1/*
2 * mm/readahead.c - address_space-level file readahead.
3 *
4 * Copyright (C) 2002, Linus Torvalds
5 *
6 * 09Apr2002	akpm@zip.com.au
7 *		Initial version.
8 */
9
10#include <linux/kernel.h>
11#include <linux/fs.h>
12#include <linux/mm.h>
13#include <linux/module.h>
14#include <linux/blkdev.h>
15#include <linux/backing-dev.h>
16#include <linux/task_io_accounting_ops.h>
17#include <linux/pagevec.h>
18
19void default_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
20{
21}
22EXPORT_SYMBOL(default_unplug_io_fn);
23
24struct backing_dev_info default_backing_dev_info = {
25	.ra_pages	= (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE,
26	.state		= 0,
27	.capabilities	= BDI_CAP_MAP_COPY,
28	.unplug_io_fn	= default_unplug_io_fn,
29};
30EXPORT_SYMBOL_GPL(default_backing_dev_info);
31
32/*
33 * Initialise a struct file's readahead state.  Assumes that the caller has
34 * memset *ra to zero.
35 */
36void
37file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
38{
39	ra->ra_pages = mapping->backing_dev_info->ra_pages;
40	ra->prev_index = -1;
41}
42EXPORT_SYMBOL_GPL(file_ra_state_init);
43
44/*
45 * Return max readahead size for this inode in number-of-pages.
46 */
47static inline unsigned long get_max_readahead(struct file_ra_state *ra)
48{
49	return ra->ra_pages;
50}
51
52static inline unsigned long get_min_readahead(struct file_ra_state *ra)
53{
54	return (VM_MIN_READAHEAD * 1024) / PAGE_CACHE_SIZE;
55}
56
57static inline void reset_ahead_window(struct file_ra_state *ra)
58{
59	/*
60	 * ... but preserve ahead_start + ahead_size value,
61	 * see 'recheck:' label in page_cache_readahead().
62	 * Note: We never use ->ahead_size as rvalue without
63	 * checking ->ahead_start != 0 first.
64	 */
65	ra->ahead_size += ra->ahead_start;
66	ra->ahead_start = 0;
67}
68
69static inline void ra_off(struct file_ra_state *ra)
70{
71	ra->start = 0;
72	ra->flags = 0;
73	ra->size = 0;
74	reset_ahead_window(ra);
75	return;
76}
77
78/*
79 * Set the initial window size, round to next power of 2 and square
80 * for small size, x 4 for medium, and x 2 for large
81 * for 128k (32 page) max ra
82 * 1-8 page = 32k initial, > 8 page = 128k initial
83 */
84static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
85{
86	unsigned long newsize = roundup_pow_of_two(size);
87
88	if (newsize <= max / 32)
89		newsize = newsize * 4;
90	else if (newsize <= max / 4)
91		newsize = newsize * 2;
92	else
93		newsize = max;
94	return newsize;
95}
96
97/*
98 * Set the new window size, this is called only when I/O is to be submitted,
99 * not for each call to readahead.  If a cache miss occured, reduce next I/O
100 * size, else increase depending on how close to max we are.
101 */
102static inline unsigned long get_next_ra_size(struct file_ra_state *ra)
103{
104	unsigned long max = get_max_readahead(ra);
105	unsigned long min = get_min_readahead(ra);
106	unsigned long cur = ra->size;
107	unsigned long newsize;
108
109	if (ra->flags & RA_FLAG_MISS) {
110		ra->flags &= ~RA_FLAG_MISS;
111		newsize = max((cur - 2), min);
112	} else if (cur < max / 16) {
113		newsize = 4 * cur;
114	} else {
115		newsize = 2 * cur;
116	}
117	return min(newsize, max);
118}
119
120#define list_to_page(head) (list_entry((head)->prev, struct page, lru))
121
122/**
123 * read_cache_pages - populate an address space with some pages & start reads against them
124 * @mapping: the address_space
125 * @pages: The address of a list_head which contains the target pages.  These
126 *   pages have their ->index populated and are otherwise uninitialised.
127 * @filler: callback routine for filling a single page.
128 * @data: private data for the callback routine.
129 *
130 * Hides the details of the LRU cache etc from the filesystems.
131 */
132int read_cache_pages(struct address_space *mapping, struct list_head *pages,
133			int (*filler)(void *, struct page *), void *data)
134{
135	struct page *page;
136	struct pagevec lru_pvec;
137	int ret = 0;
138
139	pagevec_init(&lru_pvec, 0);
140
141	while (!list_empty(pages)) {
142		page = list_to_page(pages);
143		list_del(&page->lru);
144		if (add_to_page_cache(page, mapping, page->index, GFP_KERNEL)) {
145			page_cache_release(page);
146			continue;
147		}
148		ret = filler(data, page);
149		if (!pagevec_add(&lru_pvec, page))
150			__pagevec_lru_add(&lru_pvec);
151		if (ret) {
152			put_pages_list(pages);
153			break;
154		}
155		task_io_account_read(PAGE_CACHE_SIZE);
156	}
157	pagevec_lru_add(&lru_pvec);
158	return ret;
159}
160
161EXPORT_SYMBOL(read_cache_pages);
162
163static int read_pages(struct address_space *mapping, struct file *filp,
164		struct list_head *pages, unsigned nr_pages)
165{
166	unsigned page_idx;
167	struct pagevec lru_pvec;
168	int ret;
169
170	if (mapping->a_ops->readpages) {
171		ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages);
172		/* Clean up the remaining pages */
173		put_pages_list(pages);
174		goto out;
175	}
176
177	pagevec_init(&lru_pvec, 0);
178	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
179		struct page *page = list_to_page(pages);
180		list_del(&page->lru);
181		if (!add_to_page_cache(page, mapping,
182					page->index, GFP_KERNEL)) {
183			mapping->a_ops->readpage(filp, page);
184			if (!pagevec_add(&lru_pvec, page))
185				__pagevec_lru_add(&lru_pvec);
186		} else
187			page_cache_release(page);
188	}
189	pagevec_lru_add(&lru_pvec);
190	ret = 0;
191out:
192	return ret;
193}
194
195/*
196 * Readahead design.
197 *
198 * The fields in struct file_ra_state represent the most-recently-executed
199 * readahead attempt:
200 *
201 * start:	Page index at which we started the readahead
202 * size:	Number of pages in that read
203 *              Together, these form the "current window".
204 *              Together, start and size represent the `readahead window'.
205 * prev_index:  The page which the readahead algorithm most-recently inspected.
206 *              It is mainly used to detect sequential file reading.
207 *              If page_cache_readahead sees that it is again being called for
208 *              a page which it just looked at, it can return immediately without
209 *              making any state changes.
210 * offset:      Offset in the prev_index where the last read ended - used for
211 *              detection of sequential file reading.
212 * ahead_start,
213 * ahead_size:  Together, these form the "ahead window".
214 * ra_pages:	The externally controlled max readahead for this fd.
215 *
216 * When readahead is in the off state (size == 0), readahead is disabled.
217 * In this state, prev_index is used to detect the resumption of sequential I/O.
218 *
219 * The readahead code manages two windows - the "current" and the "ahead"
220 * windows.  The intent is that while the application is walking the pages
221 * in the current window, I/O is underway on the ahead window.  When the
222 * current window is fully traversed, it is replaced by the ahead window
223 * and the ahead window is invalidated.  When this copying happens, the
224 * new current window's pages are probably still locked.  So
225 * we submit a new batch of I/O immediately, creating a new ahead window.
226 *
227 * So:
228 *
229 *   ----|----------------|----------------|-----
230 *       ^start           ^start+size
231 *                        ^ahead_start     ^ahead_start+ahead_size
232 *
233 *         ^ When this page is read, we submit I/O for the
234 *           ahead window.
235 *
236 * A `readahead hit' occurs when a read request is made against a page which is
237 * the next sequential page. Ahead window calculations are done only when it
238 * is time to submit a new IO.  The code ramps up the size agressively at first,
239 * but slow down as it approaches max_readhead.
240 *
241 * Any seek/ramdom IO will result in readahead being turned off.  It will resume
242 * at the first sequential access.
243 *
244 * There is a special-case: if the first page which the application tries to
245 * read happens to be the first page of the file, it is assumed that a linear
246 * read is about to happen and the window is immediately set to the initial size
247 * based on I/O request size and the max_readahead.
248 *
249 * This function is to be called for every read request, rather than when
250 * it is time to perform readahead.  It is called only once for the entire I/O
251 * regardless of size unless readahead is unable to start enough I/O to satisfy
252 * the request (I/O request > max_readahead).
253 */
254
255/*
256 * do_page_cache_readahead actually reads a chunk of disk.  It allocates all
257 * the pages first, then submits them all for I/O. This avoids the very bad
258 * behaviour which would occur if page allocations are causing VM writeback.
259 * We really don't want to intermingle reads and writes like that.
260 *
261 * Returns the number of pages requested, or the maximum amount of I/O allowed.
262 *
263 * do_page_cache_readahead() returns -1 if it encountered request queue
264 * congestion.
265 */
266static int
267__do_page_cache_readahead(struct address_space *mapping, struct file *filp,
268			pgoff_t offset, unsigned long nr_to_read)
269{
270	struct inode *inode = mapping->host;
271	struct page *page;
272	unsigned long end_index;	/* The last page we want to read */
273	LIST_HEAD(page_pool);
274	int page_idx;
275	int ret = 0;
276	loff_t isize = i_size_read(inode);
277
278	if (isize == 0)
279		goto out;
280
281 	end_index = ((isize - 1) >> PAGE_CACHE_SHIFT);
282
283	/*
284	 * Preallocate as many pages as we will need.
285	 */
286	read_lock_irq(&mapping->tree_lock);
287	for (page_idx = 0; page_idx < nr_to_read; page_idx++) {
288		pgoff_t page_offset = offset + page_idx;
289
290		if (page_offset > end_index)
291			break;
292
293		page = radix_tree_lookup(&mapping->page_tree, page_offset);
294		if (page)
295			continue;
296
297		read_unlock_irq(&mapping->tree_lock);
298		page = page_cache_alloc_cold(mapping);
299		read_lock_irq(&mapping->tree_lock);
300		if (!page)
301			break;
302		page->index = page_offset;
303		list_add(&page->lru, &page_pool);
304		ret++;
305	}
306	read_unlock_irq(&mapping->tree_lock);
307
308	/*
309	 * Now start the IO.  We ignore I/O errors - if the page is not
310	 * uptodate then the caller will launch readpage again, and
311	 * will then handle the error.
312	 */
313	if (ret)
314		read_pages(mapping, filp, &page_pool, ret);
315	BUG_ON(!list_empty(&page_pool));
316out:
317	return ret;
318}
319
320/*
321 * Chunk the readahead into 2 megabyte units, so that we don't pin too much
322 * memory at once.
323 */
324int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
325		pgoff_t offset, unsigned long nr_to_read)
326{
327	int ret = 0;
328
329	if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages))
330		return -EINVAL;
331
332	while (nr_to_read) {
333		int err;
334
335		unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_CACHE_SIZE;
336
337		if (this_chunk > nr_to_read)
338			this_chunk = nr_to_read;
339		err = __do_page_cache_readahead(mapping, filp,
340						offset, this_chunk);
341		if (err < 0) {
342			ret = err;
343			break;
344		}
345		ret += err;
346		offset += this_chunk;
347		nr_to_read -= this_chunk;
348	}
349	return ret;
350}
351
352/*
353 * Check how effective readahead is being.  If the amount of started IO is
354 * less than expected then the file is partly or fully in pagecache and
355 * readahead isn't helping.
356 *
357 */
358static inline int check_ra_success(struct file_ra_state *ra,
359			unsigned long nr_to_read, unsigned long actual)
360{
361	if (actual == 0) {
362		ra->cache_hit += nr_to_read;
363		if (ra->cache_hit >= VM_MAX_CACHE_HIT) {
364			ra_off(ra);
365			ra->flags |= RA_FLAG_INCACHE;
366			return 0;
367		}
368	} else {
369		ra->cache_hit=0;
370	}
371	return 1;
372}
373
374/*
375 * This version skips the IO if the queue is read-congested, and will tell the
376 * block layer to abandon the readahead if request allocation would block.
377 *
378 * force_page_cache_readahead() will ignore queue congestion and will block on
379 * request queues.
380 */
381int do_page_cache_readahead(struct address_space *mapping, struct file *filp,
382			pgoff_t offset, unsigned long nr_to_read)
383{
384	if (bdi_read_congested(mapping->backing_dev_info))
385		return -1;
386
387	return __do_page_cache_readahead(mapping, filp, offset, nr_to_read);
388}
389
390/*
391 * Read 'nr_to_read' pages starting at page 'offset'. If the flag 'block'
392 * is set wait till the read completes.  Otherwise attempt to read without
393 * blocking.
394 * Returns 1 meaning 'success' if read is successful without switching off
395 * readahead mode. Otherwise return failure.
396 */
397static int
398blockable_page_cache_readahead(struct address_space *mapping, struct file *filp,
399			pgoff_t offset, unsigned long nr_to_read,
400			struct file_ra_state *ra, int block)
401{
402	int actual;
403
404	if (!block && bdi_read_congested(mapping->backing_dev_info))
405		return 0;
406
407	actual = __do_page_cache_readahead(mapping, filp, offset, nr_to_read);
408
409	return check_ra_success(ra, nr_to_read, actual);
410}
411
412static int make_ahead_window(struct address_space *mapping, struct file *filp,
413				struct file_ra_state *ra, int force)
414{
415	int block, ret;
416
417	ra->ahead_size = get_next_ra_size(ra);
418	ra->ahead_start = ra->start + ra->size;
419
420	block = force || (ra->prev_index >= ra->ahead_start);
421	ret = blockable_page_cache_readahead(mapping, filp,
422			ra->ahead_start, ra->ahead_size, ra, block);
423
424	if (!ret && !force) {
425		/* A read failure in blocking mode, implies pages are
426		 * all cached. So we can safely assume we have taken
427		 * care of all the pages requested in this call.
428		 * A read failure in non-blocking mode, implies we are
429		 * reading more pages than requested in this call.  So
430		 * we safely assume we have taken care of all the pages
431		 * requested in this call.
432		 *
433		 * Just reset the ahead window in case we failed due to
434		 * congestion.  The ahead window will any way be closed
435		 * in case we failed due to excessive page cache hits.
436		 */
437		reset_ahead_window(ra);
438	}
439
440	return ret;
441}
442
443/**
444 * page_cache_readahead - generic adaptive readahead
445 * @mapping: address_space which holds the pagecache and I/O vectors
446 * @ra: file_ra_state which holds the readahead state
447 * @filp: passed on to ->readpage() and ->readpages()
448 * @offset: start offset into @mapping, in PAGE_CACHE_SIZE units
449 * @req_size: hint: total size of the read which the caller is performing in
450 *            PAGE_CACHE_SIZE units
451 *
452 * page_cache_readahead() is the main function.  If performs the adaptive
453 * readahead window size management and submits the readahead I/O.
454 *
455 * Note that @filp is purely used for passing on to the ->readpage[s]()
456 * handler: it may refer to a different file from @mapping (so we may not use
457 * @filp->f_mapping or @filp->f_path.dentry->d_inode here).
458 * Also, @ra may not be equal to &@filp->f_ra.
459 *
460 */
461unsigned long
462page_cache_readahead(struct address_space *mapping, struct file_ra_state *ra,
463		     struct file *filp, pgoff_t offset, unsigned long req_size)
464{
465	unsigned long max, newsize;
466	int sequential;
467
468	/*
469	 * We avoid doing extra work and bogusly perturbing the readahead
470	 * window expansion logic.
471	 */
472	if (offset == ra->prev_index && --req_size)
473		++offset;
474
475	/* Note that prev_index == -1 if it is a first read */
476	sequential = (offset == ra->prev_index + 1);
477	ra->prev_index = offset;
478	ra->prev_offset = 0;
479
480	max = get_max_readahead(ra);
481	newsize = min(req_size, max);
482
483	/* No readahead or sub-page sized read or file already in cache */
484	if (newsize == 0 || (ra->flags & RA_FLAG_INCACHE))
485		goto out;
486
487	ra->prev_index += newsize - 1;
488
489	/*
490	 * Special case - first read at start of file. We'll assume it's
491	 * a whole-file read and grow the window fast.  Or detect first
492	 * sequential access
493	 */
494	if (sequential && ra->size == 0) {
495		ra->size = get_init_ra_size(newsize, max);
496		ra->start = offset;
497		if (!blockable_page_cache_readahead(mapping, filp, offset,
498							 ra->size, ra, 1))
499			goto out;
500
501		/*
502		 * If the request size is larger than our max readahead, we
503		 * at least want to be sure that we get 2 IOs in flight and
504		 * we know that we will definitly need the new I/O.
505		 * once we do this, subsequent calls should be able to overlap
506		 * IOs,* thus preventing stalls. so issue the ahead window
507		 * immediately.
508		 */
509		if (req_size >= max)
510			make_ahead_window(mapping, filp, ra, 1);
511
512		goto out;
513	}
514
515	/*
516	 * Now handle the random case:
517	 * partial page reads and first access were handled above,
518	 * so this must be the next page otherwise it is random
519	 */
520	if (!sequential) {
521		ra_off(ra);
522		blockable_page_cache_readahead(mapping, filp, offset,
523				 newsize, ra, 1);
524		goto out;
525	}
526
527	/*
528	 * If we get here we are doing sequential IO and this was not the first
529	 * occurence (ie we have an existing window)
530	 */
531	if (ra->ahead_start == 0) {	 /* no ahead window yet */
532		if (!make_ahead_window(mapping, filp, ra, 0))
533			goto recheck;
534	}
535
536	/*
537	 * Already have an ahead window, check if we crossed into it.
538	 * If so, shift windows and issue a new ahead window.
539	 * Only return the #pages that are in the current window, so that
540	 * we get called back on the first page of the ahead window which
541	 * will allow us to submit more IO.
542	 */
543	if (ra->prev_index >= ra->ahead_start) {
544		ra->start = ra->ahead_start;
545		ra->size = ra->ahead_size;
546		make_ahead_window(mapping, filp, ra, 0);
547recheck:
548		/* prev_index shouldn't overrun the ahead window */
549		ra->prev_index = min(ra->prev_index,
550			ra->ahead_start + ra->ahead_size - 1);
551	}
552
553out:
554	return ra->prev_index + 1;
555}
556EXPORT_SYMBOL_GPL(page_cache_readahead);
557
558/*
559 * handle_ra_miss() is called when it is known that a page which should have
560 * been present in the pagecache (we just did some readahead there) was in fact
561 * not found.  This will happen if it was evicted by the VM (readahead
562 * thrashing)
563 *
564 * Turn on the cache miss flag in the RA struct, this will cause the RA code
565 * to reduce the RA size on the next read.
566 */
567void handle_ra_miss(struct address_space *mapping,
568		struct file_ra_state *ra, pgoff_t offset)
569{
570	ra->flags |= RA_FLAG_MISS;
571	ra->flags &= ~RA_FLAG_INCACHE;
572	ra->cache_hit = 0;
573}
574
575/*
576 * Given a desired number of PAGE_CACHE_SIZE readahead pages, return a
577 * sensible upper limit.
578 */
579unsigned long max_sane_readahead(unsigned long nr)
580{
581	return min(nr, (node_page_state(numa_node_id(), NR_INACTIVE)
582		+ node_page_state(numa_node_id(), NR_FREE_PAGES)) / 2);
583}
584