields))
6596		constructor_bit_index
6597		  = size_binop (PLUS_EXPR,
6598				bit_position (constructor_fields),
6599				DECL_SIZE (constructor_fields));
6600
6601	      /* If the current field was the first one not yet written out,
6602		 it isn't now, so update.  */
6603	      if (constructor_unfilled_fields == constructor_fields)
6604		{
6605		  constructor_unfilled_fields = TREE_CHAIN (constructor_fields);
6606		  /* Skip any nameless bit fields.  */
6607		  while (constructor_unfilled_fields != 0
6608			 && DECL_C_BIT_FIELD (constructor_unfilled_fields)
6609			 && DECL_NAME (constructor_unfilled_fields) == 0)
6610		    constructor_unfilled_fields =
6611		      TREE_CHAIN (constructor_unfilled_fields);
6612		}
6613	    }
6614
6615	  constructor_fields = TREE_CHAIN (constructor_fields);
6616	  /* Skip any nameless bit fields at the beginning.  */
6617	  while (constructor_fields != 0
6618		 && DECL_C_BIT_FIELD (constructor_fields)
6619		 && DECL_NAME (constructor_fields) == 0)
6620	    constructor_fields = TREE_CHAIN (constructor_fields);
6621	}
6622      else if (TREE_CODE (constructor_type) == UNION_TYPE)
6623	{
6624	  tree fieldtype;
6625	  enum tree_code fieldcode;
6626
6627	  if (constructor_fields == 0)
6628	    {
6629	      pedwarn_init ("excess elements in union initializer");
6630	      break;
6631	    }
6632
6633	  fieldtype = TREE_TYPE (constructor_fields);
6634	  if (fieldtype != error_mark_node)
6635	    fieldtype = TYPE_MAIN_VARIANT (fieldtype);
6636	  fieldcode = TREE_CODE (fieldtype);
6637
6638	  /* Warn that traditional C rejects initialization of unions.
6639	     We skip the warning if the value is zero.  This is done
6640	     under the assumption that the zero initializer in user
6641	     code appears conditioned on e.g. __STDC__ to avoid
6642	     "missing initializer" warnings and relies on default
6643	     initialization to zero in the traditional C case.
6644	     We also skip the warning if the initializer is designated,
6645	     again on the assumption that this must be conditional on
6646	     __STDC__ anyway (and we've already complained about the
6647	     member-designator already).  */
6648	  if (!in_system_header && !constructor_designated
6649	      && !(value.value && (integer_zerop (value.value)
6650				   || real_zerop (value.value))))
6651	    warning (OPT_Wtraditional, "traditional C rejects initialization "
6652		     "of unions");
6653
6654	  /* Accept a string constant to initialize a subarray.  */
6655	  if (value.value != 0
6656	      && fieldcode == ARRAY_TYPE
6657	      && INTEGRAL_TYPE_P (TREE_TYPE (fieldtype))
6658	      && string_flag)
6659	    value.value = orig_value;
6660	  /* Otherwise, if we have come to a subaggregate,
6661	     and we don't have an element of its type, push into it.  */
6662	  else if (value.value != 0
6663		   && value.value != error_mark_node
6664		   && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != fieldtype
6665		   && (fieldcode == RECORD_TYPE || fieldcode == ARRAY_TYPE
6666		       || fieldcode == UNION_TYPE))
6667	    {
6668	      push_init_level (1);
6669	      continue;
6670	    }
6671
6672	  if (value.value)
6673	    {
6674	      push_member_name (constructor_fields);
6675	      output_init_element (value.value, strict_string,
6676				   fieldtype, constructor_fields, 1);
6677	      RESTORE_SPELLING_DEPTH (constructor_depth);
6678	    }
6679	  else
6680	    /* Do the bookkeeping for an element that was
6681	       directly output as a constructor.  */
6682	    {
6683	      constructor_bit_index = DECL_SIZE (constructor_fields);
6684	      constructor_unfilled_fields = TREE_CHAIN (constructor_fields);
6685	    }
6686
6687	  constructor_fields = 0;
6688	}
6689      else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6690	{
6691	  tree elttype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
6692	  enum tree_code eltcode = TREE_CODE (elttype);
6693
6694	  /* Accept a string constant to initialize a subarray.  */
6695	  if (value.value != 0
6696	      && eltcode == ARRAY_TYPE
6697	      && INTEGRAL_TYPE_P (TREE_TYPE (elttype))
6698	      && string_flag)
6699	    value.value = orig_value;
6700	  /* Otherwise, if we have come to a subaggregate,
6701	     and we don't have an element of its type, push into it.  */
6702	  else if (value.value != 0
6703		   && value.value != error_mark_node
6704		   && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != elttype
6705		   && (eltcode == RECORD_TYPE || eltcode == ARRAY_TYPE
6706		       || eltcode == UNION_TYPE))
6707	    {
6708	      push_init_level (1);
6709	      continue;
6710	    }
6711
6712	  if (constructor_max_index != 0
6713	      && (tree_int_cst_lt (constructor_max_index, constructor_index)
6714		  || integer_all_onesp (constructor_max_index)))
6715	    {
6716	      pedwarn_init ("excess elements in array initializer");
6717	      break;
6718	    }
6719
6720	  /* Now output the actual element.  */
6721	  if (value.value)
6722	    {
6723	      push_array_bounds (tree_low_cst (constructor_index, 1));
6724	      output_init_element (value.value, strict_string,
6725				   elttype, constructor_index, 1);
6726	      RESTORE_SPELLING_DEPTH (constructor_depth);
6727	    }
6728
6729	  constructor_index
6730	    = size_binop (PLUS_EXPR, constructor_index, bitsize_one_node);
6731
6732	  if (!value.value)
6733	    /* If we are doing the bookkeeping for an element that was
6734	       directly output as a constructor, we must update
6735	       constructor_unfilled_index.  */
6736	    constructor_unfilled_index = constructor_index;
6737	}
6738      else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
6739	{
6740	  tree elttype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
6741
6742	 /* Do a basic check of initializer size.  Note that vectors
6743	    always have a fixed size derived from their type.  */
6744	  if (tree_int_cst_lt (constructor_max_index, constructor_index))
6745	    {
6746	      pedwarn_init ("excess elements in vector initializer");
6747	      break;
6748	    }
6749
6750	  /* Now output the actual element.  */
6751	  if (value.value)
6752	    output_init_element (value.value, strict_string,
6753				 elttype, constructor_index, 1);
6754
6755	  constructor_index
6756	    = size_binop (PLUS_EXPR, constructor_index, bitsize_one_node);
6757
6758	  if (!value.value)
6759	    /* If we are doing the bookkeeping for an element that was
6760	       directly output as a constructor, we must update
6761	       constructor_unfilled_index.  */
6762	    constructor_unfilled_index = constructor_index;
6763	}
6764
6765      /* Handle the sole element allowed in a braced initializer
6766	 for a scalar variable.  */
6767      else if (constructor_type != error_mark_node
6768	       && constructor_fields == 0)
6769	{
6770	  pedwarn_init ("excess elements in scalar initializer");
6771	  break;
6772	}
6773      else
6774	{
6775	  if (value.value)
6776	    output_init_element (value.value, strict_string,
6777				 constructor_type, NULL_TREE, 1);
6778	  constructor_fields = 0;
6779	}
6780
6781      /* Handle range initializers either at this level or anywhere higher
6782	 in the designator stack.  */
6783      if (constructor_range_stack)
6784	{
6785	  struct constructor_range_stack *p, *range_stack;
6786	  int finish = 0;
6787
6788	  range_stack = constructor_range_stack;
6789	  constructor_range_stack = 0;
6790	  while (constructor_stack != range_stack->stack)
6791	    {
6792	      gcc_assert (constructor_stack->implicit);
6793	      process_init_element (pop_init_level (1));
6794	    }
6795	  for (p = range_stack;
6796	       !p->range_end || tree_int_cst_equal (p->index, p->range_end);
6797	       p = p->prev)
6798	    {
6799	      gcc_assert (constructor_stack->implicit);
6800	      process_init_element (pop_init_level (1));
6801	    }
6802
6803	  p->index = size_binop (PLUS_EXPR, p->index, bitsize_one_node);
6804	  if (tree_int_cst_equal (p->index, p->range_end) && !p->prev)
6805	    finish = 1;
6806
6807	  while (1)
6808	    {
6809	      constructor_index = p->index;
6810	      constructor_fields = p->fields;
6811	      if (finish && p->range_end && p->index == p->range_start)
6812		{
6813		  finish = 0;
6814		  p->prev = 0;
6815		}
6816	      p = p->next;
6817	      if (!p)
6818		break;
6819	      push_init_level (2);
6820	      p->stack = constructor_stack;
6821	      if (p->range_end && tree_int_cst_equal (p->index, p->range_end))
6822		p->index = p->range_start;
6823	    }
6824
6825	  if (!finish)
6826	    constructor_range_stack = range_stack;
6827	  continue;
6828	}
6829
6830      break;
6831    }
6832
6833  constructor_range_stack = 0;
6834}
6835
6836/* Build a complete asm-statement, whose components are a CV_QUALIFIER
6837   (guaranteed to be 'volatile' or null) and ARGS (represented using
6838   an ASM_EXPR node).  */
6839tree
6840build_asm_stmt (tree cv_qualifier, tree args)
6841{
6842  if (!ASM_VOLATILE_P (args) && cv_qualifier)
6843    ASM_VOLATILE_P (args) = 1;
6844  return add_stmt (args);
6845}
6846
6847/* Build an asm-expr, whose components are a STRING, some OUTPUTS,
6848   some INPUTS, and some CLOBBERS.  The latter three may be NULL.
6849   SIMPLE indicates whether there was anything at all after the
6850   string in the asm expression -- asm("blah") and asm("blah" : )
6851   are subtly different.  We use a ASM_EXPR node to represent this.  */
6852tree
6853build_asm_expr (tree string, tree outputs, tree inputs, tree clobbers,
6854		bool simple)
6855{
6856  tree tail;
6857  tree args;
6858  int i;
6859  const char *constraint;
6860  const char **oconstraints;
6861  bool allows_mem, allows_reg, is_inout;
6862  int ninputs, noutputs;
6863
6864  ninputs = list_length (inputs);
6865  noutputs = list_length (outputs);
6866  oconstraints = (const char **) alloca (noutputs * sizeof (const char *));
6867
6868  string = resolve_asm_operand_names (string, outputs, inputs);
6869
6870  /* Remove output conversions that change the type but not the mode.  */
6871  for (i = 0, tail = outputs; tail; ++i, tail = TREE_CHAIN (tail))
6872    {
6873      tree output = TREE_VALUE (tail);
6874
6875      /* ??? Really, this should not be here.  Users should be using a
6876	 proper lvalue, dammit.  But there's a long history of using casts
6877	 in the output operands.  In cases like longlong.h, this becomes a
6878	 primitive form of typechecking -- if the cast can be removed, then
6879	 the output operand had a type of the proper width; otherwise we'll
6880	 get an error.  Gross, but ...  */
6881      STRIP_NOPS (output);
6882
6883      if (!lvalue_or_else (output, lv_asm))
6884	output = error_mark_node;
6885
6886      if (output != error_mark_node
6887	  && (TREE_READONLY (output)
6888	      || TYPE_READONLY (TREE_TYPE (output))
6889	      || ((TREE_CODE (TREE_TYPE (output)) == RECORD_TYPE
6890		   || TREE_CODE (TREE_TYPE (output)) == UNION_TYPE)
6891		  && C_TYPE_FIELDS_READONLY (TREE_TYPE (output)))))
6892	readonly_error (output, lv_asm);
6893
6894      constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (tail)));
6895      oconstraints[i] = constraint;
6896
6897      if (parse_output_constraint (&constraint, i, ninputs, noutputs,
6898				   &allows_mem, &allows_reg, &is_inout))
6899	{
6900	  /* If the operand is going to end up in memory,
6901	     mark it addressable.  */
6902	  if (!allows_reg && !c_mark_addressable (output))
6903	    output = error_mark_node;
6904	}
6905      else
6906	output = error_mark_node;
6907
6908      TREE_VALUE (tail) = output;
6909    }
6910
6911  for (i = 0, tail = inputs; tail; ++i, tail = TREE_CHAIN (tail))
6912    {
6913      tree input;
6914
6915      constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (tail)));
6916      input = TREE_VALUE (tail);
6917
6918      if (parse_input_constraint (&constraint, i, ninputs, noutputs, 0,
6919				  oconstraints, &allows_mem, &allows_reg))
6920	{
6921	  /* If the operand is going to end up in memory,
6922	     mark it addressable.  */
6923	  if (!allows_reg && allows_mem)
6924	    {
6925	      /* Strip the nops as we allow this case.  FIXME, this really
6926		 should be rejected or made deprecated.  */
6927	      STRIP_NOPS (input);
6928	      if (!c_mark_addressable (input))
6929		input = error_mark_node;
6930	  }
6931	}
6932      else
6933	input = error_mark_node;
6934
6935      TREE_VALUE (tail) = input;
6936    }
6937
6938  args = build_stmt (ASM_EXPR, string, outputs, inputs, clobbers);
6939
6940  /* asm statements without outputs, including simple ones, are treated
6941     as volatile.  */
6942  ASM_INPUT_P (args) = simple;
6943  ASM_VOLATILE_P (args) = (noutputs == 0);
6944
6945  return args;
6946}
6947
6948/* Generate a goto statement to LABEL.  */
6949
6950tree
6951c_finish_goto_label (tree label)
6952{
6953  tree decl = lookup_label (label);
6954  if (!decl)
6955    return NULL_TREE;
6956
6957  if (C_DECL_UNJUMPABLE_STMT_EXPR (decl))
6958    {
6959      error ("jump into statement expression");
6960      return NULL_TREE;
6961    }
6962
6963  if (C_DECL_UNJUMPABLE_VM (decl))
6964    {
6965      error ("jump into scope of identifier with variably modified type");
6966      return NULL_TREE;
6967    }
6968
6969  if (!C_DECL_UNDEFINABLE_STMT_EXPR (decl))
6970    {
6971      /* No jump from outside this statement expression context, so
6972	 record that there is a jump from within this context.  */
6973      struct c_label_list *nlist;
6974      nlist = XOBNEW (&parser_obstack, struct c_label_list);
6975      nlist->next = label_context_stack_se->labels_used;
6976      nlist->label = decl;
6977      label_context_stack_se->labels_used = nlist;
6978    }
6979
6980  if (!C_DECL_UNDEFINABLE_VM (decl))
6981    {
6982      /* No jump from outside this context context of identifiers with
6983	 variably modified type, so record that there is a jump from
6984	 within this context.  */
6985      struct c_label_list *nlist;
6986      nlist = XOBNEW (&parser_obstack, struct c_label_list);
6987      nlist->next = label_context_stack_vm->labels_used;
6988      nlist->label = decl;
6989      label_context_stack_vm->labels_used = nlist;
6990    }
6991
6992  TREE_USED (decl) = 1;
6993  return add_stmt (build1 (GOTO_EXPR, void_type_node, decl));
6994}
6995
6996/* Generate a computed goto statement to EXPR.  */
6997
6998tree
6999c_finish_goto_ptr (tree expr)
7000{
7001  if (pedantic)
7002    pedwarn ("ISO C forbids %<goto *expr;%>");
7003  expr = convert (ptr_type_node, expr);
7004  return add_stmt (build1 (GOTO_EXPR, void_type_node, expr));
7005}
7006
7007/* Generate a C `return' statement.  RETVAL is the expression for what
7008   to return, or a null pointer for `return;' with no value.  */
7009
7010tree
7011c_finish_return (tree retval)
7012{
7013  tree valtype = TREE_TYPE (TREE_TYPE (current_function_decl)), ret_stmt;
7014  bool no_warning = false;
7015
7016  if (TREE_THIS_VOLATILE (current_function_decl))
7017    warning (0, "function declared %<noreturn%> has a %<return%> statement");
7018
7019  if (!retval)
7020    {
7021      current_function_returns_null = 1;
7022      if ((warn_return_type || flag_isoc99)
7023	  && valtype != 0 && TREE_CODE (valtype) != VOID_TYPE)
7024	{
7025	  pedwarn_c99 ("%<return%> with no value, in "
7026		       "function returning non-void");
7027	  no_warning = true;
7028	}
7029    }
7030  else if (valtype == 0 || TREE_CODE (valtype) == VOID_TYPE)
7031    {
7032      current_function_returns_null = 1;
7033      if (pedantic || TREE_CODE (TREE_TYPE (retval)) != VOID_TYPE)
7034	pedwarn ("%<return%> with a value, in function returning void");
7035    }
7036  else
7037    {
7038      tree t = convert_for_assignment (valtype, retval, ic_return,
7039				       NULL_TREE, NULL_TREE, 0);
7040      tree res = DECL_RESULT (current_function_decl);
7041      tree inner;
7042
7043      current_function_returns_value = 1;
7044      if (t == error_mark_node)
7045	return NULL_TREE;
7046
7047      inner = t = convert (TREE_TYPE (res), t);
7048
7049      /* Strip any conversions, additions, and subtractions, and see if
7050	 we are returning the address of a local variable.  Warn if so.  */
7051      while (1)
7052	{
7053	  switch (TREE_CODE (inner))
7054	    {
7055	    case NOP_EXPR:   case NON_LVALUE_EXPR:  case CONVERT_EXPR:
7056	    case PLUS_EXPR:
7057	      inner = TREE_OPERAND (inner, 0);
7058	      continue;
7059
7060	    case MINUS_EXPR:
7061	      /* If the second operand of the MINUS_EXPR has a pointer
7062		 type (or is converted from it), this may be valid, so
7063		 don't give a warning.  */
7064	      {
7065		tree op1 = TREE_OPERAND (inner, 1);
7066
7067		while (!POINTER_TYPE_P (TREE_TYPE (op1))
7068		       && (TREE_CODE (op1) == NOP_EXPR
7069			   || TREE_CODE (op1) == NON_LVALUE_EXPR
7070			   || TREE_CODE (op1) == CONVERT_EXPR))
7071		  op1 = TREE_OPERAND (op1, 0);
7072
7073		if (POINTER_TYPE_P (TREE_TYPE (op1)))
7074		  break;
7075
7076		inner = TREE_OPERAND (inner, 0);
7077		continue;
7078	      }
7079
7080	    case ADDR_EXPR:
7081	      inner = TREE_OPERAND (inner, 0);
7082
7083	      while (REFERENCE_CLASS_P (inner)
7084		     && TREE_CODE (inner) != INDIRECT_REF)
7085		inner = TREE_OPERAND (inner, 0);
7086
7087	      if (DECL_P (inner)
7088		  && !DECL_EXTERNAL (inner)
7089		  && !TREE_STATIC (inner)
7090		  && DECL_CONTEXT (inner) == current_function_decl)
7091		warning (0, "function returns address of local variable");
7092	      break;
7093
7094	    default:
7095	      break;
7096	    }
7097
7098	  break;
7099	}
7100
7101      retval = build2 (MODIFY_EXPR, TREE_TYPE (res), res, t);
7102    }
7103
7104  ret_stmt = build_stmt (RETURN_EXPR, retval);
7105  TREE_NO_WARNING (ret_stmt) |= no_warning;
7106  return add_stmt (ret_stmt);
7107}
7108
7109struct c_switch {
7110  /* The SWITCH_EXPR being built.  */
7111  tree switch_expr;
7112
7113  /* The original type of the testing expression, i.e. before the
7114     default conversion is applied.  */
7115  tree orig_type;
7116
7117  /* A splay-tree mapping the low element of a case range to the high
7118     element, or NULL_TREE if there is no high element.  Used to
7119     determine whether or not a new case label duplicates an old case
7120     label.  We need a tree, rather than simply a hash table, because
7121     of the GNU case range extension.  */
7122  splay_tree cases;
7123
7124  /* Number of nested statement expressions within this switch
7125     statement; if nonzero, case and default labels may not
7126     appear.  */
7127  unsigned int blocked_stmt_expr;
7128
7129  /* Scope of outermost declarations of identifiers with variably
7130     modified type within this switch statement; if nonzero, case and
7131     default labels may not appear.  */
7132  unsigned int blocked_vm;
7133
7134  /* The next node on the stack.  */
7135  struct c_switch *next;
7136};
7137
7138/* A stack of the currently active switch statements.  The innermost
7139   switch statement is on the top of the stack.  There is no need to
7140   mark the stack for garbage collection because it is only active
7141   during the processing of the body of a function, and we never
7142   collect at that point.  */
7143
7144struct c_switch *c_switch_stack;
7145
7146/* Start a C switch statement, testing expression EXP.  Return the new
7147   SWITCH_EXPR.  */
7148
7149tree
7150c_start_case (tree exp)
7151{
7152  tree orig_type = error_mark_node;
7153  struct c_switch *cs;
7154
7155  if (exp != error_mark_node)
7156    {
7157      orig_type = TREE_TYPE (exp);
7158
7159      if (!INTEGRAL_TYPE_P (orig_type))
7160	{
7161	  if (orig_type != error_mark_node)
7162	    {
7163	      error ("switch quantity not an integer");
7164	      orig_type = error_mark_node;
7165	    }
7166	  exp = integer_zero_node;
7167	}
7168      else
7169	{
7170	  tree type = TYPE_MAIN_VARIANT (orig_type);
7171
7172	  if (!in_system_header
7173	      && (type == long_integer_type_node
7174		  || type == long_unsigned_type_node))
7175	    warning (OPT_Wtraditional, "%<long%> switch expression not "
7176		     "converted to %<int%> in ISO C");
7177
7178	  exp = default_conversion (exp);
7179	}
7180    }
7181
7182  /* Add this new SWITCH_EXPR to the stack.  */
7183  cs = XNEW (struct c_switch);
7184  cs->switch_expr = build3 (SWITCH_EXPR, orig_type, exp, NULL_TREE, NULL_TREE);
7185  cs->orig_type = orig_type;
7186  cs->cases = splay_tree_new (case_compare, NULL, NULL);
7187  cs->blocked_stmt_expr = 0;
7188  cs->blocked_vm = 0;
7189  cs->next = c_switch_stack;
7190  c_switch_stack = cs;
7191
7192  return add_stmt (cs->switch_expr);
7193}
7194
7195/* Process a case label.  */
7196
7197tree
7198do_case (tree low_value, tree high_value)
7199{
7200  tree label = NULL_TREE;
7201
7202  if (c_switch_stack && !c_switch_stack->blocked_stmt_expr
7203      && !c_switch_stack->blocked_vm)
7204    {
7205      label = c_add_case_label (c_switch_stack->cases,
7206				SWITCH_COND (c_switch_stack->switch_expr),
7207				c_switch_stack->orig_type,
7208				low_value, high_value);
7209      if (label == error_mark_node)
7210	label = NULL_TREE;
7211    }
7212  else if (c_switch_stack && c_switch_stack->blocked_stmt_expr)
7213    {
7214      if (low_value)
7215	error ("case label in statement expression not containing "
7216	       "enclosing switch statement");
7217      else
7218	error ("%<default%> label in statement expression not containing "
7219	       "enclosing switch statement");
7220    }
7221  else if (c_switch_stack && c_switch_stack->blocked_vm)
7222    {
7223      if (low_value)
7224	error ("case label in scope of identifier with variably modified "
7225	       "type not containing enclosing switch statement");
7226      else
7227	error ("%<default%> label in scope of identifier with variably "
7228	       "modified type not containing enclosing switch statement");
7229    }
7230  else if (low_value)
7231    error ("case label not within a switch statement");
7232  else
7233    error ("%<default%> label not within a switch statement");
7234
7235  return label;
7236}
7237
7238/* Finish the switch statement.  */
7239
7240void
7241c_finish_case (tree body)
7242{
7243  struct c_switch *cs = c_switch_stack;
7244  location_t switch_location;
7245
7246  SWITCH_BODY (cs->switch_expr) = body;
7247
7248  /* We must not be within a statement expression nested in the switch
7249     at this point; we might, however, be within the scope of an
7250     identifier with variably modified type nested in the switch.  */
7251  gcc_assert (!cs->blocked_stmt_expr);
7252
7253  /* Emit warnings as needed.  */
7254  if (EXPR_HAS_LOCATION (cs->switch_expr))
7255    switch_location = EXPR_LOCATION (cs->switch_expr);
7256  else
7257    switch_location = input_location;
7258  c_do_switch_warnings (cs->cases, switch_location,
7259			TREE_TYPE (cs->switch_expr),
7260			SWITCH_COND (cs->switch_expr));
7261
7262  /* Pop the stack.  */
7263  c_switch_stack = cs->next;
7264  splay_tree_delete (cs->cases);
7265  XDELETE (cs);
7266}
7267
7268/* Emit an if statement.  IF_LOCUS is the location of the 'if'.  COND,
7269   THEN_BLOCK and ELSE_BLOCK are expressions to be used; ELSE_BLOCK
7270   may be null.  NESTED_IF is true if THEN_BLOCK contains another IF
7271   statement, and was not surrounded with parenthesis.  */
7272
7273void
7274c_finish_if_stmt (location_t if_locus, tree cond, tree then_block,
7275		  tree else_block, bool nested_if)
7276{
7277  tree stmt;
7278
7279  /* Diagnose an ambiguous else if if-then-else is nested inside if-then.  */
7280  if (warn_parentheses && nested_if && else_block == NULL)
7281    {
7282      tree inner_if = then_block;
7283
7284      /* We know from the grammar productions that there is an IF nested
7285	 within THEN_BLOCK.  Due to labels and c99 conditional declarations,
7286	 it might not be exactly THEN_BLOCK, but should be the last
7287	 non-container statement within.  */
7288      while (1)
7289	switch (TREE_CODE (inner_if))
7290	  {
7291	  case COND_EXPR:
7292	    goto found;
7293	  case BIND_EXPR:
7294	    inner_if = BIND_EXPR_BODY (inner_if);
7295	    break;
7296	  case STATEMENT_LIST:
7297	    inner_if = expr_last (then_block);
7298	    break;
7299	  case TRY_FINALLY_EXPR:
7300	  case TRY_CATCH_EXPR:
7301	    inner_if = TREE_OPERAND (inner_if, 0);
7302	    break;
7303	  default:
7304	    gcc_unreachable ();
7305	  }
7306    found:
7307
7308      if (COND_EXPR_ELSE (inner_if))
7309	 warning (OPT_Wparentheses,
7310		  "%Hsuggest explicit braces to avoid ambiguous %<else%>",
7311		  &if_locus);
7312    }
7313
7314  empty_body_warning (then_block, else_block);
7315
7316  stmt = build3 (COND_EXPR, void_type_node, cond, then_block, else_block);
7317  SET_EXPR_LOCATION (stmt, if_locus);
7318  add_stmt (stmt);
7319}
7320
7321/* Emit a general-purpose loop construct.  START_LOCUS is the location of
7322   the beginning of the loop.  COND is the loop condition.  COND_IS_FIRST
7323   is false for DO loops.  INCR is the FOR increment expression.  BODY is
7324   the statement controlled by the loop.  BLAB is the break label.  CLAB is
7325   the continue label.  Everything is allowed to be NULL.  */
7326
7327void
7328c_finish_loop (location_t start_locus, tree cond, tree incr, tree body,
7329	       tree blab, tree clab, bool cond_is_first)
7330{
7331  tree entry = NULL, exit = NULL, t;
7332
7333  /* If the condition is zero don't generate a loop construct.  */
7334  if (cond && integer_zerop (cond))
7335    {
7336      if (cond_is_first)
7337	{
7338	  t = build_and_jump (&blab);
7339	  SET_EXPR_LOCATION (t, start_locus);
7340	  add_stmt (t);
7341	}
7342    }
7343  else
7344    {
7345      tree top = build1 (LABEL_EXPR, void_type_node, NULL_TREE);
7346
7347      /* If we have an exit condition, then we build an IF with gotos either
7348	 out of the loop, or to the top of it.  If there's no exit condition,
7349	 then we just build a jump back to the top.  */
7350      exit = build_and_jump (&LABEL_EXPR_LABEL (top));
7351
7352      if (cond && !integer_nonzerop (cond))
7353	{
7354	  /* Canonicalize the loop condition to the end.  This means
7355	     generating a branch to the loop condition.  Reuse the
7356	     continue label, if possible.  */
7357	  if (cond_is_first)
7358	    {
7359	      if (incr || !clab)
7360		{
7361		  entry = build1 (LABEL_EXPR, void_type_node, NULL_TREE);
7362		  t = build_and_jump (&LABEL_EXPR_LABEL (entry));
7363		}
7364	      else
7365		t = build1 (GOTO_EXPR, void_type_node, clab);
7366	      SET_EXPR_LOCATION (t, start_locus);
7367	      add_stmt (t);
7368	    }
7369
7370	  t = build_and_jump (&blab);
7371	  exit = fold_build3 (COND_EXPR, void_type_node, cond, exit, t);
7372	  if (cond_is_first)
7373	    SET_EXPR_LOCATION (exit, start_locus);
7374	  else
7375	    SET_EXPR_LOCATION (exit, input_location);
7376	}
7377
7378      add_stmt (top);
7379    }
7380
7381  if (body)
7382    add_stmt (body);
7383  if (clab)
7384    add_stmt (build1 (LABEL_EXPR, void_type_node, clab));
7385  if (incr)
7386    add_stmt (incr);
7387  if (entry)
7388    add_stmt (entry);
7389  if (exit)
7390    add_stmt (exit);
7391  if (blab)
7392    add_stmt (build1 (LABEL_EXPR, void_type_node, blab));
7393}
7394
7395tree
7396c_finish_bc_stmt (tree *label_p, bool is_break)
7397{
7398  bool skip;
7399  tree label = *label_p;
7400
7401  /* In switch statements break is sometimes stylistically used after
7402     a return statement.  This can lead to spurious warnings about
7403     control reaching the end of a non-void function when it is
7404     inlined.  Note that we are calling block_may_fallthru with
7405     language specific tree nodes; this works because
7406     block_may_fallthru returns true when given something it does not
7407     understand.  */
7408  skip = !block_may_fallthru (cur_stmt_list);
7409
7410  if (!label)
7411    {
7412      if (!skip)
7413	*label_p = label = create_artificial_label ();
7414    }
7415  else if (TREE_CODE (label) == LABEL_DECL)
7416    ;
7417  else switch (TREE_INT_CST_LOW (label))
7418    {
7419    case 0:
7420      if (is_break)
7421	error ("break statement not within loop or switch");
7422      else
7423	error ("continue statement not within a loop");
7424      return NULL_TREE;
7425
7426    case 1:
7427      gcc_assert (is_break);
7428      error ("break statement used with OpenMP for loop");
7429      return NULL_TREE;
7430
7431    default:
7432      gcc_unreachable ();
7433    }
7434
7435  if (skip)
7436    return NULL_TREE;
7437
7438  return add_stmt (build1 (GOTO_EXPR, void_type_node, label));
7439}
7440
7441/* A helper routine for c_process_expr_stmt and c_finish_stmt_expr.  */
7442
7443static void
7444emit_side_effect_warnings (tree expr)
7445{
7446  if (expr == error_mark_node)
7447    ;
7448  else if (!TREE_SIDE_EFFECTS (expr))
7449    {
7450      if (!VOID_TYPE_P (TREE_TYPE (expr)) && !TREE_NO_WARNING (expr))
7451	warning (0, "%Hstatement with no effect",
7452		 EXPR_HAS_LOCATION (expr) ? EXPR_LOCUS (expr) : &input_location);
7453    }
7454  else if (warn_unused_value)
7455    warn_if_unused_value (expr, input_location);
7456}
7457
7458/* Process an expression as if it were a complete statement.  Emit
7459   diagnostics, but do not call ADD_STMT.  */
7460
7461tree
7462c_process_expr_stmt (tree expr)
7463{
7464  if (!expr)
7465    return NULL_TREE;
7466
7467  if (warn_sequence_point)
7468    verify_sequence_points (expr);
7469
7470  if (TREE_TYPE (expr) != error_mark_node
7471      && !COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (expr))
7472      && TREE_CODE (TREE_TYPE (expr)) != ARRAY_TYPE)
7473    error ("expression statement has incomplete type");
7474
7475  /* If we're not processing a statement expression, warn about unused values.
7476     Warnings for statement expressions will be emitted later, once we figure
7477     out which is the result.  */
7478  if (!STATEMENT_LIST_STMT_EXPR (cur_stmt_list)
7479      && (extra_warnings || warn_unused_value))
7480    emit_side_effect_warnings (expr);
7481
7482  /* If the expression is not of a type to which we cannot assign a line
7483     number, wrap the thing in a no-op NOP_EXPR.  */
7484  if (DECL_P (expr) || CONSTANT_CLASS_P (expr))
7485    expr = build1 (NOP_EXPR, TREE_TYPE (expr), expr);
7486
7487  if (EXPR_P (expr))
7488    SET_EXPR_LOCATION (expr, input_location);
7489
7490  return expr;
7491}
7492
7493/* Emit an expression as a statement.  */
7494
7495tree
7496c_finish_expr_stmt (tree expr)
7497{
7498  if (expr)
7499    return add_stmt (c_process_expr_stmt (expr));
7500  else
7501    return NULL;
7502}
7503
7504/* Do the opposite and emit a statement as an expression.  To begin,
7505   create a new binding level and return it.  */
7506
7507tree
7508c_begin_stmt_expr (void)
7509{
7510  tree ret;
7511  struct c_label_context_se *nstack;
7512  struct c_label_list *glist;
7513
7514  /* We must force a BLOCK for this level so that, if it is not expanded
7515     later, there is a way to turn off the entire subtree of blocks that
7516     are contained in it.  */
7517  keep_next_level ();
7518  ret = c_begin_compound_stmt (true);
7519  if (c_switch_stack)
7520    {
7521      c_switch_stack->blocked_stmt_expr++;
7522      gcc_assert (c_switch_stack->blocked_stmt_expr != 0);
7523    }
7524  for (glist = label_context_stack_se->labels_used;
7525       glist != NULL;
7526       glist = glist->next)
7527    {
7528      C_DECL_UNDEFINABLE_STMT_EXPR (glist->label) = 1;
7529    }
7530  nstack = XOBNEW (&parser_obstack, struct c_label_context_se);
7531  nstack->labels_def = NULL;
7532  nstack->labels_used = NULL;
7533  nstack->next = label_context_stack_se;
7534  label_context_stack_se = nstack;
7535
7536  /* Mark the current statement list as belonging to a statement list.  */
7537  STATEMENT_LIST_STMT_EXPR (ret) = 1;
7538
7539  return ret;
7540}
7541
7542tree
7543c_finish_stmt_expr (tree body)
7544{
7545  tree last, type, tmp, val;
7546  tree *last_p;
7547  struct c_label_list *dlist, *glist, *glist_prev = NULL;
7548
7549  body = c_end_compound_stmt (body, true);
7550  if (c_switch_stack)
7551    {
7552      gcc_assert (c_switch_stack->blocked_stmt_expr != 0);
7553      c_switch_stack->blocked_stmt_expr--;
7554    }
7555  /* It is no longer possible to jump to labels defined within this
7556     statement expression.  */
7557  for (dlist = label_context_stack_se->labels_def;
7558       dlist != NULL;
7559       dlist = dlist->next)
7560    {
7561      C_DECL_UNJUMPABLE_STMT_EXPR (dlist->label) = 1;
7562    }
7563  /* It is again possible to define labels with a goto just outside
7564     this statement expression.  */
7565  for (glist = label_context_stack_se->next->labels_used;
7566       glist != NULL;
7567       glist = glist->next)
7568    {
7569      C_DECL_UNDEFINABLE_STMT_EXPR (glist->label) = 0;
7570      glist_prev = glist;
7571    }
7572  if (glist_prev != NULL)
7573    glist_prev->next = label_context_stack_se->labels_used;
7574  else
7575    label_context_stack_se->next->labels_used
7576      = label_context_stack_se->labels_used;
7577  label_context_stack_se = label_context_stack_se->next;
7578
7579  /* Locate the last statement in BODY.  See c_end_compound_stmt
7580     about always returning a BIND_EXPR.  */
7581  last_p = &BIND_EXPR_BODY (body);
7582  last = BIND_EXPR_BODY (body);
7583
7584 continue_searching:
7585  if (TREE_CODE (last) == STATEMENT_LIST)
7586    {
7587      tree_stmt_iterator i;
7588
7589      /* This can happen with degenerate cases like ({ }).  No value.  */
7590      if (!TREE_SIDE_EFFECTS (last))
7591	return body;
7592
7593      /* If we're supposed to generate side effects warnings, process
7594	 all of the statements except the last.  */
7595      if (extra_warnings || warn_unused_value)
7596	{
7597	  for (i = tsi_start (last); !tsi_one_before_end_p (i); tsi_next (&i))
7598	    emit_side_effect_warnings (tsi_stmt (i));
7599	}
7600      else
7601	i = tsi_last (last);
7602      last_p = tsi_stmt_ptr (i);
7603      last = *last_p;
7604    }
7605
7606  /* If the end of the list is exception related, then the list was split
7607     by a call to push_cleanup.  Continue searching.  */
7608  if (TREE_CODE (last) == TRY_FINALLY_EXPR
7609      || TREE_CODE (last) == TRY_CATCH_EXPR)
7610    {
7611      last_p = &TREE_OPERAND (last, 0);
7612      last = *last_p;
7613      goto continue_searching;
7614    }
7615
7616  /* In the case that the BIND_EXPR is not necessary, return the
7617     expression out from inside it.  */
7618  if (last == error_mark_node
7619      || (last == BIND_EXPR_BODY (body)
7620	  && BIND_EXPR_VARS (body) == NULL))
7621    {
7622      /* Do not warn if the return value of a statement expression is
7623	 unused.  */
7624      if (EXPR_P (last))
7625	TREE_NO_WARNING (last) = 1;
7626      return last;
7627    }
7628
7629  /* Extract the type of said expression.  */
7630  type = TREE_TYPE (last);
7631
7632  /* If we're not returning a value at all, then the BIND_EXPR that
7633     we already have is a fine expression to return.  */
7634  if (!type || VOID_TYPE_P (type))
7635    return body;
7636
7637  /* Now that we've located the expression containing the value, it seems
7638     silly to make voidify_wrapper_expr repeat the process.  Create a
7639     temporary of the appropriate type and stick it in a TARGET_EXPR.  */
7640  tmp = create_tmp_var_raw (type, NULL);
7641
7642  /* Unwrap a no-op NOP_EXPR as added by c_finish_expr_stmt.  This avoids
7643     tree_expr_nonnegative_p giving up immediately.  */
7644  val = last;
7645  if (TREE_CODE (val) == NOP_EXPR
7646      && TREE_TYPE (val) == TREE_TYPE (TREE_OPERAND (val, 0)))
7647    val = TREE_OPERAND (val, 0);
7648
7649  *last_p = build2 (MODIFY_EXPR, void_type_node, tmp, val);
7650  SET_EXPR_LOCUS (*last_p, EXPR_LOCUS (last));
7651
7652  return build4 (TARGET_EXPR, type, tmp, body, NULL_TREE, NULL_TREE);
7653}
7654
7655/* Begin the scope of an identifier of variably modified type, scope
7656   number SCOPE.  Jumping from outside this scope to inside it is not
7657   permitted.  */
7658
7659void
7660c_begin_vm_scope (unsigned int scope)
7661{
7662  struct c_label_context_vm *nstack;
7663  struct c_label_list *glist;
7664
7665  gcc_assert (scope > 0);
7666
7667  /* At file_scope, we don't have to do any processing.  */
7668  if (label_context_stack_vm == NULL)
7669    return;
7670
7671  if (c_switch_stack && !c_switch_stack->blocked_vm)
7672    c_switch_stack->blocked_vm = scope;
7673  for (glist = label_context_stack_vm->labels_used;
7674       glist != NULL;
7675       glist = glist->next)
7676    {
7677      C_DECL_UNDEFINABLE_VM (glist->label) = 1;
7678    }
7679  nstack = XOBNEW (&parser_obstack, struct c_label_context_vm);
7680  nstack->labels_def = NULL;
7681  nstack->labels_used = NULL;
7682  nstack->scope = scope;
7683  nstack->next = label_context_stack_vm;
7684  label_context_stack_vm = nstack;
7685}
7686
7687/* End a scope which may contain identifiers of variably modified
7688   type, scope number SCOPE.  */
7689
7690void
7691c_end_vm_scope (unsigned int scope)
7692{
7693  if (label_context_stack_vm == NULL)
7694    return;
7695  if (c_switch_stack && c_switch_stack->blocked_vm == scope)
7696    c_switch_stack->blocked_vm = 0;
7697  /* We may have a number of nested scopes of identifiers with
7698     variably modified type, all at this depth.  Pop each in turn.  */
7699  while (label_context_stack_vm->scope == scope)
7700    {
7701      struct c_label_list *dlist, *glist, *glist_prev = NULL;
7702
7703      /* It is no longer possible to jump to labels defined within this
7704	 scope.  */
7705      for (dlist = label_context_stack_vm->labels_def;
7706	   dlist != NULL;
7707	   dlist = dlist->next)
7708	{
7709	  C_DECL_UNJUMPABLE_VM (dlist->label) = 1;
7710	}
7711      /* It is again possible to define labels with a goto just outside
7712	 this scope.  */
7713      for (glist = label_context_stack_vm->next->labels_used;
7714	   glist != NULL;
7715	   glist = glist->next)
7716	{
7717	  C_DECL_UNDEFINABLE_VM (glist->label) = 0;
7718	  glist_prev = glist;
7719	}
7720      if (glist_prev != NULL)
7721	glist_prev->next = label_context_stack_vm->labels_used;
7722      else
7723	label_context_stack_vm->next->labels_used
7724	  = label_context_stack_vm->labels_used;
7725      label_context_stack_vm = label_context_stack_vm->next;
7726    }
7727}
7728
7729/* Begin and end compound statements.  This is as simple as pushing
7730   and popping new statement lists from the tree.  */
7731
7732tree
7733c_begin_compound_stmt (bool do_scope)
7734{
7735  tree stmt = push_stmt_list ();
7736  if (do_scope)
7737    push_scope ();
7738  return stmt;
7739}
7740
7741tree
7742c_end_compound_stmt (tree stmt, bool do_scope)
7743{
7744  tree block = NULL;
7745
7746  if (do_scope)
7747    {
7748      if (c_dialect_objc ())
7749	objc_clear_super_receiver ();
7750      block = pop_scope ();
7751    }
7752
7753  stmt = pop_stmt_list (stmt);
7754  stmt = c_build_bind_expr (block, stmt);
7755
7756  /* If this compound statement is nested immediately inside a statement
7757     expression, then force a BIND_EXPR to be created.  Otherwise we'll
7758     do the wrong thing for ({ { 1; } }) or ({ 1; { } }).  In particular,
7759     STATEMENT_LISTs merge, and thus we can lose track of what statement
7760     was really last.  */
7761  if (cur_stmt_list
7762      && STATEMENT_LIST_STMT_EXPR (cur_stmt_list)
7763      && TREE_CODE (stmt) != BIND_EXPR)
7764    {
7765      stmt = build3 (BIND_EXPR, void_type_node, NULL, stmt, NULL);
7766      TREE_SIDE_EFFECTS (stmt) = 1;
7767    }
7768
7769  return stmt;
7770}
7771
7772/* Queue a cleanup.  CLEANUP is an expression/statement to be executed
7773   when the current scope is exited.  EH_ONLY is true when this is not
7774   meant to apply to normal control flow transfer.  */
7775
7776void
7777push_cleanup (tree ARG_UNUSED (decl), tree cleanup, bool eh_only)
7778{
7779  enum tree_code code;
7780  tree stmt, list;
7781  bool stmt_expr;
7782
7783  code = eh_only ? TRY_CATCH_EXPR : TRY_FINALLY_EXPR;
7784  stmt = build_stmt (code, NULL, cleanup);
7785  add_stmt (stmt);
7786  stmt_expr = STATEMENT_LIST_STMT_EXPR (cur_stmt_list);
7787  list = push_stmt_list ();
7788  TREE_OPERAND (stmt, 0) = list;
7789  STATEMENT_LIST_STMT_EXPR (list) = stmt_expr;
7790}
7791
7792/* Build a binary-operation expression without default conversions.
7793   CODE is the kind of expression to build.
7794   This function differs from `build' in several ways:
7795   the data type of the result is computed and recorded in it,
7796   warnings are generated if arg data types are invalid,
7797   special handling for addition and subtraction of pointers is known,
7798   and some optimization is done (operations on narrow ints
7799   are done in the narrower type when that gives the same result).
7800   Constant folding is also done before the result is returned.
7801
7802   Note that the operands will never have enumeral types, or function
7803   or array types, because either they will have the default conversions
7804   performed or they have both just been converted to some other type in which
7805   the arithmetic is to be done.  */
7806
7807tree
7808build_binary_op (enum tree_code code, tree orig_op0, tree orig_op1,
7809		 int convert_p)
7810{
7811  tree type0, type1;
7812  enum tree_code code0, code1;
7813  tree op0, op1;
7814  const char *invalid_op_diag;
7815
7816  /* Expression code to give to the expression when it is built.
7817     Normally this is CODE, which is what the caller asked for,
7818     but in some special cases we change it.  */
7819  enum tree_code resultcode = code;
7820
7821  /* Data type in which the computation is to be performed.
7822     In the simplest cases this is the common type of the arguments.  */
7823  tree result_type = NULL;
7824
7825  /* Nonzero means operands have already been type-converted
7826     in whatever way is necessary.
7827     Zero means they need to be converted to RESULT_TYPE.  */
7828  int converted = 0;
7829
7830  /* Nonzero means create the expression with this type, rather than
7831     RESULT_TYPE.  */
7832  tree build_type = 0;
7833
7834  /* Nonzero means after finally constructing the expression
7835     convert it to this type.  */
7836  tree final_type = 0;
7837
7838  /* Nonzero if this is an operation like MIN or MAX which can
7839     safely be computed in short if both args are promoted shorts.
7840     Also implies COMMON.
7841     -1 indicates a bitwise operation; this makes a difference
7842     in the exact conditions for when it is safe to do the operation
7843     in a narrower mode.  */
7844  int shorten = 0;
7845
7846  /* Nonzero if this is a comparison operation;
7847     if both args are promoted shorts, compare the original shorts.
7848     Also implies COMMON.  */
7849  int short_compare = 0;
7850
7851  /* Nonzero if this is a right-shift operation, which can be computed on the
7852     original short and then promoted if the operand is a promoted short.  */
7853  int short_shift = 0;
7854
7855  /* Nonzero means set RESULT_TYPE to the common type of the args.  */
7856  int common = 0;
7857
7858  /* True means types are compatible as far as ObjC is concerned.  */
7859  bool objc_ok;
7860
7861  if (convert_p)
7862    {
7863      op0 = default_conversion (orig_op0);
7864      op1 = default_conversion (orig_op1);
7865    }
7866  else
7867    {
7868      op0 = orig_op0;
7869      op1 = orig_op1;
7870    }
7871
7872  type0 = TREE_TYPE (op0);
7873  type1 = TREE_TYPE (op1);
7874
7875  /* The expression codes of the data types of the arguments tell us
7876     whether the arguments are integers, floating, pointers, etc.  */
7877  code0 = TREE_CODE (type0);
7878  code1 = TREE_CODE (type1);
7879
7880  /* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue.  */
7881  STRIP_TYPE_NOPS (op0);
7882  STRIP_TYPE_NOPS (op1);
7883
7884  /* If an error was already reported for one of the arguments,
7885     avoid reporting another error.  */
7886
7887  if (code0 == ERROR_MARK || code1 == ERROR_MARK)
7888    return error_mark_node;
7889
7890  if ((invalid_op_diag
7891       = targetm.invalid_binary_op (code, type0, type1)))
7892    {
7893      error (invalid_op_diag);
7894      return error_mark_node;
7895    }
7896
7897  objc_ok = objc_compare_types (type0, type1, -3, NULL_TREE);
7898
7899  switch (code)
7900    {
7901    case PLUS_EXPR:
7902      /* Handle the pointer + int case.  */
7903      if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
7904	return pointer_int_sum (PLUS_EXPR, op0, op1);
7905      else if (code1 == POINTER_TYPE && code0 == INTEGER_TYPE)
7906	return pointer_int_sum (PLUS_EXPR, op1, op0);
7907      else
7908	common = 1;
7909      break;
7910
7911    case MINUS_EXPR:
7912      /* Subtraction of two similar pointers.
7913	 We must subtract them as integers, then divide by object size.  */
7914      if (code0 == POINTER_TYPE && code1 == POINTER_TYPE
7915	  && comp_target_types (type0, type1))
7916	return pointer_diff (op0, op1);
7917      /* Handle pointer minus int.  Just like pointer plus int.  */
7918      else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
7919	return pointer_int_sum (MINUS_EXPR, op0, op1);
7920      else
7921	common = 1;
7922      break;
7923
7924    case MULT_EXPR:
7925      common = 1;
7926      break;
7927
7928    case TRUNC_DIV_EXPR:
7929    case CEIL_DIV_EXPR:
7930    case FLOOR_DIV_EXPR:
7931    case ROUND_DIV_EXPR:
7932    case EXACT_DIV_EXPR:
7933      /* Floating point division by zero is a legitimate way to obtain
7934	 infinities and NaNs.  */
7935      if (skip_evaluation == 0 && integer_zerop (op1))
7936	warning (OPT_Wdiv_by_zero, "division by zero");
7937
7938      if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
7939	   || code0 == COMPLEX_TYPE || code0 == VECTOR_TYPE)
7940	  && (code1 == INTEGER_TYPE || code1 == REAL_TYPE
7941	      || code1 == COMPLEX_TYPE || code1 == VECTOR_TYPE))
7942	{
7943	  enum tree_code tcode0 = code0, tcode1 = code1;
7944
7945	  if (code0 == COMPLEX_TYPE || code0 == VECTOR_TYPE)
7946	    tcode0 = TREE_CODE (TREE_TYPE (TREE_TYPE (op0)));
7947	  if (code1 == COMPLEX_TYPE || code1 == VECTOR_TYPE)
7948	    tcode1 = TREE_CODE (TREE_TYPE (TREE_TYPE (op1)));
7949
7950	  if (!(tcode0 == INTEGER_TYPE && tcode1 == INTEGER_TYPE))
7951	    resultcode = RDIV_EXPR;
7952	  else
7953	    /* Although it would be tempting to shorten always here, that
7954	       loses on some targets, since the modulo instruction is
7955	       undefined if the quotient can't be represented in the
7956	       computation mode.  We shorten only if unsigned or if
7957	       dividing by something we know != -1.  */
7958	    shorten = (TYPE_UNSIGNED (TREE_TYPE (orig_op0))
7959		       || (TREE_CODE (op1) == INTEGER_CST
7960			   && !integer_all_onesp (op1)));
7961	  common = 1;
7962	}
7963      break;
7964
7965    case BIT_AND_EXPR:
7966    case BIT_IOR_EXPR:
7967    case BIT_XOR_EXPR:
7968      if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
7969	shorten = -1;
7970      else if (code0 == VECTOR_TYPE && code1 == VECTOR_TYPE)
7971	common = 1;
7972      break;
7973
7974    case TRUNC_MOD_EXPR:
7975    case FLOOR_MOD_EXPR:
7976      if (skip_evaluation == 0 && integer_zerop (op1))
7977	warning (OPT_Wdiv_by_zero, "division by zero");
7978
7979      if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
7980	{
7981	  /* Although it would be tempting to shorten always here, that loses
7982	     on some targets, since the modulo instruction is undefined if the
7983	     quotient can't be represented in the computation mode.  We shorten
7984	     only if unsigned or if dividing by something we know != -1.  */
7985	  shorten = (TYPE_UNSIGNED (TREE_TYPE (orig_op0))
7986		     || (TREE_CODE (op1) == INTEGER_CST
7987			 && !integer_all_onesp (op1)));
7988	  common = 1;
7989	}
7990      break;
7991
7992    case TRUTH_ANDIF_EXPR:
7993    case TRUTH_ORIF_EXPR:
7994    case TRUTH_AND_EXPR:
7995    case TRUTH_OR_EXPR:
7996    case TRUTH_XOR_EXPR:
7997      if ((code0 == INTEGER_TYPE || code0 == POINTER_TYPE
7998	   || code0 == REAL_TYPE || code0 == COMPLEX_TYPE)
7999	  && (code1 == INTEGER_TYPE || code1 == POINTER_TYPE
8000	      || code1 == REAL_TYPE || code1 == COMPLEX_TYPE))
8001	{
8002	  /* Result of these operations is always an int,
8003	     but that does not mean the operands should be
8004	     converted to ints!  */
8005	  result_type = integer_type_node;
8006	  op0 = c_common_truthvalue_conversion (op0);
8007	  op1 = c_common_truthvalue_conversion (op1);
8008	  converted = 1;
8009	}
8010      break;
8011
8012      /* Shift operations: result has same type as first operand;
8013	 always convert second operand to int.
8014	 Also set SHORT_SHIFT if shifting rightward.  */
8015
8016    case RSHIFT_EXPR:
8017      if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
8018	{
8019	  if (TREE_CODE (op1) == INTEGER_CST && skip_evaluation == 0)
8020	    {
8021	      if (tree_int_cst_sgn (op1) < 0)
8022		warning (0, "right shift count is negative");
8023	      else
8024		{
8025		  if (!integer_zerop (op1))
8026		    short_shift = 1;
8027
8028		  if (compare_tree_int (op1, TYPE_PRECISION (type0)) >= 0)
8029		    warning (0, "right shift count >= width of type");
8030		}
8031	    }
8032
8033	  /* Use the type of the value to be shifted.  */
8034	  result_type = type0;
8035	  /* Convert the shift-count to an integer, regardless of size
8036	     of value being shifted.  */
8037	  if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
8038	    op1 = convert (integer_type_node, op1);
8039	  /* Avoid converting op1 to result_type later.  */
8040	  converted = 1;
8041	}
8042      break;
8043
8044    case LSHIFT_EXPR:
8045      if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
8046	{
8047	  if (TREE_CODE (op1) == INTEGER_CST && skip_evaluation == 0)
8048	    {
8049	      if (tree_int_cst_sgn (op1) < 0)
8050		warning (0, "left shift count is negative");
8051
8052	      else if (compare_tree_int (op1, TYPE_PRECISION (type0)) >= 0)
8053		warning (0, "left shift count >= width of type");
8054	    }
8055
8056	  /* Use the type of the value to be shifted.  */
8057	  result_type = type0;
8058	  /* Convert the shift-count to an integer, regardless of size
8059	     of value being shifted.  */
8060	  if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
8061	    op1 = convert (integer_type_node, op1);
8062	  /* Avoid converting op1 to result_type later.  */
8063	  converted = 1;
8064	}
8065      break;
8066
8067    case EQ_EXPR:
8068    case NE_EXPR:
8069      if (code0 == REAL_TYPE || code1 == REAL_TYPE)
8070	warning (OPT_Wfloat_equal,
8071		 "comparing floating point with == or != is unsafe");
8072      /* Result of comparison is always int,
8073	 but don't convert the args to int!  */
8074      build_type = integer_type_node;
8075      if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
8076	   || code0 == COMPLEX_TYPE)
8077	  && (code1 == INTEGER_TYPE || code1 == REAL_TYPE
8078	      || code1 == COMPLEX_TYPE))
8079	short_compare = 1;
8080      else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
8081	{
8082	  tree tt0 = TREE_TYPE (type0);
8083	  tree tt1 = TREE_TYPE (type1);
8084	  /* Anything compares with void *.  void * compares with anything.
8085	     Otherwise, the targets must be compatible
8086	     and both must be object or both incomplete.  */
8087	  if (comp_target_types (type0, type1))
8088	    result_type = common_pointer_type (type0, type1);
8089	  else if (VOID_TYPE_P (tt0))
8090	    {
8091	      /* op0 != orig_op0 detects the case of something
8092		 whose value is 0 but which isn't a valid null ptr const.  */
8093	      if (pedantic && !null_pointer_constant_p (orig_op0)
8094		  && TREE_CODE (tt1) == FUNCTION_TYPE)
8095		pedwarn ("ISO C forbids comparison of %<void *%>"
8096			 " with function pointer");
8097	    }
8098	  else if (VOID_TYPE_P (tt1))
8099	    {
8100	      if (pedantic && !null_pointer_constant_p (orig_op1)
8101		  && TREE_CODE (tt0) == FUNCTION_TYPE)
8102		pedwarn ("ISO C forbids comparison of %<void *%>"
8103			 " with function pointer");
8104	    }
8105	  else
8106	    /* Avoid warning about the volatile ObjC EH puts on decls.  */
8107	    if (!objc_ok)
8108	      pedwarn ("comparison of distinct pointer types lacks a cast");
8109
8110	  if (result_type == NULL_TREE)
8111	    result_type = ptr_type_node;
8112	}
8113      else if (code0 == POINTER_TYPE && null_pointer_constant_p (orig_op1))
8114	{
8115	  if (TREE_CODE (op0) == ADDR_EXPR
8116	      && DECL_P (TREE_OPERAND (op0, 0))
8117	      && (TREE_CODE (TREE_OPERAND (op0, 0)) == PARM_DECL
8118		  || TREE_CODE (TREE_OPERAND (op0, 0)) == LABEL_DECL
8119		  || !DECL_WEAK (TREE_OPERAND (op0, 0))))
8120	    warning (OPT_Waddress, "the address of %qD will never be NULL",
8121		     TREE_OPERAND (op0, 0));
8122	  result_type = type0;
8123	}
8124      else if (code1 == POINTER_TYPE && null_pointer_constant_p (orig_op0))
8125	{
8126	  if (TREE_CODE (op1) == ADDR_EXPR
8127	      && DECL_P (TREE_OPERAND (op1, 0))
8128	      && (TREE_CODE (TREE_OPERAND (op1, 0)) == PARM_DECL
8129		  || TREE_CODE (TREE_OPERAND (op1, 0)) == LABEL_DECL
8130		  || !DECL_WEAK (TREE_OPERAND (op1, 0))))
8131	    warning (OPT_Waddress, "the address of %qD will never be NULL",
8132		     TREE_OPERAND (op1, 0));
8133	  result_type = type1;
8134	}
8135      else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
8136	{
8137	  result_type = type0;
8138	  pedwarn ("comparison between pointer and integer");
8139	}
8140      else if (code0 == INTEGER_TYPE && code1 == POINTER_TYPE)
8141	{
8142	  result_type = type1;
8143	  pedwarn ("comparison between pointer and integer");
8144	}
8145      break;
8146
8147    case LE_EXPR:
8148    case GE_EXPR:
8149    case LT_EXPR:
8150    case GT_EXPR:
8151      build_type = integer_type_node;
8152      if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE)
8153	  && (code1 == INTEGER_TYPE || code1 == REAL_TYPE))
8154	short_compare = 1;
8155      else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
8156	{
8157	  if (comp_target_types (type0, type1))
8158	    {
8159	      result_type = common_pointer_type (type0, type1);
8160	      if (!COMPLETE_TYPE_P (TREE_TYPE (type0))
8161		  != !COMPLETE_TYPE_P (TREE_TYPE (type1)))
8162		pedwarn ("comparison of complete and incomplete pointers");
8163	      else if (pedantic
8164		       && TREE_CODE (TREE_TYPE (type0)) == FUNCTION_TYPE)
8165		pedwarn ("ISO C forbids ordered comparisons of pointers to functions");
8166	    }
8167	  else
8168	    {
8169	      result_type = ptr_type_node;
8170	      pedwarn ("comparison of distinct pointer types lacks a cast");
8171	    }
8172	}
8173      else if (code0 == POINTER_TYPE && null_pointer_constant_p (orig_op1))
8174	{
8175	  result_type = type0;
8176	  if (pedantic || extra_warnings)
8177	    pedwarn ("ordered comparison of pointer with integer zero");
8178	}
8179      else if (code1 == POINTER_TYPE && null_pointer_constant_p (orig_op0))
8180	{
8181	  result_type = type1;
8182	  if (pedantic)
8183	    pedwarn ("ordered comparison of pointer with integer zero");
8184	}
8185      else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
8186	{
8187	  result_type = type0;
8188	  pedwarn ("comparison between pointer and integer");
8189	}
8190      else if (code0 == INTEGER_TYPE && code1 == POINTER_TYPE)
8191	{
8192	  result_type = type1;
8193	  pedwarn ("comparison between pointer and integer");
8194	}
8195      break;
8196
8197    default:
8198      gcc_unreachable ();
8199    }
8200
8201  if (code0 == ERROR_MARK || code1 == ERROR_MARK)
8202    return error_mark_node;
8203
8204  if (code0 == VECTOR_TYPE && code1 == VECTOR_TYPE
8205      && (!tree_int_cst_equal (TYPE_SIZE (type0), TYPE_SIZE (type1))
8206	  || !same_scalar_type_ignoring_signedness (TREE_TYPE (type0),
8207						    TREE_TYPE (type1))))
8208    {
8209      binary_op_error (code);
8210      return error_mark_node;
8211    }
8212
8213  if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE || code0 == COMPLEX_TYPE
8214       || code0 == VECTOR_TYPE)
8215      &&
8216      (code1 == INTEGER_TYPE || code1 == REAL_TYPE || code1 == COMPLEX_TYPE
8217       || code1 == VECTOR_TYPE))
8218    {
8219      int none_complex = (code0 != COMPLEX_TYPE && code1 != COMPLEX_TYPE);
8220
8221      if (shorten || common || short_compare)
8222	result_type = c_common_type (type0, type1);
8223
8224      /* For certain operations (which identify themselves by shorten != 0)
8225	 if both args were extended from the same smaller type,
8226	 do the arithmetic in that type and then extend.
8227
8228	 shorten !=0 and !=1 indicates a bitwise operation.
8229	 For them, this optimization is safe only if
8230	 both args are zero-extended or both are sign-extended.
8231	 Otherwise, we might change the result.
8232	 Eg, (short)-1 | (unsigned short)-1 is (int)-1
8233	 but calculated in (unsigned short) it would be (unsigned short)-1.  */
8234
8235      if (shorten && none_complex)
8236	{
8237	  int unsigned0, unsigned1;
8238	  tree arg0, arg1;
8239	  int uns;
8240	  tree type;
8241
8242	  /* Cast OP0 and OP1 to RESULT_TYPE.  Doing so prevents
8243	     excessive narrowing when we call get_narrower below.  For
8244	     example, suppose that OP0 is of unsigned int extended
8245	     from signed char and that RESULT_TYPE is long long int.
8246	     If we explicitly cast OP0 to RESULT_TYPE, OP0 would look
8247	     like
8248
8249	       (long long int) (unsigned int) signed_char
8250
8251	     which get_narrower would narrow down to
8252
8253	       (unsigned int) signed char
8254
8255	     If we do not cast OP0 first, get_narrower would return
8256	     signed_char, which is inconsistent with the case of the
8257	     explicit cast.  */
8258	  op0 = convert (result_type, op0);
8259	  op1 = convert (result_type, op1);
8260
8261	  arg0 = get_narrower (op0, &unsigned0);
8262	  arg1 = get_narrower (op1, &unsigned1);
8263
8264	  /* UNS is 1 if the operation to be done is an unsigned one.  */
8265	  uns = TYPE_UNSIGNED (result_type);
8266
8267	  final_type = result_type;
8268
8269	  /* Handle the case that OP0 (or OP1) does not *contain* a conversion
8270	     but it *requires* conversion to FINAL_TYPE.  */
8271
8272	  if ((TYPE_PRECISION (TREE_TYPE (op0))
8273	       == TYPE_PRECISION (TREE_TYPE (arg0)))
8274	      && TREE_TYPE (op0) != final_type)
8275	    unsigned0 = TYPE_UNSIGNED (TREE_TYPE (op0));
8276	  if ((TYPE_PRECISION (TREE_TYPE (op1))
8277	       == TYPE_PRECISION (TREE_TYPE (arg1)))
8278	      && TREE_TYPE (op1) != final_type)
8279	    unsigned1 = TYPE_UNSIGNED (TREE_TYPE (op1));
8280
8281	  /* Now UNSIGNED0 is 1 if ARG0 zero-extends to FINAL_TYPE.  */
8282
8283	  /* For bitwise operations, signedness of nominal type
8284	     does not matter.  Consider only how operands were extended.  */
8285	  if (shorten == -1)
8286	    uns = unsigned0;
8287
8288	  /* Note that in all three cases below we refrain from optimizing
8289	     an unsigned operation on sign-extended args.
8290	     That would not be valid.  */
8291
8292	  /* Both args variable: if both extended in same way
8293	     from same width, do it in that width.
8294	     Do it unsigned if args were zero-extended.  */
8295	  if ((TYPE_PRECISION (TREE_TYPE (arg0))
8296	       < TYPE_PRECISION (result_type))
8297	      && (TYPE_PRECISION (TREE_TYPE (arg1))
8298		  == TYPE_PRECISION (TREE_TYPE (arg0)))
8299	      && unsigned0 == unsigned1
8300	      && (unsigned0 || !uns))
8301	    result_type
8302	      = c_common_signed_or_unsigned_type
8303	      (unsigned0, common_type (TREE_TYPE (arg0), TREE_TYPE (arg1)));
8304	  else if (TREE_CODE (arg0) == INTEGER_CST
8305		   && (unsigned1 || !uns)
8306		   && (TYPE_PRECISION (TREE_TYPE (arg1))
8307		       < TYPE_PRECISION (result_type))
8308		   && (type
8309		       = c_common_signed_or_unsigned_type (unsigned1,
8310							   TREE_TYPE (arg1)),
8311		       int_fits_type_p (arg0, type)))
8312	    result_type = type;
8313	  else if (TREE_CODE (arg1) == INTEGER_CST
8314		   && (unsigned0 || !uns)
8315		   && (TYPE_PRECISION (TREE_TYPE (arg0))
8316		       < TYPE_PRECISION (result_type))
8317		   && (type
8318		       = c_common_signed_or_unsigned_type (unsigned0,
8319							   TREE_TYPE (arg0)),
8320		       int_fits_type_p (arg1, type)))
8321	    result_type = type;
8322	}
8323
8324      /* Shifts can be shortened if shifting right.  */
8325
8326      if (short_shift)
8327	{
8328	  int unsigned_arg;
8329	  tree arg0 = get_narrower (op0, &unsigned_arg);
8330
8331	  final_type = result_type;
8332
8333	  if (arg0 == op0 && final_type == TREE_TYPE (op0))
8334	    unsigned_arg = TYPE_UNSIGNED (TREE_TYPE (op0));
8335
8336	  if (TYPE_PRECISION (TREE_TYPE (arg0)) < TYPE_PRECISION (result_type)
8337	      /* We can shorten only if the shift count is less than the
8338		 number of bits in the smaller type size.  */
8339	      && compare_tree_int (op1, TYPE_PRECISION (TREE_TYPE (arg0))) < 0
8340	      /* We cannot drop an unsigned shift after sign-extension.  */
8341	      && (!TYPE_UNSIGNED (final_type) || unsigned_arg))
8342	    {
8343	      /* Do an unsigned shift if the operand was zero-extended.  */
8344	      result_type
8345		= c_common_signed_or_unsigned_type (unsigned_arg,
8346						    TREE_TYPE (arg0));
8347	      /* Convert value-to-be-shifted to that type.  */
8348	      if (TREE_TYPE (op0) != result_type)
8349		op0 = convert (result_type, op0);
8350	      converted = 1;
8351	    }
8352	}
8353
8354      /* Comparison operations are shortened too but differently.
8355	 They identify themselves by setting short_compare = 1.  */
8356
8357      if (short_compare)
8358	{
8359	  /* Don't write &op0, etc., because that would prevent op0
8360	     from being kept in a register.
8361	     Instead, make copies of the our local variables and
8362	     pass the copies by reference, then copy them back afterward.  */
8363	  tree xop0 = op0, xop1 = op1, xresult_type = result_type;
8364	  enum tree_code xresultcode = resultcode;
8365	  tree val
8366	    = shorten_compare (&xop0, &xop1, &xresult_type, &xresultcode);
8367
8368	  if (val != 0)
8369	    return val;
8370
8371	  op0 = xop0, op1 = xop1;
8372	  converted = 1;
8373	  resultcode = xresultcode;
8374
8375	  if (warn_sign_compare && skip_evaluation == 0)
8376	    {
8377	      int op0_signed = !TYPE_UNSIGNED (TREE_TYPE (orig_op0));
8378	      int op1_signed = !TYPE_UNSIGNED (TREE_TYPE (orig_op1));
8379	      int unsignedp0, unsignedp1;
8380	      tree primop0 = get_narrower (op0, &unsignedp0);
8381	      tree primop1 = get_narrower (op1, &unsignedp1);
8382
8383	      xop0 = orig_op0;
8384	      xop1 = orig_op1;
8385	      STRIP_TYPE_NOPS (xop0);
8386	      STRIP_TYPE_NOPS (xop1);
8387
8388	      /* Give warnings for comparisons between signed and unsigned
8389		 quantities that may fail.
8390
8391		 Do the checking based on the original operand trees, so that
8392		 casts will be considered, but default promotions won't be.
8393
8394		 Do not warn if the comparison is being done in a signed type,
8395		 since the signed type will only be chosen if it can represent
8396		 all the values of the unsigned type.  */
8397	      if (!TYPE_UNSIGNED (result_type))
8398		/* OK */;
8399	      /* Do not warn if both operands are the same signedness.  */
8400	      else if (op0_signed == op1_signed)
8401		/* OK */;
8402	      else
8403		{
8404		  tree sop, uop;
8405		  bool ovf;
8406
8407		  if (op0_signed)
8408		    sop = xop0, uop = xop1;
8409		  else
8410		    sop = xop1, uop = xop0;
8411
8412		  /* Do not warn if the signed quantity is an
8413		     unsuffixed integer literal (or some static
8414		     constant expression involving such literals or a
8415		     conditional expression involving such literals)
8416		     and it is non-negative.  */
8417		  if (tree_expr_nonnegative_warnv_p (sop, &ovf))
8418		    /* OK */;
8419		  /* Do not warn if the comparison is an equality operation,
8420		     the unsigned quantity is an integral constant, and it
8421		     would fit in the result if the result were signed.  */
8422		  else if (TREE_CODE (uop) == INTEGER_CST
8423			   && (resultcode == EQ_EXPR || resultcode == NE_EXPR)
8424			   && int_fits_type_p
8425			   (uop, c_common_signed_type (result_type)))
8426		    /* OK */;
8427		  /* Do not warn if the unsigned quantity is an enumeration
8428		     constant and its maximum value would fit in the result
8429		     if the result were signed.  */
8430		  else if (TREE_CODE (uop) == INTEGER_CST
8431			   && TREE_CODE (TREE_TYPE (uop)) == ENUMERAL_TYPE
8432			   && int_fits_type_p
8433			   (TYPE_MAX_VALUE (TREE_TYPE (uop)),
8434			    c_common_signed_type (result_type)))
8435		    /* OK */;
8436		  else
8437		    warning (0, "comparison between signed and unsigned");
8438		}
8439
8440	      /* Warn if two unsigned values are being compared in a size
8441		 larger than their original size, and one (and only one) is the
8442		 result of a `~' operator.  This comparison will always fail.
8443
8444		 Also warn if one operand is a constant, and the constant
8445		 does not have all bits set that are set in the ~ operand
8446		 when it is extended.  */
8447
8448	      if ((TREE_CODE (primop0) == BIT_NOT_EXPR)
8449		  != (TREE_CODE (primop1) == BIT_NOT_EXPR))
8450		{
8451		  if (TREE_CODE (primop0) == BIT_NOT_EXPR)
8452		    primop0 = get_narrower (TREE_OPERAND (primop0, 0),
8453					    &unsignedp0);
8454		  else
8455		    primop1 = get_narrower (TREE_OPERAND (primop1, 0),
8456					    &unsignedp1);
8457
8458		  if (host_integerp (primop0, 0) || host_integerp (primop1, 0))
8459		    {
8460		      tree primop;
8461		      HOST_WIDE_INT constant, mask;
8462		      int unsignedp, bits;
8463
8464		      if (host_integerp (primop0, 0))
8465			{
8466			  primop = primop1;
8467			  unsignedp = unsignedp1;
8468			  constant = tree_low_cst (primop0, 0);
8469			}
8470		      else
8471			{
8472			  primop = primop0;
8473			  unsignedp = unsignedp0;
8474			  constant = tree_low_cst (primop1, 0);
8475			}
8476
8477		      bits = TYPE_PRECISION (TREE_TYPE (primop));
8478		      if (bits < TYPE_PRECISION (result_type)
8479			  && bits < HOST_BITS_PER_WIDE_INT && unsignedp)
8480			{
8481			  mask = (~(HOST_WIDE_INT) 0) << bits;
8482			  if ((mask & constant) != mask)
8483			    warning (0, "comparison of promoted ~unsigned with constant");
8484			}
8485		    }
8486		  else if (unsignedp0 && unsignedp1
8487			   && (TYPE_PRECISION (TREE_TYPE (primop0))
8488			       < TYPE_PRECISION (result_type))
8489			   && (TYPE_PRECISION (TREE_TYPE (primop1))
8490			       < TYPE_PRECISION (result_type)))
8491		    warning (0, "comparison of promoted ~unsigned with unsigned");
8492		}
8493	    }
8494	}
8495    }
8496
8497  /* At this point, RESULT_TYPE must be nonzero to avoid an error message.
8498     If CONVERTED is zero, both args will be converted to type RESULT_TYPE.
8499     Then the expression will be built.
8500     It will be given type FINAL_TYPE if that is nonzero;
8501     otherwise, it will be given type RESULT_TYPE.  */
8502
8503  if (!result_type)
8504    {
8505      binary_op_error (code);
8506      return error_mark_node;
8507    }
8508
8509  if (!converted)
8510    {
8511      if (TREE_TYPE (op0) != result_type)
8512	op0 = convert_and_check (result_type, op0);
8513      if (TREE_TYPE (op1) != result_type)
8514	op1 = convert_and_check (result_type, op1);
8515
8516      /* This can happen if one operand has a vector type, and the other
8517	 has a different type.  */
8518      if (TREE_CODE (op0) == ERROR_MARK || TREE_CODE (op1) == ERROR_MARK)
8519	return error_mark_node;
8520    }
8521
8522  if (build_type == NULL_TREE)
8523    build_type = result_type;
8524
8525  {
8526    /* Treat expressions in initializers specially as they can't trap.  */
8527    tree result = require_constant_value ? fold_build2_initializer (resultcode,
8528								    build_type,
8529								    op0, op1)
8530					 : fold_build2 (resultcode, build_type,
8531							op0, op1);
8532
8533    if (final_type != 0)
8534      result = convert (final_type, result);
8535    return result;
8536  }
8537}
8538
8539
8540/* Convert EXPR to be a truth-value, validating its type for this
8541   purpose.  */
8542
8543tree
8544c_objc_common_truthvalue_conversion (tree expr)
8545{
8546  switch (TREE_CODE (TREE_TYPE (expr)))
8547    {
8548    case ARRAY_TYPE:
8549      error ("used array that cannot be converted to pointer where scalar is required");
8550      return error_mark_node;
8551
8552    case RECORD_TYPE:
8553      error ("used struct type value where scalar is required");
8554      return error_mark_node;
8555
8556    case UNION_TYPE:
8557      error ("used union type value where scalar is required");
8558      return error_mark_node;
8559
8560    case FUNCTION_TYPE:
8561      gcc_unreachable ();
8562
8563    default:
8564      break;
8565    }
8566
8567  /* ??? Should we also give an error for void and vectors rather than
8568     leaving those to give errors later?  */
8569  return c_common_truthvalue_conversion (expr);
8570}
8571
8572
8573/* Convert EXPR to a contained DECL, updating *TC, *TI and *SE as
8574   required.  */
8575
8576tree
8577c_expr_to_decl (tree expr, bool *tc ATTRIBUTE_UNUSED,
8578		bool *ti ATTRIBUTE_UNUSED, bool *se)
8579{
8580  if (TREE_CODE (expr) == COMPOUND_LITERAL_EXPR)
8581    {
8582      tree decl = COMPOUND_LITERAL_EXPR_DECL (expr);
8583      /* Executing a compound literal inside a function reinitializes
8584	 it.  */
8585      if (!TREE_STATIC (decl))
8586	*se = true;
8587      return decl;
8588    }
8589  else
8590    return expr;
8591}
8592
8593/* Like c_begin_compound_stmt, except force the retention of the BLOCK.  */
8594
8595tree
8596c_begin_omp_parallel (void)
8597{
8598  tree block;
8599
8600  keep_next_level ();
8601  block = c_begin_compound_stmt (true);
8602
8603  return block;
8604}
8605
8606tree
8607c_finish_omp_parallel (tree clauses, tree block)
8608{
8609  tree stmt;
8610
8611  block = c_end_compound_stmt (block, true);
8612
8613  stmt = make_node (OMP_PARALLEL);
8614  TREE_TYPE (stmt) = void_type_node;
8615  OMP_PARALLEL_CLAUSES (stmt) = clauses;
8616  OMP_PARALLEL_BODY (stmt) = block;
8617
8618  return add_stmt (stmt);
8619}
8620
8621/* For all elements of CLAUSES, validate them vs OpenMP constraints.
8622   Remove any elements from the list that are invalid.  */
8623
8624tree
8625c_finish_omp_clauses (tree clauses)
8626{
8627  bitmap_head generic_head, firstprivate_head, lastprivate_head;
8628  tree c, t, *pc = &clauses;
8629  const char *name;
8630
8631  bitmap_obstack_initialize (NULL);
8632  bitmap_initialize (&generic_head, &bitmap_default_obstack);
8633  bitmap_initialize (&firstprivate_head, &bitmap_default_obstack);
8634  bitmap_initialize (&lastprivate_head, &bitmap_default_obstack);
8635
8636  for (pc = &clauses, c = clauses; c ; c = *pc)
8637    {
8638      bool remove = false;
8639      bool need_complete = false;
8640      bool need_implicitly_determined = false;
8641
8642      switch (OMP_CLAUSE_CODE (c))
8643	{
8644	case OMP_CLAUSE_SHARED:
8645	  name = "shared";
8646	  need_implicitly_determined = true;
8647	  goto check_dup_generic;
8648
8649	case OMP_CLAUSE_PRIVATE:
8650	  name = "private";
8651	  need_complete = true;
8652	  need_implicitly_determined = true;
8653	  goto check_dup_generic;
8654
8655	case OMP_CLAUSE_REDUCTION:
8656	  name = "reduction";
8657	  need_implicitly_determined = true;
8658	  t = OMP_CLAUSE_DECL (c);
8659	  if (AGGREGATE_TYPE_P (TREE_TYPE (t))
8660	      || POINTER_TYPE_P (TREE_TYPE (t)))
8661	    {
8662	      error ("%qE has invalid type for %<reduction%>", t);
8663	      remove = true;
8664	    }
8665	  else if (FLOAT_TYPE_P (TREE_TYPE (t)))
8666	    {
8667	      enum tree_code r_code = OMP_CLAUSE_REDUCTION_CODE (c);
8668	      const char *r_name = NULL;
8669
8670	      switch (r_code)
8671		{
8672		case PLUS_EXPR:
8673		case MULT_EXPR:
8674		case MINUS_EXPR:
8675		  break;
8676		case BIT_AND_EXPR:
8677		  r_name = "&";
8678		  break;
8679		case BIT_XOR_EXPR:
8680		  r_name = "^";
8681		  break;
8682		case BIT_IOR_EXPR:
8683		  r_name = "|";
8684		  break;
8685		case TRUTH_ANDIF_EXPR:
8686		  r_name = "&&";
8687		  break;
8688		case TRUTH_ORIF_EXPR:
8689		  r_name = "||";
8690		  break;
8691		default:
8692		  gcc_unreachable ();
8693		}
8694	      if (r_name)
8695		{
8696		  error ("%qE has invalid type for %<reduction(%s)%>",
8697			 t, r_name);
8698		  remove = true;
8699		}
8700	    }
8701	  goto check_dup_generic;
8702
8703	case OMP_CLAUSE_COPYPRIVATE:
8704	  name = "copyprivate";
8705	  goto check_dup_generic;
8706
8707	case OMP_CLAUSE_COPYIN:
8708	  name = "copyin";
8709	  t = OMP_CLAUSE_DECL (c);
8710	  if (TREE_CODE (t) != VAR_DECL || !DECL_THREAD_LOCAL_P (t))
8711	    {
8712	      error ("%qE must be %<threadprivate%> for %<copyin%>", t);
8713	      remove = true;
8714	    }
8715	  goto check_dup_generic;
8716
8717	check_dup_generic:
8718	  t = OMP_CLAUSE_DECL (c);
8719	  if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL)
8720	    {
8721	      error ("%qE is not a variable in clause %qs", t, name);
8722	      remove = true;
8723	    }
8724	  else if (bitmap_bit_p (&generic_head, DECL_UID (t))
8725		   || bitmap_bit_p (&firstprivate_head, DECL_UID (t))
8726		   || bitmap_bit_p (&lastprivate_head, DECL_UID (t)))
8727	    {
8728	      error ("%qE appears more than once in data clauses", t);
8729	      remove = true;
8730	    }
8731	  else
8732	    bitmap_set_bit (&generic_head, DECL_UID (t));
8733	  break;
8734
8735	case OMP_CLAUSE_FIRSTPRIVATE:
8736	  name = "firstprivate";
8737	  t = OMP_CLAUSE_DECL (c);
8738	  need_complete = true;
8739	  need_implicitly_determined = true;
8740	  if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL)
8741	    {
8742	      error ("%qE is not a variable in clause %<firstprivate%>", t);
8743	      remove = true;
8744	    }
8745	  else if (bitmap_bit_p (&generic_head, DECL_UID (t))
8746		   || bitmap_bit_p (&firstprivate_head, DECL_UID (t)))
8747	    {
8748	      error ("%qE appears more than once in data clauses", t);
8749	      remove = true;
8750	    }
8751	  else
8752	    bitmap_set_bit (&firstprivate_head, DECL_UID (t));
8753	  break;
8754
8755	case OMP_CLAUSE_LASTPRIVATE:
8756	  name = "lastprivate";
8757	  t = OMP_CLAUSE_DECL (c);
8758	  need_complete = true;
8759	  need_implicitly_determined = true;
8760	  if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL)
8761	    {
8762	      error ("%qE is not a variable in clause %<lastprivate%>", t);
8763	      remove = true;
8764	    }
8765	  else if (bitmap_bit_p (&generic_head, DECL_UID (t))
8766		   || bitmap_bit_p (&lastprivate_head, DECL_UID (t)))
8767	    {
8768	      error ("%qE appears more than once in data clauses", t);
8769	      remove = true;
8770	    }
8771	  else
8772	    bitmap_set_bit (&lastprivate_head, DECL_UID (t));
8773	  break;
8774
8775	case OMP_CLAUSE_IF:
8776	case OMP_CLAUSE_NUM_THREADS:
8777	case OMP_CLAUSE_SCHEDULE:
8778	case OMP_CLAUSE_NOWAIT:
8779	case OMP_CLAUSE_ORDERED:
8780	case OMP_CLAUSE_DEFAULT:
8781	  pc = &OMP_CLAUSE_CHAIN (c);
8782	  continue;
8783
8784	default:
8785	  gcc_unreachable ();
8786	}
8787
8788      if (!remove)
8789	{
8790	  t = OMP_CLAUSE_DECL (c);
8791
8792	  if (need_complete)
8793	    {
8794	      t = require_complete_type (t);
8795	      if (t == error_mark_node)
8796		remove = true;
8797	    }
8798
8799	  if (need_implicitly_determined)
8800	    {
8801	      const char *share_name = NULL;
8802
8803	      if (TREE_CODE (t) == VAR_DECL && DECL_THREAD_LOCAL_P (t))
8804		share_name = "threadprivate";
8805	      else switch (c_omp_predetermined_sharing (t))
8806		{
8807		case OMP_CLAUSE_DEFAULT_UNSPECIFIED:
8808		  break;
8809		case OMP_CLAUSE_DEFAULT_SHARED:
8810		  share_name = "shared";
8811		  break;
8812		case OMP_CLAUSE_DEFAULT_PRIVATE:
8813		  share_name = "private";
8814		  break;
8815		default:
8816		  gcc_unreachable ();
8817		}
8818	      if (share_name)
8819		{
8820		  error ("%qE is predetermined %qs for %qs",
8821			 t, share_name, name);
8822		  remove = true;
8823		}
8824	    }
8825	}
8826
8827      if (remove)
8828	*pc = OMP_CLAUSE_CHAIN (c);
8829      else
8830	pc = &OMP_CLAUSE_CHAIN (c);
8831    }
8832
8833  bitmap_obstack_release (NULL);
8834  return clauses;
8835}
8836