1/*
2 *  linux/mm/memory.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27 *		Found it. Everything seems to work now.
28 * 20.12.91  -  Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94  -  Multi-page memory management added for v1.1.
33 * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 *		(Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
48#include <linux/rmap.h>
49#include <linux/module.h>
50#include <linux/delayacct.h>
51#include <linux/init.h>
52#include <linux/writeback.h>
53
54#include <asm/pgalloc.h>
55#include <asm/uaccess.h>
56#include <asm/tlb.h>
57#include <asm/tlbflush.h>
58#include <asm/pgtable.h>
59
60#include <linux/swapops.h>
61#include <linux/elf.h>
62
63#ifndef CONFIG_NEED_MULTIPLE_NODES
64/* use the per-pgdat data instead for discontigmem - mbligh */
65unsigned long max_mapnr;
66struct page *mem_map;
67
68EXPORT_SYMBOL(max_mapnr);
69EXPORT_SYMBOL(mem_map);
70#endif
71
72unsigned long num_physpages;
73/*
74 * A number of key systems in x86 including ioremap() rely on the assumption
75 * that high_memory defines the upper bound on direct map memory, then end
76 * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
77 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
78 * and ZONE_HIGHMEM.
79 */
80void * high_memory;
81unsigned long vmalloc_earlyreserve;
82
83EXPORT_SYMBOL(num_physpages);
84EXPORT_SYMBOL(high_memory);
85EXPORT_SYMBOL(vmalloc_earlyreserve);
86
87int randomize_va_space __read_mostly = 1;
88
89static int __init disable_randmaps(char *s)
90{
91	randomize_va_space = 0;
92	return 1;
93}
94__setup("norandmaps", disable_randmaps);
95
96
97/*
98 * If a p?d_bad entry is found while walking page tables, report
99 * the error, before resetting entry to p?d_none.  Usually (but
100 * very seldom) called out from the p?d_none_or_clear_bad macros.
101 */
102
103void pgd_clear_bad(pgd_t *pgd)
104{
105	pgd_ERROR(*pgd);
106	pgd_clear(pgd);
107}
108
109void pud_clear_bad(pud_t *pud)
110{
111	pud_ERROR(*pud);
112	pud_clear(pud);
113}
114
115void pmd_clear_bad(pmd_t *pmd)
116{
117	pmd_ERROR(*pmd);
118	pmd_clear(pmd);
119}
120
121/*
122 * Note: this doesn't free the actual pages themselves. That
123 * has been handled earlier when unmapping all the memory regions.
124 */
125static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
126{
127	struct page *page = pmd_page(*pmd);
128	pmd_clear(pmd);
129	pte_lock_deinit(page);
130	pte_free_tlb(tlb, page);
131	dec_zone_page_state(page, NR_PAGETABLE);
132	tlb->mm->nr_ptes--;
133}
134
135static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
136				unsigned long addr, unsigned long end,
137				unsigned long floor, unsigned long ceiling)
138{
139	pmd_t *pmd;
140	unsigned long next;
141	unsigned long start;
142
143	start = addr;
144	pmd = pmd_offset(pud, addr);
145	do {
146		next = pmd_addr_end(addr, end);
147		if (pmd_none_or_clear_bad(pmd))
148			continue;
149		free_pte_range(tlb, pmd);
150	} while (pmd++, addr = next, addr != end);
151
152	start &= PUD_MASK;
153	if (start < floor)
154		return;
155	if (ceiling) {
156		ceiling &= PUD_MASK;
157		if (!ceiling)
158			return;
159	}
160	if (end - 1 > ceiling - 1)
161		return;
162
163	pmd = pmd_offset(pud, start);
164	pud_clear(pud);
165	pmd_free_tlb(tlb, pmd);
166}
167
168static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
169				unsigned long addr, unsigned long end,
170				unsigned long floor, unsigned long ceiling)
171{
172	pud_t *pud;
173	unsigned long next;
174	unsigned long start;
175
176	start = addr;
177	pud = pud_offset(pgd, addr);
178	do {
179		next = pud_addr_end(addr, end);
180		if (pud_none_or_clear_bad(pud))
181			continue;
182		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
183	} while (pud++, addr = next, addr != end);
184
185	start &= PGDIR_MASK;
186	if (start < floor)
187		return;
188	if (ceiling) {
189		ceiling &= PGDIR_MASK;
190		if (!ceiling)
191			return;
192	}
193	if (end - 1 > ceiling - 1)
194		return;
195
196	pud = pud_offset(pgd, start);
197	pgd_clear(pgd);
198	pud_free_tlb(tlb, pud);
199}
200
201/*
202 * This function frees user-level page tables of a process.
203 *
204 * Must be called with pagetable lock held.
205 */
206void free_pgd_range(struct mmu_gather **tlb,
207			unsigned long addr, unsigned long end,
208			unsigned long floor, unsigned long ceiling)
209{
210	pgd_t *pgd;
211	unsigned long next;
212	unsigned long start;
213
214	/*
215	 * The next few lines have given us lots of grief...
216	 *
217	 * Why are we testing PMD* at this top level?  Because often
218	 * there will be no work to do at all, and we'd prefer not to
219	 * go all the way down to the bottom just to discover that.
220	 *
221	 * Why all these "- 1"s?  Because 0 represents both the bottom
222	 * of the address space and the top of it (using -1 for the
223	 * top wouldn't help much: the masks would do the wrong thing).
224	 * The rule is that addr 0 and floor 0 refer to the bottom of
225	 * the address space, but end 0 and ceiling 0 refer to the top
226	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
227	 * that end 0 case should be mythical).
228	 *
229	 * Wherever addr is brought up or ceiling brought down, we must
230	 * be careful to reject "the opposite 0" before it confuses the
231	 * subsequent tests.  But what about where end is brought down
232	 * by PMD_SIZE below? no, end can't go down to 0 there.
233	 *
234	 * Whereas we round start (addr) and ceiling down, by different
235	 * masks at different levels, in order to test whether a table
236	 * now has no other vmas using it, so can be freed, we don't
237	 * bother to round floor or end up - the tests don't need that.
238	 */
239
240	addr &= PMD_MASK;
241	if (addr < floor) {
242		addr += PMD_SIZE;
243		if (!addr)
244			return;
245	}
246	if (ceiling) {
247		ceiling &= PMD_MASK;
248		if (!ceiling)
249			return;
250	}
251	if (end - 1 > ceiling - 1)
252		end -= PMD_SIZE;
253	if (addr > end - 1)
254		return;
255
256	start = addr;
257	pgd = pgd_offset((*tlb)->mm, addr);
258	do {
259		next = pgd_addr_end(addr, end);
260		if (pgd_none_or_clear_bad(pgd))
261			continue;
262		free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
263	} while (pgd++, addr = next, addr != end);
264
265	if (!(*tlb)->fullmm)
266		flush_tlb_pgtables((*tlb)->mm, start, end);
267}
268
269void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
270		unsigned long floor, unsigned long ceiling)
271{
272	while (vma) {
273		struct vm_area_struct *next = vma->vm_next;
274		unsigned long addr = vma->vm_start;
275
276		/*
277		 * Hide vma from rmap and vmtruncate before freeing pgtables
278		 */
279		anon_vma_unlink(vma);
280		unlink_file_vma(vma);
281
282		if (is_vm_hugetlb_page(vma)) {
283			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
284				floor, next? next->vm_start: ceiling);
285		} else {
286			/*
287			 * Optimization: gather nearby vmas into one call down
288			 */
289			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
290			       && !is_vm_hugetlb_page(next)) {
291				vma = next;
292				next = vma->vm_next;
293				anon_vma_unlink(vma);
294				unlink_file_vma(vma);
295			}
296			free_pgd_range(tlb, addr, vma->vm_end,
297				floor, next? next->vm_start: ceiling);
298		}
299		vma = next;
300	}
301}
302
303int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
304{
305	struct page *new = pte_alloc_one(mm, address);
306	if (!new)
307		return -ENOMEM;
308
309	pte_lock_init(new);
310	spin_lock(&mm->page_table_lock);
311	if (pmd_present(*pmd)) {	/* Another has populated it */
312		pte_lock_deinit(new);
313		pte_free(new);
314	} else {
315		mm->nr_ptes++;
316		inc_zone_page_state(new, NR_PAGETABLE);
317		pmd_populate(mm, pmd, new);
318	}
319	spin_unlock(&mm->page_table_lock);
320	return 0;
321}
322
323int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
324{
325	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
326	if (!new)
327		return -ENOMEM;
328
329	spin_lock(&init_mm.page_table_lock);
330	if (pmd_present(*pmd))		/* Another has populated it */
331		pte_free_kernel(new);
332	else
333		pmd_populate_kernel(&init_mm, pmd, new);
334	spin_unlock(&init_mm.page_table_lock);
335	return 0;
336}
337
338static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
339{
340	if (file_rss)
341		add_mm_counter(mm, file_rss, file_rss);
342	if (anon_rss)
343		add_mm_counter(mm, anon_rss, anon_rss);
344}
345
346/*
347 * This function is called to print an error when a bad pte
348 * is found. For example, we might have a PFN-mapped pte in
349 * a region that doesn't allow it.
350 *
351 * The calling function must still handle the error.
352 */
353void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
354{
355	printk(KERN_ERR "Bad pte = %08llx, process = %s, "
356			"vm_flags = %lx, vaddr = %lx\n",
357		(long long)pte_val(pte),
358		(vma->vm_mm == current->mm ? current->comm : "???"),
359		vma->vm_flags, vaddr);
360	dump_stack();
361}
362
363static inline int is_cow_mapping(unsigned int flags)
364{
365	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
366}
367
368/*
369 * This function gets the "struct page" associated with a pte.
370 *
371 * NOTE! Some mappings do not have "struct pages". A raw PFN mapping
372 * will have each page table entry just pointing to a raw page frame
373 * number, and as far as the VM layer is concerned, those do not have
374 * pages associated with them - even if the PFN might point to memory
375 * that otherwise is perfectly fine and has a "struct page".
376 *
377 * The way we recognize those mappings is through the rules set up
378 * by "remap_pfn_range()": the vma will have the VM_PFNMAP bit set,
379 * and the vm_pgoff will point to the first PFN mapped: thus every
380 * page that is a raw mapping will always honor the rule
381 *
382 *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
383 *
384 * and if that isn't true, the page has been COW'ed (in which case it
385 * _does_ have a "struct page" associated with it even if it is in a
386 * VM_PFNMAP range).
387 */
388struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
389{
390	unsigned long pfn = pte_pfn(pte);
391
392	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
393		unsigned long off = (addr - vma->vm_start) >> PAGE_SHIFT;
394		if (pfn == vma->vm_pgoff + off)
395			return NULL;
396		if (!is_cow_mapping(vma->vm_flags))
397			return NULL;
398	}
399
400	/*
401	 * Add some anal sanity checks for now. Eventually,
402	 * we should just do "return pfn_to_page(pfn)", but
403	 * in the meantime we check that we get a valid pfn,
404	 * and that the resulting page looks ok.
405	 */
406	if (unlikely(!pfn_valid(pfn))) {
407		print_bad_pte(vma, pte, addr);
408		return NULL;
409	}
410
411	/*
412	 * NOTE! We still have PageReserved() pages in the page
413	 * tables.
414	 *
415	 * The PAGE_ZERO() pages and various VDSO mappings can
416	 * cause them to exist.
417	 */
418	return pfn_to_page(pfn);
419}
420
421/*
422 * copy one vm_area from one task to the other. Assumes the page tables
423 * already present in the new task to be cleared in the whole range
424 * covered by this vma.
425 */
426
427static inline void
428copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
429		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
430		unsigned long addr, int *rss)
431{
432	unsigned long vm_flags = vma->vm_flags;
433	pte_t pte = *src_pte;
434	struct page *page;
435
436	/* pte contains position in swap or file, so copy. */
437	if (unlikely(!pte_present(pte))) {
438		if (!pte_file(pte)) {
439			swp_entry_t entry = pte_to_swp_entry(pte);
440
441			swap_duplicate(entry);
442			/* make sure dst_mm is on swapoff's mmlist. */
443			if (unlikely(list_empty(&dst_mm->mmlist))) {
444				spin_lock(&mmlist_lock);
445				if (list_empty(&dst_mm->mmlist))
446					list_add(&dst_mm->mmlist,
447						 &src_mm->mmlist);
448				spin_unlock(&mmlist_lock);
449			}
450			if (is_write_migration_entry(entry) &&
451					is_cow_mapping(vm_flags)) {
452				/*
453				 * COW mappings require pages in both parent
454				 * and child to be set to read.
455				 */
456				make_migration_entry_read(&entry);
457				pte = swp_entry_to_pte(entry);
458				set_pte_at(src_mm, addr, src_pte, pte);
459			}
460		}
461		goto out_set_pte;
462	}
463
464	/*
465	 * If it's a COW mapping, write protect it both
466	 * in the parent and the child
467	 */
468	if (is_cow_mapping(vm_flags)) {
469		ptep_set_wrprotect(src_mm, addr, src_pte);
470		pte = pte_wrprotect(pte);
471	}
472
473	/*
474	 * If it's a shared mapping, mark it clean in
475	 * the child
476	 */
477	if (vm_flags & VM_SHARED)
478		pte = pte_mkclean(pte);
479	pte = pte_mkold(pte);
480
481	page = vm_normal_page(vma, addr, pte);
482	if (page) {
483		get_page(page);
484		page_dup_rmap(page, vma, addr);
485		rss[!!PageAnon(page)]++;
486	}
487
488out_set_pte:
489	set_pte_at(dst_mm, addr, dst_pte, pte);
490}
491
492static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
493		pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
494		unsigned long addr, unsigned long end)
495{
496	pte_t *src_pte, *dst_pte;
497	spinlock_t *src_ptl, *dst_ptl;
498	int progress = 0;
499	int rss[2];
500
501again:
502	rss[1] = rss[0] = 0;
503	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
504	if (!dst_pte)
505		return -ENOMEM;
506	src_pte = pte_offset_map_nested(src_pmd, addr);
507	src_ptl = pte_lockptr(src_mm, src_pmd);
508	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
509	arch_enter_lazy_mmu_mode();
510
511	do {
512		/*
513		 * We are holding two locks at this point - either of them
514		 * could generate latencies in another task on another CPU.
515		 */
516		if (progress >= 32) {
517			progress = 0;
518			if (need_resched() ||
519			    need_lockbreak(src_ptl) ||
520			    need_lockbreak(dst_ptl))
521				break;
522		}
523		if (pte_none(*src_pte)) {
524			progress++;
525			continue;
526		}
527		copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
528		progress += 8;
529	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
530
531	arch_leave_lazy_mmu_mode();
532	spin_unlock(src_ptl);
533	pte_unmap_nested(src_pte - 1);
534	add_mm_rss(dst_mm, rss[0], rss[1]);
535	pte_unmap_unlock(dst_pte - 1, dst_ptl);
536	cond_resched();
537	if (addr != end)
538		goto again;
539	return 0;
540}
541
542static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
543		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
544		unsigned long addr, unsigned long end)
545{
546	pmd_t *src_pmd, *dst_pmd;
547	unsigned long next;
548
549	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
550	if (!dst_pmd)
551		return -ENOMEM;
552	src_pmd = pmd_offset(src_pud, addr);
553	do {
554		next = pmd_addr_end(addr, end);
555		if (pmd_none_or_clear_bad(src_pmd))
556			continue;
557		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
558						vma, addr, next))
559			return -ENOMEM;
560	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
561	return 0;
562}
563
564static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
565		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
566		unsigned long addr, unsigned long end)
567{
568	pud_t *src_pud, *dst_pud;
569	unsigned long next;
570
571	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
572	if (!dst_pud)
573		return -ENOMEM;
574	src_pud = pud_offset(src_pgd, addr);
575	do {
576		next = pud_addr_end(addr, end);
577		if (pud_none_or_clear_bad(src_pud))
578			continue;
579		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
580						vma, addr, next))
581			return -ENOMEM;
582	} while (dst_pud++, src_pud++, addr = next, addr != end);
583	return 0;
584}
585
586int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
587		struct vm_area_struct *vma)
588{
589	pgd_t *src_pgd, *dst_pgd;
590	unsigned long next;
591	unsigned long addr = vma->vm_start;
592	unsigned long end = vma->vm_end;
593
594	/*
595	 * Don't copy ptes where a page fault will fill them correctly.
596	 * Fork becomes much lighter when there are big shared or private
597	 * readonly mappings. The tradeoff is that copy_page_range is more
598	 * efficient than faulting.
599	 */
600	if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
601		if (!vma->anon_vma)
602			return 0;
603	}
604
605	if (is_vm_hugetlb_page(vma))
606		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
607
608	dst_pgd = pgd_offset(dst_mm, addr);
609	src_pgd = pgd_offset(src_mm, addr);
610	do {
611		next = pgd_addr_end(addr, end);
612		if (pgd_none_or_clear_bad(src_pgd))
613			continue;
614		if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
615						vma, addr, next))
616			return -ENOMEM;
617	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
618	return 0;
619}
620
621static unsigned long zap_pte_range(struct mmu_gather *tlb,
622				struct vm_area_struct *vma, pmd_t *pmd,
623				unsigned long addr, unsigned long end,
624				long *zap_work, struct zap_details *details)
625{
626	struct mm_struct *mm = tlb->mm;
627	pte_t *pte;
628	spinlock_t *ptl;
629	int file_rss = 0;
630	int anon_rss = 0;
631
632	pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
633	arch_enter_lazy_mmu_mode();
634	do {
635		pte_t ptent = *pte;
636		if (pte_none(ptent)) {
637			(*zap_work)--;
638			continue;
639		}
640
641		(*zap_work) -= PAGE_SIZE;
642
643		if (pte_present(ptent)) {
644			struct page *page;
645
646			page = vm_normal_page(vma, addr, ptent);
647			if (unlikely(details) && page) {
648				/*
649				 * unmap_shared_mapping_pages() wants to
650				 * invalidate cache without truncating:
651				 * unmap shared but keep private pages.
652				 */
653				if (details->check_mapping &&
654				    details->check_mapping != page->mapping)
655					continue;
656				/*
657				 * Each page->index must be checked when
658				 * invalidating or truncating nonlinear.
659				 */
660				if (details->nonlinear_vma &&
661				    (page->index < details->first_index ||
662				     page->index > details->last_index))
663					continue;
664			}
665			ptent = ptep_get_and_clear_full(mm, addr, pte,
666							tlb->fullmm);
667			tlb_remove_tlb_entry(tlb, pte, addr);
668			if (unlikely(!page))
669				continue;
670			if (unlikely(details) && details->nonlinear_vma
671			    && linear_page_index(details->nonlinear_vma,
672						addr) != page->index)
673				set_pte_at(mm, addr, pte,
674					   pgoff_to_pte(page->index));
675			if (PageAnon(page))
676				anon_rss--;
677			else {
678				if (pte_dirty(ptent))
679					set_page_dirty(page);
680				if (pte_young(ptent))
681					SetPageReferenced(page);
682				file_rss--;
683			}
684			page_remove_rmap(page, vma);
685			tlb_remove_page(tlb, page);
686			continue;
687		}
688		/*
689		 * If details->check_mapping, we leave swap entries;
690		 * if details->nonlinear_vma, we leave file entries.
691		 */
692		if (unlikely(details))
693			continue;
694		if (!pte_file(ptent))
695			free_swap_and_cache(pte_to_swp_entry(ptent));
696		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
697	} while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
698
699	add_mm_rss(mm, file_rss, anon_rss);
700	arch_leave_lazy_mmu_mode();
701	pte_unmap_unlock(pte - 1, ptl);
702
703	return addr;
704}
705
706static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
707				struct vm_area_struct *vma, pud_t *pud,
708				unsigned long addr, unsigned long end,
709				long *zap_work, struct zap_details *details)
710{
711	pmd_t *pmd;
712	unsigned long next;
713
714	pmd = pmd_offset(pud, addr);
715	do {
716		next = pmd_addr_end(addr, end);
717		if (pmd_none_or_clear_bad(pmd)) {
718			(*zap_work)--;
719			continue;
720		}
721		next = zap_pte_range(tlb, vma, pmd, addr, next,
722						zap_work, details);
723	} while (pmd++, addr = next, (addr != end && *zap_work > 0));
724
725	return addr;
726}
727
728static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
729				struct vm_area_struct *vma, pgd_t *pgd,
730				unsigned long addr, unsigned long end,
731				long *zap_work, struct zap_details *details)
732{
733	pud_t *pud;
734	unsigned long next;
735
736	pud = pud_offset(pgd, addr);
737	do {
738		next = pud_addr_end(addr, end);
739		if (pud_none_or_clear_bad(pud)) {
740			(*zap_work)--;
741			continue;
742		}
743		next = zap_pmd_range(tlb, vma, pud, addr, next,
744						zap_work, details);
745	} while (pud++, addr = next, (addr != end && *zap_work > 0));
746
747	return addr;
748}
749
750static unsigned long unmap_page_range(struct mmu_gather *tlb,
751				struct vm_area_struct *vma,
752				unsigned long addr, unsigned long end,
753				long *zap_work, struct zap_details *details)
754{
755	pgd_t *pgd;
756	unsigned long next;
757
758	if (details && !details->check_mapping && !details->nonlinear_vma)
759		details = NULL;
760
761	BUG_ON(addr >= end);
762	tlb_start_vma(tlb, vma);
763	pgd = pgd_offset(vma->vm_mm, addr);
764	do {
765		next = pgd_addr_end(addr, end);
766		if (pgd_none_or_clear_bad(pgd)) {
767			(*zap_work)--;
768			continue;
769		}
770		next = zap_pud_range(tlb, vma, pgd, addr, next,
771						zap_work, details);
772	} while (pgd++, addr = next, (addr != end && *zap_work > 0));
773	tlb_end_vma(tlb, vma);
774
775	return addr;
776}
777
778#ifdef CONFIG_PREEMPT
779# define ZAP_BLOCK_SIZE	(8 * PAGE_SIZE)
780#else
781/* No preempt: go for improved straight-line efficiency */
782# define ZAP_BLOCK_SIZE	(1024 * PAGE_SIZE)
783#endif
784
785/**
786 * unmap_vmas - unmap a range of memory covered by a list of vma's
787 * @tlbp: address of the caller's struct mmu_gather
788 * @vma: the starting vma
789 * @start_addr: virtual address at which to start unmapping
790 * @end_addr: virtual address at which to end unmapping
791 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
792 * @details: details of nonlinear truncation or shared cache invalidation
793 *
794 * Returns the end address of the unmapping (restart addr if interrupted).
795 *
796 * Unmap all pages in the vma list.
797 *
798 * We aim to not hold locks for too long (for scheduling latency reasons).
799 * So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
800 * return the ending mmu_gather to the caller.
801 *
802 * Only addresses between `start' and `end' will be unmapped.
803 *
804 * The VMA list must be sorted in ascending virtual address order.
805 *
806 * unmap_vmas() assumes that the caller will flush the whole unmapped address
807 * range after unmap_vmas() returns.  So the only responsibility here is to
808 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
809 * drops the lock and schedules.
810 */
811unsigned long unmap_vmas(struct mmu_gather **tlbp,
812		struct vm_area_struct *vma, unsigned long start_addr,
813		unsigned long end_addr, unsigned long *nr_accounted,
814		struct zap_details *details)
815{
816	long zap_work = ZAP_BLOCK_SIZE;
817	unsigned long tlb_start = 0;	/* For tlb_finish_mmu */
818	int tlb_start_valid = 0;
819	unsigned long start = start_addr;
820	spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
821	int fullmm = (*tlbp)->fullmm;
822
823	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
824		unsigned long end;
825
826		start = max(vma->vm_start, start_addr);
827		if (start >= vma->vm_end)
828			continue;
829		end = min(vma->vm_end, end_addr);
830		if (end <= vma->vm_start)
831			continue;
832
833		if (vma->vm_flags & VM_ACCOUNT)
834			*nr_accounted += (end - start) >> PAGE_SHIFT;
835
836		while (start != end) {
837			if (!tlb_start_valid) {
838				tlb_start = start;
839				tlb_start_valid = 1;
840			}
841
842			if (unlikely(is_vm_hugetlb_page(vma))) {
843				unmap_hugepage_range(vma, start, end);
844				zap_work -= (end - start) /
845						(HPAGE_SIZE / PAGE_SIZE);
846				start = end;
847			} else
848				start = unmap_page_range(*tlbp, vma,
849						start, end, &zap_work, details);
850
851			if (zap_work > 0) {
852				BUG_ON(start != end);
853				break;
854			}
855
856			tlb_finish_mmu(*tlbp, tlb_start, start);
857
858			if (need_resched() ||
859				(i_mmap_lock && need_lockbreak(i_mmap_lock))) {
860				if (i_mmap_lock) {
861					*tlbp = NULL;
862					goto out;
863				}
864				cond_resched();
865			}
866
867			*tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
868			tlb_start_valid = 0;
869			zap_work = ZAP_BLOCK_SIZE;
870		}
871	}
872out:
873	return start;	/* which is now the end (or restart) address */
874}
875
876/**
877 * zap_page_range - remove user pages in a given range
878 * @vma: vm_area_struct holding the applicable pages
879 * @address: starting address of pages to zap
880 * @size: number of bytes to zap
881 * @details: details of nonlinear truncation or shared cache invalidation
882 */
883unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
884		unsigned long size, struct zap_details *details)
885{
886	struct mm_struct *mm = vma->vm_mm;
887	struct mmu_gather *tlb;
888	unsigned long end = address + size;
889	unsigned long nr_accounted = 0;
890
891	lru_add_drain();
892	tlb = tlb_gather_mmu(mm, 0);
893	update_hiwater_rss(mm);
894	end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
895	if (tlb)
896		tlb_finish_mmu(tlb, address, end);
897	return end;
898}
899
900/*
901 * Do a quick page-table lookup for a single page.
902 */
903struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
904			unsigned int flags)
905{
906	pgd_t *pgd;
907	pud_t *pud;
908	pmd_t *pmd;
909	pte_t *ptep, pte;
910	spinlock_t *ptl;
911	struct page *page;
912	struct mm_struct *mm = vma->vm_mm;
913
914	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
915	if (!IS_ERR(page)) {
916		BUG_ON(flags & FOLL_GET);
917		goto out;
918	}
919
920	page = NULL;
921	pgd = pgd_offset(mm, address);
922	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
923		goto no_page_table;
924
925	pud = pud_offset(pgd, address);
926	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
927		goto no_page_table;
928
929	pmd = pmd_offset(pud, address);
930	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
931		goto no_page_table;
932
933	if (pmd_huge(*pmd)) {
934		BUG_ON(flags & FOLL_GET);
935		page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
936		goto out;
937	}
938
939	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
940	if (!ptep)
941		goto out;
942
943	pte = *ptep;
944	if (!pte_present(pte))
945		goto unlock;
946	if ((flags & FOLL_WRITE) && !pte_write(pte))
947		goto unlock;
948	page = vm_normal_page(vma, address, pte);
949	if (unlikely(!page))
950		goto unlock;
951
952	if (flags & FOLL_GET)
953		get_page(page);
954	if (flags & FOLL_TOUCH) {
955		if ((flags & FOLL_WRITE) &&
956		    !pte_dirty(pte) && !PageDirty(page))
957			set_page_dirty(page);
958		mark_page_accessed(page);
959	}
960unlock:
961	pte_unmap_unlock(ptep, ptl);
962out:
963	return page;
964
965no_page_table:
966	/*
967	 * When core dumping an enormous anonymous area that nobody
968	 * has touched so far, we don't want to allocate page tables.
969	 */
970	if (flags & FOLL_ANON) {
971		page = ZERO_PAGE(address);
972		if (flags & FOLL_GET)
973			get_page(page);
974		BUG_ON(flags & FOLL_WRITE);
975	}
976	return page;
977}
978
979int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
980		unsigned long start, int len, int write, int force,
981		struct page **pages, struct vm_area_struct **vmas)
982{
983	int i;
984	unsigned int vm_flags;
985
986	/*
987	 * Require read or write permissions.
988	 * If 'force' is set, we only require the "MAY" flags.
989	 */
990	vm_flags  = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
991	vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
992	i = 0;
993
994	do {
995		struct vm_area_struct *vma;
996		unsigned int foll_flags;
997
998		vma = find_extend_vma(mm, start);
999		if (!vma && in_gate_area(tsk, start)) {
1000			unsigned long pg = start & PAGE_MASK;
1001			struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1002			pgd_t *pgd;
1003			pud_t *pud;
1004			pmd_t *pmd;
1005			pte_t *pte;
1006			if (write) /* user gate pages are read-only */
1007				return i ? : -EFAULT;
1008			if (pg > TASK_SIZE)
1009				pgd = pgd_offset_k(pg);
1010			else
1011				pgd = pgd_offset_gate(mm, pg);
1012			BUG_ON(pgd_none(*pgd));
1013			pud = pud_offset(pgd, pg);
1014			BUG_ON(pud_none(*pud));
1015			pmd = pmd_offset(pud, pg);
1016			if (pmd_none(*pmd))
1017				return i ? : -EFAULT;
1018			pte = pte_offset_map(pmd, pg);
1019			if (pte_none(*pte)) {
1020				pte_unmap(pte);
1021				return i ? : -EFAULT;
1022			}
1023			if (pages) {
1024				struct page *page = vm_normal_page(gate_vma, start, *pte);
1025				pages[i] = page;
1026				if (page)
1027					get_page(page);
1028			}
1029			pte_unmap(pte);
1030			if (vmas)
1031				vmas[i] = gate_vma;
1032			i++;
1033			start += PAGE_SIZE;
1034			len--;
1035			continue;
1036		}
1037
1038		if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP))
1039				|| !(vm_flags & vma->vm_flags))
1040			return i ? : -EFAULT;
1041
1042		if (is_vm_hugetlb_page(vma)) {
1043			i = follow_hugetlb_page(mm, vma, pages, vmas,
1044						&start, &len, i);
1045			continue;
1046		}
1047
1048		foll_flags = FOLL_TOUCH;
1049		if (pages)
1050			foll_flags |= FOLL_GET;
1051		if (!write && !(vma->vm_flags & VM_LOCKED) &&
1052		    (!vma->vm_ops || !vma->vm_ops->nopage))
1053			foll_flags |= FOLL_ANON;
1054
1055		do {
1056			struct page *page;
1057
1058			if (write)
1059				foll_flags |= FOLL_WRITE;
1060
1061			cond_resched();
1062			while (!(page = follow_page(vma, start, foll_flags))) {
1063				int ret;
1064				ret = __handle_mm_fault(mm, vma, start,
1065						foll_flags & FOLL_WRITE);
1066				/*
1067				 * The VM_FAULT_WRITE bit tells us that do_wp_page has
1068				 * broken COW when necessary, even if maybe_mkwrite
1069				 * decided not to set pte_write. We can thus safely do
1070				 * subsequent page lookups as if they were reads.
1071				 */
1072				if (ret & VM_FAULT_WRITE)
1073					foll_flags &= ~FOLL_WRITE;
1074
1075				switch (ret & ~VM_FAULT_WRITE) {
1076				case VM_FAULT_MINOR:
1077					tsk->min_flt++;
1078					break;
1079				case VM_FAULT_MAJOR:
1080					tsk->maj_flt++;
1081					break;
1082				case VM_FAULT_SIGBUS:
1083					return i ? i : -EFAULT;
1084				case VM_FAULT_OOM:
1085					return i ? i : -ENOMEM;
1086				default:
1087					BUG();
1088				}
1089				cond_resched();
1090			}
1091			if (pages) {
1092				pages[i] = page;
1093
1094				flush_anon_page(vma, page, start);
1095				flush_dcache_page(page);
1096			}
1097			if (vmas)
1098				vmas[i] = vma;
1099			i++;
1100			start += PAGE_SIZE;
1101			len--;
1102		} while (len && start < vma->vm_end);
1103	} while (len);
1104	return i;
1105}
1106EXPORT_SYMBOL(get_user_pages);
1107
1108static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1109			unsigned long addr, unsigned long end, pgprot_t prot)
1110{
1111	pte_t *pte;
1112	spinlock_t *ptl;
1113	int err = 0;
1114
1115	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1116	if (!pte)
1117		return -EAGAIN;
1118	arch_enter_lazy_mmu_mode();
1119	do {
1120		struct page *page = ZERO_PAGE(addr);
1121		pte_t zero_pte = pte_wrprotect(mk_pte(page, prot));
1122
1123		if (unlikely(!pte_none(*pte))) {
1124			err = -EEXIST;
1125			pte++;
1126			break;
1127		}
1128		page_cache_get(page);
1129		page_add_file_rmap(page);
1130		inc_mm_counter(mm, file_rss);
1131		set_pte_at(mm, addr, pte, zero_pte);
1132	} while (pte++, addr += PAGE_SIZE, addr != end);
1133	arch_leave_lazy_mmu_mode();
1134	pte_unmap_unlock(pte - 1, ptl);
1135	return err;
1136}
1137
1138static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud,
1139			unsigned long addr, unsigned long end, pgprot_t prot)
1140{
1141	pmd_t *pmd;
1142	unsigned long next;
1143	int err;
1144
1145	pmd = pmd_alloc(mm, pud, addr);
1146	if (!pmd)
1147		return -EAGAIN;
1148	do {
1149		next = pmd_addr_end(addr, end);
1150		err = zeromap_pte_range(mm, pmd, addr, next, prot);
1151		if (err)
1152			break;
1153	} while (pmd++, addr = next, addr != end);
1154	return err;
1155}
1156
1157static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1158			unsigned long addr, unsigned long end, pgprot_t prot)
1159{
1160	pud_t *pud;
1161	unsigned long next;
1162	int err;
1163
1164	pud = pud_alloc(mm, pgd, addr);
1165	if (!pud)
1166		return -EAGAIN;
1167	do {
1168		next = pud_addr_end(addr, end);
1169		err = zeromap_pmd_range(mm, pud, addr, next, prot);
1170		if (err)
1171			break;
1172	} while (pud++, addr = next, addr != end);
1173	return err;
1174}
1175
1176int zeromap_page_range(struct vm_area_struct *vma,
1177			unsigned long addr, unsigned long size, pgprot_t prot)
1178{
1179	pgd_t *pgd;
1180	unsigned long next;
1181	unsigned long end = addr + size;
1182	struct mm_struct *mm = vma->vm_mm;
1183	int err;
1184
1185	BUG_ON(addr >= end);
1186	pgd = pgd_offset(mm, addr);
1187	flush_cache_range(vma, addr, end);
1188	do {
1189		next = pgd_addr_end(addr, end);
1190		err = zeromap_pud_range(mm, pgd, addr, next, prot);
1191		if (err)
1192			break;
1193	} while (pgd++, addr = next, addr != end);
1194	return err;
1195}
1196
1197pte_t * fastcall get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl)
1198{
1199	pgd_t * pgd = pgd_offset(mm, addr);
1200	pud_t * pud = pud_alloc(mm, pgd, addr);
1201	if (pud) {
1202		pmd_t * pmd = pmd_alloc(mm, pud, addr);
1203		if (pmd)
1204			return pte_alloc_map_lock(mm, pmd, addr, ptl);
1205	}
1206	return NULL;
1207}
1208
1209/*
1210 * This is the old fallback for page remapping.
1211 *
1212 * For historical reasons, it only allows reserved pages. Only
1213 * old drivers should use this, and they needed to mark their
1214 * pages reserved for the old functions anyway.
1215 */
1216static int insert_page(struct mm_struct *mm, unsigned long addr, struct page *page, pgprot_t prot)
1217{
1218	int retval;
1219	pte_t *pte;
1220	spinlock_t *ptl;
1221
1222	retval = -EINVAL;
1223	if (PageAnon(page))
1224		goto out;
1225	retval = -ENOMEM;
1226	flush_dcache_page(page);
1227	pte = get_locked_pte(mm, addr, &ptl);
1228	if (!pte)
1229		goto out;
1230	retval = -EBUSY;
1231	if (!pte_none(*pte))
1232		goto out_unlock;
1233
1234	/* Ok, finally just insert the thing.. */
1235	get_page(page);
1236	inc_mm_counter(mm, file_rss);
1237	page_add_file_rmap(page);
1238	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1239
1240	retval = 0;
1241out_unlock:
1242	pte_unmap_unlock(pte, ptl);
1243out:
1244	return retval;
1245}
1246
1247/**
1248 * vm_insert_page - insert single page into user vma
1249 * @vma: user vma to map to
1250 * @addr: target user address of this page
1251 * @page: source kernel page
1252 *
1253 * This allows drivers to insert individual pages they've allocated
1254 * into a user vma.
1255 *
1256 * The page has to be a nice clean _individual_ kernel allocation.
1257 * If you allocate a compound page, you need to have marked it as
1258 * such (__GFP_COMP), or manually just split the page up yourself
1259 * (see split_page()).
1260 *
1261 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1262 * took an arbitrary page protection parameter. This doesn't allow
1263 * that. Your vma protection will have to be set up correctly, which
1264 * means that if you want a shared writable mapping, you'd better
1265 * ask for a shared writable mapping!
1266 *
1267 * The page does not need to be reserved.
1268 */
1269int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page)
1270{
1271	if (addr < vma->vm_start || addr >= vma->vm_end)
1272		return -EFAULT;
1273	if (!page_count(page))
1274		return -EINVAL;
1275	vma->vm_flags |= VM_INSERTPAGE;
1276	return insert_page(vma->vm_mm, addr, page, vma->vm_page_prot);
1277}
1278EXPORT_SYMBOL(vm_insert_page);
1279
1280/**
1281 * vm_insert_pfn - insert single pfn into user vma
1282 * @vma: user vma to map to
1283 * @addr: target user address of this page
1284 * @pfn: source kernel pfn
1285 *
1286 * Similar to vm_inert_page, this allows drivers to insert individual pages
1287 * they've allocated into a user vma. Same comments apply.
1288 *
1289 * This function should only be called from a vm_ops->fault handler, and
1290 * in that case the handler should return NULL.
1291 */
1292int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1293		unsigned long pfn)
1294{
1295	struct mm_struct *mm = vma->vm_mm;
1296	int retval;
1297	pte_t *pte, entry;
1298	spinlock_t *ptl;
1299
1300	BUG_ON(!(vma->vm_flags & VM_PFNMAP));
1301	BUG_ON(is_cow_mapping(vma->vm_flags));
1302
1303	retval = -ENOMEM;
1304	pte = get_locked_pte(mm, addr, &ptl);
1305	if (!pte)
1306		goto out;
1307	retval = -EBUSY;
1308	if (!pte_none(*pte))
1309		goto out_unlock;
1310
1311	/* Ok, finally just insert the thing.. */
1312	entry = pfn_pte(pfn, vma->vm_page_prot);
1313	set_pte_at(mm, addr, pte, entry);
1314	update_mmu_cache(vma, addr, entry);
1315
1316	retval = 0;
1317out_unlock:
1318	pte_unmap_unlock(pte, ptl);
1319
1320out:
1321	return retval;
1322}
1323EXPORT_SYMBOL(vm_insert_pfn);
1324
1325/*
1326 * maps a range of physical memory into the requested pages. the old
1327 * mappings are removed. any references to nonexistent pages results
1328 * in null mappings (currently treated as "copy-on-access")
1329 */
1330static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1331			unsigned long addr, unsigned long end,
1332			unsigned long pfn, pgprot_t prot)
1333{
1334	pte_t *pte;
1335	spinlock_t *ptl;
1336
1337	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1338	if (!pte)
1339		return -ENOMEM;
1340	arch_enter_lazy_mmu_mode();
1341	do {
1342		BUG_ON(!pte_none(*pte));
1343		set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
1344		pfn++;
1345	} while (pte++, addr += PAGE_SIZE, addr != end);
1346	arch_leave_lazy_mmu_mode();
1347	pte_unmap_unlock(pte - 1, ptl);
1348	return 0;
1349}
1350
1351static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1352			unsigned long addr, unsigned long end,
1353			unsigned long pfn, pgprot_t prot)
1354{
1355	pmd_t *pmd;
1356	unsigned long next;
1357
1358	pfn -= addr >> PAGE_SHIFT;
1359	pmd = pmd_alloc(mm, pud, addr);
1360	if (!pmd)
1361		return -ENOMEM;
1362	do {
1363		next = pmd_addr_end(addr, end);
1364		if (remap_pte_range(mm, pmd, addr, next,
1365				pfn + (addr >> PAGE_SHIFT), prot))
1366			return -ENOMEM;
1367	} while (pmd++, addr = next, addr != end);
1368	return 0;
1369}
1370
1371static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1372			unsigned long addr, unsigned long end,
1373			unsigned long pfn, pgprot_t prot)
1374{
1375	pud_t *pud;
1376	unsigned long next;
1377
1378	pfn -= addr >> PAGE_SHIFT;
1379	pud = pud_alloc(mm, pgd, addr);
1380	if (!pud)
1381		return -ENOMEM;
1382	do {
1383		next = pud_addr_end(addr, end);
1384		if (remap_pmd_range(mm, pud, addr, next,
1385				pfn + (addr >> PAGE_SHIFT), prot))
1386			return -ENOMEM;
1387	} while (pud++, addr = next, addr != end);
1388	return 0;
1389}
1390
1391/**
1392 * remap_pfn_range - remap kernel memory to userspace
1393 * @vma: user vma to map to
1394 * @addr: target user address to start at
1395 * @pfn: physical address of kernel memory
1396 * @size: size of map area
1397 * @prot: page protection flags for this mapping
1398 *
1399 *  Note: this is only safe if the mm semaphore is held when called.
1400 */
1401int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1402		    unsigned long pfn, unsigned long size, pgprot_t prot)
1403{
1404	pgd_t *pgd;
1405	unsigned long next;
1406	unsigned long end = addr + PAGE_ALIGN(size);
1407	struct mm_struct *mm = vma->vm_mm;
1408	int err;
1409
1410	/*
1411	 * Physically remapped pages are special. Tell the
1412	 * rest of the world about it:
1413	 *   VM_IO tells people not to look at these pages
1414	 *	(accesses can have side effects).
1415	 *   VM_RESERVED is specified all over the place, because
1416	 *	in 2.4 it kept swapout's vma scan off this vma; but
1417	 *	in 2.6 the LRU scan won't even find its pages, so this
1418	 *	flag means no more than count its pages in reserved_vm,
1419	 * 	and omit it from core dump, even when VM_IO turned off.
1420	 *   VM_PFNMAP tells the core MM that the base pages are just
1421	 *	raw PFN mappings, and do not have a "struct page" associated
1422	 *	with them.
1423	 *
1424	 * There's a horrible special case to handle copy-on-write
1425	 * behaviour that some programs depend on. We mark the "original"
1426	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1427	 */
1428	if (is_cow_mapping(vma->vm_flags)) {
1429		if (addr != vma->vm_start || end != vma->vm_end)
1430			return -EINVAL;
1431		vma->vm_pgoff = pfn;
1432	}
1433
1434	vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1435
1436	BUG_ON(addr >= end);
1437	pfn -= addr >> PAGE_SHIFT;
1438	pgd = pgd_offset(mm, addr);
1439	flush_cache_range(vma, addr, end);
1440	do {
1441		next = pgd_addr_end(addr, end);
1442		err = remap_pud_range(mm, pgd, addr, next,
1443				pfn + (addr >> PAGE_SHIFT), prot);
1444		if (err)
1445			break;
1446	} while (pgd++, addr = next, addr != end);
1447	return err;
1448}
1449EXPORT_SYMBOL(remap_pfn_range);
1450
1451static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1452				     unsigned long addr, unsigned long end,
1453				     pte_fn_t fn, void *data)
1454{
1455	pte_t *pte;
1456	int err;
1457	struct page *pmd_page;
1458	spinlock_t *uninitialized_var(ptl);
1459
1460	pte = (mm == &init_mm) ?
1461		pte_alloc_kernel(pmd, addr) :
1462		pte_alloc_map_lock(mm, pmd, addr, &ptl);
1463	if (!pte)
1464		return -ENOMEM;
1465
1466	BUG_ON(pmd_huge(*pmd));
1467
1468	pmd_page = pmd_page(*pmd);
1469
1470	do {
1471		err = fn(pte, pmd_page, addr, data);
1472		if (err)
1473			break;
1474	} while (pte++, addr += PAGE_SIZE, addr != end);
1475
1476	if (mm != &init_mm)
1477		pte_unmap_unlock(pte-1, ptl);
1478	return err;
1479}
1480
1481static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1482				     unsigned long addr, unsigned long end,
1483				     pte_fn_t fn, void *data)
1484{
1485	pmd_t *pmd;
1486	unsigned long next;
1487	int err;
1488
1489	pmd = pmd_alloc(mm, pud, addr);
1490	if (!pmd)
1491		return -ENOMEM;
1492	do {
1493		next = pmd_addr_end(addr, end);
1494		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1495		if (err)
1496			break;
1497	} while (pmd++, addr = next, addr != end);
1498	return err;
1499}
1500
1501static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1502				     unsigned long addr, unsigned long end,
1503				     pte_fn_t fn, void *data)
1504{
1505	pud_t *pud;
1506	unsigned long next;
1507	int err;
1508
1509	pud = pud_alloc(mm, pgd, addr);
1510	if (!pud)
1511		return -ENOMEM;
1512	do {
1513		next = pud_addr_end(addr, end);
1514		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1515		if (err)
1516			break;
1517	} while (pud++, addr = next, addr != end);
1518	return err;
1519}
1520
1521/*
1522 * Scan a region of virtual memory, filling in page tables as necessary
1523 * and calling a provided function on each leaf page table.
1524 */
1525int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1526			unsigned long size, pte_fn_t fn, void *data)
1527{
1528	pgd_t *pgd;
1529	unsigned long next;
1530	unsigned long end = addr + size;
1531	int err;
1532
1533	BUG_ON(addr >= end);
1534	pgd = pgd_offset(mm, addr);
1535	do {
1536		next = pgd_addr_end(addr, end);
1537		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1538		if (err)
1539			break;
1540	} while (pgd++, addr = next, addr != end);
1541	return err;
1542}
1543EXPORT_SYMBOL_GPL(apply_to_page_range);
1544
1545/*
1546 * handle_pte_fault chooses page fault handler according to an entry
1547 * which was read non-atomically.  Before making any commitment, on
1548 * those architectures or configurations (e.g. i386 with PAE) which
1549 * might give a mix of unmatched parts, do_swap_page and do_file_page
1550 * must check under lock before unmapping the pte and proceeding
1551 * (but do_wp_page is only called after already making such a check;
1552 * and do_anonymous_page and do_no_page can safely check later on).
1553 */
1554static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1555				pte_t *page_table, pte_t orig_pte)
1556{
1557	int same = 1;
1558#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1559	if (sizeof(pte_t) > sizeof(unsigned long)) {
1560		spinlock_t *ptl = pte_lockptr(mm, pmd);
1561		spin_lock(ptl);
1562		same = pte_same(*page_table, orig_pte);
1563		spin_unlock(ptl);
1564	}
1565#endif
1566	pte_unmap(page_table);
1567	return same;
1568}
1569
1570/*
1571 * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1572 * servicing faults for write access.  In the normal case, do always want
1573 * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1574 * that do not have writing enabled, when used by access_process_vm.
1575 */
1576static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1577{
1578	if (likely(vma->vm_flags & VM_WRITE))
1579		pte = pte_mkwrite(pte);
1580	return pte;
1581}
1582
1583static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1584{
1585	/*
1586	 * If the source page was a PFN mapping, we don't have
1587	 * a "struct page" for it. We do a best-effort copy by
1588	 * just copying from the original user address. If that
1589	 * fails, we just zero-fill it. Live with it.
1590	 */
1591	if (unlikely(!src)) {
1592		void *kaddr = kmap_atomic(dst, KM_USER0);
1593		void __user *uaddr = (void __user *)(va & PAGE_MASK);
1594
1595		/*
1596		 * This really shouldn't fail, because the page is there
1597		 * in the page tables. But it might just be unreadable,
1598		 * in which case we just give up and fill the result with
1599		 * zeroes.
1600		 */
1601		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1602			memset(kaddr, 0, PAGE_SIZE);
1603		kunmap_atomic(kaddr, KM_USER0);
1604		flush_dcache_page(dst);
1605		return;
1606
1607	}
1608	copy_user_highpage(dst, src, va, vma);
1609}
1610
1611/*
1612 * This routine handles present pages, when users try to write
1613 * to a shared page. It is done by copying the page to a new address
1614 * and decrementing the shared-page counter for the old page.
1615 *
1616 * Note that this routine assumes that the protection checks have been
1617 * done by the caller (the low-level page fault routine in most cases).
1618 * Thus we can safely just mark it writable once we've done any necessary
1619 * COW.
1620 *
1621 * We also mark the page dirty at this point even though the page will
1622 * change only once the write actually happens. This avoids a few races,
1623 * and potentially makes it more efficient.
1624 *
1625 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1626 * but allow concurrent faults), with pte both mapped and locked.
1627 * We return with mmap_sem still held, but pte unmapped and unlocked.
1628 */
1629static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1630		unsigned long address, pte_t *page_table, pmd_t *pmd,
1631		spinlock_t *ptl, pte_t orig_pte)
1632{
1633	struct page *old_page, *new_page;
1634	pte_t entry;
1635	int reuse = 0, ret = VM_FAULT_MINOR;
1636	struct page *dirty_page = NULL;
1637
1638	old_page = vm_normal_page(vma, address, orig_pte);
1639	if (!old_page)
1640		goto gotten;
1641
1642	/*
1643	 * Take out anonymous pages first, anonymous shared vmas are
1644	 * not dirty accountable.
1645	 */
1646	if (PageAnon(old_page)) {
1647		if (!TestSetPageLocked(old_page)) {
1648			reuse = can_share_swap_page(old_page);
1649			unlock_page(old_page);
1650		}
1651	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1652					(VM_WRITE|VM_SHARED))) {
1653		/*
1654		 * Only catch write-faults on shared writable pages,
1655		 * read-only shared pages can get COWed by
1656		 * get_user_pages(.write=1, .force=1).
1657		 */
1658		if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
1659			/*
1660			 * Notify the address space that the page is about to
1661			 * become writable so that it can prohibit this or wait
1662			 * for the page to get into an appropriate state.
1663			 *
1664			 * We do this without the lock held, so that it can
1665			 * sleep if it needs to.
1666			 */
1667			page_cache_get(old_page);
1668			pte_unmap_unlock(page_table, ptl);
1669
1670			if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
1671				goto unwritable_page;
1672
1673			/*
1674			 * Since we dropped the lock we need to revalidate
1675			 * the PTE as someone else may have changed it.  If
1676			 * they did, we just return, as we can count on the
1677			 * MMU to tell us if they didn't also make it writable.
1678			 */
1679			page_table = pte_offset_map_lock(mm, pmd, address,
1680							 &ptl);
1681			page_cache_release(old_page);
1682			if (!pte_same(*page_table, orig_pte))
1683				goto unlock;
1684		}
1685		dirty_page = old_page;
1686		get_page(dirty_page);
1687		reuse = 1;
1688	}
1689
1690	if (reuse) {
1691		flush_cache_page(vma, address, pte_pfn(orig_pte));
1692		entry = pte_mkyoung(orig_pte);
1693		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1694		if (ptep_set_access_flags(vma, address, page_table, entry,1)) {
1695			update_mmu_cache(vma, address, entry);
1696			lazy_mmu_prot_update(entry);
1697		}
1698		ret |= VM_FAULT_WRITE;
1699		goto unlock;
1700	}
1701
1702	/*
1703	 * Ok, we need to copy. Oh, well..
1704	 */
1705	page_cache_get(old_page);
1706gotten:
1707	pte_unmap_unlock(page_table, ptl);
1708
1709	if (unlikely(anon_vma_prepare(vma)))
1710		goto oom;
1711	if (old_page == ZERO_PAGE(address)) {
1712		new_page = alloc_zeroed_user_highpage(vma, address);
1713		if (!new_page)
1714			goto oom;
1715	} else {
1716		new_page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1717		if (!new_page)
1718			goto oom;
1719		cow_user_page(new_page, old_page, address, vma);
1720	}
1721
1722	/*
1723	 * Re-check the pte - we dropped the lock
1724	 */
1725	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1726	if (likely(pte_same(*page_table, orig_pte))) {
1727		if (old_page) {
1728			page_remove_rmap(old_page, vma);
1729			if (!PageAnon(old_page)) {
1730				dec_mm_counter(mm, file_rss);
1731				inc_mm_counter(mm, anon_rss);
1732			}
1733		} else
1734			inc_mm_counter(mm, anon_rss);
1735		flush_cache_page(vma, address, pte_pfn(orig_pte));
1736		entry = mk_pte(new_page, vma->vm_page_prot);
1737		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1738		lazy_mmu_prot_update(entry);
1739		/*
1740		 * Clear the pte entry and flush it first, before updating the
1741		 * pte with the new entry. This will avoid a race condition
1742		 * seen in the presence of one thread doing SMC and another
1743		 * thread doing COW.
1744		 */
1745		ptep_clear_flush(vma, address, page_table);
1746		set_pte_at(mm, address, page_table, entry);
1747		update_mmu_cache(vma, address, entry);
1748		lru_cache_add_active(new_page);
1749		page_add_new_anon_rmap(new_page, vma, address);
1750
1751		/* Free the old page.. */
1752		new_page = old_page;
1753		ret |= VM_FAULT_WRITE;
1754	}
1755	if (new_page)
1756		page_cache_release(new_page);
1757	if (old_page)
1758		page_cache_release(old_page);
1759unlock:
1760	pte_unmap_unlock(page_table, ptl);
1761	if (dirty_page) {
1762		set_page_dirty_balance(dirty_page);
1763		put_page(dirty_page);
1764	}
1765	return ret;
1766oom:
1767	if (old_page)
1768		page_cache_release(old_page);
1769	return VM_FAULT_OOM;
1770
1771unwritable_page:
1772	page_cache_release(old_page);
1773	return VM_FAULT_SIGBUS;
1774}
1775
1776/*
1777 * Helper functions for unmap_mapping_range().
1778 *
1779 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1780 *
1781 * We have to restart searching the prio_tree whenever we drop the lock,
1782 * since the iterator is only valid while the lock is held, and anyway
1783 * a later vma might be split and reinserted earlier while lock dropped.
1784 *
1785 * The list of nonlinear vmas could be handled more efficiently, using
1786 * a placeholder, but handle it in the same way until a need is shown.
1787 * It is important to search the prio_tree before nonlinear list: a vma
1788 * may become nonlinear and be shifted from prio_tree to nonlinear list
1789 * while the lock is dropped; but never shifted from list to prio_tree.
1790 *
1791 * In order to make forward progress despite restarting the search,
1792 * vm_truncate_count is used to mark a vma as now dealt with, so we can
1793 * quickly skip it next time around.  Since the prio_tree search only
1794 * shows us those vmas affected by unmapping the range in question, we
1795 * can't efficiently keep all vmas in step with mapping->truncate_count:
1796 * so instead reset them all whenever it wraps back to 0 (then go to 1).
1797 * mapping->truncate_count and vma->vm_truncate_count are protected by
1798 * i_mmap_lock.
1799 *
1800 * In order to make forward progress despite repeatedly restarting some
1801 * large vma, note the restart_addr from unmap_vmas when it breaks out:
1802 * and restart from that address when we reach that vma again.  It might
1803 * have been split or merged, shrunk or extended, but never shifted: so
1804 * restart_addr remains valid so long as it remains in the vma's range.
1805 * unmap_mapping_range forces truncate_count to leap over page-aligned
1806 * values so we can save vma's restart_addr in its truncate_count field.
1807 */
1808#define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1809
1810static void reset_vma_truncate_counts(struct address_space *mapping)
1811{
1812	struct vm_area_struct *vma;
1813	struct prio_tree_iter iter;
1814
1815	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1816		vma->vm_truncate_count = 0;
1817	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1818		vma->vm_truncate_count = 0;
1819}
1820
1821static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1822		unsigned long start_addr, unsigned long end_addr,
1823		struct zap_details *details)
1824{
1825	unsigned long restart_addr;
1826	int need_break;
1827
1828again:
1829	restart_addr = vma->vm_truncate_count;
1830	if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1831		start_addr = restart_addr;
1832		if (start_addr >= end_addr) {
1833			/* Top of vma has been split off since last time */
1834			vma->vm_truncate_count = details->truncate_count;
1835			return 0;
1836		}
1837	}
1838
1839	restart_addr = zap_page_range(vma, start_addr,
1840					end_addr - start_addr, details);
1841	need_break = need_resched() ||
1842			need_lockbreak(details->i_mmap_lock);
1843
1844	if (restart_addr >= end_addr) {
1845		/* We have now completed this vma: mark it so */
1846		vma->vm_truncate_count = details->truncate_count;
1847		if (!need_break)
1848			return 0;
1849	} else {
1850		/* Note restart_addr in vma's truncate_count field */
1851		vma->vm_truncate_count = restart_addr;
1852		if (!need_break)
1853			goto again;
1854	}
1855
1856	spin_unlock(details->i_mmap_lock);
1857	cond_resched();
1858	spin_lock(details->i_mmap_lock);
1859	return -EINTR;
1860}
1861
1862static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1863					    struct zap_details *details)
1864{
1865	struct vm_area_struct *vma;
1866	struct prio_tree_iter iter;
1867	pgoff_t vba, vea, zba, zea;
1868
1869restart:
1870	vma_prio_tree_foreach(vma, &iter, root,
1871			details->first_index, details->last_index) {
1872		/* Skip quickly over those we have already dealt with */
1873		if (vma->vm_truncate_count == details->truncate_count)
1874			continue;
1875
1876		vba = vma->vm_pgoff;
1877		vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
1878		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1879		zba = details->first_index;
1880		if (zba < vba)
1881			zba = vba;
1882		zea = details->last_index;
1883		if (zea > vea)
1884			zea = vea;
1885
1886		if (unmap_mapping_range_vma(vma,
1887			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
1888			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
1889				details) < 0)
1890			goto restart;
1891	}
1892}
1893
1894static inline void unmap_mapping_range_list(struct list_head *head,
1895					    struct zap_details *details)
1896{
1897	struct vm_area_struct *vma;
1898
1899	/*
1900	 * In nonlinear VMAs there is no correspondence between virtual address
1901	 * offset and file offset.  So we must perform an exhaustive search
1902	 * across *all* the pages in each nonlinear VMA, not just the pages
1903	 * whose virtual address lies outside the file truncation point.
1904	 */
1905restart:
1906	list_for_each_entry(vma, head, shared.vm_set.list) {
1907		/* Skip quickly over those we have already dealt with */
1908		if (vma->vm_truncate_count == details->truncate_count)
1909			continue;
1910		details->nonlinear_vma = vma;
1911		if (unmap_mapping_range_vma(vma, vma->vm_start,
1912					vma->vm_end, details) < 0)
1913			goto restart;
1914	}
1915}
1916
1917/**
1918 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
1919 * @mapping: the address space containing mmaps to be unmapped.
1920 * @holebegin: byte in first page to unmap, relative to the start of
1921 * the underlying file.  This will be rounded down to a PAGE_SIZE
1922 * boundary.  Note that this is different from vmtruncate(), which
1923 * must keep the partial page.  In contrast, we must get rid of
1924 * partial pages.
1925 * @holelen: size of prospective hole in bytes.  This will be rounded
1926 * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
1927 * end of the file.
1928 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1929 * but 0 when invalidating pagecache, don't throw away private data.
1930 */
1931void unmap_mapping_range(struct address_space *mapping,
1932		loff_t const holebegin, loff_t const holelen, int even_cows)
1933{
1934	struct zap_details details;
1935	pgoff_t hba = holebegin >> PAGE_SHIFT;
1936	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1937
1938	/* Check for overflow. */
1939	if (sizeof(holelen) > sizeof(hlen)) {
1940		long long holeend =
1941			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1942		if (holeend & ~(long long)ULONG_MAX)
1943			hlen = ULONG_MAX - hba + 1;
1944	}
1945
1946	details.check_mapping = even_cows? NULL: mapping;
1947	details.nonlinear_vma = NULL;
1948	details.first_index = hba;
1949	details.last_index = hba + hlen - 1;
1950	if (details.last_index < details.first_index)
1951		details.last_index = ULONG_MAX;
1952	details.i_mmap_lock = &mapping->i_mmap_lock;
1953
1954	spin_lock(&mapping->i_mmap_lock);
1955
1956	/* serialize i_size write against truncate_count write */
1957	smp_wmb();
1958	/* Protect against page faults, and endless unmapping loops */
1959	mapping->truncate_count++;
1960	/*
1961	 * For archs where spin_lock has inclusive semantics like ia64
1962	 * this smp_mb() will prevent to read pagetable contents
1963	 * before the truncate_count increment is visible to
1964	 * other cpus.
1965	 */
1966	smp_mb();
1967	if (unlikely(is_restart_addr(mapping->truncate_count))) {
1968		if (mapping->truncate_count == 0)
1969			reset_vma_truncate_counts(mapping);
1970		mapping->truncate_count++;
1971	}
1972	details.truncate_count = mapping->truncate_count;
1973
1974	if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
1975		unmap_mapping_range_tree(&mapping->i_mmap, &details);
1976	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
1977		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
1978	spin_unlock(&mapping->i_mmap_lock);
1979}
1980EXPORT_SYMBOL(unmap_mapping_range);
1981
1982/**
1983 * vmtruncate - unmap mappings "freed" by truncate() syscall
1984 * @inode: inode of the file used
1985 * @offset: file offset to start truncating
1986 *
1987 * NOTE! We have to be ready to update the memory sharing
1988 * between the file and the memory map for a potential last
1989 * incomplete page.  Ugly, but necessary.
1990 */
1991int vmtruncate(struct inode * inode, loff_t offset)
1992{
1993	struct address_space *mapping = inode->i_mapping;
1994	unsigned long limit;
1995
1996	if (inode->i_size < offset)
1997		goto do_expand;
1998	/*
1999	 * truncation of in-use swapfiles is disallowed - it would cause
2000	 * subsequent swapout to scribble on the now-freed blocks.
2001	 */
2002	if (IS_SWAPFILE(inode))
2003		goto out_busy;
2004	i_size_write(inode, offset);
2005	unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2006	truncate_inode_pages(mapping, offset);
2007	goto out_truncate;
2008
2009do_expand:
2010	limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2011	if (limit != RLIM_INFINITY && offset > limit)
2012		goto out_sig;
2013	if (offset > inode->i_sb->s_maxbytes)
2014		goto out_big;
2015	i_size_write(inode, offset);
2016
2017out_truncate:
2018	if (inode->i_op && inode->i_op->truncate)
2019		inode->i_op->truncate(inode);
2020	return 0;
2021out_sig:
2022	send_sig(SIGXFSZ, current, 0);
2023out_big:
2024	return -EFBIG;
2025out_busy:
2026	return -ETXTBSY;
2027}
2028EXPORT_SYMBOL(vmtruncate);
2029
2030int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2031{
2032	struct address_space *mapping = inode->i_mapping;
2033
2034	/*
2035	 * If the underlying filesystem is not going to provide
2036	 * a way to truncate a range of blocks (punch a hole) -
2037	 * we should return failure right now.
2038	 */
2039	if (!inode->i_op || !inode->i_op->truncate_range)
2040		return -ENOSYS;
2041
2042	mutex_lock(&inode->i_mutex);
2043	down_write(&inode->i_alloc_sem);
2044	unmap_mapping_range(mapping, offset, (end - offset), 1);
2045	truncate_inode_pages_range(mapping, offset, end);
2046	inode->i_op->truncate_range(inode, offset, end);
2047	up_write(&inode->i_alloc_sem);
2048	mutex_unlock(&inode->i_mutex);
2049
2050	return 0;
2051}
2052
2053/**
2054 * swapin_readahead - swap in pages in hope we need them soon
2055 * @entry: swap entry of this memory
2056 * @addr: address to start
2057 * @vma: user vma this addresses belong to
2058 *
2059 * Primitive swap readahead code. We simply read an aligned block of
2060 * (1 << page_cluster) entries in the swap area. This method is chosen
2061 * because it doesn't cost us any seek time.  We also make sure to queue
2062 * the 'original' request together with the readahead ones...
2063 *
2064 * This has been extended to use the NUMA policies from the mm triggering
2065 * the readahead.
2066 *
2067 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
2068 */
2069void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma)
2070{
2071#ifdef CONFIG_NUMA
2072	struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL;
2073#endif
2074	int i, num;
2075	struct page *new_page;
2076	unsigned long offset;
2077
2078	/*
2079	 * Get the number of handles we should do readahead io to.
2080	 */
2081	num = valid_swaphandles(entry, &offset);
2082	for (i = 0; i < num; offset++, i++) {
2083		/* Ok, do the async read-ahead now */
2084		new_page = read_swap_cache_async(swp_entry(swp_type(entry),
2085							   offset), vma, addr);
2086		if (!new_page)
2087			break;
2088		page_cache_release(new_page);
2089#ifdef CONFIG_NUMA
2090		/*
2091		 * Find the next applicable VMA for the NUMA policy.
2092		 */
2093		addr += PAGE_SIZE;
2094		if (addr == 0)
2095			vma = NULL;
2096		if (vma) {
2097			if (addr >= vma->vm_end) {
2098				vma = next_vma;
2099				next_vma = vma ? vma->vm_next : NULL;
2100			}
2101			if (vma && addr < vma->vm_start)
2102				vma = NULL;
2103		} else {
2104			if (next_vma && addr >= next_vma->vm_start) {
2105				vma = next_vma;
2106				next_vma = vma->vm_next;
2107			}
2108		}
2109#endif
2110	}
2111	lru_add_drain();	/* Push any new pages onto the LRU now */
2112}
2113
2114/*
2115 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2116 * but allow concurrent faults), and pte mapped but not yet locked.
2117 * We return with mmap_sem still held, but pte unmapped and unlocked.
2118 */
2119static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2120		unsigned long address, pte_t *page_table, pmd_t *pmd,
2121		int write_access, pte_t orig_pte)
2122{
2123	spinlock_t *ptl;
2124	struct page *page;
2125	swp_entry_t entry;
2126	pte_t pte;
2127	int ret = VM_FAULT_MINOR;
2128
2129	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2130		goto out;
2131
2132	entry = pte_to_swp_entry(orig_pte);
2133	if (is_migration_entry(entry)) {
2134		migration_entry_wait(mm, pmd, address);
2135		goto out;
2136	}
2137	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2138	page = lookup_swap_cache(entry);
2139	if (!page) {
2140		grab_swap_token(); /* Contend for token _before_ read-in */
2141 		swapin_readahead(entry, address, vma);
2142 		page = read_swap_cache_async(entry, vma, address);
2143		if (!page) {
2144			/*
2145			 * Back out if somebody else faulted in this pte
2146			 * while we released the pte lock.
2147			 */
2148			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2149			if (likely(pte_same(*page_table, orig_pte)))
2150				ret = VM_FAULT_OOM;
2151			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2152			goto unlock;
2153		}
2154
2155		/* Had to read the page from swap area: Major fault */
2156		ret = VM_FAULT_MAJOR;
2157		count_vm_event(PGMAJFAULT);
2158	}
2159
2160	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2161	mark_page_accessed(page);
2162	lock_page(page);
2163
2164	/*
2165	 * Back out if somebody else already faulted in this pte.
2166	 */
2167	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2168	if (unlikely(!pte_same(*page_table, orig_pte)))
2169		goto out_nomap;
2170
2171	if (unlikely(!PageUptodate(page))) {
2172		ret = VM_FAULT_SIGBUS;
2173		goto out_nomap;
2174	}
2175
2176	/* The page isn't present yet, go ahead with the fault. */
2177
2178	inc_mm_counter(mm, anon_rss);
2179	pte = mk_pte(page, vma->vm_page_prot);
2180	if (write_access && can_share_swap_page(page)) {
2181		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2182		write_access = 0;
2183	}
2184
2185	flush_icache_page(vma, page);
2186	set_pte_at(mm, address, page_table, pte);
2187	page_add_anon_rmap(page, vma, address);
2188
2189	swap_free(entry);
2190	if (vm_swap_full())
2191		remove_exclusive_swap_page(page);
2192	unlock_page(page);
2193
2194	if (write_access) {
2195		if (do_wp_page(mm, vma, address,
2196				page_table, pmd, ptl, pte) == VM_FAULT_OOM)
2197			ret = VM_FAULT_OOM;
2198		goto out;
2199	}
2200
2201	/* No need to invalidate - it was non-present before */
2202	update_mmu_cache(vma, address, pte);
2203	lazy_mmu_prot_update(pte);
2204unlock:
2205	pte_unmap_unlock(page_table, ptl);
2206out:
2207	return ret;
2208out_nomap:
2209	pte_unmap_unlock(page_table, ptl);
2210	unlock_page(page);
2211	page_cache_release(page);
2212	return ret;
2213}
2214
2215/*
2216 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2217 * but allow concurrent faults), and pte mapped but not yet locked.
2218 * We return with mmap_sem still held, but pte unmapped and unlocked.
2219 */
2220static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2221		unsigned long address, pte_t *page_table, pmd_t *pmd,
2222		int write_access)
2223{
2224	struct page *page;
2225	spinlock_t *ptl;
2226	pte_t entry;
2227
2228	if (write_access) {
2229		/* Allocate our own private page. */
2230		pte_unmap(page_table);
2231
2232		if (unlikely(anon_vma_prepare(vma)))
2233			goto oom;
2234		page = alloc_zeroed_user_highpage(vma, address);
2235		if (!page)
2236			goto oom;
2237
2238		entry = mk_pte(page, vma->vm_page_prot);
2239		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2240
2241		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2242		if (!pte_none(*page_table))
2243			goto release;
2244		inc_mm_counter(mm, anon_rss);
2245		lru_cache_add_active(page);
2246		page_add_new_anon_rmap(page, vma, address);
2247	} else {
2248		/* Map the ZERO_PAGE - vm_page_prot is readonly */
2249		page = ZERO_PAGE(address);
2250		page_cache_get(page);
2251		entry = mk_pte(page, vma->vm_page_prot);
2252
2253		ptl = pte_lockptr(mm, pmd);
2254		spin_lock(ptl);
2255		if (!pte_none(*page_table))
2256			goto release;
2257		inc_mm_counter(mm, file_rss);
2258		page_add_file_rmap(page);
2259	}
2260
2261	set_pte_at(mm, address, page_table, entry);
2262
2263	/* No need to invalidate - it was non-present before */
2264	update_mmu_cache(vma, address, entry);
2265	lazy_mmu_prot_update(entry);
2266unlock:
2267	pte_unmap_unlock(page_table, ptl);
2268	return VM_FAULT_MINOR;
2269release:
2270	page_cache_release(page);
2271	goto unlock;
2272oom:
2273	return VM_FAULT_OOM;
2274}
2275
2276/*
2277 * do_no_page() tries to create a new page mapping. It aggressively
2278 * tries to share with existing pages, but makes a separate copy if
2279 * the "write_access" parameter is true in order to avoid the next
2280 * page fault.
2281 *
2282 * As this is called only for pages that do not currently exist, we
2283 * do not need to flush old virtual caches or the TLB.
2284 *
2285 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2286 * but allow concurrent faults), and pte mapped but not yet locked.
2287 * We return with mmap_sem still held, but pte unmapped and unlocked.
2288 */
2289static int do_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2290		unsigned long address, pte_t *page_table, pmd_t *pmd,
2291		int write_access)
2292{
2293	spinlock_t *ptl;
2294	struct page *new_page;
2295	struct address_space *mapping = NULL;
2296	pte_t entry;
2297	unsigned int sequence = 0;
2298	int ret = VM_FAULT_MINOR;
2299	int anon = 0;
2300	struct page *dirty_page = NULL;
2301
2302	pte_unmap(page_table);
2303	BUG_ON(vma->vm_flags & VM_PFNMAP);
2304
2305	if (vma->vm_file) {
2306		mapping = vma->vm_file->f_mapping;
2307		sequence = mapping->truncate_count;
2308		smp_rmb(); /* serializes i_size against truncate_count */
2309	}
2310retry:
2311	new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
2312	/*
2313	 * No smp_rmb is needed here as long as there's a full
2314	 * spin_lock/unlock sequence inside the ->nopage callback
2315	 * (for the pagecache lookup) that acts as an implicit
2316	 * smp_mb() and prevents the i_size read to happen
2317	 * after the next truncate_count read.
2318	 */
2319
2320	/* no page was available -- either SIGBUS, OOM or REFAULT */
2321	if (unlikely(new_page == NOPAGE_SIGBUS))
2322		return VM_FAULT_SIGBUS;
2323	else if (unlikely(new_page == NOPAGE_OOM))
2324		return VM_FAULT_OOM;
2325	else if (unlikely(new_page == NOPAGE_REFAULT))
2326		return VM_FAULT_MINOR;
2327
2328	/*
2329	 * Should we do an early C-O-W break?
2330	 */
2331	if (write_access) {
2332		if (!(vma->vm_flags & VM_SHARED)) {
2333			struct page *page;
2334
2335			if (unlikely(anon_vma_prepare(vma)))
2336				goto oom;
2337			page = alloc_page_vma(GFP_HIGHUSER, vma, address);
2338			if (!page)
2339				goto oom;
2340			copy_user_highpage(page, new_page, address, vma);
2341			page_cache_release(new_page);
2342			new_page = page;
2343			anon = 1;
2344
2345		} else {
2346			/* if the page will be shareable, see if the backing
2347			 * address space wants to know that the page is about
2348			 * to become writable */
2349			if (vma->vm_ops->page_mkwrite &&
2350			    vma->vm_ops->page_mkwrite(vma, new_page) < 0
2351			    ) {
2352				page_cache_release(new_page);
2353				return VM_FAULT_SIGBUS;
2354			}
2355		}
2356	}
2357
2358	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2359	/*
2360	 * For a file-backed vma, someone could have truncated or otherwise
2361	 * invalidated this page.  If unmap_mapping_range got called,
2362	 * retry getting the page.
2363	 */
2364	if (mapping && unlikely(sequence != mapping->truncate_count)) {
2365		pte_unmap_unlock(page_table, ptl);
2366		page_cache_release(new_page);
2367		cond_resched();
2368		sequence = mapping->truncate_count;
2369		smp_rmb();
2370		goto retry;
2371	}
2372
2373	/*
2374	 * This silly early PAGE_DIRTY setting removes a race
2375	 * due to the bad i386 page protection. But it's valid
2376	 * for other architectures too.
2377	 *
2378	 * Note that if write_access is true, we either now have
2379	 * an exclusive copy of the page, or this is a shared mapping,
2380	 * so we can make it writable and dirty to avoid having to
2381	 * handle that later.
2382	 */
2383	/* Only go through if we didn't race with anybody else... */
2384	if (pte_none(*page_table)) {
2385		flush_icache_page(vma, new_page);
2386		entry = mk_pte(new_page, vma->vm_page_prot);
2387		if (write_access)
2388			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2389		set_pte_at(mm, address, page_table, entry);
2390		if (anon) {
2391			inc_mm_counter(mm, anon_rss);
2392			lru_cache_add_active(new_page);
2393			page_add_new_anon_rmap(new_page, vma, address);
2394		} else {
2395			inc_mm_counter(mm, file_rss);
2396			page_add_file_rmap(new_page);
2397			if (write_access) {
2398				dirty_page = new_page;
2399				get_page(dirty_page);
2400			}
2401		}
2402	} else {
2403		/* One of our sibling threads was faster, back out. */
2404		page_cache_release(new_page);
2405		goto unlock;
2406	}
2407
2408	/* no need to invalidate: a not-present page shouldn't be cached */
2409	update_mmu_cache(vma, address, entry);
2410	lazy_mmu_prot_update(entry);
2411unlock:
2412	pte_unmap_unlock(page_table, ptl);
2413	if (dirty_page) {
2414		set_page_dirty_balance(dirty_page);
2415		put_page(dirty_page);
2416	}
2417	return ret;
2418oom:
2419	page_cache_release(new_page);
2420	return VM_FAULT_OOM;
2421}
2422
2423/*
2424 * do_no_pfn() tries to create a new page mapping for a page without
2425 * a struct_page backing it
2426 *
2427 * As this is called only for pages that do not currently exist, we
2428 * do not need to flush old virtual caches or the TLB.
2429 *
2430 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2431 * but allow concurrent faults), and pte mapped but not yet locked.
2432 * We return with mmap_sem still held, but pte unmapped and unlocked.
2433 *
2434 * It is expected that the ->nopfn handler always returns the same pfn
2435 * for a given virtual mapping.
2436 *
2437 * Mark this `noinline' to prevent it from bloating the main pagefault code.
2438 */
2439static noinline int do_no_pfn(struct mm_struct *mm, struct vm_area_struct *vma,
2440		     unsigned long address, pte_t *page_table, pmd_t *pmd,
2441		     int write_access)
2442{
2443	spinlock_t *ptl;
2444	pte_t entry;
2445	unsigned long pfn;
2446	int ret = VM_FAULT_MINOR;
2447
2448	pte_unmap(page_table);
2449	BUG_ON(!(vma->vm_flags & VM_PFNMAP));
2450	BUG_ON(is_cow_mapping(vma->vm_flags));
2451
2452	pfn = vma->vm_ops->nopfn(vma, address & PAGE_MASK);
2453	if (unlikely(pfn == NOPFN_OOM))
2454		return VM_FAULT_OOM;
2455	else if (unlikely(pfn == NOPFN_SIGBUS))
2456		return VM_FAULT_SIGBUS;
2457	else if (unlikely(pfn == NOPFN_REFAULT))
2458		return VM_FAULT_MINOR;
2459
2460	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2461
2462	/* Only go through if we didn't race with anybody else... */
2463	if (pte_none(*page_table)) {
2464		entry = pfn_pte(pfn, vma->vm_page_prot);
2465		if (write_access)
2466			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2467		set_pte_at(mm, address, page_table, entry);
2468	}
2469	pte_unmap_unlock(page_table, ptl);
2470	return ret;
2471}
2472
2473/*
2474 * Fault of a previously existing named mapping. Repopulate the pte
2475 * from the encoded file_pte if possible. This enables swappable
2476 * nonlinear vmas.
2477 *
2478 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2479 * but allow concurrent faults), and pte mapped but not yet locked.
2480 * We return with mmap_sem still held, but pte unmapped and unlocked.
2481 */
2482static int do_file_page(struct mm_struct *mm, struct vm_area_struct *vma,
2483		unsigned long address, pte_t *page_table, pmd_t *pmd,
2484		int write_access, pte_t orig_pte)
2485{
2486	pgoff_t pgoff;
2487	int err;
2488
2489	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2490		return VM_FAULT_MINOR;
2491
2492	if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
2493		/*
2494		 * Page table corrupted: show pte and kill process.
2495		 */
2496		print_bad_pte(vma, orig_pte, address);
2497		return VM_FAULT_OOM;
2498	}
2499	/* We can then assume vm->vm_ops && vma->vm_ops->populate */
2500
2501	pgoff = pte_to_pgoff(orig_pte);
2502	err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE,
2503					vma->vm_page_prot, pgoff, 0);
2504	if (err == -ENOMEM)
2505		return VM_FAULT_OOM;
2506	if (err)
2507		return VM_FAULT_SIGBUS;
2508	return VM_FAULT_MAJOR;
2509}
2510
2511/*
2512 * These routines also need to handle stuff like marking pages dirty
2513 * and/or accessed for architectures that don't do it in hardware (most
2514 * RISC architectures).  The early dirtying is also good on the i386.
2515 *
2516 * There is also a hook called "update_mmu_cache()" that architectures
2517 * with external mmu caches can use to update those (ie the Sparc or
2518 * PowerPC hashed page tables that act as extended TLBs).
2519 *
2520 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2521 * but allow concurrent faults), and pte mapped but not yet locked.
2522 * We return with mmap_sem still held, but pte unmapped and unlocked.
2523 */
2524static inline int handle_pte_fault(struct mm_struct *mm,
2525		struct vm_area_struct *vma, unsigned long address,
2526		pte_t *pte, pmd_t *pmd, int write_access)
2527{
2528	pte_t entry;
2529	spinlock_t *ptl;
2530
2531	entry = *pte;
2532	if (!pte_present(entry)) {
2533		if (pte_none(entry)) {
2534			if (vma->vm_ops) {
2535				if (vma->vm_ops->nopage)
2536					return do_no_page(mm, vma, address,
2537							  pte, pmd,
2538							  write_access);
2539				if (unlikely(vma->vm_ops->nopfn))
2540					return do_no_pfn(mm, vma, address, pte,
2541							 pmd, write_access);
2542			}
2543			return do_anonymous_page(mm, vma, address,
2544						 pte, pmd, write_access);
2545		}
2546		if (pte_file(entry))
2547			return do_file_page(mm, vma, address,
2548					pte, pmd, write_access, entry);
2549		return do_swap_page(mm, vma, address,
2550					pte, pmd, write_access, entry);
2551	}
2552
2553	ptl = pte_lockptr(mm, pmd);
2554	spin_lock(ptl);
2555	if (unlikely(!pte_same(*pte, entry)))
2556		goto unlock;
2557	if (write_access) {
2558		if (!pte_write(entry))
2559			return do_wp_page(mm, vma, address,
2560					pte, pmd, ptl, entry);
2561		entry = pte_mkdirty(entry);
2562	}
2563	entry = pte_mkyoung(entry);
2564	if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
2565		update_mmu_cache(vma, address, entry);
2566		lazy_mmu_prot_update(entry);
2567	} else {
2568		/*
2569		 * This is needed only for protection faults but the arch code
2570		 * is not yet telling us if this is a protection fault or not.
2571		 * This still avoids useless tlb flushes for .text page faults
2572		 * with threads.
2573		 */
2574		if (write_access)
2575			flush_tlb_page(vma, address);
2576	}
2577unlock:
2578	pte_unmap_unlock(pte, ptl);
2579	return VM_FAULT_MINOR;
2580}
2581
2582/*
2583 * By the time we get here, we already hold the mm semaphore
2584 */
2585int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2586		unsigned long address, int write_access)
2587{
2588	pgd_t *pgd;
2589	pud_t *pud;
2590	pmd_t *pmd;
2591	pte_t *pte;
2592
2593	__set_current_state(TASK_RUNNING);
2594
2595	count_vm_event(PGFAULT);
2596
2597	if (unlikely(is_vm_hugetlb_page(vma)))
2598		return hugetlb_fault(mm, vma, address, write_access);
2599
2600	pgd = pgd_offset(mm, address);
2601	pud = pud_alloc(mm, pgd, address);
2602	if (!pud)
2603		return VM_FAULT_OOM;
2604	pmd = pmd_alloc(mm, pud, address);
2605	if (!pmd)
2606		return VM_FAULT_OOM;
2607	pte = pte_alloc_map(mm, pmd, address);
2608	if (!pte)
2609		return VM_FAULT_OOM;
2610
2611	return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2612}
2613
2614EXPORT_SYMBOL_GPL(__handle_mm_fault);
2615
2616#ifndef __PAGETABLE_PUD_FOLDED
2617/*
2618 * Allocate page upper directory.
2619 * We've already handled the fast-path in-line.
2620 */
2621int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2622{
2623	pud_t *new = pud_alloc_one(mm, address);
2624	if (!new)
2625		return -ENOMEM;
2626
2627	spin_lock(&mm->page_table_lock);
2628	if (pgd_present(*pgd))		/* Another has populated it */
2629		pud_free(new);
2630	else
2631		pgd_populate(mm, pgd, new);
2632	spin_unlock(&mm->page_table_lock);
2633	return 0;
2634}
2635#endif /* __PAGETABLE_PUD_FOLDED */
2636
2637#ifndef __PAGETABLE_PMD_FOLDED
2638/*
2639 * Allocate page middle directory.
2640 * We've already handled the fast-path in-line.
2641 */
2642int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2643{
2644	pmd_t *new = pmd_alloc_one(mm, address);
2645	if (!new)
2646		return -ENOMEM;
2647
2648	spin_lock(&mm->page_table_lock);
2649#ifndef __ARCH_HAS_4LEVEL_HACK
2650	if (pud_present(*pud))		/* Another has populated it */
2651		pmd_free(new);
2652	else
2653		pud_populate(mm, pud, new);
2654#else
2655	if (pgd_present(*pud))		/* Another has populated it */
2656		pmd_free(new);
2657	else
2658		pgd_populate(mm, pud, new);
2659#endif /* __ARCH_HAS_4LEVEL_HACK */
2660	spin_unlock(&mm->page_table_lock);
2661	return 0;
2662}
2663#endif /* __PAGETABLE_PMD_FOLDED */
2664
2665int make_pages_present(unsigned long addr, unsigned long end)
2666{
2667	int ret, len, write;
2668	struct vm_area_struct * vma;
2669
2670	vma = find_vma(current->mm, addr);
2671	if (!vma)
2672		return -1;
2673	write = (vma->vm_flags & VM_WRITE) != 0;
2674	BUG_ON(addr >= end);
2675	BUG_ON(end > vma->vm_end);
2676	len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE;
2677	ret = get_user_pages(current, current->mm, addr,
2678			len, write, 0, NULL, NULL);
2679	if (ret < 0)
2680		return ret;
2681	return ret == len ? 0 : -1;
2682}
2683
2684/*
2685 * Map a vmalloc()-space virtual address to the physical page.
2686 */
2687struct page * vmalloc_to_page(void * vmalloc_addr)
2688{
2689	unsigned long addr = (unsigned long) vmalloc_addr;
2690	struct page *page = NULL;
2691	pgd_t *pgd = pgd_offset_k(addr);
2692	pud_t *pud;
2693	pmd_t *pmd;
2694	pte_t *ptep, pte;
2695
2696	if (!pgd_none(*pgd)) {
2697		pud = pud_offset(pgd, addr);
2698		if (!pud_none(*pud)) {
2699			pmd = pmd_offset(pud, addr);
2700			if (!pmd_none(*pmd)) {
2701				ptep = pte_offset_map(pmd, addr);
2702				pte = *ptep;
2703				if (pte_present(pte))
2704					page = pte_page(pte);
2705				pte_unmap(ptep);
2706			}
2707		}
2708	}
2709	return page;
2710}
2711
2712EXPORT_SYMBOL(vmalloc_to_page);
2713
2714/*
2715 * Map a vmalloc()-space virtual address to the physical page frame number.
2716 */
2717unsigned long vmalloc_to_pfn(void * vmalloc_addr)
2718{
2719	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
2720}
2721
2722EXPORT_SYMBOL(vmalloc_to_pfn);
2723
2724#if !defined(__HAVE_ARCH_GATE_AREA)
2725
2726#if defined(AT_SYSINFO_EHDR)
2727static struct vm_area_struct gate_vma;
2728
2729static int __init gate_vma_init(void)
2730{
2731	gate_vma.vm_mm = NULL;
2732	gate_vma.vm_start = FIXADDR_USER_START;
2733	gate_vma.vm_end = FIXADDR_USER_END;
2734	gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
2735	gate_vma.vm_page_prot = __P101;
2736	/*
2737	 * Make sure the vDSO gets into every core dump.
2738	 * Dumping its contents makes post-mortem fully interpretable later
2739	 * without matching up the same kernel and hardware config to see
2740	 * what PC values meant.
2741	 */
2742	gate_vma.vm_flags |= VM_ALWAYSDUMP;
2743	return 0;
2744}
2745__initcall(gate_vma_init);
2746#endif
2747
2748struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2749{
2750#ifdef AT_SYSINFO_EHDR
2751	return &gate_vma;
2752#else
2753	return NULL;
2754#endif
2755}
2756
2757int in_gate_area_no_task(unsigned long addr)
2758{
2759#ifdef AT_SYSINFO_EHDR
2760	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2761		return 1;
2762#endif
2763	return 0;
2764}
2765
2766#endif	/* __HAVE_ARCH_GATE_AREA */
2767
2768/*
2769 * Access another process' address space.
2770 * Source/target buffer must be kernel space,
2771 * Do not walk the page table directly, use get_user_pages
2772 */
2773int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2774{
2775	struct mm_struct *mm;
2776	struct vm_area_struct *vma;
2777	struct page *page;
2778	void *old_buf = buf;
2779
2780	mm = get_task_mm(tsk);
2781	if (!mm)
2782		return 0;
2783
2784	down_read(&mm->mmap_sem);
2785	/* ignore errors, just check how much was sucessfully transfered */
2786	while (len) {
2787		int bytes, ret, offset;
2788		void *maddr;
2789
2790		ret = get_user_pages(tsk, mm, addr, 1,
2791				write, 1, &page, &vma);
2792		if (ret <= 0)
2793			break;
2794
2795		bytes = len;
2796		offset = addr & (PAGE_SIZE-1);
2797		if (bytes > PAGE_SIZE-offset)
2798			bytes = PAGE_SIZE-offset;
2799
2800		maddr = kmap(page);
2801		if (write) {
2802			copy_to_user_page(vma, page, addr,
2803					  maddr + offset, buf, bytes);
2804			set_page_dirty_lock(page);
2805		} else {
2806			copy_from_user_page(vma, page, addr,
2807					    buf, maddr + offset, bytes);
2808		}
2809		kunmap(page);
2810		page_cache_release(page);
2811		len -= bytes;
2812		buf += bytes;
2813		addr += bytes;
2814	}
2815	up_read(&mm->mmap_sem);
2816	mmput(mm);
2817
2818	return buf - old_buf;
2819}
2820