1/* vi: set sw=4 ts=4: */
2/*
3 * Gzip implementation for busybox
4 *
5 * Based on GNU gzip Copyright (C) 1992-1993 Jean-loup Gailly.
6 *
7 * Originally adjusted for busybox by Charles P. Wright <cpw@unix.asb.com>
8 * "this is a stripped down version of gzip I put into busybox, it does
9 * only standard in to standard out with -9 compression.  It also requires
10 * the zcat module for some important functions."
11 *
12 * Adjusted further by Erik Andersen <andersen@codepoet.org> to support
13 * files as well as stdin/stdout, and to generally behave itself wrt
14 * command line handling.
15 *
16 * Licensed under GPLv2 or later, see file LICENSE in this tarball for details.
17 */
18
19/* big objects in bss:
20 * 00000020 b bl_count
21 * 00000074 b base_length
22 * 00000078 b base_dist
23 * 00000078 b static_dtree
24 * 0000009c b bl_tree
25 * 000000f4 b dyn_dtree
26 * 00000100 b length_code
27 * 00000200 b dist_code
28 * 0000023d b depth
29 * 00000400 b flag_buf
30 * 0000047a b heap
31 * 00000480 b static_ltree
32 * 000008f4 b dyn_ltree
33 */
34
35/* TODO: full support for -v for DESKTOP
36 * "/usr/bin/gzip -v a bogus aa" should say:
37a:       85.1% -- replaced with a.gz
38gzip: bogus: No such file or directory
39aa:      85.1% -- replaced with aa.gz
40*/
41
42#include "libbb.h"
43
44
45/* ===========================================================================
46 */
47//#define DEBUG 1
48/* Diagnostic functions */
49#ifdef DEBUG
50#  define Assert(cond,msg) { if (!(cond)) bb_error_msg(msg); }
51#  define Trace(x) fprintf x
52#  define Tracev(x) {if (verbose) fprintf x; }
53#  define Tracevv(x) {if (verbose > 1) fprintf x; }
54#  define Tracec(c,x) {if (verbose && (c)) fprintf x; }
55#  define Tracecv(c,x) {if (verbose > 1 && (c)) fprintf x; }
56#else
57#  define Assert(cond,msg)
58#  define Trace(x)
59#  define Tracev(x)
60#  define Tracevv(x)
61#  define Tracec(c,x)
62#  define Tracecv(c,x)
63#endif
64
65
66/* ===========================================================================
67 */
68#define SMALL_MEM
69
70#ifndef	INBUFSIZ
71#  ifdef SMALL_MEM
72#    define INBUFSIZ  0x2000	/* input buffer size */
73#  else
74#    define INBUFSIZ  0x8000	/* input buffer size */
75#  endif
76#endif
77
78#ifndef	OUTBUFSIZ
79#  ifdef SMALL_MEM
80#    define OUTBUFSIZ   8192	/* output buffer size */
81#  else
82#    define OUTBUFSIZ  16384	/* output buffer size */
83#  endif
84#endif
85
86#ifndef DIST_BUFSIZE
87#  ifdef SMALL_MEM
88#    define DIST_BUFSIZE 0x2000	/* buffer for distances, see trees.c */
89#  else
90#    define DIST_BUFSIZE 0x8000	/* buffer for distances, see trees.c */
91#  endif
92#endif
93
94/* gzip flag byte */
95#define ASCII_FLAG   0x01	/* bit 0 set: file probably ascii text */
96#define CONTINUATION 0x02	/* bit 1 set: continuation of multi-part gzip file */
97#define EXTRA_FIELD  0x04	/* bit 2 set: extra field present */
98#define ORIG_NAME    0x08	/* bit 3 set: original file name present */
99#define COMMENT      0x10	/* bit 4 set: file comment present */
100#define RESERVED     0xC0	/* bit 6,7:   reserved */
101
102/* internal file attribute */
103#define UNKNOWN 0xffff
104#define BINARY  0
105#define ASCII   1
106
107#ifndef WSIZE
108#  define WSIZE 0x8000  /* window size--must be a power of two, and */
109#endif                  /*  at least 32K for zip's deflate method */
110
111#define MIN_MATCH  3
112#define MAX_MATCH  258
113/* The minimum and maximum match lengths */
114
115#define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
116/* Minimum amount of lookahead, except at the end of the input file.
117 * See deflate.c for comments about the MIN_MATCH+1.
118 */
119
120#define MAX_DIST  (WSIZE-MIN_LOOKAHEAD)
121/* In order to simplify the code, particularly on 16 bit machines, match
122 * distances are limited to MAX_DIST instead of WSIZE.
123 */
124
125#ifndef MAX_PATH_LEN
126#  define MAX_PATH_LEN   1024	/* max pathname length */
127#endif
128
129#define seekable()    0	/* force sequential output */
130#define translate_eol 0	/* no option -a yet */
131
132#ifndef BITS
133#  define BITS 16
134#endif
135#define INIT_BITS 9		/* Initial number of bits per code */
136
137#define BIT_MASK    0x1f	/* Mask for 'number of compression bits' */
138/* Mask 0x20 is reserved to mean a fourth header byte, and 0x40 is free.
139 * It's a pity that old uncompress does not check bit 0x20. That makes
140 * extension of the format actually undesirable because old compress
141 * would just crash on the new format instead of giving a meaningful
142 * error message. It does check the number of bits, but it's more
143 * helpful to say "unsupported format, get a new version" than
144 * "can only handle 16 bits".
145 */
146
147#ifdef MAX_EXT_CHARS
148#  define MAX_SUFFIX  MAX_EXT_CHARS
149#else
150#  define MAX_SUFFIX  30
151#endif
152
153
154/* ===========================================================================
155 * Compile with MEDIUM_MEM to reduce the memory requirements or
156 * with SMALL_MEM to use as little memory as possible. Use BIG_MEM if the
157 * entire input file can be held in memory (not possible on 16 bit systems).
158 * Warning: defining these symbols affects HASH_BITS (see below) and thus
159 * affects the compression ratio. The compressed output
160 * is still correct, and might even be smaller in some cases.
161 */
162
163#ifdef SMALL_MEM
164#   define HASH_BITS  13	/* Number of bits used to hash strings */
165#endif
166#ifdef MEDIUM_MEM
167#   define HASH_BITS  14
168#endif
169#ifndef HASH_BITS
170#   define HASH_BITS  15
171   /* For portability to 16 bit machines, do not use values above 15. */
172#endif
173
174#define HASH_SIZE (unsigned)(1<<HASH_BITS)
175#define HASH_MASK (HASH_SIZE-1)
176#define WMASK     (WSIZE-1)
177/* HASH_SIZE and WSIZE must be powers of two */
178#ifndef TOO_FAR
179#  define TOO_FAR 4096
180#endif
181/* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
182
183
184/* ===========================================================================
185 * These types are not really 'char', 'short' and 'long'
186 */
187typedef uint8_t uch;
188typedef uint16_t ush;
189typedef uint32_t ulg;
190typedef int32_t lng;
191
192typedef ush Pos;
193typedef unsigned IPos;
194/* A Pos is an index in the character window. We use short instead of int to
195 * save space in the various tables. IPos is used only for parameter passing.
196 */
197
198enum {
199	WINDOW_SIZE = 2 * WSIZE,
200/* window size, 2*WSIZE except for MMAP or BIG_MEM, where it is the
201 * input file length plus MIN_LOOKAHEAD.
202 */
203
204	max_chain_length = 4096,
205/* To speed up deflation, hash chains are never searched beyond this length.
206 * A higher limit improves compression ratio but degrades the speed.
207 */
208
209	max_lazy_match = 258,
210/* Attempt to find a better match only when the current match is strictly
211 * smaller than this value. This mechanism is used only for compression
212 * levels >= 4.
213 */
214
215	max_insert_length = max_lazy_match,
216/* Insert new strings in the hash table only if the match length
217 * is not greater than this length. This saves time but degrades compression.
218 * max_insert_length is used only for compression levels <= 3.
219 */
220
221	good_match = 32,
222/* Use a faster search when the previous match is longer than this */
223
224/* Values for max_lazy_match, good_match and max_chain_length, depending on
225 * the desired pack level (0..9). The values given below have been tuned to
226 * exclude worst case performance for pathological files. Better values may be
227 * found for specific files.
228 */
229
230	nice_match = 258,	/* Stop searching when current match exceeds this */
231/* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
232 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
233 * meaning.
234 */
235};
236
237
238struct globals {
239
240	lng block_start;
241
242/* window position at the beginning of the current output block. Gets
243 * negative when the window is moved backwards.
244 */
245	unsigned ins_h;	/* hash index of string to be inserted */
246
247#define H_SHIFT  ((HASH_BITS+MIN_MATCH-1) / MIN_MATCH)
248/* Number of bits by which ins_h and del_h must be shifted at each
249 * input step. It must be such that after MIN_MATCH steps, the oldest
250 * byte no longer takes part in the hash key, that is:
251 * H_SHIFT * MIN_MATCH >= HASH_BITS
252 */
253
254	unsigned prev_length;
255
256/* Length of the best match at previous step. Matches not greater than this
257 * are discarded. This is used in the lazy match evaluation.
258 */
259
260	unsigned strstart;	/* start of string to insert */
261	unsigned match_start;	/* start of matching string */
262	unsigned lookahead;	/* number of valid bytes ahead in window */
263
264/* ===========================================================================
265 */
266#define DECLARE(type, array, size) \
267	type * array
268#define ALLOC(type, array, size) \
269	array = xzalloc((size_t)(((size)+1L)/2) * 2*sizeof(type));
270#define FREE(array) \
271	do { free(array); array = NULL; } while (0)
272
273	/* global buffers */
274
275	/* buffer for literals or lengths */
276	/* DECLARE(uch, l_buf, LIT_BUFSIZE); */
277	DECLARE(uch, l_buf, INBUFSIZ);
278
279	DECLARE(ush, d_buf, DIST_BUFSIZE);
280	DECLARE(uch, outbuf, OUTBUFSIZ);
281
282/* Sliding window. Input bytes are read into the second half of the window,
283 * and move to the first half later to keep a dictionary of at least WSIZE
284 * bytes. With this organization, matches are limited to a distance of
285 * WSIZE-MAX_MATCH bytes, but this ensures that IO is always
286 * performed with a length multiple of the block size. Also, it limits
287 * the window size to 64K, which is quite useful on MSDOS.
288 * To do: limit the window size to WSIZE+BSZ if SMALL_MEM (the code would
289 * be less efficient).
290 */
291	DECLARE(uch, window, 2L * WSIZE);
292
293/* Link to older string with same hash index. To limit the size of this
294 * array to 64K, this link is maintained only for the last 32K strings.
295 * An index in this array is thus a window index modulo 32K.
296 */
297	/* DECLARE(Pos, prev, WSIZE); */
298	DECLARE(ush, prev, 1L << BITS);
299
300/* Heads of the hash chains or 0. */
301	/* DECLARE(Pos, head, 1<<HASH_BITS); */
302#define head (G1.prev + WSIZE) /* hash head (see deflate.c) */
303
304/* number of input bytes */
305	ulg isize;		/* only 32 bits stored in .gz file */
306
307/* bbox always use stdin/stdout */
308#define ifd STDIN_FILENO	/* input file descriptor */
309#define ofd STDOUT_FILENO	/* output file descriptor */
310
311#ifdef DEBUG
312	unsigned insize;	/* valid bytes in l_buf */
313#endif
314	unsigned outcnt;	/* bytes in output buffer */
315
316	smallint eofile;	/* flag set at end of input file */
317
318/* ===========================================================================
319 * Local data used by the "bit string" routines.
320 */
321
322	unsigned short bi_buf;
323
324/* Output buffer. bits are inserted starting at the bottom (least significant
325 * bits).
326 */
327
328#undef BUF_SIZE
329#define BUF_SIZE (8 * sizeof(G1.bi_buf))
330/* Number of bits used within bi_buf. (bi_buf might be implemented on
331 * more than 16 bits on some systems.)
332 */
333
334	int bi_valid;
335
336/* Current input function. Set to mem_read for in-memory compression */
337
338#ifdef DEBUG
339	ulg bits_sent;			/* bit length of the compressed data */
340#endif
341
342	uint32_t *crc_32_tab;
343	uint32_t crc;	/* shift register contents */
344};
345
346#define G1 (*(ptr_to_globals - 1))
347
348
349/* ===========================================================================
350 * Write the output buffer outbuf[0..outcnt-1] and update bytes_out.
351 * (used for the compressed data only)
352 */
353static void flush_outbuf(void)
354{
355	if (G1.outcnt == 0)
356		return;
357
358	xwrite(ofd, (char *) G1.outbuf, G1.outcnt);
359	G1.outcnt = 0;
360}
361
362
363/* ===========================================================================
364 */
365/* put_8bit is used for the compressed output */
366#define put_8bit(c) \
367do { \
368	G1.outbuf[G1.outcnt++] = (c); \
369	if (G1.outcnt == OUTBUFSIZ) flush_outbuf(); \
370} while (0)
371
372/* Output a 16 bit value, lsb first */
373static void put_16bit(ush w)
374{
375	if (G1.outcnt < OUTBUFSIZ - 2) {
376		G1.outbuf[G1.outcnt++] = w;
377		G1.outbuf[G1.outcnt++] = w >> 8;
378	} else {
379		put_8bit(w);
380		put_8bit(w >> 8);
381	}
382}
383
384static void put_32bit(ulg n)
385{
386	put_16bit(n);
387	put_16bit(n >> 16);
388}
389
390/* ===========================================================================
391 * Clear input and output buffers
392 */
393static void clear_bufs(void)
394{
395	G1.outcnt = 0;
396#ifdef DEBUG
397	G1.insize = 0;
398#endif
399	G1.isize = 0;
400}
401
402
403/* ===========================================================================
404 * Run a set of bytes through the crc shift register.  If s is a NULL
405 * pointer, then initialize the crc shift register contents instead.
406 * Return the current crc in either case.
407 */
408static uint32_t updcrc(uch * s, unsigned n)
409{
410	uint32_t c = G1.crc;
411	while (n) {
412		c = G1.crc_32_tab[(uch)(c ^ *s++)] ^ (c >> 8);
413		n--;
414	}
415	G1.crc = c;
416	return c;
417}
418
419
420/* ===========================================================================
421 * Read a new buffer from the current input file, perform end-of-line
422 * translation, and update the crc and input file size.
423 * IN assertion: size >= 2 (for end-of-line translation)
424 */
425static unsigned file_read(void *buf, unsigned size)
426{
427	unsigned len;
428
429	Assert(G1.insize == 0, "l_buf not empty");
430
431	len = safe_read(ifd, buf, size);
432	if (len == (unsigned)(-1) || len == 0)
433		return len;
434
435	updcrc(buf, len);
436	G1.isize += len;
437	return len;
438}
439
440
441/* ===========================================================================
442 * Send a value on a given number of bits.
443 * IN assertion: length <= 16 and value fits in length bits.
444 */
445static void send_bits(int value, int length)
446{
447#ifdef DEBUG
448	Tracev((stderr, " l %2d v %4x ", length, value));
449	Assert(length > 0 && length <= 15, "invalid length");
450	G1.bits_sent += length;
451#endif
452	/* If not enough room in bi_buf, use (valid) bits from bi_buf and
453	 * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
454	 * unused bits in value.
455	 */
456	if (G1.bi_valid > (int) BUF_SIZE - length) {
457		G1.bi_buf |= (value << G1.bi_valid);
458		put_16bit(G1.bi_buf);
459		G1.bi_buf = (ush) value >> (BUF_SIZE - G1.bi_valid);
460		G1.bi_valid += length - BUF_SIZE;
461	} else {
462		G1.bi_buf |= value << G1.bi_valid;
463		G1.bi_valid += length;
464	}
465}
466
467
468/* ===========================================================================
469 * Reverse the first len bits of a code, using straightforward code (a faster
470 * method would use a table)
471 * IN assertion: 1 <= len <= 15
472 */
473static unsigned bi_reverse(unsigned code, int len)
474{
475	unsigned res = 0;
476
477	while (1) {
478		res |= code & 1;
479		if (--len <= 0) return res;
480		code >>= 1;
481		res <<= 1;
482	}
483}
484
485
486/* ===========================================================================
487 * Write out any remaining bits in an incomplete byte.
488 */
489static void bi_windup(void)
490{
491	if (G1.bi_valid > 8) {
492		put_16bit(G1.bi_buf);
493	} else if (G1.bi_valid > 0) {
494		put_8bit(G1.bi_buf);
495	}
496	G1.bi_buf = 0;
497	G1.bi_valid = 0;
498#ifdef DEBUG
499	G1.bits_sent = (G1.bits_sent + 7) & ~7;
500#endif
501}
502
503
504/* ===========================================================================
505 * Copy a stored block to the zip file, storing first the length and its
506 * one's complement if requested.
507 */
508static void copy_block(char *buf, unsigned len, int header)
509{
510	bi_windup();		/* align on byte boundary */
511
512	if (header) {
513		put_16bit(len);
514		put_16bit(~len);
515#ifdef DEBUG
516		G1.bits_sent += 2 * 16;
517#endif
518	}
519#ifdef DEBUG
520	G1.bits_sent += (ulg) len << 3;
521#endif
522	while (len--) {
523		put_8bit(*buf++);
524	}
525}
526
527
528/* ===========================================================================
529 * Fill the window when the lookahead becomes insufficient.
530 * Updates strstart and lookahead, and sets eofile if end of input file.
531 * IN assertion: lookahead < MIN_LOOKAHEAD && strstart + lookahead > 0
532 * OUT assertions: at least one byte has been read, or eofile is set;
533 *    file reads are performed for at least two bytes (required for the
534 *    translate_eol option).
535 */
536static void fill_window(void)
537{
538	unsigned n, m;
539	unsigned more =	WINDOW_SIZE - G1.lookahead - G1.strstart;
540	/* Amount of free space at the end of the window. */
541
542	/* If the window is almost full and there is insufficient lookahead,
543	 * move the upper half to the lower one to make room in the upper half.
544	 */
545	if (more == (unsigned) -1) {
546		/* Very unlikely, but possible on 16 bit machine if strstart == 0
547		 * and lookahead == 1 (input done one byte at time)
548		 */
549		more--;
550	} else if (G1.strstart >= WSIZE + MAX_DIST) {
551		/* By the IN assertion, the window is not empty so we can't confuse
552		 * more == 0 with more == 64K on a 16 bit machine.
553		 */
554		Assert(WINDOW_SIZE == 2 * WSIZE, "no sliding with BIG_MEM");
555
556		memcpy(G1.window, G1.window + WSIZE, WSIZE);
557		G1.match_start -= WSIZE;
558		G1.strstart -= WSIZE;	/* we now have strstart >= MAX_DIST: */
559
560		G1.block_start -= WSIZE;
561
562		for (n = 0; n < HASH_SIZE; n++) {
563			m = head[n];
564			head[n] = (Pos) (m >= WSIZE ? m - WSIZE : 0);
565		}
566		for (n = 0; n < WSIZE; n++) {
567			m = G1.prev[n];
568			G1.prev[n] = (Pos) (m >= WSIZE ? m - WSIZE : 0);
569			/* If n is not on any hash chain, prev[n] is garbage but
570			 * its value will never be used.
571			 */
572		}
573		more += WSIZE;
574	}
575	/* At this point, more >= 2 */
576	if (!G1.eofile) {
577		n = file_read(G1.window + G1.strstart + G1.lookahead, more);
578		if (n == 0 || n == (unsigned) -1) {
579			G1.eofile = 1;
580		} else {
581			G1.lookahead += n;
582		}
583	}
584}
585
586
587/* ===========================================================================
588 * Set match_start to the longest match starting at the given string and
589 * return its length. Matches shorter or equal to prev_length are discarded,
590 * in which case the result is equal to prev_length and match_start is
591 * garbage.
592 * IN assertions: cur_match is the head of the hash chain for the current
593 *   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
594 */
595
596/* For MSDOS, OS/2 and 386 Unix, an optimized version is in match.asm or
597 * match.s. The code is functionally equivalent, so you can use the C version
598 * if desired.
599 */
600static int longest_match(IPos cur_match)
601{
602	unsigned chain_length = max_chain_length;	/* max hash chain length */
603	uch *scan = G1.window + G1.strstart;	/* current string */
604	uch *match;	/* matched string */
605	int len;	/* length of current match */
606	int best_len = G1.prev_length;	/* best match length so far */
607	IPos limit = G1.strstart > (IPos) MAX_DIST ? G1.strstart - (IPos) MAX_DIST : 0;
608	/* Stop when cur_match becomes <= limit. To simplify the code,
609	 * we prevent matches with the string of window index 0.
610	 */
611
612/* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
613 * It is easy to get rid of this optimization if necessary.
614 */
615#if HASH_BITS < 8 || MAX_MATCH != 258
616#  error Code too clever
617#endif
618	uch *strend = G1.window + G1.strstart + MAX_MATCH;
619	uch scan_end1 = scan[best_len - 1];
620	uch scan_end = scan[best_len];
621
622	/* Do not waste too much time if we already have a good match: */
623	if (G1.prev_length >= good_match) {
624		chain_length >>= 2;
625	}
626	Assert(G1.strstart <= WINDOW_SIZE - MIN_LOOKAHEAD, "insufficient lookahead");
627
628	do {
629		Assert(cur_match < G1.strstart, "no future");
630		match = G1.window + cur_match;
631
632		/* Skip to next match if the match length cannot increase
633		 * or if the match length is less than 2:
634		 */
635		if (match[best_len] != scan_end ||
636			match[best_len - 1] != scan_end1 ||
637			*match != *scan || *++match != scan[1])
638			continue;
639
640		/* The check at best_len-1 can be removed because it will be made
641		 * again later. (This heuristic is not always a win.)
642		 * It is not necessary to compare scan[2] and match[2] since they
643		 * are always equal when the other bytes match, given that
644		 * the hash keys are equal and that HASH_BITS >= 8.
645		 */
646		scan += 2, match++;
647
648		/* We check for insufficient lookahead only every 8th comparison;
649		 * the 256th check will be made at strstart+258.
650		 */
651		do {
652		} while (*++scan == *++match && *++scan == *++match &&
653				 *++scan == *++match && *++scan == *++match &&
654				 *++scan == *++match && *++scan == *++match &&
655				 *++scan == *++match && *++scan == *++match && scan < strend);
656
657		len = MAX_MATCH - (int) (strend - scan);
658		scan = strend - MAX_MATCH;
659
660		if (len > best_len) {
661			G1.match_start = cur_match;
662			best_len = len;
663			if (len >= nice_match)
664				break;
665			scan_end1 = scan[best_len - 1];
666			scan_end = scan[best_len];
667		}
668	} while ((cur_match = G1.prev[cur_match & WMASK]) > limit
669			 && --chain_length != 0);
670
671	return best_len;
672}
673
674
675#ifdef DEBUG
676/* ===========================================================================
677 * Check that the match at match_start is indeed a match.
678 */
679static void check_match(IPos start, IPos match, int length)
680{
681	/* check that the match is indeed a match */
682	if (memcmp(G1.window + match, G1.window + start, length) != 0) {
683		bb_error_msg(" start %d, match %d, length %d", start, match, length);
684		bb_error_msg("invalid match");
685	}
686	if (verbose > 1) {
687		bb_error_msg("\\[%d,%d]", start - match, length);
688		do {
689			putc(G1.window[start++], stderr);
690		} while (--length != 0);
691	}
692}
693#else
694#  define check_match(start, match, length) ((void)0)
695#endif
696
697
698/* trees.c -- output deflated data using Huffman coding
699 * Copyright (C) 1992-1993 Jean-loup Gailly
700 * This is free software; you can redistribute it and/or modify it under the
701 * terms of the GNU General Public License, see the file COPYING.
702 */
703
704/*  PURPOSE
705 *      Encode various sets of source values using variable-length
706 *      binary code trees.
707 *
708 *  DISCUSSION
709 *      The PKZIP "deflation" process uses several Huffman trees. The more
710 *      common source values are represented by shorter bit sequences.
711 *
712 *      Each code tree is stored in the ZIP file in a compressed form
713 *      which is itself a Huffman encoding of the lengths of
714 *      all the code strings (in ascending order by source values).
715 *      The actual code strings are reconstructed from the lengths in
716 *      the UNZIP process, as described in the "application note"
717 *      (APPNOTE.TXT) distributed as part of PKWARE's PKZIP program.
718 *
719 *  REFERENCES
720 *      Lynch, Thomas J.
721 *          Data Compression:  Techniques and Applications, pp. 53-55.
722 *          Lifetime Learning Publications, 1985.  ISBN 0-534-03418-7.
723 *
724 *      Storer, James A.
725 *          Data Compression:  Methods and Theory, pp. 49-50.
726 *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
727 *
728 *      Sedgewick, R.
729 *          Algorithms, p290.
730 *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
731 *
732 *  INTERFACE
733 *      void ct_init()
734 *          Allocate the match buffer, initialize the various tables [and save
735 *          the location of the internal file attribute (ascii/binary) and
736 *          method (DEFLATE/STORE) -- deleted in bbox]
737 *
738 *      void ct_tally(int dist, int lc);
739 *          Save the match info and tally the frequency counts.
740 *
741 *      ulg flush_block(char *buf, ulg stored_len, int eof)
742 *          Determine the best encoding for the current block: dynamic trees,
743 *          static trees or store, and output the encoded block to the zip
744 *          file. Returns the total compressed length for the file so far.
745 */
746
747#define MAX_BITS 15
748/* All codes must not exceed MAX_BITS bits */
749
750#define MAX_BL_BITS 7
751/* Bit length codes must not exceed MAX_BL_BITS bits */
752
753#define LENGTH_CODES 29
754/* number of length codes, not counting the special END_BLOCK code */
755
756#define LITERALS  256
757/* number of literal bytes 0..255 */
758
759#define END_BLOCK 256
760/* end of block literal code */
761
762#define L_CODES (LITERALS+1+LENGTH_CODES)
763/* number of Literal or Length codes, including the END_BLOCK code */
764
765#define D_CODES   30
766/* number of distance codes */
767
768#define BL_CODES  19
769/* number of codes used to transfer the bit lengths */
770
771/* extra bits for each length code */
772static const uint8_t extra_lbits[LENGTH_CODES] ALIGN1 = {
773	0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4,
774	4, 4, 5, 5, 5, 5, 0
775};
776
777/* extra bits for each distance code */
778static const uint8_t extra_dbits[D_CODES] ALIGN1 = {
779	0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9,
780	10, 10, 11, 11, 12, 12, 13, 13
781};
782
783/* extra bits for each bit length code */
784static const uint8_t extra_blbits[BL_CODES] ALIGN1 = {
785	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 7 };
786
787/* number of codes at each bit length for an optimal tree */
788static const uint8_t bl_order[BL_CODES] ALIGN1 = {
789	16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15 };
790
791#define STORED_BLOCK 0
792#define STATIC_TREES 1
793#define DYN_TREES    2
794/* The three kinds of block type */
795
796#ifndef LIT_BUFSIZE
797#  ifdef SMALL_MEM
798#    define LIT_BUFSIZE  0x2000
799#  else
800#  ifdef MEDIUM_MEM
801#    define LIT_BUFSIZE  0x4000
802#  else
803#    define LIT_BUFSIZE  0x8000
804#  endif
805#  endif
806#endif
807#ifndef DIST_BUFSIZE
808#  define DIST_BUFSIZE  LIT_BUFSIZE
809#endif
810/* Sizes of match buffers for literals/lengths and distances.  There are
811 * 4 reasons for limiting LIT_BUFSIZE to 64K:
812 *   - frequencies can be kept in 16 bit counters
813 *   - if compression is not successful for the first block, all input data is
814 *     still in the window so we can still emit a stored block even when input
815 *     comes from standard input.  (This can also be done for all blocks if
816 *     LIT_BUFSIZE is not greater than 32K.)
817 *   - if compression is not successful for a file smaller than 64K, we can
818 *     even emit a stored file instead of a stored block (saving 5 bytes).
819 *   - creating new Huffman trees less frequently may not provide fast
820 *     adaptation to changes in the input data statistics. (Take for
821 *     example a binary file with poorly compressible code followed by
822 *     a highly compressible string table.) Smaller buffer sizes give
823 *     fast adaptation but have of course the overhead of transmitting trees
824 *     more frequently.
825 *   - I can't count above 4
826 * The current code is general and allows DIST_BUFSIZE < LIT_BUFSIZE (to save
827 * memory at the expense of compression). Some optimizations would be possible
828 * if we rely on DIST_BUFSIZE == LIT_BUFSIZE.
829 */
830#define REP_3_6      16
831/* repeat previous bit length 3-6 times (2 bits of repeat count) */
832#define REPZ_3_10    17
833/* repeat a zero length 3-10 times  (3 bits of repeat count) */
834#define REPZ_11_138  18
835/* repeat a zero length 11-138 times  (7 bits of repeat count) */
836
837/* ===========================================================================
838*/
839/* Data structure describing a single value and its code string. */
840typedef struct ct_data {
841	union {
842		ush freq;		/* frequency count */
843		ush code;		/* bit string */
844	} fc;
845	union {
846		ush dad;		/* father node in Huffman tree */
847		ush len;		/* length of bit string */
848	} dl;
849} ct_data;
850
851#define Freq fc.freq
852#define Code fc.code
853#define Dad  dl.dad
854#define Len  dl.len
855
856#define HEAP_SIZE (2*L_CODES + 1)
857/* maximum heap size */
858
859typedef struct tree_desc {
860	ct_data *dyn_tree;	/* the dynamic tree */
861	ct_data *static_tree;	/* corresponding static tree or NULL */
862	const uint8_t *extra_bits;	/* extra bits for each code or NULL */
863	int extra_base;		/* base index for extra_bits */
864	int elems;			/* max number of elements in the tree */
865	int max_length;		/* max bit length for the codes */
866	int max_code;		/* largest code with non zero frequency */
867} tree_desc;
868
869struct globals2 {
870
871	ush heap[HEAP_SIZE];     /* heap used to build the Huffman trees */
872	int heap_len;            /* number of elements in the heap */
873	int heap_max;            /* element of largest frequency */
874
875/* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
876 * The same heap array is used to build all trees.
877 */
878
879	ct_data dyn_ltree[HEAP_SIZE];	/* literal and length tree */
880	ct_data dyn_dtree[2 * D_CODES + 1];	/* distance tree */
881
882	ct_data static_ltree[L_CODES + 2];
883
884/* The static literal tree. Since the bit lengths are imposed, there is no
885 * need for the L_CODES extra codes used during heap construction. However
886 * The codes 286 and 287 are needed to build a canonical tree (see ct_init
887 * below).
888 */
889
890	ct_data static_dtree[D_CODES];
891
892/* The static distance tree. (Actually a trivial tree since all codes use
893 * 5 bits.)
894 */
895
896	ct_data bl_tree[2 * BL_CODES + 1];
897
898/* Huffman tree for the bit lengths */
899
900	tree_desc l_desc;
901	tree_desc d_desc;
902	tree_desc bl_desc;
903
904	ush bl_count[MAX_BITS + 1];
905
906/* The lengths of the bit length codes are sent in order of decreasing
907 * probability, to avoid transmitting the lengths for unused bit length codes.
908 */
909
910	uch depth[2 * L_CODES + 1];
911
912/* Depth of each subtree used as tie breaker for trees of equal frequency */
913
914	uch length_code[MAX_MATCH - MIN_MATCH + 1];
915
916/* length code for each normalized match length (0 == MIN_MATCH) */
917
918	uch dist_code[512];
919
920/* distance codes. The first 256 values correspond to the distances
921 * 3 .. 258, the last 256 values correspond to the top 8 bits of
922 * the 15 bit distances.
923 */
924
925	int base_length[LENGTH_CODES];
926
927/* First normalized length for each code (0 = MIN_MATCH) */
928
929	int base_dist[D_CODES];
930
931/* First normalized distance for each code (0 = distance of 1) */
932
933	uch flag_buf[LIT_BUFSIZE / 8];
934
935/* flag_buf is a bit array distinguishing literals from lengths in
936 * l_buf, thus indicating the presence or absence of a distance.
937 */
938
939	unsigned last_lit;       /* running index in l_buf */
940	unsigned last_dist;      /* running index in d_buf */
941	unsigned last_flags;     /* running index in flag_buf */
942	uch flags;               /* current flags not yet saved in flag_buf */
943	uch flag_bit;            /* current bit used in flags */
944
945/* bits are filled in flags starting at bit 0 (least significant).
946 * Note: these flags are overkill in the current code since we don't
947 * take advantage of DIST_BUFSIZE == LIT_BUFSIZE.
948 */
949
950	ulg opt_len;             /* bit length of current block with optimal trees */
951	ulg static_len;          /* bit length of current block with static trees */
952
953	ulg compressed_len;      /* total bit length of compressed file */
954};
955
956#define G2ptr ((struct globals2*)(ptr_to_globals))
957#define G2 (*G2ptr)
958
959
960/* ===========================================================================
961 */
962static void gen_codes(ct_data * tree, int max_code);
963static void build_tree(tree_desc * desc);
964static void scan_tree(ct_data * tree, int max_code);
965static void send_tree(ct_data * tree, int max_code);
966static int build_bl_tree(void);
967static void send_all_trees(int lcodes, int dcodes, int blcodes);
968static void compress_block(ct_data * ltree, ct_data * dtree);
969
970
971#ifndef DEBUG
972/* Send a code of the given tree. c and tree must not have side effects */
973#  define SEND_CODE(c, tree) send_bits(tree[c].Code, tree[c].Len)
974#else
975#  define SEND_CODE(c, tree) \
976{ \
977	if (verbose > 1) bb_error_msg("\ncd %3d ",(c)); \
978	send_bits(tree[c].Code, tree[c].Len); \
979}
980#endif
981
982#define D_CODE(dist) \
983	((dist) < 256 ? G2.dist_code[dist] : G2.dist_code[256 + ((dist)>>7)])
984/* Mapping from a distance to a distance code. dist is the distance - 1 and
985 * must not have side effects. dist_code[256] and dist_code[257] are never
986 * used.
987 * The arguments must not have side effects.
988 */
989
990
991/* ===========================================================================
992 * Initialize a new block.
993 */
994static void init_block(void)
995{
996	int n; /* iterates over tree elements */
997
998	/* Initialize the trees. */
999	for (n = 0; n < L_CODES; n++)
1000		G2.dyn_ltree[n].Freq = 0;
1001	for (n = 0; n < D_CODES; n++)
1002		G2.dyn_dtree[n].Freq = 0;
1003	for (n = 0; n < BL_CODES; n++)
1004		G2.bl_tree[n].Freq = 0;
1005
1006	G2.dyn_ltree[END_BLOCK].Freq = 1;
1007	G2.opt_len = G2.static_len = 0;
1008	G2.last_lit = G2.last_dist = G2.last_flags = 0;
1009	G2.flags = 0;
1010	G2.flag_bit = 1;
1011}
1012
1013
1014/* ===========================================================================
1015 * Restore the heap property by moving down the tree starting at node k,
1016 * exchanging a node with the smallest of its two sons if necessary, stopping
1017 * when the heap property is re-established (each father smaller than its
1018 * two sons).
1019 */
1020
1021/* Compares to subtrees, using the tree depth as tie breaker when
1022 * the subtrees have equal frequency. This minimizes the worst case length. */
1023#define SMALLER(tree, n, m) \
1024	(tree[n].Freq < tree[m].Freq \
1025	|| (tree[n].Freq == tree[m].Freq && G2.depth[n] <= G2.depth[m]))
1026
1027static void pqdownheap(ct_data * tree, int k)
1028{
1029	int v = G2.heap[k];
1030	int j = k << 1;		/* left son of k */
1031
1032	while (j <= G2.heap_len) {
1033		/* Set j to the smallest of the two sons: */
1034		if (j < G2.heap_len && SMALLER(tree, G2.heap[j + 1], G2.heap[j]))
1035			j++;
1036
1037		/* Exit if v is smaller than both sons */
1038		if (SMALLER(tree, v, G2.heap[j]))
1039			break;
1040
1041		/* Exchange v with the smallest son */
1042		G2.heap[k] = G2.heap[j];
1043		k = j;
1044
1045		/* And continue down the tree, setting j to the left son of k */
1046		j <<= 1;
1047	}
1048	G2.heap[k] = v;
1049}
1050
1051
1052/* ===========================================================================
1053 * Compute the optimal bit lengths for a tree and update the total bit length
1054 * for the current block.
1055 * IN assertion: the fields freq and dad are set, heap[heap_max] and
1056 *    above are the tree nodes sorted by increasing frequency.
1057 * OUT assertions: the field len is set to the optimal bit length, the
1058 *     array bl_count contains the frequencies for each bit length.
1059 *     The length opt_len is updated; static_len is also updated if stree is
1060 *     not null.
1061 */
1062static void gen_bitlen(tree_desc * desc)
1063{
1064	ct_data *tree = desc->dyn_tree;
1065	const uint8_t *extra = desc->extra_bits;
1066	int base = desc->extra_base;
1067	int max_code = desc->max_code;
1068	int max_length = desc->max_length;
1069	ct_data *stree = desc->static_tree;
1070	int h;				/* heap index */
1071	int n, m;			/* iterate over the tree elements */
1072	int bits;			/* bit length */
1073	int xbits;			/* extra bits */
1074	ush f;				/* frequency */
1075	int overflow = 0;	/* number of elements with bit length too large */
1076
1077	for (bits = 0; bits <= MAX_BITS; bits++)
1078		G2.bl_count[bits] = 0;
1079
1080	/* In a first pass, compute the optimal bit lengths (which may
1081	 * overflow in the case of the bit length tree).
1082	 */
1083	tree[G2.heap[G2.heap_max]].Len = 0;	/* root of the heap */
1084
1085	for (h = G2.heap_max + 1; h < HEAP_SIZE; h++) {
1086		n = G2.heap[h];
1087		bits = tree[tree[n].Dad].Len + 1;
1088		if (bits > max_length) {
1089			bits = max_length;
1090			overflow++;
1091		}
1092		tree[n].Len = (ush) bits;
1093		/* We overwrite tree[n].Dad which is no longer needed */
1094
1095		if (n > max_code)
1096			continue;	/* not a leaf node */
1097
1098		G2.bl_count[bits]++;
1099		xbits = 0;
1100		if (n >= base)
1101			xbits = extra[n - base];
1102		f = tree[n].Freq;
1103		G2.opt_len += (ulg) f *(bits + xbits);
1104
1105		if (stree)
1106			G2.static_len += (ulg) f * (stree[n].Len + xbits);
1107	}
1108	if (overflow == 0)
1109		return;
1110
1111	Trace((stderr, "\nbit length overflow\n"));
1112	/* This happens for example on obj2 and pic of the Calgary corpus */
1113
1114	/* Find the first bit length which could increase: */
1115	do {
1116		bits = max_length - 1;
1117		while (G2.bl_count[bits] == 0)
1118			bits--;
1119		G2.bl_count[bits]--;	/* move one leaf down the tree */
1120		G2.bl_count[bits + 1] += 2;	/* move one overflow item as its brother */
1121		G2.bl_count[max_length]--;
1122		/* The brother of the overflow item also moves one step up,
1123		 * but this does not affect bl_count[max_length]
1124		 */
1125		overflow -= 2;
1126	} while (overflow > 0);
1127
1128	/* Now recompute all bit lengths, scanning in increasing frequency.
1129	 * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
1130	 * lengths instead of fixing only the wrong ones. This idea is taken
1131	 * from 'ar' written by Haruhiko Okumura.)
1132	 */
1133	for (bits = max_length; bits != 0; bits--) {
1134		n = G2.bl_count[bits];
1135		while (n != 0) {
1136			m = G2.heap[--h];
1137			if (m > max_code)
1138				continue;
1139			if (tree[m].Len != (unsigned) bits) {
1140				Trace((stderr, "code %d bits %d->%d\n", m, tree[m].Len, bits));
1141				G2.opt_len += ((int32_t) bits - tree[m].Len) * tree[m].Freq;
1142				tree[m].Len = bits;
1143			}
1144			n--;
1145		}
1146	}
1147}
1148
1149
1150/* ===========================================================================
1151 * Generate the codes for a given tree and bit counts (which need not be
1152 * optimal).
1153 * IN assertion: the array bl_count contains the bit length statistics for
1154 * the given tree and the field len is set for all tree elements.
1155 * OUT assertion: the field code is set for all tree elements of non
1156 *     zero code length.
1157 */
1158static void gen_codes(ct_data * tree, int max_code)
1159{
1160	ush next_code[MAX_BITS + 1];	/* next code value for each bit length */
1161	ush code = 0;		/* running code value */
1162	int bits;			/* bit index */
1163	int n;				/* code index */
1164
1165	/* The distribution counts are first used to generate the code values
1166	 * without bit reversal.
1167	 */
1168	for (bits = 1; bits <= MAX_BITS; bits++) {
1169		next_code[bits] = code = (code + G2.bl_count[bits - 1]) << 1;
1170	}
1171	/* Check that the bit counts in bl_count are consistent. The last code
1172	 * must be all ones.
1173	 */
1174	Assert(code + G2.bl_count[MAX_BITS] - 1 == (1 << MAX_BITS) - 1,
1175		   "inconsistent bit counts");
1176	Tracev((stderr, "\ngen_codes: max_code %d ", max_code));
1177
1178	for (n = 0; n <= max_code; n++) {
1179		int len = tree[n].Len;
1180
1181		if (len == 0)
1182			continue;
1183		/* Now reverse the bits */
1184		tree[n].Code = bi_reverse(next_code[len]++, len);
1185
1186		Tracec(tree != G2.static_ltree,
1187			   (stderr, "\nn %3d %c l %2d c %4x (%x) ", n,
1188				(isgraph(n) ? n : ' '), len, tree[n].Code,
1189				next_code[len] - 1));
1190	}
1191}
1192
1193
1194/* ===========================================================================
1195 * Construct one Huffman tree and assigns the code bit strings and lengths.
1196 * Update the total bit length for the current block.
1197 * IN assertion: the field freq is set for all tree elements.
1198 * OUT assertions: the fields len and code are set to the optimal bit length
1199 *     and corresponding code. The length opt_len is updated; static_len is
1200 *     also updated if stree is not null. The field max_code is set.
1201 */
1202
1203/* Remove the smallest element from the heap and recreate the heap with
1204 * one less element. Updates heap and heap_len. */
1205
1206#define SMALLEST 1
1207/* Index within the heap array of least frequent node in the Huffman tree */
1208
1209#define PQREMOVE(tree, top) \
1210do { \
1211	top = G2.heap[SMALLEST]; \
1212	G2.heap[SMALLEST] = G2.heap[G2.heap_len--]; \
1213	pqdownheap(tree, SMALLEST); \
1214} while (0)
1215
1216static void build_tree(tree_desc * desc)
1217{
1218	ct_data *tree = desc->dyn_tree;
1219	ct_data *stree = desc->static_tree;
1220	int elems = desc->elems;
1221	int n, m;			/* iterate over heap elements */
1222	int max_code = -1;	/* largest code with non zero frequency */
1223	int node = elems;	/* next internal node of the tree */
1224
1225	/* Construct the initial heap, with least frequent element in
1226	 * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
1227	 * heap[0] is not used.
1228	 */
1229	G2.heap_len = 0;
1230	G2.heap_max = HEAP_SIZE;
1231
1232	for (n = 0; n < elems; n++) {
1233		if (tree[n].Freq != 0) {
1234			G2.heap[++G2.heap_len] = max_code = n;
1235			G2.depth[n] = 0;
1236		} else {
1237			tree[n].Len = 0;
1238		}
1239	}
1240
1241	/* The pkzip format requires that at least one distance code exists,
1242	 * and that at least one bit should be sent even if there is only one
1243	 * possible code. So to avoid special checks later on we force at least
1244	 * two codes of non zero frequency.
1245	 */
1246	while (G2.heap_len < 2) {
1247		int new = G2.heap[++G2.heap_len] = (max_code < 2 ? ++max_code : 0);
1248
1249		tree[new].Freq = 1;
1250		G2.depth[new] = 0;
1251		G2.opt_len--;
1252		if (stree)
1253			G2.static_len -= stree[new].Len;
1254		/* new is 0 or 1 so it does not have extra bits */
1255	}
1256	desc->max_code = max_code;
1257
1258	/* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
1259	 * establish sub-heaps of increasing lengths:
1260	 */
1261	for (n = G2.heap_len / 2; n >= 1; n--)
1262		pqdownheap(tree, n);
1263
1264	/* Construct the Huffman tree by repeatedly combining the least two
1265	 * frequent nodes.
1266	 */
1267	do {
1268		PQREMOVE(tree, n);	/* n = node of least frequency */
1269		m = G2.heap[SMALLEST];	/* m = node of next least frequency */
1270
1271		G2.heap[--G2.heap_max] = n;	/* keep the nodes sorted by frequency */
1272		G2.heap[--G2.heap_max] = m;
1273
1274		/* Create a new node father of n and m */
1275		tree[node].Freq = tree[n].Freq + tree[m].Freq;
1276		G2.depth[node] = MAX(G2.depth[n], G2.depth[m]) + 1;
1277		tree[n].Dad = tree[m].Dad = (ush) node;
1278#ifdef DUMP_BL_TREE
1279		if (tree == G2.bl_tree) {
1280			bb_error_msg("\nnode %d(%d), sons %d(%d) %d(%d)",
1281					node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
1282		}
1283#endif
1284		/* and insert the new node in the heap */
1285		G2.heap[SMALLEST] = node++;
1286		pqdownheap(tree, SMALLEST);
1287
1288	} while (G2.heap_len >= 2);
1289
1290	G2.heap[--G2.heap_max] = G2.heap[SMALLEST];
1291
1292	/* At this point, the fields freq and dad are set. We can now
1293	 * generate the bit lengths.
1294	 */
1295	gen_bitlen((tree_desc *) desc);
1296
1297	/* The field len is now set, we can generate the bit codes */
1298	gen_codes((ct_data *) tree, max_code);
1299}
1300
1301
1302/* ===========================================================================
1303 * Scan a literal or distance tree to determine the frequencies of the codes
1304 * in the bit length tree. Updates opt_len to take into account the repeat
1305 * counts. (The contribution of the bit length codes will be added later
1306 * during the construction of bl_tree.)
1307 */
1308static void scan_tree(ct_data * tree, int max_code)
1309{
1310	int n;				/* iterates over all tree elements */
1311	int prevlen = -1;	/* last emitted length */
1312	int curlen;			/* length of current code */
1313	int nextlen = tree[0].Len;	/* length of next code */
1314	int count = 0;		/* repeat count of the current code */
1315	int max_count = 7;	/* max repeat count */
1316	int min_count = 4;	/* min repeat count */
1317
1318	if (nextlen == 0) {
1319		max_count = 138;
1320		min_count = 3;
1321	}
1322	tree[max_code + 1].Len = 0xffff; /* guard */
1323
1324	for (n = 0; n <= max_code; n++) {
1325		curlen = nextlen;
1326		nextlen = tree[n + 1].Len;
1327		if (++count < max_count && curlen == nextlen)
1328			continue;
1329
1330		if (count < min_count) {
1331			G2.bl_tree[curlen].Freq += count;
1332		} else if (curlen != 0) {
1333			if (curlen != prevlen)
1334				G2.bl_tree[curlen].Freq++;
1335			G2.bl_tree[REP_3_6].Freq++;
1336		} else if (count <= 10) {
1337			G2.bl_tree[REPZ_3_10].Freq++;
1338		} else {
1339			G2.bl_tree[REPZ_11_138].Freq++;
1340		}
1341		count = 0;
1342		prevlen = curlen;
1343
1344		max_count = 7;
1345		min_count = 4;
1346		if (nextlen == 0) {
1347			max_count = 138;
1348			min_count = 3;
1349		} else if (curlen == nextlen) {
1350			max_count = 6;
1351			min_count = 3;
1352		}
1353	}
1354}
1355
1356
1357/* ===========================================================================
1358 * Send a literal or distance tree in compressed form, using the codes in
1359 * bl_tree.
1360 */
1361static void send_tree(ct_data * tree, int max_code)
1362{
1363	int n;				/* iterates over all tree elements */
1364	int prevlen = -1;	/* last emitted length */
1365	int curlen;			/* length of current code */
1366	int nextlen = tree[0].Len;	/* length of next code */
1367	int count = 0;		/* repeat count of the current code */
1368	int max_count = 7;	/* max repeat count */
1369	int min_count = 4;	/* min repeat count */
1370
1371/* tree[max_code+1].Len = -1; *//* guard already set */
1372	if (nextlen == 0)
1373		max_count = 138, min_count = 3;
1374
1375	for (n = 0; n <= max_code; n++) {
1376		curlen = nextlen;
1377		nextlen = tree[n + 1].Len;
1378		if (++count < max_count && curlen == nextlen) {
1379			continue;
1380		} else if (count < min_count) {
1381			do {
1382				SEND_CODE(curlen, G2.bl_tree);
1383			} while (--count);
1384		} else if (curlen != 0) {
1385			if (curlen != prevlen) {
1386				SEND_CODE(curlen, G2.bl_tree);
1387				count--;
1388			}
1389			Assert(count >= 3 && count <= 6, " 3_6?");
1390			SEND_CODE(REP_3_6, G2.bl_tree);
1391			send_bits(count - 3, 2);
1392		} else if (count <= 10) {
1393			SEND_CODE(REPZ_3_10, G2.bl_tree);
1394			send_bits(count - 3, 3);
1395		} else {
1396			SEND_CODE(REPZ_11_138, G2.bl_tree);
1397			send_bits(count - 11, 7);
1398		}
1399		count = 0;
1400		prevlen = curlen;
1401		if (nextlen == 0) {
1402			max_count = 138;
1403			min_count = 3;
1404		} else if (curlen == nextlen) {
1405			max_count = 6;
1406			min_count = 3;
1407		} else {
1408			max_count = 7;
1409			min_count = 4;
1410		}
1411	}
1412}
1413
1414
1415/* ===========================================================================
1416 * Construct the Huffman tree for the bit lengths and return the index in
1417 * bl_order of the last bit length code to send.
1418 */
1419static int build_bl_tree(void)
1420{
1421	int max_blindex;	/* index of last bit length code of non zero freq */
1422
1423	/* Determine the bit length frequencies for literal and distance trees */
1424	scan_tree(G2.dyn_ltree, G2.l_desc.max_code);
1425	scan_tree(G2.dyn_dtree, G2.d_desc.max_code);
1426
1427	/* Build the bit length tree: */
1428	build_tree(&G2.bl_desc);
1429	/* opt_len now includes the length of the tree representations, except
1430	 * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
1431	 */
1432
1433	/* Determine the number of bit length codes to send. The pkzip format
1434	 * requires that at least 4 bit length codes be sent. (appnote.txt says
1435	 * 3 but the actual value used is 4.)
1436	 */
1437	for (max_blindex = BL_CODES - 1; max_blindex >= 3; max_blindex--) {
1438		if (G2.bl_tree[bl_order[max_blindex]].Len != 0)
1439			break;
1440	}
1441	/* Update opt_len to include the bit length tree and counts */
1442	G2.opt_len += 3 * (max_blindex + 1) + 5 + 5 + 4;
1443	Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld", G2.opt_len, G2.static_len));
1444
1445	return max_blindex;
1446}
1447
1448
1449/* ===========================================================================
1450 * Send the header for a block using dynamic Huffman trees: the counts, the
1451 * lengths of the bit length codes, the literal tree and the distance tree.
1452 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
1453 */
1454static void send_all_trees(int lcodes, int dcodes, int blcodes)
1455{
1456	int rank;			/* index in bl_order */
1457
1458	Assert(lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
1459	Assert(lcodes <= L_CODES && dcodes <= D_CODES
1460		   && blcodes <= BL_CODES, "too many codes");
1461	Tracev((stderr, "\nbl counts: "));
1462	send_bits(lcodes - 257, 5);	/* not +255 as stated in appnote.txt */
1463	send_bits(dcodes - 1, 5);
1464	send_bits(blcodes - 4, 4);	/* not -3 as stated in appnote.txt */
1465	for (rank = 0; rank < blcodes; rank++) {
1466		Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
1467		send_bits(G2.bl_tree[bl_order[rank]].Len, 3);
1468	}
1469	Tracev((stderr, "\nbl tree: sent %ld", G1.bits_sent));
1470
1471	send_tree((ct_data *) G2.dyn_ltree, lcodes - 1);	/* send the literal tree */
1472	Tracev((stderr, "\nlit tree: sent %ld", G1.bits_sent));
1473
1474	send_tree((ct_data *) G2.dyn_dtree, dcodes - 1);	/* send the distance tree */
1475	Tracev((stderr, "\ndist tree: sent %ld", G1.bits_sent));
1476}
1477
1478
1479/* ===========================================================================
1480 * Save the match info and tally the frequency counts. Return true if
1481 * the current block must be flushed.
1482 */
1483static int ct_tally(int dist, int lc)
1484{
1485	G1.l_buf[G2.last_lit++] = lc;
1486	if (dist == 0) {
1487		/* lc is the unmatched char */
1488		G2.dyn_ltree[lc].Freq++;
1489	} else {
1490		/* Here, lc is the match length - MIN_MATCH */
1491		dist--;			/* dist = match distance - 1 */
1492		Assert((ush) dist < (ush) MAX_DIST
1493		 && (ush) lc <= (ush) (MAX_MATCH - MIN_MATCH)
1494		 && (ush) D_CODE(dist) < (ush) D_CODES, "ct_tally: bad match"
1495		);
1496
1497		G2.dyn_ltree[G2.length_code[lc] + LITERALS + 1].Freq++;
1498		G2.dyn_dtree[D_CODE(dist)].Freq++;
1499
1500		G1.d_buf[G2.last_dist++] = dist;
1501		G2.flags |= G2.flag_bit;
1502	}
1503	G2.flag_bit <<= 1;
1504
1505	/* Output the flags if they fill a byte: */
1506	if ((G2.last_lit & 7) == 0) {
1507		G2.flag_buf[G2.last_flags++] = G2.flags;
1508		G2.flags = 0;
1509		G2.flag_bit = 1;
1510	}
1511	/* Try to guess if it is profitable to stop the current block here */
1512	if ((G2.last_lit & 0xfff) == 0) {
1513		/* Compute an upper bound for the compressed length */
1514		ulg out_length = G2.last_lit * 8L;
1515		ulg in_length = (ulg) G1.strstart - G1.block_start;
1516		int dcode;
1517
1518		for (dcode = 0; dcode < D_CODES; dcode++) {
1519			out_length += G2.dyn_dtree[dcode].Freq * (5L + extra_dbits[dcode]);
1520		}
1521		out_length >>= 3;
1522		Trace((stderr,
1523			   "\nlast_lit %u, last_dist %u, in %ld, out ~%ld(%ld%%) ",
1524			   G2.last_lit, G2.last_dist, in_length, out_length,
1525			   100L - out_length * 100L / in_length));
1526		if (G2.last_dist < G2.last_lit / 2 && out_length < in_length / 2)
1527			return 1;
1528	}
1529	return (G2.last_lit == LIT_BUFSIZE - 1 || G2.last_dist == DIST_BUFSIZE);
1530	/* We avoid equality with LIT_BUFSIZE because of wraparound at 64K
1531	 * on 16 bit machines and because stored blocks are restricted to
1532	 * 64K-1 bytes.
1533	 */
1534}
1535
1536/* ===========================================================================
1537 * Send the block data compressed using the given Huffman trees
1538 */
1539static void compress_block(ct_data * ltree, ct_data * dtree)
1540{
1541	unsigned dist;          /* distance of matched string */
1542	int lc;                 /* match length or unmatched char (if dist == 0) */
1543	unsigned lx = 0;        /* running index in l_buf */
1544	unsigned dx = 0;        /* running index in d_buf */
1545	unsigned fx = 0;        /* running index in flag_buf */
1546	uch flag = 0;           /* current flags */
1547	unsigned code;          /* the code to send */
1548	int extra;              /* number of extra bits to send */
1549
1550	if (G2.last_lit != 0) do {
1551		if ((lx & 7) == 0)
1552			flag = G2.flag_buf[fx++];
1553		lc = G1.l_buf[lx++];
1554		if ((flag & 1) == 0) {
1555			SEND_CODE(lc, ltree);	/* send a literal byte */
1556			Tracecv(isgraph(lc), (stderr, " '%c' ", lc));
1557		} else {
1558			/* Here, lc is the match length - MIN_MATCH */
1559			code = G2.length_code[lc];
1560			SEND_CODE(code + LITERALS + 1, ltree);	/* send the length code */
1561			extra = extra_lbits[code];
1562			if (extra != 0) {
1563				lc -= G2.base_length[code];
1564				send_bits(lc, extra);	/* send the extra length bits */
1565			}
1566			dist = G1.d_buf[dx++];
1567			/* Here, dist is the match distance - 1 */
1568			code = D_CODE(dist);
1569			Assert(code < D_CODES, "bad d_code");
1570
1571			SEND_CODE(code, dtree);	/* send the distance code */
1572			extra = extra_dbits[code];
1573			if (extra != 0) {
1574				dist -= G2.base_dist[code];
1575				send_bits(dist, extra);	/* send the extra distance bits */
1576			}
1577		}			/* literal or match pair ? */
1578		flag >>= 1;
1579	} while (lx < G2.last_lit);
1580
1581	SEND_CODE(END_BLOCK, ltree);
1582}
1583
1584
1585/* ===========================================================================
1586 * Determine the best encoding for the current block: dynamic trees, static
1587 * trees or store, and output the encoded block to the zip file. This function
1588 * returns the total compressed length for the file so far.
1589 */
1590static ulg flush_block(char *buf, ulg stored_len, int eof)
1591{
1592	ulg opt_lenb, static_lenb;      /* opt_len and static_len in bytes */
1593	int max_blindex;                /* index of last bit length code of non zero freq */
1594
1595	G2.flag_buf[G2.last_flags] = G2.flags;   /* Save the flags for the last 8 items */
1596
1597	/* Construct the literal and distance trees */
1598	build_tree(&G2.l_desc);
1599	Tracev((stderr, "\nlit data: dyn %ld, stat %ld", G2.opt_len, G2.static_len));
1600
1601	build_tree(&G2.d_desc);
1602	Tracev((stderr, "\ndist data: dyn %ld, stat %ld", G2.opt_len, G2.static_len));
1603	/* At this point, opt_len and static_len are the total bit lengths of
1604	 * the compressed block data, excluding the tree representations.
1605	 */
1606
1607	/* Build the bit length tree for the above two trees, and get the index
1608	 * in bl_order of the last bit length code to send.
1609	 */
1610	max_blindex = build_bl_tree();
1611
1612	/* Determine the best encoding. Compute first the block length in bytes */
1613	opt_lenb = (G2.opt_len + 3 + 7) >> 3;
1614	static_lenb = (G2.static_len + 3 + 7) >> 3;
1615
1616	Trace((stderr,
1617		   "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u dist %u ",
1618		   opt_lenb, G2.opt_len, static_lenb, G2.static_len, stored_len,
1619		   G2.last_lit, G2.last_dist));
1620
1621	if (static_lenb <= opt_lenb)
1622		opt_lenb = static_lenb;
1623
1624	/* If compression failed and this is the first and last block,
1625	 * and if the zip file can be seeked (to rewrite the local header),
1626	 * the whole file is transformed into a stored file:
1627	 */
1628	if (stored_len <= opt_lenb && eof && G2.compressed_len == 0L && seekable()) {
1629		/* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */
1630		if (buf == NULL)
1631			bb_error_msg("block vanished");
1632
1633		copy_block(buf, (unsigned) stored_len, 0);	/* without header */
1634		G2.compressed_len = stored_len << 3;
1635
1636	} else if (stored_len + 4 <= opt_lenb && buf != NULL) {
1637		/* 4: two words for the lengths */
1638		/* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
1639		 * Otherwise we can't have processed more than WSIZE input bytes since
1640		 * the last block flush, because compression would have been
1641		 * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
1642		 * transform a block into a stored block.
1643		 */
1644		send_bits((STORED_BLOCK << 1) + eof, 3);	/* send block type */
1645		G2.compressed_len = (G2.compressed_len + 3 + 7) & ~7L;
1646		G2.compressed_len += (stored_len + 4) << 3;
1647
1648		copy_block(buf, (unsigned) stored_len, 1);	/* with header */
1649
1650	} else if (static_lenb == opt_lenb) {
1651		send_bits((STATIC_TREES << 1) + eof, 3);
1652		compress_block((ct_data *) G2.static_ltree, (ct_data *) G2.static_dtree);
1653		G2.compressed_len += 3 + G2.static_len;
1654	} else {
1655		send_bits((DYN_TREES << 1) + eof, 3);
1656		send_all_trees(G2.l_desc.max_code + 1, G2.d_desc.max_code + 1,
1657					   max_blindex + 1);
1658		compress_block((ct_data *) G2.dyn_ltree, (ct_data *) G2.dyn_dtree);
1659		G2.compressed_len += 3 + G2.opt_len;
1660	}
1661	Assert(G2.compressed_len == G1.bits_sent, "bad compressed size");
1662	init_block();
1663
1664	if (eof) {
1665		bi_windup();
1666		G2.compressed_len += 7;	/* align on byte boundary */
1667	}
1668	Tracev((stderr, "\ncomprlen %lu(%lu) ", G2.compressed_len >> 3,
1669			G2.compressed_len - 7 * eof));
1670
1671	return G2.compressed_len >> 3;
1672}
1673
1674
1675/* ===========================================================================
1676 * Update a hash value with the given input byte
1677 * IN  assertion: all calls to to UPDATE_HASH are made with consecutive
1678 *    input characters, so that a running hash key can be computed from the
1679 *    previous key instead of complete recalculation each time.
1680 */
1681#define UPDATE_HASH(h, c) (h = (((h)<<H_SHIFT) ^ (c)) & HASH_MASK)
1682
1683
1684/* ===========================================================================
1685 * Same as above, but achieves better compression. We use a lazy
1686 * evaluation for matches: a match is finally adopted only if there is
1687 * no better match at the next window position.
1688 *
1689 * Processes a new input file and return its compressed length. Sets
1690 * the compressed length, crc, deflate flags and internal file
1691 * attributes.
1692 */
1693
1694/* Flush the current block, with given end-of-file flag.
1695 * IN assertion: strstart is set to the end of the current match. */
1696#define FLUSH_BLOCK(eof) \
1697	flush_block( \
1698		G1.block_start >= 0L \
1699			? (char*)&G1.window[(unsigned)G1.block_start] \
1700			: (char*)NULL, \
1701		(ulg)G1.strstart - G1.block_start, \
1702		(eof) \
1703	)
1704
1705/* Insert string s in the dictionary and set match_head to the previous head
1706 * of the hash chain (the most recent string with same hash key). Return
1707 * the previous length of the hash chain.
1708 * IN  assertion: all calls to to INSERT_STRING are made with consecutive
1709 *    input characters and the first MIN_MATCH bytes of s are valid
1710 *    (except for the last MIN_MATCH-1 bytes of the input file). */
1711#define INSERT_STRING(s, match_head) \
1712do { \
1713	UPDATE_HASH(G1.ins_h, G1.window[(s) + MIN_MATCH-1]); \
1714	G1.prev[(s) & WMASK] = match_head = head[G1.ins_h]; \
1715	head[G1.ins_h] = (s); \
1716} while (0)
1717
1718static ulg deflate(void)
1719{
1720	IPos hash_head;		/* head of hash chain */
1721	IPos prev_match;	/* previous match */
1722	int flush;			/* set if current block must be flushed */
1723	int match_available = 0;	/* set if previous match exists */
1724	unsigned match_length = MIN_MATCH - 1;	/* length of best match */
1725
1726	/* Process the input block. */
1727	while (G1.lookahead != 0) {
1728		/* Insert the string window[strstart .. strstart+2] in the
1729		 * dictionary, and set hash_head to the head of the hash chain:
1730		 */
1731		INSERT_STRING(G1.strstart, hash_head);
1732
1733		/* Find the longest match, discarding those <= prev_length.
1734		 */
1735		G1.prev_length = match_length;
1736		prev_match = G1.match_start;
1737		match_length = MIN_MATCH - 1;
1738
1739		if (hash_head != 0 && G1.prev_length < max_lazy_match
1740		 && G1.strstart - hash_head <= MAX_DIST
1741		) {
1742			/* To simplify the code, we prevent matches with the string
1743			 * of window index 0 (in particular we have to avoid a match
1744			 * of the string with itself at the start of the input file).
1745			 */
1746			match_length = longest_match(hash_head);
1747			/* longest_match() sets match_start */
1748			if (match_length > G1.lookahead)
1749				match_length = G1.lookahead;
1750
1751			/* Ignore a length 3 match if it is too distant: */
1752			if (match_length == MIN_MATCH && G1.strstart - G1.match_start > TOO_FAR) {
1753				/* If prev_match is also MIN_MATCH, G1.match_start is garbage
1754				 * but we will ignore the current match anyway.
1755				 */
1756				match_length--;
1757			}
1758		}
1759		/* If there was a match at the previous step and the current
1760		 * match is not better, output the previous match:
1761		 */
1762		if (G1.prev_length >= MIN_MATCH && match_length <= G1.prev_length) {
1763			check_match(G1.strstart - 1, prev_match, G1.prev_length);
1764			flush = ct_tally(G1.strstart - 1 - prev_match, G1.prev_length - MIN_MATCH);
1765
1766			/* Insert in hash table all strings up to the end of the match.
1767			 * strstart-1 and strstart are already inserted.
1768			 */
1769			G1.lookahead -= G1.prev_length - 1;
1770			G1.prev_length -= 2;
1771			do {
1772				G1.strstart++;
1773				INSERT_STRING(G1.strstart, hash_head);
1774				/* strstart never exceeds WSIZE-MAX_MATCH, so there are
1775				 * always MIN_MATCH bytes ahead. If lookahead < MIN_MATCH
1776				 * these bytes are garbage, but it does not matter since the
1777				 * next lookahead bytes will always be emitted as literals.
1778				 */
1779			} while (--G1.prev_length != 0);
1780			match_available = 0;
1781			match_length = MIN_MATCH - 1;
1782			G1.strstart++;
1783			if (flush) {
1784				FLUSH_BLOCK(0);
1785				G1.block_start = G1.strstart;
1786			}
1787		} else if (match_available) {
1788			/* If there was no match at the previous position, output a
1789			 * single literal. If there was a match but the current match
1790			 * is longer, truncate the previous match to a single literal.
1791			 */
1792			Tracevv((stderr, "%c", G1.window[G1.strstart - 1]));
1793			if (ct_tally(0, G1.window[G1.strstart - 1])) {
1794				FLUSH_BLOCK(0);
1795				G1.block_start = G1.strstart;
1796			}
1797			G1.strstart++;
1798			G1.lookahead--;
1799		} else {
1800			/* There is no previous match to compare with, wait for
1801			 * the next step to decide.
1802			 */
1803			match_available = 1;
1804			G1.strstart++;
1805			G1.lookahead--;
1806		}
1807		Assert(G1.strstart <= G1.isize && lookahead <= G1.isize, "a bit too far");
1808
1809		/* Make sure that we always have enough lookahead, except
1810		 * at the end of the input file. We need MAX_MATCH bytes
1811		 * for the next match, plus MIN_MATCH bytes to insert the
1812		 * string following the next match.
1813		 */
1814		while (G1.lookahead < MIN_LOOKAHEAD && !G1.eofile)
1815			fill_window();
1816	}
1817	if (match_available)
1818		ct_tally(0, G1.window[G1.strstart - 1]);
1819
1820	return FLUSH_BLOCK(1);	/* eof */
1821}
1822
1823
1824/* ===========================================================================
1825 * Initialize the bit string routines.
1826 */
1827static void bi_init(void)
1828{
1829	G1.bi_buf = 0;
1830	G1.bi_valid = 0;
1831#ifdef DEBUG
1832	G1.bits_sent = 0L;
1833#endif
1834}
1835
1836
1837/* ===========================================================================
1838 * Initialize the "longest match" routines for a new file
1839 */
1840static void lm_init(ush * flagsp)
1841{
1842	unsigned j;
1843
1844	/* Initialize the hash table. */
1845	memset(head, 0, HASH_SIZE * sizeof(*head));
1846	/* prev will be initialized on the fly */
1847
1848	/* speed options for the general purpose bit flag */
1849	*flagsp |= 2;	/* FAST 4, SLOW 2 */
1850	/* ??? reduce max_chain_length for binary files */
1851
1852	G1.strstart = 0;
1853	G1.block_start = 0L;
1854
1855	G1.lookahead = file_read(G1.window,
1856			sizeof(int) <= 2 ? (unsigned) WSIZE : 2 * WSIZE);
1857
1858	if (G1.lookahead == 0 || G1.lookahead == (unsigned) -1) {
1859		G1.eofile = 1;
1860		G1.lookahead = 0;
1861		return;
1862	}
1863	G1.eofile = 0;
1864	/* Make sure that we always have enough lookahead. This is important
1865	 * if input comes from a device such as a tty.
1866	 */
1867	while (G1.lookahead < MIN_LOOKAHEAD && !G1.eofile)
1868		fill_window();
1869
1870	G1.ins_h = 0;
1871	for (j = 0; j < MIN_MATCH - 1; j++)
1872		UPDATE_HASH(G1.ins_h, G1.window[j]);
1873	/* If lookahead < MIN_MATCH, ins_h is garbage, but this is
1874	 * not important since only literal bytes will be emitted.
1875	 */
1876}
1877
1878
1879/* ===========================================================================
1880 * Allocate the match buffer, initialize the various tables and save the
1881 * location of the internal file attribute (ascii/binary) and method
1882 * (DEFLATE/STORE).
1883 * One callsite in zip()
1884 */
1885static void ct_init(void)
1886{
1887	int n;				/* iterates over tree elements */
1888	int length;			/* length value */
1889	int code;			/* code value */
1890	int dist;			/* distance index */
1891
1892	G2.compressed_len = 0L;
1893
1894#ifdef NOT_NEEDED
1895	if (G2.static_dtree[0].Len != 0)
1896		return;			/* ct_init already called */
1897#endif
1898
1899	/* Initialize the mapping length (0..255) -> length code (0..28) */
1900	length = 0;
1901	for (code = 0; code < LENGTH_CODES - 1; code++) {
1902		G2.base_length[code] = length;
1903		for (n = 0; n < (1 << extra_lbits[code]); n++) {
1904			G2.length_code[length++] = code;
1905		}
1906	}
1907	Assert(length == 256, "ct_init: length != 256");
1908	/* Note that the length 255 (match length 258) can be represented
1909	 * in two different ways: code 284 + 5 bits or code 285, so we
1910	 * overwrite length_code[255] to use the best encoding:
1911	 */
1912	G2.length_code[length - 1] = code;
1913
1914	/* Initialize the mapping dist (0..32K) -> dist code (0..29) */
1915	dist = 0;
1916	for (code = 0; code < 16; code++) {
1917		G2.base_dist[code] = dist;
1918		for (n = 0; n < (1 << extra_dbits[code]); n++) {
1919			G2.dist_code[dist++] = code;
1920		}
1921	}
1922	Assert(dist == 256, "ct_init: dist != 256");
1923	dist >>= 7;			/* from now on, all distances are divided by 128 */
1924	for (; code < D_CODES; code++) {
1925		G2.base_dist[code] = dist << 7;
1926		for (n = 0; n < (1 << (extra_dbits[code] - 7)); n++) {
1927			G2.dist_code[256 + dist++] = code;
1928		}
1929	}
1930	Assert(dist == 256, "ct_init: 256+dist != 512");
1931
1932	/* Construct the codes of the static literal tree */
1933	/* already zeroed - it's in bss
1934	for (n = 0; n <= MAX_BITS; n++)
1935		G2.bl_count[n] = 0; */
1936
1937	n = 0;
1938	while (n <= 143) {
1939		G2.static_ltree[n++].Len = 8;
1940		G2.bl_count[8]++;
1941	}
1942	while (n <= 255) {
1943		G2.static_ltree[n++].Len = 9;
1944		G2.bl_count[9]++;
1945	}
1946	while (n <= 279) {
1947		G2.static_ltree[n++].Len = 7;
1948		G2.bl_count[7]++;
1949	}
1950	while (n <= 287) {
1951		G2.static_ltree[n++].Len = 8;
1952		G2.bl_count[8]++;
1953	}
1954	/* Codes 286 and 287 do not exist, but we must include them in the
1955	 * tree construction to get a canonical Huffman tree (longest code
1956	 * all ones)
1957	 */
1958	gen_codes((ct_data *) G2.static_ltree, L_CODES + 1);
1959
1960	/* The static distance tree is trivial: */
1961	for (n = 0; n < D_CODES; n++) {
1962		G2.static_dtree[n].Len = 5;
1963		G2.static_dtree[n].Code = bi_reverse(n, 5);
1964	}
1965
1966	/* Initialize the first block of the first file: */
1967	init_block();
1968}
1969
1970
1971/* ===========================================================================
1972 * Deflate in to out.
1973 * IN assertions: the input and output buffers are cleared.
1974 */
1975
1976static void zip(ulg time_stamp)
1977{
1978	ush deflate_flags = 0;  /* pkzip -es, -en or -ex equivalent */
1979
1980	G1.outcnt = 0;
1981
1982	/* Write the header to the gzip file. See algorithm.doc for the format */
1983	/* magic header for gzip files: 1F 8B */
1984	/* compression method: 8 (DEFLATED) */
1985	/* general flags: 0 */
1986	put_32bit(0x00088b1f);
1987	put_32bit(time_stamp);
1988
1989	/* Write deflated file to zip file */
1990	G1.crc = ~0;
1991
1992	bi_init();
1993	ct_init();
1994	lm_init(&deflate_flags);
1995
1996	put_8bit(deflate_flags);	/* extra flags */
1997	put_8bit(3);	/* OS identifier = 3 (Unix) */
1998
1999	deflate();
2000
2001	/* Write the crc and uncompressed size */
2002	put_32bit(~G1.crc);
2003	put_32bit(G1.isize);
2004
2005	flush_outbuf();
2006}
2007
2008
2009/* ======================================================================== */
2010static
2011char* make_new_name_gzip(char *filename)
2012{
2013	return xasprintf("%s.gz", filename);
2014}
2015
2016static
2017USE_DESKTOP(long long) int pack_gzip(void)
2018{
2019	struct stat s;
2020
2021	clear_bufs();
2022	s.st_ctime = 0;
2023	fstat(STDIN_FILENO, &s);
2024	zip(s.st_ctime);
2025	return 0;
2026}
2027
2028int gzip_main(int argc, char **argv);
2029int gzip_main(int argc, char **argv)
2030{
2031	unsigned opt;
2032
2033	/* Must match bbunzip's constants OPT_STDOUT, OPT_FORCE! */
2034	opt = getopt32(argv, "cfv" USE_GUNZIP("d") "q123456789" );
2035	option_mask32 &= 0x7; /* Clear -d, ignore -q, -0..9 */
2036	//if (opt & 0x1) // -c
2037	//if (opt & 0x2) // -f
2038	//if (opt & 0x4) // -v
2039#if ENABLE_GUNZIP     /* gunzip_main may not be visible... */
2040	if (opt & 0x8) { // -d
2041		return gunzip_main(argc, argv);
2042	}
2043#endif
2044	argv += optind;
2045
2046	PTR_TO_GLOBALS = xzalloc(sizeof(struct globals) + sizeof(struct globals2))
2047			+ sizeof(struct globals);
2048	G2.l_desc.dyn_tree    = G2.dyn_ltree;
2049	G2.l_desc.static_tree = G2.static_ltree;
2050	G2.l_desc.extra_bits  = extra_lbits;
2051	G2.l_desc.extra_base  = LITERALS + 1;
2052	G2.l_desc.elems       = L_CODES;
2053	G2.l_desc.max_length  = MAX_BITS;
2054	//G2.l_desc.max_code    = 0;
2055
2056	G2.d_desc.dyn_tree    = G2.dyn_dtree;
2057	G2.d_desc.static_tree = G2.static_dtree;
2058	G2.d_desc.extra_bits  = extra_dbits;
2059	//G2.d_desc.extra_base  = 0;
2060	G2.d_desc.elems       = D_CODES;
2061	G2.d_desc.max_length  = MAX_BITS;
2062	//G2.d_desc.max_code    = 0;
2063
2064	G2.bl_desc.dyn_tree    = G2.bl_tree;
2065	//G2.bl_desc.static_tree = NULL;
2066	G2.bl_desc.extra_bits  = extra_blbits,
2067	//G2.bl_desc.extra_base  = 0;
2068	G2.bl_desc.elems       = BL_CODES;
2069	G2.bl_desc.max_length  = MAX_BL_BITS;
2070	//G2.bl_desc.max_code    = 0;
2071
2072	/* Allocate all global buffers (for DYN_ALLOC option) */
2073	ALLOC(uch, G1.l_buf, INBUFSIZ);
2074	ALLOC(uch, G1.outbuf, OUTBUFSIZ);
2075	ALLOC(ush, G1.d_buf, DIST_BUFSIZE);
2076	ALLOC(uch, G1.window, 2L * WSIZE);
2077	ALLOC(ush, G1.prev, 1L << BITS);
2078
2079	/* Initialise the CRC32 table */
2080	G1.crc_32_tab = crc32_filltable(NULL, 0);
2081
2082	return bbunpack(argv, make_new_name_gzip, pack_gzip);
2083}
2084