1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Generic socket support routines. Memory allocators, socket lock/release
7 *		handler for protocols to use and generic option handler.
8 *
9 *
10 * Version:	$Id: sock.c,v 1.1.1.1 2007/10/11 23:35:15 Exp $
11 *
12 * Authors:	Ross Biro
13 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
14 *		Florian La Roche, <flla@stud.uni-sb.de>
15 *		Alan Cox, <A.Cox@swansea.ac.uk>
16 *
17 * Fixes:
18 *		Alan Cox	: 	Numerous verify_area() problems
19 *		Alan Cox	:	Connecting on a connecting socket
20 *					now returns an error for tcp.
21 *		Alan Cox	:	sock->protocol is set correctly.
22 *					and is not sometimes left as 0.
23 *		Alan Cox	:	connect handles icmp errors on a
24 *					connect properly. Unfortunately there
25 *					is a restart syscall nasty there. I
26 *					can't match BSD without hacking the C
27 *					library. Ideas urgently sought!
28 *		Alan Cox	:	Disallow bind() to addresses that are
29 *					not ours - especially broadcast ones!!
30 *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
31 *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
32 *					instead they leave that for the DESTROY timer.
33 *		Alan Cox	:	Clean up error flag in accept
34 *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
35 *					was buggy. Put a remove_sock() in the handler
36 *					for memory when we hit 0. Also altered the timer
37 *					code. The ACK stuff can wait and needs major
38 *					TCP layer surgery.
39 *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
40 *					and fixed timer/inet_bh race.
41 *		Alan Cox	:	Added zapped flag for TCP
42 *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
43 *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
44 *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
45 *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
46 *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
47 *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
48 *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
49 *	Pauline Middelink	:	identd support
50 *		Alan Cox	:	Fixed connect() taking signals I think.
51 *		Alan Cox	:	SO_LINGER supported
52 *		Alan Cox	:	Error reporting fixes
53 *		Anonymous	:	inet_create tidied up (sk->reuse setting)
54 *		Alan Cox	:	inet sockets don't set sk->type!
55 *		Alan Cox	:	Split socket option code
56 *		Alan Cox	:	Callbacks
57 *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
58 *		Alex		:	Removed restriction on inet fioctl
59 *		Alan Cox	:	Splitting INET from NET core
60 *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
61 *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
62 *		Alan Cox	:	Split IP from generic code
63 *		Alan Cox	:	New kfree_skbmem()
64 *		Alan Cox	:	Make SO_DEBUG superuser only.
65 *		Alan Cox	:	Allow anyone to clear SO_DEBUG
66 *					(compatibility fix)
67 *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
68 *		Alan Cox	:	Allocator for a socket is settable.
69 *		Alan Cox	:	SO_ERROR includes soft errors.
70 *		Alan Cox	:	Allow NULL arguments on some SO_ opts
71 *		Alan Cox	: 	Generic socket allocation to make hooks
72 *					easier (suggested by Craig Metz).
73 *		Michael Pall	:	SO_ERROR returns positive errno again
74 *              Steve Whitehouse:       Added default destructor to free
75 *                                      protocol private data.
76 *              Steve Whitehouse:       Added various other default routines
77 *                                      common to several socket families.
78 *              Chris Evans     :       Call suser() check last on F_SETOWN
79 *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
80 *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
81 *		Andi Kleen	:	Fix write_space callback
82 *		Chris Evans	:	Security fixes - signedness again
83 *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
84 *
85 * To Fix:
86 *
87 *
88 *		This program is free software; you can redistribute it and/or
89 *		modify it under the terms of the GNU General Public License
90 *		as published by the Free Software Foundation; either version
91 *		2 of the License, or (at your option) any later version.
92 */
93
94#include <linux/capability.h>
95#include <linux/errno.h>
96#include <linux/types.h>
97#include <linux/socket.h>
98#include <linux/in.h>
99#include <linux/kernel.h>
100#include <linux/module.h>
101#include <linux/proc_fs.h>
102#include <linux/seq_file.h>
103#include <linux/sched.h>
104#include <linux/timer.h>
105#include <linux/string.h>
106#include <linux/sockios.h>
107#include <linux/net.h>
108#include <linux/mm.h>
109#include <linux/slab.h>
110#include <linux/interrupt.h>
111#include <linux/poll.h>
112#include <linux/tcp.h>
113#include <linux/init.h>
114#include <linux/highmem.h>
115
116#include <asm/uaccess.h>
117#include <asm/system.h>
118
119#include <linux/netdevice.h>
120#include <net/protocol.h>
121#include <linux/skbuff.h>
122#include <net/request_sock.h>
123#include <net/sock.h>
124#include <net/xfrm.h>
125#include <linux/ipsec.h>
126
127#include <linux/filter.h>
128
129#ifdef CONFIG_INET
130#include <net/tcp.h>
131#endif
132
133/*
134 * Each address family might have different locking rules, so we have
135 * one slock key per address family:
136 */
137static struct lock_class_key af_family_keys[AF_MAX];
138static struct lock_class_key af_family_slock_keys[AF_MAX];
139
140#ifdef CONFIG_DEBUG_LOCK_ALLOC
141/*
142 * Make lock validator output more readable. (we pre-construct these
143 * strings build-time, so that runtime initialization of socket
144 * locks is fast):
145 */
146static const char *af_family_key_strings[AF_MAX+1] = {
147  "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
148  "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
149  "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
150  "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
151  "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
152  "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
153  "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
154  "sk_lock-21"       , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
155  "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
156  "sk_lock-27"       , "sk_lock-28"          , "sk_lock-29"          ,
157  "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
158  "sk_lock-AF_RXRPC" , "sk_lock-AF_MAX"
159};
160static const char *af_family_slock_key_strings[AF_MAX+1] = {
161  "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
162  "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
163  "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
164  "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
165  "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
166  "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
167  "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
168  "slock-21"       , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
169  "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
170  "slock-27"       , "slock-28"          , "slock-29"          ,
171  "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
172  "slock-AF_RXRPC" , "slock-AF_MAX"
173};
174#endif
175
176/*
177 * sk_callback_lock locking rules are per-address-family,
178 * so split the lock classes by using a per-AF key:
179 */
180static struct lock_class_key af_callback_keys[AF_MAX];
181
182/* Take into consideration the size of the struct sk_buff overhead in the
183 * determination of these values, since that is non-constant across
184 * platforms.  This makes socket queueing behavior and performance
185 * not depend upon such differences.
186 */
187#define _SK_MEM_PACKETS		256
188#define _SK_MEM_OVERHEAD	(sizeof(struct sk_buff) + 256)
189#define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
190#define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
191
192/* Run time adjustable parameters. */
193__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
194__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
195__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
196__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
197
198/* Maximal space eaten by iovec or ancilliary data plus some space */
199int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
200
201static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
202{
203	struct timeval tv;
204
205	if (optlen < sizeof(tv))
206		return -EINVAL;
207	if (copy_from_user(&tv, optval, sizeof(tv)))
208		return -EFAULT;
209	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
210		return -EDOM;
211
212	if (tv.tv_sec < 0) {
213		static int warned = 0;
214		*timeo_p = 0;
215		if (warned < 10 && net_ratelimit())
216			warned++;
217			printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
218			       "tries to set negative timeout\n",
219			        current->comm, current->pid);
220		return 0;
221	}
222	*timeo_p = MAX_SCHEDULE_TIMEOUT;
223	if (tv.tv_sec == 0 && tv.tv_usec == 0)
224		return 0;
225	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
226		*timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
227	return 0;
228}
229
230static void sock_warn_obsolete_bsdism(const char *name)
231{
232	static int warned;
233	static char warncomm[TASK_COMM_LEN];
234	if (strcmp(warncomm, current->comm) && warned < 5) {
235		strcpy(warncomm,  current->comm);
236		printk(KERN_WARNING "process `%s' is using obsolete "
237		       "%s SO_BSDCOMPAT\n", warncomm, name);
238		warned++;
239	}
240}
241
242static void sock_disable_timestamp(struct sock *sk)
243{
244	if (sock_flag(sk, SOCK_TIMESTAMP)) {
245		sock_reset_flag(sk, SOCK_TIMESTAMP);
246		net_disable_timestamp();
247	}
248}
249
250
251int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
252{
253	int err = 0;
254	int skb_len;
255
256	/* Cast skb->rcvbuf to unsigned... It's pointless, but reduces
257	   number of warnings when compiling with -W --ANK
258	 */
259	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
260	    (unsigned)sk->sk_rcvbuf) {
261		err = -ENOMEM;
262		goto out;
263	}
264
265	err = sk_filter(sk, skb);
266	if (err)
267		goto out;
268
269	skb->dev = NULL;
270	skb_set_owner_r(skb, sk);
271
272	/* Cache the SKB length before we tack it onto the receive
273	 * queue.  Once it is added it no longer belongs to us and
274	 * may be freed by other threads of control pulling packets
275	 * from the queue.
276	 */
277	skb_len = skb->len;
278
279	skb_queue_tail(&sk->sk_receive_queue, skb);
280
281	if (!sock_flag(sk, SOCK_DEAD))
282		sk->sk_data_ready(sk, skb_len);
283out:
284	return err;
285}
286EXPORT_SYMBOL(sock_queue_rcv_skb);
287
288int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
289{
290	int rc = NET_RX_SUCCESS;
291
292	if (sk_filter(sk, skb))
293		goto discard_and_relse;
294
295	skb->dev = NULL;
296
297	if (nested)
298		bh_lock_sock_nested(sk);
299	else
300		bh_lock_sock(sk);
301	if (!sock_owned_by_user(sk)) {
302		/*
303		 * trylock + unlock semantics:
304		 */
305		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
306
307		rc = sk->sk_backlog_rcv(sk, skb);
308
309		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
310	} else
311		sk_add_backlog(sk, skb);
312	bh_unlock_sock(sk);
313out:
314	sock_put(sk);
315	return rc;
316discard_and_relse:
317	kfree_skb(skb);
318	goto out;
319}
320EXPORT_SYMBOL(sk_receive_skb);
321
322struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
323{
324	struct dst_entry *dst = sk->sk_dst_cache;
325
326	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
327		sk->sk_dst_cache = NULL;
328		dst_release(dst);
329		return NULL;
330	}
331
332	return dst;
333}
334EXPORT_SYMBOL(__sk_dst_check);
335
336struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
337{
338	struct dst_entry *dst = sk_dst_get(sk);
339
340	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
341		sk_dst_reset(sk);
342		dst_release(dst);
343		return NULL;
344	}
345
346	return dst;
347}
348EXPORT_SYMBOL(sk_dst_check);
349
350/*
351 *	This is meant for all protocols to use and covers goings on
352 *	at the socket level. Everything here is generic.
353 */
354
355int sock_setsockopt(struct socket *sock, int level, int optname,
356		    char __user *optval, int optlen)
357{
358	struct sock *sk=sock->sk;
359	struct sk_filter *filter;
360	int val;
361	int valbool;
362	struct linger ling;
363	int ret = 0;
364
365	/*
366	 *	Options without arguments
367	 */
368
369#ifdef SO_DONTLINGER		    /* Compatibility item... */
370	if (optname == SO_DONTLINGER) {
371		lock_sock(sk);
372		sock_reset_flag(sk, SOCK_LINGER);
373		release_sock(sk);
374		return 0;
375	}
376#endif
377
378	if (optlen < sizeof(int))
379		return -EINVAL;
380
381	if (get_user(val, (int __user *)optval))
382		return -EFAULT;
383
384	valbool = val?1:0;
385
386	lock_sock(sk);
387
388	switch(optname) {
389	case SO_DEBUG:
390		if (val && !capable(CAP_NET_ADMIN)) {
391			ret = -EACCES;
392		}
393		else if (valbool)
394			sock_set_flag(sk, SOCK_DBG);
395		else
396			sock_reset_flag(sk, SOCK_DBG);
397		break;
398	case SO_REUSEADDR:
399		sk->sk_reuse = valbool;
400		break;
401	case SO_TYPE:
402	case SO_ERROR:
403		ret = -ENOPROTOOPT;
404		break;
405	case SO_DONTROUTE:
406		if (valbool)
407			sock_set_flag(sk, SOCK_LOCALROUTE);
408		else
409			sock_reset_flag(sk, SOCK_LOCALROUTE);
410		break;
411	case SO_BROADCAST:
412		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
413		break;
414	case SO_SNDBUF:
415		/* Don't error on this BSD doesn't and if you think
416		   about it this is right. Otherwise apps have to
417		   play 'guess the biggest size' games. RCVBUF/SNDBUF
418		   are treated in BSD as hints */
419
420		if (val > sysctl_wmem_max)
421			val = sysctl_wmem_max;
422set_sndbuf:
423		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
424		if ((val * 2) < SOCK_MIN_SNDBUF)
425			sk->sk_sndbuf = SOCK_MIN_SNDBUF;
426		else
427			sk->sk_sndbuf = val * 2;
428
429		/*
430		 *	Wake up sending tasks if we
431		 *	upped the value.
432		 */
433		sk->sk_write_space(sk);
434		break;
435
436	case SO_SNDBUFFORCE:
437		if (!capable(CAP_NET_ADMIN)) {
438			ret = -EPERM;
439			break;
440		}
441		goto set_sndbuf;
442
443	case SO_RCVBUF:
444		/* Don't error on this BSD doesn't and if you think
445		   about it this is right. Otherwise apps have to
446		   play 'guess the biggest size' games. RCVBUF/SNDBUF
447		   are treated in BSD as hints */
448
449		if (val > sysctl_rmem_max)
450			val = sysctl_rmem_max;
451set_rcvbuf:
452		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
453		/*
454		 * We double it on the way in to account for
455		 * "struct sk_buff" etc. overhead.   Applications
456		 * assume that the SO_RCVBUF setting they make will
457		 * allow that much actual data to be received on that
458		 * socket.
459		 *
460		 * Applications are unaware that "struct sk_buff" and
461		 * other overheads allocate from the receive buffer
462		 * during socket buffer allocation.
463		 *
464		 * And after considering the possible alternatives,
465		 * returning the value we actually used in getsockopt
466		 * is the most desirable behavior.
467		 */
468		if ((val * 2) < SOCK_MIN_RCVBUF)
469			sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
470		else
471			sk->sk_rcvbuf = val * 2;
472		break;
473
474	case SO_RCVBUFFORCE:
475		if (!capable(CAP_NET_ADMIN)) {
476			ret = -EPERM;
477			break;
478		}
479		goto set_rcvbuf;
480
481	case SO_KEEPALIVE:
482#ifdef CONFIG_INET
483		if (sk->sk_protocol == IPPROTO_TCP)
484			tcp_set_keepalive(sk, valbool);
485#endif
486		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
487		break;
488
489	case SO_OOBINLINE:
490		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
491		break;
492
493	case SO_NO_CHECK:
494		sk->sk_no_check = valbool;
495		break;
496
497	case SO_PRIORITY:
498		if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
499			sk->sk_priority = val;
500		else
501			ret = -EPERM;
502		break;
503
504	case SO_LINGER:
505		if (optlen < sizeof(ling)) {
506			ret = -EINVAL;	/* 1003.1g */
507			break;
508		}
509		if (copy_from_user(&ling,optval,sizeof(ling))) {
510			ret = -EFAULT;
511			break;
512		}
513		if (!ling.l_onoff)
514			sock_reset_flag(sk, SOCK_LINGER);
515		else {
516#if (BITS_PER_LONG == 32)
517			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
518				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
519			else
520#endif
521				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
522			sock_set_flag(sk, SOCK_LINGER);
523		}
524		break;
525
526	case SO_BSDCOMPAT:
527		sock_warn_obsolete_bsdism("setsockopt");
528		break;
529
530	case SO_PASSCRED:
531		if (valbool)
532			set_bit(SOCK_PASSCRED, &sock->flags);
533		else
534			clear_bit(SOCK_PASSCRED, &sock->flags);
535		break;
536
537	case SO_TIMESTAMP:
538	case SO_TIMESTAMPNS:
539		if (valbool)  {
540			if (optname == SO_TIMESTAMP)
541				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
542			else
543				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
544			sock_set_flag(sk, SOCK_RCVTSTAMP);
545			sock_enable_timestamp(sk);
546		} else {
547			sock_reset_flag(sk, SOCK_RCVTSTAMP);
548			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
549		}
550		break;
551
552	case SO_RCVLOWAT:
553		if (val < 0)
554			val = INT_MAX;
555		sk->sk_rcvlowat = val ? : 1;
556		break;
557
558	case SO_RCVTIMEO:
559		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
560		break;
561
562	case SO_SNDTIMEO:
563		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
564		break;
565
566#ifdef CONFIG_NETDEVICES
567	case SO_BINDTODEVICE:
568	{
569		char devname[IFNAMSIZ];
570
571		/* Sorry... */
572		if (!capable(CAP_NET_RAW)) {
573			ret = -EPERM;
574			break;
575		}
576
577		/* Bind this socket to a particular device like "eth0",
578		 * as specified in the passed interface name. If the
579		 * name is "" or the option length is zero the socket
580		 * is not bound.
581		 */
582
583		if (!valbool) {
584			sk->sk_bound_dev_if = 0;
585		} else {
586			if (optlen > IFNAMSIZ - 1)
587				optlen = IFNAMSIZ - 1;
588			memset(devname, 0, sizeof(devname));
589			if (copy_from_user(devname, optval, optlen)) {
590				ret = -EFAULT;
591				break;
592			}
593
594			/* Remove any cached route for this socket. */
595			sk_dst_reset(sk);
596
597			if (devname[0] == '\0') {
598				sk->sk_bound_dev_if = 0;
599			} else {
600				struct net_device *dev = dev_get_by_name(devname);
601				if (!dev) {
602					ret = -ENODEV;
603					break;
604				}
605				sk->sk_bound_dev_if = dev->ifindex;
606				dev_put(dev);
607			}
608		}
609		break;
610	}
611#endif
612
613
614	case SO_ATTACH_FILTER:
615		ret = -EINVAL;
616		if (optlen == sizeof(struct sock_fprog)) {
617			struct sock_fprog fprog;
618
619			ret = -EFAULT;
620			if (copy_from_user(&fprog, optval, sizeof(fprog)))
621				break;
622
623			ret = sk_attach_filter(&fprog, sk);
624		}
625		break;
626
627	case SO_DETACH_FILTER:
628		rcu_read_lock_bh();
629		filter = rcu_dereference(sk->sk_filter);
630		if (filter) {
631			rcu_assign_pointer(sk->sk_filter, NULL);
632			sk_filter_release(sk, filter);
633			rcu_read_unlock_bh();
634			break;
635		}
636		rcu_read_unlock_bh();
637		ret = -ENONET;
638		break;
639
640	case SO_PASSSEC:
641		if (valbool)
642			set_bit(SOCK_PASSSEC, &sock->flags);
643		else
644			clear_bit(SOCK_PASSSEC, &sock->flags);
645		break;
646
647		/* We implement the SO_SNDLOWAT etc to
648		   not be settable (1003.1g 5.3) */
649	default:
650		ret = -ENOPROTOOPT;
651		break;
652	}
653	release_sock(sk);
654	return ret;
655}
656
657
658int sock_getsockopt(struct socket *sock, int level, int optname,
659		    char __user *optval, int __user *optlen)
660{
661	struct sock *sk = sock->sk;
662
663	union {
664		int val;
665		struct linger ling;
666		struct timeval tm;
667	} v;
668
669	unsigned int lv = sizeof(int);
670	int len;
671
672	if (get_user(len, optlen))
673		return -EFAULT;
674	if (len < 0)
675		return -EINVAL;
676
677	switch(optname) {
678	case SO_DEBUG:
679		v.val = sock_flag(sk, SOCK_DBG);
680		break;
681
682	case SO_DONTROUTE:
683		v.val = sock_flag(sk, SOCK_LOCALROUTE);
684		break;
685
686	case SO_BROADCAST:
687		v.val = !!sock_flag(sk, SOCK_BROADCAST);
688		break;
689
690	case SO_SNDBUF:
691		v.val = sk->sk_sndbuf;
692		break;
693
694	case SO_RCVBUF:
695		v.val = sk->sk_rcvbuf;
696		break;
697
698	case SO_REUSEADDR:
699		v.val = sk->sk_reuse;
700		break;
701
702	case SO_KEEPALIVE:
703		v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
704		break;
705
706	case SO_TYPE:
707		v.val = sk->sk_type;
708		break;
709
710	case SO_ERROR:
711		v.val = -sock_error(sk);
712		if (v.val==0)
713			v.val = xchg(&sk->sk_err_soft, 0);
714		break;
715
716	case SO_OOBINLINE:
717		v.val = !!sock_flag(sk, SOCK_URGINLINE);
718		break;
719
720	case SO_NO_CHECK:
721		v.val = sk->sk_no_check;
722		break;
723
724	case SO_PRIORITY:
725		v.val = sk->sk_priority;
726		break;
727
728	case SO_LINGER:
729		lv		= sizeof(v.ling);
730		v.ling.l_onoff	= !!sock_flag(sk, SOCK_LINGER);
731		v.ling.l_linger	= sk->sk_lingertime / HZ;
732		break;
733
734	case SO_BSDCOMPAT:
735		sock_warn_obsolete_bsdism("getsockopt");
736		break;
737
738	case SO_TIMESTAMP:
739		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
740				!sock_flag(sk, SOCK_RCVTSTAMPNS);
741		break;
742
743	case SO_TIMESTAMPNS:
744		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
745		break;
746
747	case SO_RCVTIMEO:
748		lv=sizeof(struct timeval);
749		if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
750			v.tm.tv_sec = 0;
751			v.tm.tv_usec = 0;
752		} else {
753			v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
754			v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
755		}
756		break;
757
758	case SO_SNDTIMEO:
759		lv=sizeof(struct timeval);
760		if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
761			v.tm.tv_sec = 0;
762			v.tm.tv_usec = 0;
763		} else {
764			v.tm.tv_sec = sk->sk_sndtimeo / HZ;
765			v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
766		}
767		break;
768
769	case SO_RCVLOWAT:
770		v.val = sk->sk_rcvlowat;
771		break;
772
773	case SO_SNDLOWAT:
774		v.val=1;
775		break;
776
777	case SO_PASSCRED:
778		v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
779		break;
780
781	case SO_PEERCRED:
782		if (len > sizeof(sk->sk_peercred))
783			len = sizeof(sk->sk_peercred);
784		if (copy_to_user(optval, &sk->sk_peercred, len))
785			return -EFAULT;
786		goto lenout;
787
788	case SO_PEERNAME:
789	{
790		char address[128];
791
792		if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
793			return -ENOTCONN;
794		if (lv < len)
795			return -EINVAL;
796		if (copy_to_user(optval, address, len))
797			return -EFAULT;
798		goto lenout;
799	}
800
801	/* Dubious BSD thing... Probably nobody even uses it, but
802	 * the UNIX standard wants it for whatever reason... -DaveM
803	 */
804	case SO_ACCEPTCONN:
805		v.val = sk->sk_state == TCP_LISTEN;
806		break;
807
808	case SO_PASSSEC:
809		v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
810		break;
811
812	case SO_PEERSEC:
813		return security_socket_getpeersec_stream(sock, optval, optlen, len);
814
815	default:
816		return -ENOPROTOOPT;
817	}
818
819	if (len > lv)
820		len = lv;
821	if (copy_to_user(optval, &v, len))
822		return -EFAULT;
823lenout:
824	if (put_user(len, optlen))
825		return -EFAULT;
826	return 0;
827}
828
829/*
830 * Initialize an sk_lock.
831 *
832 * (We also register the sk_lock with the lock validator.)
833 */
834static inline void sock_lock_init(struct sock *sk)
835{
836	sock_lock_init_class_and_name(sk,
837			af_family_slock_key_strings[sk->sk_family],
838			af_family_slock_keys + sk->sk_family,
839			af_family_key_strings[sk->sk_family],
840			af_family_keys + sk->sk_family);
841}
842
843/**
844 *	sk_alloc - All socket objects are allocated here
845 *	@family: protocol family
846 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
847 *	@prot: struct proto associated with this new sock instance
848 *	@zero_it: if we should zero the newly allocated sock
849 */
850struct sock *sk_alloc(int family, gfp_t priority,
851		      struct proto *prot, int zero_it)
852{
853	struct sock *sk = NULL;
854	struct kmem_cache *slab = prot->slab;
855
856	if (slab != NULL)
857		sk = kmem_cache_alloc(slab, priority);
858	else
859		sk = kmalloc(prot->obj_size, priority);
860
861	if (sk) {
862		if (zero_it) {
863			memset(sk, 0, prot->obj_size);
864			sk->sk_family = family;
865			/*
866			 * See comment in struct sock definition to understand
867			 * why we need sk_prot_creator -acme
868			 */
869			sk->sk_prot = sk->sk_prot_creator = prot;
870			sock_lock_init(sk);
871		}
872
873		if (security_sk_alloc(sk, family, priority))
874			goto out_free;
875
876		if (!try_module_get(prot->owner))
877			goto out_free;
878	}
879	return sk;
880
881out_free:
882	if (slab != NULL)
883		kmem_cache_free(slab, sk);
884	else
885		kfree(sk);
886	return NULL;
887}
888
889void sk_free(struct sock *sk)
890{
891	struct sk_filter *filter;
892	struct module *owner = sk->sk_prot_creator->owner;
893
894	if (sk->sk_destruct)
895		sk->sk_destruct(sk);
896
897	filter = rcu_dereference(sk->sk_filter);
898	if (filter) {
899		sk_filter_release(sk, filter);
900		rcu_assign_pointer(sk->sk_filter, NULL);
901	}
902
903	sock_disable_timestamp(sk);
904
905	if (atomic_read(&sk->sk_omem_alloc))
906		printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
907		       __FUNCTION__, atomic_read(&sk->sk_omem_alloc));
908
909	security_sk_free(sk);
910	if (sk->sk_prot_creator->slab != NULL)
911		kmem_cache_free(sk->sk_prot_creator->slab, sk);
912	else
913		kfree(sk);
914	module_put(owner);
915}
916
917struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
918{
919	struct sock *newsk = sk_alloc(sk->sk_family, priority, sk->sk_prot, 0);
920
921	if (newsk != NULL) {
922		struct sk_filter *filter;
923
924		sock_copy(newsk, sk);
925
926		/* SANITY */
927		sk_node_init(&newsk->sk_node);
928		sock_lock_init(newsk);
929		bh_lock_sock(newsk);
930		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
931
932		atomic_set(&newsk->sk_rmem_alloc, 0);
933		atomic_set(&newsk->sk_wmem_alloc, 0);
934		atomic_set(&newsk->sk_omem_alloc, 0);
935		skb_queue_head_init(&newsk->sk_receive_queue);
936		skb_queue_head_init(&newsk->sk_write_queue);
937#ifdef CONFIG_NET_DMA
938		skb_queue_head_init(&newsk->sk_async_wait_queue);
939#endif
940
941		rwlock_init(&newsk->sk_dst_lock);
942		rwlock_init(&newsk->sk_callback_lock);
943		lockdep_set_class(&newsk->sk_callback_lock,
944				   af_callback_keys + newsk->sk_family);
945
946		newsk->sk_dst_cache	= NULL;
947		newsk->sk_wmem_queued	= 0;
948		newsk->sk_forward_alloc = 0;
949		newsk->sk_send_head	= NULL;
950		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
951
952		sock_reset_flag(newsk, SOCK_DONE);
953		skb_queue_head_init(&newsk->sk_error_queue);
954
955		filter = newsk->sk_filter;
956		if (filter != NULL)
957			sk_filter_charge(newsk, filter);
958
959		if (unlikely(xfrm_sk_clone_policy(newsk))) {
960			/* It is still raw copy of parent, so invalidate
961			 * destructor and make plain sk_free() */
962			newsk->sk_destruct = NULL;
963			sk_free(newsk);
964			newsk = NULL;
965			goto out;
966		}
967
968		newsk->sk_err	   = 0;
969		newsk->sk_priority = 0;
970		atomic_set(&newsk->sk_refcnt, 2);
971
972		/*
973		 * Increment the counter in the same struct proto as the master
974		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
975		 * is the same as sk->sk_prot->socks, as this field was copied
976		 * with memcpy).
977		 *
978		 * This _changes_ the previous behaviour, where
979		 * tcp_create_openreq_child always was incrementing the
980		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
981		 * to be taken into account in all callers. -acme
982		 */
983		sk_refcnt_debug_inc(newsk);
984		newsk->sk_socket = NULL;
985		newsk->sk_sleep	 = NULL;
986
987		if (newsk->sk_prot->sockets_allocated)
988			atomic_inc(newsk->sk_prot->sockets_allocated);
989	}
990out:
991	return newsk;
992}
993
994EXPORT_SYMBOL_GPL(sk_clone);
995
996void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
997{
998	__sk_dst_set(sk, dst);
999	sk->sk_route_caps = dst->dev->features;
1000	if (sk->sk_route_caps & NETIF_F_GSO)
1001		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1002	if (sk_can_gso(sk)) {
1003		if (dst->header_len)
1004			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1005		else
1006			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1007	}
1008}
1009EXPORT_SYMBOL_GPL(sk_setup_caps);
1010
1011void __init sk_init(void)
1012{
1013	if (num_physpages <= 4096) {
1014		sysctl_wmem_max = 32767;
1015		sysctl_rmem_max = 32767;
1016		sysctl_wmem_default = 32767;
1017		sysctl_rmem_default = 32767;
1018	} else if (num_physpages >= 131072) {
1019		sysctl_wmem_max = 131071;
1020		sysctl_rmem_max = 131071;
1021	}
1022}
1023
1024/*
1025 *	Simple resource managers for sockets.
1026 */
1027
1028
1029/*
1030 * Write buffer destructor automatically called from kfree_skb.
1031 */
1032void sock_wfree(struct sk_buff *skb)
1033{
1034	struct sock *sk = skb->sk;
1035
1036	/* In case it might be waiting for more memory. */
1037	atomic_sub(skb->truesize, &sk->sk_wmem_alloc);
1038	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE))
1039		sk->sk_write_space(sk);
1040	sock_put(sk);
1041}
1042
1043/*
1044 * Read buffer destructor automatically called from kfree_skb.
1045 */
1046void sock_rfree(struct sk_buff *skb)
1047{
1048	struct sock *sk = skb->sk;
1049
1050	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1051}
1052
1053
1054int sock_i_uid(struct sock *sk)
1055{
1056	int uid;
1057
1058	read_lock(&sk->sk_callback_lock);
1059	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1060	read_unlock(&sk->sk_callback_lock);
1061	return uid;
1062}
1063
1064unsigned long sock_i_ino(struct sock *sk)
1065{
1066	unsigned long ino;
1067
1068	read_lock(&sk->sk_callback_lock);
1069	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1070	read_unlock(&sk->sk_callback_lock);
1071	return ino;
1072}
1073
1074/*
1075 * Allocate a skb from the socket's send buffer.
1076 */
1077struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1078			     gfp_t priority)
1079{
1080	if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1081		struct sk_buff * skb = alloc_skb(size, priority);
1082		if (skb) {
1083			skb_set_owner_w(skb, sk);
1084			return skb;
1085		}
1086	}
1087	return NULL;
1088}
1089
1090/*
1091 * Allocate a skb from the socket's receive buffer.
1092 */
1093struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1094			     gfp_t priority)
1095{
1096	if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1097		struct sk_buff *skb = alloc_skb(size, priority);
1098		if (skb) {
1099			skb_set_owner_r(skb, sk);
1100			return skb;
1101		}
1102	}
1103	return NULL;
1104}
1105
1106/*
1107 * Allocate a memory block from the socket's option memory buffer.
1108 */
1109void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1110{
1111	if ((unsigned)size <= sysctl_optmem_max &&
1112	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1113		void *mem;
1114		/* First do the add, to avoid the race if kmalloc
1115		 * might sleep.
1116		 */
1117		atomic_add(size, &sk->sk_omem_alloc);
1118		mem = kmalloc(size, priority);
1119		if (mem)
1120			return mem;
1121		atomic_sub(size, &sk->sk_omem_alloc);
1122	}
1123	return NULL;
1124}
1125
1126/*
1127 * Free an option memory block.
1128 */
1129void sock_kfree_s(struct sock *sk, void *mem, int size)
1130{
1131	kfree(mem);
1132	atomic_sub(size, &sk->sk_omem_alloc);
1133}
1134
1135/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1136   I think, these locks should be removed for datagram sockets.
1137 */
1138static long sock_wait_for_wmem(struct sock * sk, long timeo)
1139{
1140	DEFINE_WAIT(wait);
1141
1142	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1143	for (;;) {
1144		if (!timeo)
1145			break;
1146		if (signal_pending(current))
1147			break;
1148		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1149		prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1150		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1151			break;
1152		if (sk->sk_shutdown & SEND_SHUTDOWN)
1153			break;
1154		if (sk->sk_err)
1155			break;
1156		timeo = schedule_timeout(timeo);
1157	}
1158	finish_wait(sk->sk_sleep, &wait);
1159	return timeo;
1160}
1161
1162
1163/*
1164 *	Generic send/receive buffer handlers
1165 */
1166
1167static struct sk_buff *sock_alloc_send_pskb(struct sock *sk,
1168					    unsigned long header_len,
1169					    unsigned long data_len,
1170					    int noblock, int *errcode)
1171{
1172	struct sk_buff *skb;
1173	gfp_t gfp_mask;
1174	long timeo;
1175	int err;
1176
1177	gfp_mask = sk->sk_allocation;
1178	if (gfp_mask & __GFP_WAIT)
1179		gfp_mask |= __GFP_REPEAT;
1180
1181	timeo = sock_sndtimeo(sk, noblock);
1182	while (1) {
1183		err = sock_error(sk);
1184		if (err != 0)
1185			goto failure;
1186
1187		err = -EPIPE;
1188		if (sk->sk_shutdown & SEND_SHUTDOWN)
1189			goto failure;
1190
1191		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1192			skb = alloc_skb(header_len, gfp_mask);
1193			if (skb) {
1194				int npages;
1195				int i;
1196
1197				/* No pages, we're done... */
1198				if (!data_len)
1199					break;
1200
1201				npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1202				skb->truesize += data_len;
1203				skb_shinfo(skb)->nr_frags = npages;
1204				for (i = 0; i < npages; i++) {
1205					struct page *page;
1206					skb_frag_t *frag;
1207
1208					page = alloc_pages(sk->sk_allocation, 0);
1209					if (!page) {
1210						err = -ENOBUFS;
1211						skb_shinfo(skb)->nr_frags = i;
1212						kfree_skb(skb);
1213						goto failure;
1214					}
1215
1216					frag = &skb_shinfo(skb)->frags[i];
1217					frag->page = page;
1218					frag->page_offset = 0;
1219					frag->size = (data_len >= PAGE_SIZE ?
1220						      PAGE_SIZE :
1221						      data_len);
1222					data_len -= PAGE_SIZE;
1223				}
1224
1225				/* Full success... */
1226				break;
1227			}
1228			err = -ENOBUFS;
1229			goto failure;
1230		}
1231		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1232		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1233		err = -EAGAIN;
1234		if (!timeo)
1235			goto failure;
1236		if (signal_pending(current))
1237			goto interrupted;
1238		timeo = sock_wait_for_wmem(sk, timeo);
1239	}
1240
1241	skb_set_owner_w(skb, sk);
1242	return skb;
1243
1244interrupted:
1245	err = sock_intr_errno(timeo);
1246failure:
1247	*errcode = err;
1248	return NULL;
1249}
1250
1251struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1252				    int noblock, int *errcode)
1253{
1254	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1255}
1256
1257static void __lock_sock(struct sock *sk)
1258{
1259	DEFINE_WAIT(wait);
1260
1261	for (;;) {
1262		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1263					TASK_UNINTERRUPTIBLE);
1264		spin_unlock_bh(&sk->sk_lock.slock);
1265		schedule();
1266		spin_lock_bh(&sk->sk_lock.slock);
1267		if (!sock_owned_by_user(sk))
1268			break;
1269	}
1270	finish_wait(&sk->sk_lock.wq, &wait);
1271}
1272
1273static void __release_sock(struct sock *sk)
1274{
1275	struct sk_buff *skb = sk->sk_backlog.head;
1276
1277	do {
1278		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1279		bh_unlock_sock(sk);
1280
1281		do {
1282			struct sk_buff *next = skb->next;
1283
1284			skb->next = NULL;
1285			sk->sk_backlog_rcv(sk, skb);
1286
1287			/*
1288			 * We are in process context here with softirqs
1289			 * disabled, use cond_resched_softirq() to preempt.
1290			 * This is safe to do because we've taken the backlog
1291			 * queue private:
1292			 */
1293			cond_resched_softirq();
1294
1295			skb = next;
1296		} while (skb != NULL);
1297
1298		bh_lock_sock(sk);
1299	} while ((skb = sk->sk_backlog.head) != NULL);
1300}
1301
1302/**
1303 * sk_wait_data - wait for data to arrive at sk_receive_queue
1304 * @sk:    sock to wait on
1305 * @timeo: for how long
1306 *
1307 * Now socket state including sk->sk_err is changed only under lock,
1308 * hence we may omit checks after joining wait queue.
1309 * We check receive queue before schedule() only as optimization;
1310 * it is very likely that release_sock() added new data.
1311 */
1312int sk_wait_data(struct sock *sk, long *timeo)
1313{
1314	int rc;
1315	DEFINE_WAIT(wait);
1316
1317	prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1318	set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1319	rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1320	clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1321	finish_wait(sk->sk_sleep, &wait);
1322	return rc;
1323}
1324
1325EXPORT_SYMBOL(sk_wait_data);
1326
1327/*
1328 * Set of default routines for initialising struct proto_ops when
1329 * the protocol does not support a particular function. In certain
1330 * cases where it makes no sense for a protocol to have a "do nothing"
1331 * function, some default processing is provided.
1332 */
1333
1334int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1335{
1336	return -EOPNOTSUPP;
1337}
1338
1339int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1340		    int len, int flags)
1341{
1342	return -EOPNOTSUPP;
1343}
1344
1345int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1346{
1347	return -EOPNOTSUPP;
1348}
1349
1350int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1351{
1352	return -EOPNOTSUPP;
1353}
1354
1355int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1356		    int *len, int peer)
1357{
1358	return -EOPNOTSUPP;
1359}
1360
1361unsigned int sock_no_poll(struct file * file, struct socket *sock, poll_table *pt)
1362{
1363	return 0;
1364}
1365
1366int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1367{
1368	return -EOPNOTSUPP;
1369}
1370
1371int sock_no_listen(struct socket *sock, int backlog)
1372{
1373	return -EOPNOTSUPP;
1374}
1375
1376int sock_no_shutdown(struct socket *sock, int how)
1377{
1378	return -EOPNOTSUPP;
1379}
1380
1381int sock_no_setsockopt(struct socket *sock, int level, int optname,
1382		    char __user *optval, int optlen)
1383{
1384	return -EOPNOTSUPP;
1385}
1386
1387int sock_no_getsockopt(struct socket *sock, int level, int optname,
1388		    char __user *optval, int __user *optlen)
1389{
1390	return -EOPNOTSUPP;
1391}
1392
1393int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1394		    size_t len)
1395{
1396	return -EOPNOTSUPP;
1397}
1398
1399int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1400		    size_t len, int flags)
1401{
1402	return -EOPNOTSUPP;
1403}
1404
1405int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1406{
1407	/* Mirror missing mmap method error code */
1408	return -ENODEV;
1409}
1410
1411ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1412{
1413	ssize_t res;
1414	struct msghdr msg = {.msg_flags = flags};
1415	struct kvec iov;
1416	char *kaddr = kmap(page);
1417	iov.iov_base = kaddr + offset;
1418	iov.iov_len = size;
1419	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1420	kunmap(page);
1421	return res;
1422}
1423
1424/*
1425 *	Default Socket Callbacks
1426 */
1427
1428static void sock_def_wakeup(struct sock *sk)
1429{
1430	read_lock(&sk->sk_callback_lock);
1431	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1432		wake_up_interruptible_all(sk->sk_sleep);
1433	read_unlock(&sk->sk_callback_lock);
1434}
1435
1436static void sock_def_error_report(struct sock *sk)
1437{
1438	read_lock(&sk->sk_callback_lock);
1439	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1440		wake_up_interruptible(sk->sk_sleep);
1441	sk_wake_async(sk,0,POLL_ERR);
1442	read_unlock(&sk->sk_callback_lock);
1443}
1444
1445static void sock_def_readable(struct sock *sk, int len)
1446{
1447	read_lock(&sk->sk_callback_lock);
1448	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1449		wake_up_interruptible(sk->sk_sleep);
1450	sk_wake_async(sk,1,POLL_IN);
1451	read_unlock(&sk->sk_callback_lock);
1452}
1453
1454static void sock_def_write_space(struct sock *sk)
1455{
1456	read_lock(&sk->sk_callback_lock);
1457
1458	/* Do not wake up a writer until he can make "significant"
1459	 * progress.  --DaveM
1460	 */
1461	if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
1462		if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1463			wake_up_interruptible(sk->sk_sleep);
1464
1465		/* Should agree with poll, otherwise some programs break */
1466		if (sock_writeable(sk))
1467			sk_wake_async(sk, 2, POLL_OUT);
1468	}
1469
1470	read_unlock(&sk->sk_callback_lock);
1471}
1472
1473static void sock_def_destruct(struct sock *sk)
1474{
1475	kfree(sk->sk_protinfo);
1476}
1477
1478void sk_send_sigurg(struct sock *sk)
1479{
1480	if (sk->sk_socket && sk->sk_socket->file)
1481		if (send_sigurg(&sk->sk_socket->file->f_owner))
1482			sk_wake_async(sk, 3, POLL_PRI);
1483}
1484
1485void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1486		    unsigned long expires)
1487{
1488	if (!mod_timer(timer, expires))
1489		sock_hold(sk);
1490}
1491
1492EXPORT_SYMBOL(sk_reset_timer);
1493
1494void sk_stop_timer(struct sock *sk, struct timer_list* timer)
1495{
1496	if (timer_pending(timer) && del_timer(timer))
1497		__sock_put(sk);
1498}
1499
1500EXPORT_SYMBOL(sk_stop_timer);
1501
1502void sock_init_data(struct socket *sock, struct sock *sk)
1503{
1504	skb_queue_head_init(&sk->sk_receive_queue);
1505	skb_queue_head_init(&sk->sk_write_queue);
1506	skb_queue_head_init(&sk->sk_error_queue);
1507#ifdef CONFIG_NET_DMA
1508	skb_queue_head_init(&sk->sk_async_wait_queue);
1509#endif
1510
1511	sk->sk_send_head	=	NULL;
1512
1513	init_timer(&sk->sk_timer);
1514
1515	sk->sk_allocation	=	GFP_KERNEL;
1516	sk->sk_rcvbuf		=	sysctl_rmem_default;
1517	sk->sk_sndbuf		=	sysctl_wmem_default;
1518	sk->sk_state		=	TCP_CLOSE;
1519	sk->sk_socket		=	sock;
1520
1521	sock_set_flag(sk, SOCK_ZAPPED);
1522
1523	if (sock) {
1524		sk->sk_type	=	sock->type;
1525		sk->sk_sleep	=	&sock->wait;
1526		sock->sk	=	sk;
1527	} else
1528		sk->sk_sleep	=	NULL;
1529
1530	rwlock_init(&sk->sk_dst_lock);
1531	rwlock_init(&sk->sk_callback_lock);
1532	lockdep_set_class(&sk->sk_callback_lock,
1533			   af_callback_keys + sk->sk_family);
1534
1535	sk->sk_state_change	=	sock_def_wakeup;
1536	sk->sk_data_ready	=	sock_def_readable;
1537	sk->sk_write_space	=	sock_def_write_space;
1538	sk->sk_error_report	=	sock_def_error_report;
1539	sk->sk_destruct		=	sock_def_destruct;
1540
1541	sk->sk_sndmsg_page	=	NULL;
1542	sk->sk_sndmsg_off	=	0;
1543
1544	sk->sk_peercred.pid 	=	0;
1545	sk->sk_peercred.uid	=	-1;
1546	sk->sk_peercred.gid	=	-1;
1547	sk->sk_write_pending	=	0;
1548	sk->sk_rcvlowat		=	1;
1549	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
1550	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
1551
1552	sk->sk_stamp = ktime_set(-1L, -1L);
1553
1554	atomic_set(&sk->sk_refcnt, 1);
1555}
1556
1557void fastcall lock_sock_nested(struct sock *sk, int subclass)
1558{
1559	might_sleep();
1560	spin_lock_bh(&sk->sk_lock.slock);
1561	if (sk->sk_lock.owner)
1562		__lock_sock(sk);
1563	sk->sk_lock.owner = (void *)1;
1564	spin_unlock(&sk->sk_lock.slock);
1565	/*
1566	 * The sk_lock has mutex_lock() semantics here:
1567	 */
1568	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
1569	local_bh_enable();
1570}
1571
1572EXPORT_SYMBOL(lock_sock_nested);
1573
1574void fastcall release_sock(struct sock *sk)
1575{
1576	/*
1577	 * The sk_lock has mutex_unlock() semantics:
1578	 */
1579	mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1580
1581	spin_lock_bh(&sk->sk_lock.slock);
1582	if (sk->sk_backlog.tail)
1583		__release_sock(sk);
1584	sk->sk_lock.owner = NULL;
1585	if (waitqueue_active(&sk->sk_lock.wq))
1586		wake_up(&sk->sk_lock.wq);
1587	spin_unlock_bh(&sk->sk_lock.slock);
1588}
1589EXPORT_SYMBOL(release_sock);
1590
1591int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
1592{
1593	struct timeval tv;
1594	if (!sock_flag(sk, SOCK_TIMESTAMP))
1595		sock_enable_timestamp(sk);
1596	tv = ktime_to_timeval(sk->sk_stamp);
1597	if (tv.tv_sec == -1)
1598		return -ENOENT;
1599	if (tv.tv_sec == 0) {
1600		sk->sk_stamp = ktime_get_real();
1601		tv = ktime_to_timeval(sk->sk_stamp);
1602	}
1603	return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
1604}
1605EXPORT_SYMBOL(sock_get_timestamp);
1606
1607int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
1608{
1609	struct timespec ts;
1610	if (!sock_flag(sk, SOCK_TIMESTAMP))
1611		sock_enable_timestamp(sk);
1612	ts = ktime_to_timespec(sk->sk_stamp);
1613	if (ts.tv_sec == -1)
1614		return -ENOENT;
1615	if (ts.tv_sec == 0) {
1616		sk->sk_stamp = ktime_get_real();
1617		ts = ktime_to_timespec(sk->sk_stamp);
1618	}
1619	return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
1620}
1621EXPORT_SYMBOL(sock_get_timestampns);
1622
1623void sock_enable_timestamp(struct sock *sk)
1624{
1625	if (!sock_flag(sk, SOCK_TIMESTAMP)) {
1626		sock_set_flag(sk, SOCK_TIMESTAMP);
1627		net_enable_timestamp();
1628	}
1629}
1630EXPORT_SYMBOL(sock_enable_timestamp);
1631
1632/*
1633 *	Get a socket option on an socket.
1634 *
1635 *	FIX: POSIX 1003.1g is very ambiguous here. It states that
1636 *	asynchronous errors should be reported by getsockopt. We assume
1637 *	this means if you specify SO_ERROR (otherwise whats the point of it).
1638 */
1639int sock_common_getsockopt(struct socket *sock, int level, int optname,
1640			   char __user *optval, int __user *optlen)
1641{
1642	struct sock *sk = sock->sk;
1643
1644	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1645}
1646
1647EXPORT_SYMBOL(sock_common_getsockopt);
1648
1649#ifdef CONFIG_COMPAT
1650int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
1651				  char __user *optval, int __user *optlen)
1652{
1653	struct sock *sk = sock->sk;
1654
1655	if (sk->sk_prot->compat_getsockopt != NULL)
1656		return sk->sk_prot->compat_getsockopt(sk, level, optname,
1657						      optval, optlen);
1658	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1659}
1660EXPORT_SYMBOL(compat_sock_common_getsockopt);
1661#endif
1662
1663int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1664			struct msghdr *msg, size_t size, int flags)
1665{
1666	struct sock *sk = sock->sk;
1667	int addr_len = 0;
1668	int err;
1669
1670	err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
1671				   flags & ~MSG_DONTWAIT, &addr_len);
1672	if (err >= 0)
1673		msg->msg_namelen = addr_len;
1674	return err;
1675}
1676
1677EXPORT_SYMBOL(sock_common_recvmsg);
1678
1679/*
1680 *	Set socket options on an inet socket.
1681 */
1682int sock_common_setsockopt(struct socket *sock, int level, int optname,
1683			   char __user *optval, int optlen)
1684{
1685	struct sock *sk = sock->sk;
1686
1687	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1688}
1689
1690EXPORT_SYMBOL(sock_common_setsockopt);
1691
1692#ifdef CONFIG_COMPAT
1693int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
1694				  char __user *optval, int optlen)
1695{
1696	struct sock *sk = sock->sk;
1697
1698	if (sk->sk_prot->compat_setsockopt != NULL)
1699		return sk->sk_prot->compat_setsockopt(sk, level, optname,
1700						      optval, optlen);
1701	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1702}
1703EXPORT_SYMBOL(compat_sock_common_setsockopt);
1704#endif
1705
1706void sk_common_release(struct sock *sk)
1707{
1708	if (sk->sk_prot->destroy)
1709		sk->sk_prot->destroy(sk);
1710
1711	/*
1712	 * Observation: when sock_common_release is called, processes have
1713	 * no access to socket. But net still has.
1714	 * Step one, detach it from networking:
1715	 *
1716	 * A. Remove from hash tables.
1717	 */
1718
1719	sk->sk_prot->unhash(sk);
1720
1721	/*
1722	 * In this point socket cannot receive new packets, but it is possible
1723	 * that some packets are in flight because some CPU runs receiver and
1724	 * did hash table lookup before we unhashed socket. They will achieve
1725	 * receive queue and will be purged by socket destructor.
1726	 *
1727	 * Also we still have packets pending on receive queue and probably,
1728	 * our own packets waiting in device queues. sock_destroy will drain
1729	 * receive queue, but transmitted packets will delay socket destruction
1730	 * until the last reference will be released.
1731	 */
1732
1733	sock_orphan(sk);
1734
1735	xfrm_sk_free_policy(sk);
1736
1737	sk_refcnt_debug_release(sk);
1738	sock_put(sk);
1739}
1740
1741EXPORT_SYMBOL(sk_common_release);
1742
1743static DEFINE_RWLOCK(proto_list_lock);
1744static LIST_HEAD(proto_list);
1745
1746int proto_register(struct proto *prot, int alloc_slab)
1747{
1748	char *request_sock_slab_name = NULL;
1749	char *timewait_sock_slab_name;
1750	int rc = -ENOBUFS;
1751
1752	if (alloc_slab) {
1753		prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
1754					       SLAB_HWCACHE_ALIGN, NULL, NULL);
1755
1756		if (prot->slab == NULL) {
1757			printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
1758			       prot->name);
1759			goto out;
1760		}
1761
1762		if (prot->rsk_prot != NULL) {
1763			static const char mask[] = "request_sock_%s";
1764
1765			request_sock_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
1766			if (request_sock_slab_name == NULL)
1767				goto out_free_sock_slab;
1768
1769			sprintf(request_sock_slab_name, mask, prot->name);
1770			prot->rsk_prot->slab = kmem_cache_create(request_sock_slab_name,
1771								 prot->rsk_prot->obj_size, 0,
1772								 SLAB_HWCACHE_ALIGN, NULL, NULL);
1773
1774			if (prot->rsk_prot->slab == NULL) {
1775				printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
1776				       prot->name);
1777				goto out_free_request_sock_slab_name;
1778			}
1779		}
1780
1781		if (prot->twsk_prot != NULL) {
1782			static const char mask[] = "tw_sock_%s";
1783
1784			timewait_sock_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
1785
1786			if (timewait_sock_slab_name == NULL)
1787				goto out_free_request_sock_slab;
1788
1789			sprintf(timewait_sock_slab_name, mask, prot->name);
1790			prot->twsk_prot->twsk_slab =
1791				kmem_cache_create(timewait_sock_slab_name,
1792						  prot->twsk_prot->twsk_obj_size,
1793						  0, SLAB_HWCACHE_ALIGN,
1794						  NULL, NULL);
1795			if (prot->twsk_prot->twsk_slab == NULL)
1796				goto out_free_timewait_sock_slab_name;
1797		}
1798	}
1799
1800	write_lock(&proto_list_lock);
1801	list_add(&prot->node, &proto_list);
1802	write_unlock(&proto_list_lock);
1803	rc = 0;
1804out:
1805	return rc;
1806out_free_timewait_sock_slab_name:
1807	kfree(timewait_sock_slab_name);
1808out_free_request_sock_slab:
1809	if (prot->rsk_prot && prot->rsk_prot->slab) {
1810		kmem_cache_destroy(prot->rsk_prot->slab);
1811		prot->rsk_prot->slab = NULL;
1812	}
1813out_free_request_sock_slab_name:
1814	kfree(request_sock_slab_name);
1815out_free_sock_slab:
1816	kmem_cache_destroy(prot->slab);
1817	prot->slab = NULL;
1818	goto out;
1819}
1820
1821EXPORT_SYMBOL(proto_register);
1822
1823void proto_unregister(struct proto *prot)
1824{
1825	write_lock(&proto_list_lock);
1826	list_del(&prot->node);
1827	write_unlock(&proto_list_lock);
1828
1829	if (prot->slab != NULL) {
1830		kmem_cache_destroy(prot->slab);
1831		prot->slab = NULL;
1832	}
1833
1834	if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
1835		const char *name = kmem_cache_name(prot->rsk_prot->slab);
1836
1837		kmem_cache_destroy(prot->rsk_prot->slab);
1838		kfree(name);
1839		prot->rsk_prot->slab = NULL;
1840	}
1841
1842	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
1843		const char *name = kmem_cache_name(prot->twsk_prot->twsk_slab);
1844
1845		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
1846		kfree(name);
1847		prot->twsk_prot->twsk_slab = NULL;
1848	}
1849}
1850
1851EXPORT_SYMBOL(proto_unregister);
1852
1853#ifdef CONFIG_PROC_FS
1854static inline struct proto *__proto_head(void)
1855{
1856	return list_entry(proto_list.next, struct proto, node);
1857}
1858
1859static inline struct proto *proto_head(void)
1860{
1861	return list_empty(&proto_list) ? NULL : __proto_head();
1862}
1863
1864static inline struct proto *proto_next(struct proto *proto)
1865{
1866	return proto->node.next == &proto_list ? NULL :
1867		list_entry(proto->node.next, struct proto, node);
1868}
1869
1870static inline struct proto *proto_get_idx(loff_t pos)
1871{
1872	struct proto *proto;
1873	loff_t i = 0;
1874
1875	list_for_each_entry(proto, &proto_list, node)
1876		if (i++ == pos)
1877			goto out;
1878
1879	proto = NULL;
1880out:
1881	return proto;
1882}
1883
1884static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
1885{
1886	read_lock(&proto_list_lock);
1887	return *pos ? proto_get_idx(*pos - 1) : SEQ_START_TOKEN;
1888}
1889
1890static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1891{
1892	++*pos;
1893	return v == SEQ_START_TOKEN ? proto_head() : proto_next(v);
1894}
1895
1896static void proto_seq_stop(struct seq_file *seq, void *v)
1897{
1898	read_unlock(&proto_list_lock);
1899}
1900
1901static char proto_method_implemented(const void *method)
1902{
1903	return method == NULL ? 'n' : 'y';
1904}
1905
1906static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
1907{
1908	seq_printf(seq, "%-9s %4u %6d  %6d   %-3s %6u   %-3s  %-10s "
1909			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
1910		   proto->name,
1911		   proto->obj_size,
1912		   proto->sockets_allocated != NULL ? atomic_read(proto->sockets_allocated) : -1,
1913		   proto->memory_allocated != NULL ? atomic_read(proto->memory_allocated) : -1,
1914		   proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
1915		   proto->max_header,
1916		   proto->slab == NULL ? "no" : "yes",
1917		   module_name(proto->owner),
1918		   proto_method_implemented(proto->close),
1919		   proto_method_implemented(proto->connect),
1920		   proto_method_implemented(proto->disconnect),
1921		   proto_method_implemented(proto->accept),
1922		   proto_method_implemented(proto->ioctl),
1923		   proto_method_implemented(proto->init),
1924		   proto_method_implemented(proto->destroy),
1925		   proto_method_implemented(proto->shutdown),
1926		   proto_method_implemented(proto->setsockopt),
1927		   proto_method_implemented(proto->getsockopt),
1928		   proto_method_implemented(proto->sendmsg),
1929		   proto_method_implemented(proto->recvmsg),
1930		   proto_method_implemented(proto->sendpage),
1931		   proto_method_implemented(proto->bind),
1932		   proto_method_implemented(proto->backlog_rcv),
1933		   proto_method_implemented(proto->hash),
1934		   proto_method_implemented(proto->unhash),
1935		   proto_method_implemented(proto->get_port),
1936		   proto_method_implemented(proto->enter_memory_pressure));
1937}
1938
1939static int proto_seq_show(struct seq_file *seq, void *v)
1940{
1941	if (v == SEQ_START_TOKEN)
1942		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
1943			   "protocol",
1944			   "size",
1945			   "sockets",
1946			   "memory",
1947			   "press",
1948			   "maxhdr",
1949			   "slab",
1950			   "module",
1951			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
1952	else
1953		proto_seq_printf(seq, v);
1954	return 0;
1955}
1956
1957static const struct seq_operations proto_seq_ops = {
1958	.start  = proto_seq_start,
1959	.next   = proto_seq_next,
1960	.stop   = proto_seq_stop,
1961	.show   = proto_seq_show,
1962};
1963
1964static int proto_seq_open(struct inode *inode, struct file *file)
1965{
1966	return seq_open(file, &proto_seq_ops);
1967}
1968
1969static const struct file_operations proto_seq_fops = {
1970	.owner		= THIS_MODULE,
1971	.open		= proto_seq_open,
1972	.read		= seq_read,
1973	.llseek		= seq_lseek,
1974	.release	= seq_release,
1975};
1976
1977static int __init proto_init(void)
1978{
1979	/* register /proc/net/protocols */
1980	return proc_net_fops_create("protocols", S_IRUGO, &proto_seq_fops) == NULL ? -ENOBUFS : 0;
1981}
1982
1983subsys_initcall(proto_init);
1984
1985#endif /* PROC_FS */
1986
1987EXPORT_SYMBOL(sk_alloc);
1988EXPORT_SYMBOL(sk_free);
1989EXPORT_SYMBOL(sk_send_sigurg);
1990EXPORT_SYMBOL(sock_alloc_send_skb);
1991EXPORT_SYMBOL(sock_init_data);
1992EXPORT_SYMBOL(sock_kfree_s);
1993EXPORT_SYMBOL(sock_kmalloc);
1994EXPORT_SYMBOL(sock_no_accept);
1995EXPORT_SYMBOL(sock_no_bind);
1996EXPORT_SYMBOL(sock_no_connect);
1997EXPORT_SYMBOL(sock_no_getname);
1998EXPORT_SYMBOL(sock_no_getsockopt);
1999EXPORT_SYMBOL(sock_no_ioctl);
2000EXPORT_SYMBOL(sock_no_listen);
2001EXPORT_SYMBOL(sock_no_mmap);
2002EXPORT_SYMBOL(sock_no_poll);
2003EXPORT_SYMBOL(sock_no_recvmsg);
2004EXPORT_SYMBOL(sock_no_sendmsg);
2005EXPORT_SYMBOL(sock_no_sendpage);
2006EXPORT_SYMBOL(sock_no_setsockopt);
2007EXPORT_SYMBOL(sock_no_shutdown);
2008EXPORT_SYMBOL(sock_no_socketpair);
2009EXPORT_SYMBOL(sock_rfree);
2010EXPORT_SYMBOL(sock_setsockopt);
2011EXPORT_SYMBOL(sock_wfree);
2012EXPORT_SYMBOL(sock_wmalloc);
2013EXPORT_SYMBOL(sock_i_uid);
2014EXPORT_SYMBOL(sock_i_ino);
2015EXPORT_SYMBOL(sysctl_optmem_max);
2016#ifdef CONFIG_SYSCTL
2017EXPORT_SYMBOL(sysctl_rmem_max);
2018EXPORT_SYMBOL(sysctl_wmem_max);
2019#endif
2020