1/*
2 *	linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999  Linus Torvalds
5 */
6
7/*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12#include <linux/module.h>
13#include <linux/slab.h>
14#include <linux/compiler.h>
15#include <linux/fs.h>
16#include <linux/uaccess.h>
17#include <linux/aio.h>
18#include <linux/capability.h>
19#include <linux/kernel_stat.h>
20#include <linux/mm.h>
21#include <linux/swap.h>
22#include <linux/mman.h>
23#include <linux/pagemap.h>
24#include <linux/file.h>
25#include <linux/uio.h>
26#include <linux/hash.h>
27#include <linux/writeback.h>
28#include <linux/pagevec.h>
29#include <linux/blkdev.h>
30#include <linux/security.h>
31#include <linux/syscalls.h>
32#include <linux/cpuset.h>
33#include "filemap.h"
34#include "internal.h"
35
36#include <linux/buffer_head.h> /* for generic_osync_inode */
37
38#include <asm/mman.h>
39
40static ssize_t
41generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
42	loff_t offset, unsigned long nr_segs);
43
44/*
45 * Shared mappings implemented 30.11.1994. It's not fully working yet,
46 * though.
47 *
48 * Shared mappings now work. 15.8.1995  Bruno.
49 *
50 * finished 'unifying' the page and buffer cache and SMP-threaded the
51 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
52 *
53 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
54 */
55
56/*
57 * Lock ordering:
58 *
59 *  ->i_mmap_lock		(vmtruncate)
60 *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
61 *      ->swap_lock		(exclusive_swap_page, others)
62 *        ->mapping->tree_lock
63 *
64 *  ->i_mutex
65 *    ->i_mmap_lock		(truncate->unmap_mapping_range)
66 *
67 *  ->mmap_sem
68 *    ->i_mmap_lock
69 *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
70 *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
71 *
72 *  ->mmap_sem
73 *    ->lock_page		(access_process_vm)
74 *
75 *  ->i_mutex			(generic_file_buffered_write)
76 *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
77 *
78 *  ->i_mutex
79 *    ->i_alloc_sem             (various)
80 *
81 *  ->inode_lock
82 *    ->sb_lock			(fs/fs-writeback.c)
83 *    ->mapping->tree_lock	(__sync_single_inode)
84 *
85 *  ->i_mmap_lock
86 *    ->anon_vma.lock		(vma_adjust)
87 *
88 *  ->anon_vma.lock
89 *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
90 *
91 *  ->page_table_lock or pte_lock
92 *    ->swap_lock		(try_to_unmap_one)
93 *    ->private_lock		(try_to_unmap_one)
94 *    ->tree_lock		(try_to_unmap_one)
95 *    ->zone.lru_lock		(follow_page->mark_page_accessed)
96 *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
97 *    ->private_lock		(page_remove_rmap->set_page_dirty)
98 *    ->tree_lock		(page_remove_rmap->set_page_dirty)
99 *    ->inode_lock		(page_remove_rmap->set_page_dirty)
100 *    ->inode_lock		(zap_pte_range->set_page_dirty)
101 *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
102 *
103 *  ->task->proc_lock
104 *    ->dcache_lock		(proc_pid_lookup)
105 */
106
107/*
108 * Remove a page from the page cache and free it. Caller has to make
109 * sure the page is locked and that nobody else uses it - or that usage
110 * is safe.  The caller must hold a write_lock on the mapping's tree_lock.
111 */
112void __remove_from_page_cache(struct page *page)
113{
114	struct address_space *mapping = page->mapping;
115
116	radix_tree_delete(&mapping->page_tree, page->index);
117	page->mapping = NULL;
118	mapping->nrpages--;
119	__dec_zone_page_state(page, NR_FILE_PAGES);
120}
121
122void remove_from_page_cache(struct page *page)
123{
124	struct address_space *mapping = page->mapping;
125
126	BUG_ON(!PageLocked(page));
127
128	write_lock_irq(&mapping->tree_lock);
129	__remove_from_page_cache(page);
130	write_unlock_irq(&mapping->tree_lock);
131}
132
133static int sync_page(void *word)
134{
135	struct address_space *mapping;
136	struct page *page;
137
138	page = container_of((unsigned long *)word, struct page, flags);
139
140	/*
141	 * page_mapping() is being called without PG_locked held.
142	 * Some knowledge of the state and use of the page is used to
143	 * reduce the requirements down to a memory barrier.
144	 * The danger here is of a stale page_mapping() return value
145	 * indicating a struct address_space different from the one it's
146	 * associated with when it is associated with one.
147	 * After smp_mb(), it's either the correct page_mapping() for
148	 * the page, or an old page_mapping() and the page's own
149	 * page_mapping() has gone NULL.
150	 * The ->sync_page() address_space operation must tolerate
151	 * page_mapping() going NULL. By an amazing coincidence,
152	 * this comes about because none of the users of the page
153	 * in the ->sync_page() methods make essential use of the
154	 * page_mapping(), merely passing the page down to the backing
155	 * device's unplug functions when it's non-NULL, which in turn
156	 * ignore it for all cases but swap, where only page_private(page) is
157	 * of interest. When page_mapping() does go NULL, the entire
158	 * call stack gracefully ignores the page and returns.
159	 * -- wli
160	 */
161	smp_mb();
162	mapping = page_mapping(page);
163	if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
164		mapping->a_ops->sync_page(page);
165	io_schedule();
166	return 0;
167}
168
169/**
170 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
171 * @mapping:	address space structure to write
172 * @start:	offset in bytes where the range starts
173 * @end:	offset in bytes where the range ends (inclusive)
174 * @sync_mode:	enable synchronous operation
175 *
176 * Start writeback against all of a mapping's dirty pages that lie
177 * within the byte offsets <start, end> inclusive.
178 *
179 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
180 * opposed to a regular memory cleansing writeback.  The difference between
181 * these two operations is that if a dirty page/buffer is encountered, it must
182 * be waited upon, and not just skipped over.
183 */
184int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
185				loff_t end, int sync_mode)
186{
187	int ret;
188	struct writeback_control wbc = {
189		.sync_mode = sync_mode,
190		.nr_to_write = mapping->nrpages * 2,
191		.range_start = start,
192		.range_end = end,
193	};
194
195	if (!mapping_cap_writeback_dirty(mapping))
196		return 0;
197
198	ret = do_writepages(mapping, &wbc);
199	return ret;
200}
201
202static inline int __filemap_fdatawrite(struct address_space *mapping,
203	int sync_mode)
204{
205	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
206}
207
208int filemap_fdatawrite(struct address_space *mapping)
209{
210	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
211}
212EXPORT_SYMBOL(filemap_fdatawrite);
213
214static int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
215				loff_t end)
216{
217	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
218}
219
220/**
221 * filemap_flush - mostly a non-blocking flush
222 * @mapping:	target address_space
223 *
224 * This is a mostly non-blocking flush.  Not suitable for data-integrity
225 * purposes - I/O may not be started against all dirty pages.
226 */
227int filemap_flush(struct address_space *mapping)
228{
229	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
230}
231EXPORT_SYMBOL(filemap_flush);
232
233/**
234 * wait_on_page_writeback_range - wait for writeback to complete
235 * @mapping:	target address_space
236 * @start:	beginning page index
237 * @end:	ending page index
238 *
239 * Wait for writeback to complete against pages indexed by start->end
240 * inclusive
241 */
242int wait_on_page_writeback_range(struct address_space *mapping,
243				pgoff_t start, pgoff_t end)
244{
245	struct pagevec pvec;
246	int nr_pages;
247	int ret = 0;
248	pgoff_t index;
249
250	if (end < start)
251		return 0;
252
253	pagevec_init(&pvec, 0);
254	index = start;
255	while ((index <= end) &&
256			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
257			PAGECACHE_TAG_WRITEBACK,
258			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
259		unsigned i;
260
261		for (i = 0; i < nr_pages; i++) {
262			struct page *page = pvec.pages[i];
263
264			/* until radix tree lookup accepts end_index */
265			if (page->index > end)
266				continue;
267
268			wait_on_page_writeback(page);
269			if (PageError(page))
270				ret = -EIO;
271		}
272		pagevec_release(&pvec);
273		cond_resched();
274	}
275
276	/* Check for outstanding write errors */
277	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
278		ret = -ENOSPC;
279	if (test_and_clear_bit(AS_EIO, &mapping->flags))
280		ret = -EIO;
281
282	return ret;
283}
284
285/**
286 * sync_page_range - write and wait on all pages in the passed range
287 * @inode:	target inode
288 * @mapping:	target address_space
289 * @pos:	beginning offset in pages to write
290 * @count:	number of bytes to write
291 *
292 * Write and wait upon all the pages in the passed range.  This is a "data
293 * integrity" operation.  It waits upon in-flight writeout before starting and
294 * waiting upon new writeout.  If there was an IO error, return it.
295 *
296 * We need to re-take i_mutex during the generic_osync_inode list walk because
297 * it is otherwise livelockable.
298 */
299int sync_page_range(struct inode *inode, struct address_space *mapping,
300			loff_t pos, loff_t count)
301{
302	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
303	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
304	int ret;
305
306	if (!mapping_cap_writeback_dirty(mapping) || !count)
307		return 0;
308	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
309	if (ret == 0) {
310		mutex_lock(&inode->i_mutex);
311		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
312		mutex_unlock(&inode->i_mutex);
313	}
314	if (ret == 0)
315		ret = wait_on_page_writeback_range(mapping, start, end);
316	return ret;
317}
318EXPORT_SYMBOL(sync_page_range);
319
320/**
321 * sync_page_range_nolock
322 * @inode:	target inode
323 * @mapping:	target address_space
324 * @pos:	beginning offset in pages to write
325 * @count:	number of bytes to write
326 *
327 * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea
328 * as it forces O_SYNC writers to different parts of the same file
329 * to be serialised right until io completion.
330 */
331int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
332			   loff_t pos, loff_t count)
333{
334	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
335	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
336	int ret;
337
338	if (!mapping_cap_writeback_dirty(mapping) || !count)
339		return 0;
340	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
341	if (ret == 0)
342		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
343	if (ret == 0)
344		ret = wait_on_page_writeback_range(mapping, start, end);
345	return ret;
346}
347EXPORT_SYMBOL(sync_page_range_nolock);
348
349/**
350 * filemap_fdatawait - wait for all under-writeback pages to complete
351 * @mapping: address space structure to wait for
352 *
353 * Walk the list of under-writeback pages of the given address space
354 * and wait for all of them.
355 */
356int filemap_fdatawait(struct address_space *mapping)
357{
358	loff_t i_size = i_size_read(mapping->host);
359
360	if (i_size == 0)
361		return 0;
362
363	return wait_on_page_writeback_range(mapping, 0,
364				(i_size - 1) >> PAGE_CACHE_SHIFT);
365}
366EXPORT_SYMBOL(filemap_fdatawait);
367
368int filemap_write_and_wait(struct address_space *mapping)
369{
370	int err = 0;
371
372	if (mapping->nrpages) {
373		err = filemap_fdatawrite(mapping);
374		/*
375		 * Even if the above returned error, the pages may be
376		 * written partially (e.g. -ENOSPC), so we wait for it.
377		 * But the -EIO is special case, it may indicate the worst
378		 * thing (e.g. bug) happened, so we avoid waiting for it.
379		 */
380		if (err != -EIO) {
381			int err2 = filemap_fdatawait(mapping);
382			if (!err)
383				err = err2;
384		}
385	}
386	return err;
387}
388EXPORT_SYMBOL(filemap_write_and_wait);
389
390/**
391 * filemap_write_and_wait_range - write out & wait on a file range
392 * @mapping:	the address_space for the pages
393 * @lstart:	offset in bytes where the range starts
394 * @lend:	offset in bytes where the range ends (inclusive)
395 *
396 * Write out and wait upon file offsets lstart->lend, inclusive.
397 *
398 * Note that `lend' is inclusive (describes the last byte to be written) so
399 * that this function can be used to write to the very end-of-file (end = -1).
400 */
401int filemap_write_and_wait_range(struct address_space *mapping,
402				 loff_t lstart, loff_t lend)
403{
404	int err = 0;
405
406	if (mapping->nrpages) {
407		err = __filemap_fdatawrite_range(mapping, lstart, lend,
408						 WB_SYNC_ALL);
409		/* See comment of filemap_write_and_wait() */
410		if (err != -EIO) {
411			int err2 = wait_on_page_writeback_range(mapping,
412						lstart >> PAGE_CACHE_SHIFT,
413						lend >> PAGE_CACHE_SHIFT);
414			if (!err)
415				err = err2;
416		}
417	}
418	return err;
419}
420
421/**
422 * add_to_page_cache - add newly allocated pagecache pages
423 * @page:	page to add
424 * @mapping:	the page's address_space
425 * @offset:	page index
426 * @gfp_mask:	page allocation mode
427 *
428 * This function is used to add newly allocated pagecache pages;
429 * the page is new, so we can just run SetPageLocked() against it.
430 * The other page state flags were set by rmqueue().
431 *
432 * This function does not add the page to the LRU.  The caller must do that.
433 */
434int add_to_page_cache(struct page *page, struct address_space *mapping,
435		pgoff_t offset, gfp_t gfp_mask)
436{
437	int error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
438
439	if (error == 0) {
440		write_lock_irq(&mapping->tree_lock);
441		error = radix_tree_insert(&mapping->page_tree, offset, page);
442		if (!error) {
443			page_cache_get(page);
444			SetPageLocked(page);
445			page->mapping = mapping;
446			page->index = offset;
447			mapping->nrpages++;
448			__inc_zone_page_state(page, NR_FILE_PAGES);
449		}
450		write_unlock_irq(&mapping->tree_lock);
451		radix_tree_preload_end();
452	}
453	return error;
454}
455EXPORT_SYMBOL(add_to_page_cache);
456
457int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
458				pgoff_t offset, gfp_t gfp_mask)
459{
460	int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
461	if (ret == 0)
462		lru_cache_add(page);
463	return ret;
464}
465
466#ifdef CONFIG_NUMA
467struct page *__page_cache_alloc(gfp_t gfp)
468{
469	if (cpuset_do_page_mem_spread()) {
470		int n = cpuset_mem_spread_node();
471		return alloc_pages_node(n, gfp, 0);
472	}
473	return alloc_pages(gfp, 0);
474}
475EXPORT_SYMBOL(__page_cache_alloc);
476#endif
477
478static int __sleep_on_page_lock(void *word)
479{
480	io_schedule();
481	return 0;
482}
483
484/*
485 * In order to wait for pages to become available there must be
486 * waitqueues associated with pages. By using a hash table of
487 * waitqueues where the bucket discipline is to maintain all
488 * waiters on the same queue and wake all when any of the pages
489 * become available, and for the woken contexts to check to be
490 * sure the appropriate page became available, this saves space
491 * at a cost of "thundering herd" phenomena during rare hash
492 * collisions.
493 */
494static wait_queue_head_t *page_waitqueue(struct page *page)
495{
496	const struct zone *zone = page_zone(page);
497
498	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
499}
500
501static inline void wake_up_page(struct page *page, int bit)
502{
503	__wake_up_bit(page_waitqueue(page), &page->flags, bit);
504}
505
506void fastcall wait_on_page_bit(struct page *page, int bit_nr)
507{
508	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
509
510	if (test_bit(bit_nr, &page->flags))
511		__wait_on_bit(page_waitqueue(page), &wait, sync_page,
512							TASK_UNINTERRUPTIBLE);
513}
514EXPORT_SYMBOL(wait_on_page_bit);
515
516/**
517 * unlock_page - unlock a locked page
518 * @page: the page
519 *
520 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
521 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
522 * mechananism between PageLocked pages and PageWriteback pages is shared.
523 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
524 *
525 * The first mb is necessary to safely close the critical section opened by the
526 * TestSetPageLocked(), the second mb is necessary to enforce ordering between
527 * the clear_bit and the read of the waitqueue (to avoid SMP races with a
528 * parallel wait_on_page_locked()).
529 */
530void fastcall unlock_page(struct page *page)
531{
532	smp_mb__before_clear_bit();
533	if (!TestClearPageLocked(page))
534		BUG();
535	smp_mb__after_clear_bit();
536	wake_up_page(page, PG_locked);
537}
538EXPORT_SYMBOL(unlock_page);
539
540/**
541 * end_page_writeback - end writeback against a page
542 * @page: the page
543 */
544void end_page_writeback(struct page *page)
545{
546	if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) {
547		if (!test_clear_page_writeback(page))
548			BUG();
549	}
550	smp_mb__after_clear_bit();
551	wake_up_page(page, PG_writeback);
552}
553EXPORT_SYMBOL(end_page_writeback);
554
555/**
556 * __lock_page - get a lock on the page, assuming we need to sleep to get it
557 * @page: the page to lock
558 *
559 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary.  If some
560 * random driver's requestfn sets TASK_RUNNING, we could busywait.  However
561 * chances are that on the second loop, the block layer's plug list is empty,
562 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
563 */
564void fastcall __lock_page(struct page *page)
565{
566	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
567
568	__wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
569							TASK_UNINTERRUPTIBLE);
570}
571EXPORT_SYMBOL(__lock_page);
572
573/*
574 * Variant of lock_page that does not require the caller to hold a reference
575 * on the page's mapping.
576 */
577void fastcall __lock_page_nosync(struct page *page)
578{
579	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
580	__wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
581							TASK_UNINTERRUPTIBLE);
582}
583
584/**
585 * find_get_page - find and get a page reference
586 * @mapping: the address_space to search
587 * @offset: the page index
588 *
589 * Is there a pagecache struct page at the given (mapping, offset) tuple?
590 * If yes, increment its refcount and return it; if no, return NULL.
591 */
592struct page * find_get_page(struct address_space *mapping, unsigned long offset)
593{
594	struct page *page;
595
596	read_lock_irq(&mapping->tree_lock);
597	page = radix_tree_lookup(&mapping->page_tree, offset);
598	if (page)
599		page_cache_get(page);
600	read_unlock_irq(&mapping->tree_lock);
601	return page;
602}
603EXPORT_SYMBOL(find_get_page);
604
605/**
606 * find_lock_page - locate, pin and lock a pagecache page
607 * @mapping: the address_space to search
608 * @offset: the page index
609 *
610 * Locates the desired pagecache page, locks it, increments its reference
611 * count and returns its address.
612 *
613 * Returns zero if the page was not present. find_lock_page() may sleep.
614 */
615struct page *find_lock_page(struct address_space *mapping,
616				unsigned long offset)
617{
618	struct page *page;
619
620	read_lock_irq(&mapping->tree_lock);
621repeat:
622	page = radix_tree_lookup(&mapping->page_tree, offset);
623	if (page) {
624		page_cache_get(page);
625		if (TestSetPageLocked(page)) {
626			read_unlock_irq(&mapping->tree_lock);
627			__lock_page(page);
628			read_lock_irq(&mapping->tree_lock);
629
630			/* Has the page been truncated while we slept? */
631			if (unlikely(page->mapping != mapping ||
632				     page->index != offset)) {
633				unlock_page(page);
634				page_cache_release(page);
635				goto repeat;
636			}
637		}
638	}
639	read_unlock_irq(&mapping->tree_lock);
640	return page;
641}
642EXPORT_SYMBOL(find_lock_page);
643
644/**
645 * find_or_create_page - locate or add a pagecache page
646 * @mapping: the page's address_space
647 * @index: the page's index into the mapping
648 * @gfp_mask: page allocation mode
649 *
650 * Locates a page in the pagecache.  If the page is not present, a new page
651 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
652 * LRU list.  The returned page is locked and has its reference count
653 * incremented.
654 *
655 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
656 * allocation!
657 *
658 * find_or_create_page() returns the desired page's address, or zero on
659 * memory exhaustion.
660 */
661struct page *find_or_create_page(struct address_space *mapping,
662		unsigned long index, gfp_t gfp_mask)
663{
664	struct page *page, *cached_page = NULL;
665	int err;
666repeat:
667	page = find_lock_page(mapping, index);
668	if (!page) {
669		if (!cached_page) {
670			cached_page =
671				__page_cache_alloc(gfp_mask);
672			if (!cached_page)
673				return NULL;
674		}
675		err = add_to_page_cache_lru(cached_page, mapping,
676					index, gfp_mask);
677		if (!err) {
678			page = cached_page;
679			cached_page = NULL;
680		} else if (err == -EEXIST)
681			goto repeat;
682	}
683	if (cached_page)
684		page_cache_release(cached_page);
685	return page;
686}
687EXPORT_SYMBOL(find_or_create_page);
688
689/**
690 * find_get_pages - gang pagecache lookup
691 * @mapping:	The address_space to search
692 * @start:	The starting page index
693 * @nr_pages:	The maximum number of pages
694 * @pages:	Where the resulting pages are placed
695 *
696 * find_get_pages() will search for and return a group of up to
697 * @nr_pages pages in the mapping.  The pages are placed at @pages.
698 * find_get_pages() takes a reference against the returned pages.
699 *
700 * The search returns a group of mapping-contiguous pages with ascending
701 * indexes.  There may be holes in the indices due to not-present pages.
702 *
703 * find_get_pages() returns the number of pages which were found.
704 */
705unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
706			    unsigned int nr_pages, struct page **pages)
707{
708	unsigned int i;
709	unsigned int ret;
710
711	read_lock_irq(&mapping->tree_lock);
712	ret = radix_tree_gang_lookup(&mapping->page_tree,
713				(void **)pages, start, nr_pages);
714	for (i = 0; i < ret; i++)
715		page_cache_get(pages[i]);
716	read_unlock_irq(&mapping->tree_lock);
717	return ret;
718}
719
720/**
721 * find_get_pages_contig - gang contiguous pagecache lookup
722 * @mapping:	The address_space to search
723 * @index:	The starting page index
724 * @nr_pages:	The maximum number of pages
725 * @pages:	Where the resulting pages are placed
726 *
727 * find_get_pages_contig() works exactly like find_get_pages(), except
728 * that the returned number of pages are guaranteed to be contiguous.
729 *
730 * find_get_pages_contig() returns the number of pages which were found.
731 */
732unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
733			       unsigned int nr_pages, struct page **pages)
734{
735	unsigned int i;
736	unsigned int ret;
737
738	read_lock_irq(&mapping->tree_lock);
739	ret = radix_tree_gang_lookup(&mapping->page_tree,
740				(void **)pages, index, nr_pages);
741	for (i = 0; i < ret; i++) {
742		if (pages[i]->mapping == NULL || pages[i]->index != index)
743			break;
744
745		page_cache_get(pages[i]);
746		index++;
747	}
748	read_unlock_irq(&mapping->tree_lock);
749	return i;
750}
751EXPORT_SYMBOL(find_get_pages_contig);
752
753/**
754 * find_get_pages_tag - find and return pages that match @tag
755 * @mapping:	the address_space to search
756 * @index:	the starting page index
757 * @tag:	the tag index
758 * @nr_pages:	the maximum number of pages
759 * @pages:	where the resulting pages are placed
760 *
761 * Like find_get_pages, except we only return pages which are tagged with
762 * @tag.   We update @index to index the next page for the traversal.
763 */
764unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
765			int tag, unsigned int nr_pages, struct page **pages)
766{
767	unsigned int i;
768	unsigned int ret;
769
770	read_lock_irq(&mapping->tree_lock);
771	ret = radix_tree_gang_lookup_tag(&mapping->page_tree,
772				(void **)pages, *index, nr_pages, tag);
773	for (i = 0; i < ret; i++)
774		page_cache_get(pages[i]);
775	if (ret)
776		*index = pages[ret - 1]->index + 1;
777	read_unlock_irq(&mapping->tree_lock);
778	return ret;
779}
780EXPORT_SYMBOL(find_get_pages_tag);
781
782/**
783 * grab_cache_page_nowait - returns locked page at given index in given cache
784 * @mapping: target address_space
785 * @index: the page index
786 *
787 * Same as grab_cache_page(), but do not wait if the page is unavailable.
788 * This is intended for speculative data generators, where the data can
789 * be regenerated if the page couldn't be grabbed.  This routine should
790 * be safe to call while holding the lock for another page.
791 *
792 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
793 * and deadlock against the caller's locked page.
794 */
795struct page *
796grab_cache_page_nowait(struct address_space *mapping, unsigned long index)
797{
798	struct page *page = find_get_page(mapping, index);
799
800	if (page) {
801		if (!TestSetPageLocked(page))
802			return page;
803		page_cache_release(page);
804		return NULL;
805	}
806	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
807	if (page && add_to_page_cache_lru(page, mapping, index, GFP_KERNEL)) {
808		page_cache_release(page);
809		page = NULL;
810	}
811	return page;
812}
813EXPORT_SYMBOL(grab_cache_page_nowait);
814
815/*
816 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
817 * a _large_ part of the i/o request. Imagine the worst scenario:
818 *
819 *      ---R__________________________________________B__________
820 *         ^ reading here                             ^ bad block(assume 4k)
821 *
822 * read(R) => miss => readahead(R...B) => media error => frustrating retries
823 * => failing the whole request => read(R) => read(R+1) =>
824 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
825 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
826 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
827 *
828 * It is going insane. Fix it by quickly scaling down the readahead size.
829 */
830static void shrink_readahead_size_eio(struct file *filp,
831					struct file_ra_state *ra)
832{
833	if (!ra->ra_pages)
834		return;
835
836	ra->ra_pages /= 4;
837}
838
839/**
840 * do_generic_mapping_read - generic file read routine
841 * @mapping:	address_space to be read
842 * @_ra:	file's readahead state
843 * @filp:	the file to read
844 * @ppos:	current file position
845 * @desc:	read_descriptor
846 * @actor:	read method
847 *
848 * This is a generic file read routine, and uses the
849 * mapping->a_ops->readpage() function for the actual low-level stuff.
850 *
851 * This is really ugly. But the goto's actually try to clarify some
852 * of the logic when it comes to error handling etc.
853 *
854 * Note the struct file* is only passed for the use of readpage.
855 * It may be NULL.
856 */
857void do_generic_mapping_read(struct address_space *mapping,
858			     struct file_ra_state *_ra,
859			     struct file *filp,
860			     loff_t *ppos,
861			     read_descriptor_t *desc,
862			     read_actor_t actor)
863{
864	struct inode *inode = mapping->host;
865	unsigned long index;
866	unsigned long end_index;
867	unsigned long offset;
868	unsigned long last_index;
869	unsigned long next_index;
870	unsigned long prev_index;
871	unsigned int prev_offset;
872	loff_t isize;
873	struct page *cached_page;
874	int error;
875	struct file_ra_state ra = *_ra;
876
877	cached_page = NULL;
878	index = *ppos >> PAGE_CACHE_SHIFT;
879	next_index = index;
880	prev_index = ra.prev_index;
881	prev_offset = ra.prev_offset;
882	last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
883	offset = *ppos & ~PAGE_CACHE_MASK;
884
885	isize = i_size_read(inode);
886	if (!isize)
887		goto out;
888
889	end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
890	for (;;) {
891		struct page *page;
892		unsigned long nr, ret;
893
894		/* nr is the maximum number of bytes to copy from this page */
895		nr = PAGE_CACHE_SIZE;
896		if (index >= end_index) {
897			if (index > end_index)
898				goto out;
899			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
900			if (nr <= offset) {
901				goto out;
902			}
903		}
904		nr = nr - offset;
905
906		cond_resched();
907		if (index == next_index)
908			next_index = page_cache_readahead(mapping, &ra, filp,
909					index, last_index - index);
910
911find_page:
912		page = find_get_page(mapping, index);
913		if (unlikely(page == NULL)) {
914			handle_ra_miss(mapping, &ra, index);
915			goto no_cached_page;
916		}
917		if (!PageUptodate(page))
918			goto page_not_up_to_date;
919page_ok:
920
921		/* If users can be writing to this page using arbitrary
922		 * virtual addresses, take care about potential aliasing
923		 * before reading the page on the kernel side.
924		 */
925		if (mapping_writably_mapped(mapping))
926			flush_dcache_page(page);
927
928		/*
929		 * When a sequential read accesses a page several times,
930		 * only mark it as accessed the first time.
931		 */
932		if (prev_index != index || offset != prev_offset)
933			mark_page_accessed(page);
934		prev_index = index;
935
936		/*
937		 * Ok, we have the page, and it's up-to-date, so
938		 * now we can copy it to user space...
939		 *
940		 * The actor routine returns how many bytes were actually used..
941		 * NOTE! This may not be the same as how much of a user buffer
942		 * we filled up (we may be padding etc), so we can only update
943		 * "pos" here (the actor routine has to update the user buffer
944		 * pointers and the remaining count).
945		 */
946		ret = actor(desc, page, offset, nr);
947		offset += ret;
948		index += offset >> PAGE_CACHE_SHIFT;
949		offset &= ~PAGE_CACHE_MASK;
950		prev_offset = offset;
951		ra.prev_offset = offset;
952
953		page_cache_release(page);
954		if (ret == nr && desc->count)
955			continue;
956		goto out;
957
958page_not_up_to_date:
959		/* Get exclusive access to the page ... */
960		lock_page(page);
961
962		/* Did it get truncated before we got the lock? */
963		if (!page->mapping) {
964			unlock_page(page);
965			page_cache_release(page);
966			continue;
967		}
968
969		/* Did somebody else fill it already? */
970		if (PageUptodate(page)) {
971			unlock_page(page);
972			goto page_ok;
973		}
974
975readpage:
976		/* Start the actual read. The read will unlock the page. */
977		error = mapping->a_ops->readpage(filp, page);
978
979		if (unlikely(error)) {
980			if (error == AOP_TRUNCATED_PAGE) {
981				page_cache_release(page);
982				goto find_page;
983			}
984			goto readpage_error;
985		}
986
987		if (!PageUptodate(page)) {
988			lock_page(page);
989			if (!PageUptodate(page)) {
990				if (page->mapping == NULL) {
991					/*
992					 * invalidate_inode_pages got it
993					 */
994					unlock_page(page);
995					page_cache_release(page);
996					goto find_page;
997				}
998				unlock_page(page);
999				error = -EIO;
1000				shrink_readahead_size_eio(filp, &ra);
1001				goto readpage_error;
1002			}
1003			unlock_page(page);
1004		}
1005
1006		/*
1007		 * i_size must be checked after we have done ->readpage.
1008		 *
1009		 * Checking i_size after the readpage allows us to calculate
1010		 * the correct value for "nr", which means the zero-filled
1011		 * part of the page is not copied back to userspace (unless
1012		 * another truncate extends the file - this is desired though).
1013		 */
1014		isize = i_size_read(inode);
1015		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1016		if (unlikely(!isize || index > end_index)) {
1017			page_cache_release(page);
1018			goto out;
1019		}
1020
1021		/* nr is the maximum number of bytes to copy from this page */
1022		nr = PAGE_CACHE_SIZE;
1023		if (index == end_index) {
1024			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1025			if (nr <= offset) {
1026				page_cache_release(page);
1027				goto out;
1028			}
1029		}
1030		nr = nr - offset;
1031		goto page_ok;
1032
1033readpage_error:
1034		/* UHHUH! A synchronous read error occurred. Report it */
1035		desc->error = error;
1036		page_cache_release(page);
1037		goto out;
1038
1039no_cached_page:
1040		/*
1041		 * Ok, it wasn't cached, so we need to create a new
1042		 * page..
1043		 */
1044		if (!cached_page) {
1045			cached_page = page_cache_alloc_cold(mapping);
1046			if (!cached_page) {
1047				desc->error = -ENOMEM;
1048				goto out;
1049			}
1050		}
1051		error = add_to_page_cache_lru(cached_page, mapping,
1052						index, GFP_KERNEL);
1053		if (error) {
1054			if (error == -EEXIST)
1055				goto find_page;
1056			desc->error = error;
1057			goto out;
1058		}
1059		page = cached_page;
1060		cached_page = NULL;
1061		goto readpage;
1062	}
1063
1064out:
1065	*_ra = ra;
1066
1067	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1068	if (cached_page)
1069		page_cache_release(cached_page);
1070	if (filp)
1071		file_accessed(filp);
1072}
1073EXPORT_SYMBOL(do_generic_mapping_read);
1074
1075int file_read_actor(read_descriptor_t *desc, struct page *page,
1076			unsigned long offset, unsigned long size)
1077{
1078	char *kaddr;
1079	unsigned long left, count = desc->count;
1080
1081	if (size > count)
1082		size = count;
1083
1084	/*
1085	 * Faults on the destination of a read are common, so do it before
1086	 * taking the kmap.
1087	 */
1088	if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1089		kaddr = kmap_atomic(page, KM_USER0);
1090		left = __copy_to_user_inatomic(desc->arg.buf,
1091						kaddr + offset, size);
1092		kunmap_atomic(kaddr, KM_USER0);
1093		if (left == 0)
1094			goto success;
1095	}
1096
1097	/* Do it the slow way */
1098	kaddr = kmap(page);
1099	left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1100	kunmap(page);
1101
1102	if (left) {
1103		size -= left;
1104		desc->error = -EFAULT;
1105	}
1106success:
1107	desc->count = count - size;
1108	desc->written += size;
1109	desc->arg.buf += size;
1110	return size;
1111}
1112
1113/*
1114 * Performs necessary checks before doing a write
1115 * @iov:	io vector request
1116 * @nr_segs:	number of segments in the iovec
1117 * @count:	number of bytes to write
1118 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1119 *
1120 * Adjust number of segments and amount of bytes to write (nr_segs should be
1121 * properly initialized first). Returns appropriate error code that caller
1122 * should return or zero in case that write should be allowed.
1123 */
1124int generic_segment_checks(const struct iovec *iov,
1125			unsigned long *nr_segs, size_t *count, int access_flags)
1126{
1127	unsigned long   seg;
1128	size_t cnt = 0;
1129	for (seg = 0; seg < *nr_segs; seg++) {
1130		const struct iovec *iv = &iov[seg];
1131
1132		/*
1133		 * If any segment has a negative length, or the cumulative
1134		 * length ever wraps negative then return -EINVAL.
1135		 */
1136		cnt += iv->iov_len;
1137		if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1138			return -EINVAL;
1139		if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1140			continue;
1141		if (seg == 0)
1142			return -EFAULT;
1143		*nr_segs = seg;
1144		cnt -= iv->iov_len;	/* This segment is no good */
1145		break;
1146	}
1147	*count = cnt;
1148	return 0;
1149}
1150EXPORT_SYMBOL(generic_segment_checks);
1151
1152/**
1153 * generic_file_aio_read - generic filesystem read routine
1154 * @iocb:	kernel I/O control block
1155 * @iov:	io vector request
1156 * @nr_segs:	number of segments in the iovec
1157 * @pos:	current file position
1158 *
1159 * This is the "read()" routine for all filesystems
1160 * that can use the page cache directly.
1161 */
1162ssize_t
1163generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1164		unsigned long nr_segs, loff_t pos)
1165{
1166	struct file *filp = iocb->ki_filp;
1167	ssize_t retval;
1168	unsigned long seg;
1169	size_t count;
1170	loff_t *ppos = &iocb->ki_pos;
1171
1172	count = 0;
1173	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1174	if (retval)
1175		return retval;
1176
1177	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1178	if (filp->f_flags & O_DIRECT) {
1179		loff_t size;
1180		struct address_space *mapping;
1181		struct inode *inode;
1182
1183		mapping = filp->f_mapping;
1184		inode = mapping->host;
1185		retval = 0;
1186		if (!count)
1187			goto out; /* skip atime */
1188		size = i_size_read(inode);
1189		if (pos < size) {
1190			retval = generic_file_direct_IO(READ, iocb,
1191						iov, pos, nr_segs);
1192			if (retval > 0)
1193				*ppos = pos + retval;
1194		}
1195		if (likely(retval != 0)) {
1196			file_accessed(filp);
1197			goto out;
1198		}
1199	}
1200
1201	retval = 0;
1202	if (count) {
1203		for (seg = 0; seg < nr_segs; seg++) {
1204			read_descriptor_t desc;
1205
1206			desc.written = 0;
1207			desc.arg.buf = iov[seg].iov_base;
1208			desc.count = iov[seg].iov_len;
1209			if (desc.count == 0)
1210				continue;
1211			desc.error = 0;
1212			do_generic_file_read(filp,ppos,&desc,file_read_actor);
1213			retval += desc.written;
1214			if (desc.error) {
1215				retval = retval ?: desc.error;
1216				break;
1217			}
1218		}
1219	}
1220out:
1221	return retval;
1222}
1223EXPORT_SYMBOL(generic_file_aio_read);
1224
1225int file_send_actor(read_descriptor_t * desc, struct page *page, unsigned long offset, unsigned long size)
1226{
1227	ssize_t written;
1228	unsigned long count = desc->count;
1229	struct file *file = desc->arg.data;
1230
1231	if (size > count)
1232		size = count;
1233
1234	written = file->f_op->sendpage(file, page, offset,
1235				       size, &file->f_pos, size<count);
1236	if (written < 0) {
1237		desc->error = written;
1238		written = 0;
1239	}
1240	desc->count = count - written;
1241	desc->written += written;
1242	return written;
1243}
1244
1245ssize_t generic_file_sendfile(struct file *in_file, loff_t *ppos,
1246			 size_t count, read_actor_t actor, void *target)
1247{
1248	read_descriptor_t desc;
1249
1250	if (!count)
1251		return 0;
1252
1253	desc.written = 0;
1254	desc.count = count;
1255	desc.arg.data = target;
1256	desc.error = 0;
1257
1258	do_generic_file_read(in_file, ppos, &desc, actor);
1259	if (desc.written)
1260		return desc.written;
1261	return desc.error;
1262}
1263EXPORT_SYMBOL(generic_file_sendfile);
1264
1265static ssize_t
1266do_readahead(struct address_space *mapping, struct file *filp,
1267	     unsigned long index, unsigned long nr)
1268{
1269	if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1270		return -EINVAL;
1271
1272	force_page_cache_readahead(mapping, filp, index,
1273					max_sane_readahead(nr));
1274	return 0;
1275}
1276
1277asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1278{
1279	ssize_t ret;
1280	struct file *file;
1281
1282	ret = -EBADF;
1283	file = fget(fd);
1284	if (file) {
1285		if (file->f_mode & FMODE_READ) {
1286			struct address_space *mapping = file->f_mapping;
1287			unsigned long start = offset >> PAGE_CACHE_SHIFT;
1288			unsigned long end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1289			unsigned long len = end - start + 1;
1290			ret = do_readahead(mapping, file, start, len);
1291		}
1292		fput(file);
1293	}
1294	return ret;
1295}
1296
1297#ifdef CONFIG_MMU
1298static int FASTCALL(page_cache_read(struct file * file, unsigned long offset));
1299/**
1300 * page_cache_read - adds requested page to the page cache if not already there
1301 * @file:	file to read
1302 * @offset:	page index
1303 *
1304 * This adds the requested page to the page cache if it isn't already there,
1305 * and schedules an I/O to read in its contents from disk.
1306 */
1307static int fastcall page_cache_read(struct file * file, unsigned long offset)
1308{
1309	struct address_space *mapping = file->f_mapping;
1310	struct page *page;
1311	int ret;
1312
1313	do {
1314		page = page_cache_alloc_cold(mapping);
1315		if (!page)
1316			return -ENOMEM;
1317
1318		ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1319		if (ret == 0)
1320			ret = mapping->a_ops->readpage(file, page);
1321		else if (ret == -EEXIST)
1322			ret = 0; /* losing race to add is OK */
1323
1324		page_cache_release(page);
1325
1326	} while (ret == AOP_TRUNCATED_PAGE);
1327
1328	return ret;
1329}
1330
1331#define MMAP_LOTSAMISS  (100)
1332
1333/**
1334 * filemap_nopage - read in file data for page fault handling
1335 * @area:	the applicable vm_area
1336 * @address:	target address to read in
1337 * @type:	returned with VM_FAULT_{MINOR,MAJOR} if not %NULL
1338 *
1339 * filemap_nopage() is invoked via the vma operations vector for a
1340 * mapped memory region to read in file data during a page fault.
1341 *
1342 * The goto's are kind of ugly, but this streamlines the normal case of having
1343 * it in the page cache, and handles the special cases reasonably without
1344 * having a lot of duplicated code.
1345 */
1346struct page *filemap_nopage(struct vm_area_struct *area,
1347				unsigned long address, int *type)
1348{
1349	int error;
1350	struct file *file = area->vm_file;
1351	struct address_space *mapping = file->f_mapping;
1352	struct file_ra_state *ra = &file->f_ra;
1353	struct inode *inode = mapping->host;
1354	struct page *page;
1355	unsigned long size, pgoff;
1356	int did_readaround = 0, majmin = VM_FAULT_MINOR;
1357
1358	pgoff = ((address-area->vm_start) >> PAGE_CACHE_SHIFT) + area->vm_pgoff;
1359
1360retry_all:
1361	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1362	if (pgoff >= size)
1363		goto outside_data_content;
1364
1365	/* If we don't want any read-ahead, don't bother */
1366	if (VM_RandomReadHint(area))
1367		goto no_cached_page;
1368
1369	/*
1370	 * The readahead code wants to be told about each and every page
1371	 * so it can build and shrink its windows appropriately
1372	 *
1373	 * For sequential accesses, we use the generic readahead logic.
1374	 */
1375	if (VM_SequentialReadHint(area))
1376		page_cache_readahead(mapping, ra, file, pgoff, 1);
1377
1378	/*
1379	 * Do we have something in the page cache already?
1380	 */
1381retry_find:
1382	page = find_get_page(mapping, pgoff);
1383	if (!page) {
1384		unsigned long ra_pages;
1385
1386		if (VM_SequentialReadHint(area)) {
1387			handle_ra_miss(mapping, ra, pgoff);
1388			goto no_cached_page;
1389		}
1390		ra->mmap_miss++;
1391
1392		/*
1393		 * Do we miss much more than hit in this file? If so,
1394		 * stop bothering with read-ahead. It will only hurt.
1395		 */
1396		if (ra->mmap_miss > ra->mmap_hit + MMAP_LOTSAMISS)
1397			goto no_cached_page;
1398
1399		/*
1400		 * To keep the pgmajfault counter straight, we need to
1401		 * check did_readaround, as this is an inner loop.
1402		 */
1403		if (!did_readaround) {
1404			majmin = VM_FAULT_MAJOR;
1405			count_vm_event(PGMAJFAULT);
1406		}
1407		did_readaround = 1;
1408		ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1409		if (ra_pages) {
1410			pgoff_t start = 0;
1411
1412			if (pgoff > ra_pages / 2)
1413				start = pgoff - ra_pages / 2;
1414			do_page_cache_readahead(mapping, file, start, ra_pages);
1415		}
1416		page = find_get_page(mapping, pgoff);
1417		if (!page)
1418			goto no_cached_page;
1419	}
1420
1421	if (!did_readaround)
1422		ra->mmap_hit++;
1423
1424	/*
1425	 * Ok, found a page in the page cache, now we need to check
1426	 * that it's up-to-date.
1427	 */
1428	if (!PageUptodate(page))
1429		goto page_not_uptodate;
1430
1431success:
1432	/*
1433	 * Found the page and have a reference on it.
1434	 */
1435	mark_page_accessed(page);
1436	if (type)
1437		*type = majmin;
1438	return page;
1439
1440outside_data_content:
1441	/*
1442	 * An external ptracer can access pages that normally aren't
1443	 * accessible..
1444	 */
1445	if (area->vm_mm == current->mm)
1446		return NOPAGE_SIGBUS;
1447	/* Fall through to the non-read-ahead case */
1448no_cached_page:
1449	/*
1450	 * We're only likely to ever get here if MADV_RANDOM is in
1451	 * effect.
1452	 */
1453	error = page_cache_read(file, pgoff);
1454
1455	/*
1456	 * The page we want has now been added to the page cache.
1457	 * In the unlikely event that someone removed it in the
1458	 * meantime, we'll just come back here and read it again.
1459	 */
1460	if (error >= 0)
1461		goto retry_find;
1462
1463	/*
1464	 * An error return from page_cache_read can result if the
1465	 * system is low on memory, or a problem occurs while trying
1466	 * to schedule I/O.
1467	 */
1468	if (error == -ENOMEM)
1469		return NOPAGE_OOM;
1470	return NOPAGE_SIGBUS;
1471
1472page_not_uptodate:
1473	if (!did_readaround) {
1474		majmin = VM_FAULT_MAJOR;
1475		count_vm_event(PGMAJFAULT);
1476	}
1477
1478	/*
1479	 * Umm, take care of errors if the page isn't up-to-date.
1480	 * Try to re-read it _once_. We do this synchronously,
1481	 * because there really aren't any performance issues here
1482	 * and we need to check for errors.
1483	 */
1484	lock_page(page);
1485
1486	/* Somebody truncated the page on us? */
1487	if (!page->mapping) {
1488		unlock_page(page);
1489		page_cache_release(page);
1490		goto retry_all;
1491	}
1492
1493	/* Somebody else successfully read it in? */
1494	if (PageUptodate(page)) {
1495		unlock_page(page);
1496		goto success;
1497	}
1498	ClearPageError(page);
1499	error = mapping->a_ops->readpage(file, page);
1500	if (!error) {
1501		wait_on_page_locked(page);
1502		if (PageUptodate(page))
1503			goto success;
1504	} else if (error == AOP_TRUNCATED_PAGE) {
1505		page_cache_release(page);
1506		goto retry_find;
1507	}
1508
1509	/*
1510	 * Things didn't work out. Return zero to tell the
1511	 * mm layer so, possibly freeing the page cache page first.
1512	 */
1513	shrink_readahead_size_eio(file, ra);
1514	page_cache_release(page);
1515	return NOPAGE_SIGBUS;
1516}
1517EXPORT_SYMBOL(filemap_nopage);
1518
1519static struct page * filemap_getpage(struct file *file, unsigned long pgoff,
1520					int nonblock)
1521{
1522	struct address_space *mapping = file->f_mapping;
1523	struct page *page;
1524	int error;
1525
1526	/*
1527	 * Do we have something in the page cache already?
1528	 */
1529retry_find:
1530	page = find_get_page(mapping, pgoff);
1531	if (!page) {
1532		if (nonblock)
1533			return NULL;
1534		goto no_cached_page;
1535	}
1536
1537	/*
1538	 * Ok, found a page in the page cache, now we need to check
1539	 * that it's up-to-date.
1540	 */
1541	if (!PageUptodate(page)) {
1542		if (nonblock) {
1543			page_cache_release(page);
1544			return NULL;
1545		}
1546		goto page_not_uptodate;
1547	}
1548
1549success:
1550	/*
1551	 * Found the page and have a reference on it.
1552	 */
1553	mark_page_accessed(page);
1554	return page;
1555
1556no_cached_page:
1557	error = page_cache_read(file, pgoff);
1558
1559	/*
1560	 * The page we want has now been added to the page cache.
1561	 * In the unlikely event that someone removed it in the
1562	 * meantime, we'll just come back here and read it again.
1563	 */
1564	if (error >= 0)
1565		goto retry_find;
1566
1567	/*
1568	 * An error return from page_cache_read can result if the
1569	 * system is low on memory, or a problem occurs while trying
1570	 * to schedule I/O.
1571	 */
1572	return NULL;
1573
1574page_not_uptodate:
1575	lock_page(page);
1576
1577	/* Did it get truncated while we waited for it? */
1578	if (!page->mapping) {
1579		unlock_page(page);
1580		goto err;
1581	}
1582
1583	/* Did somebody else get it up-to-date? */
1584	if (PageUptodate(page)) {
1585		unlock_page(page);
1586		goto success;
1587	}
1588
1589	error = mapping->a_ops->readpage(file, page);
1590	if (!error) {
1591		wait_on_page_locked(page);
1592		if (PageUptodate(page))
1593			goto success;
1594	} else if (error == AOP_TRUNCATED_PAGE) {
1595		page_cache_release(page);
1596		goto retry_find;
1597	}
1598
1599	/*
1600	 * Umm, take care of errors if the page isn't up-to-date.
1601	 * Try to re-read it _once_. We do this synchronously,
1602	 * because there really aren't any performance issues here
1603	 * and we need to check for errors.
1604	 */
1605	lock_page(page);
1606
1607	/* Somebody truncated the page on us? */
1608	if (!page->mapping) {
1609		unlock_page(page);
1610		goto err;
1611	}
1612	/* Somebody else successfully read it in? */
1613	if (PageUptodate(page)) {
1614		unlock_page(page);
1615		goto success;
1616	}
1617
1618	ClearPageError(page);
1619	error = mapping->a_ops->readpage(file, page);
1620	if (!error) {
1621		wait_on_page_locked(page);
1622		if (PageUptodate(page))
1623			goto success;
1624	} else if (error == AOP_TRUNCATED_PAGE) {
1625		page_cache_release(page);
1626		goto retry_find;
1627	}
1628
1629	/*
1630	 * Things didn't work out. Return zero to tell the
1631	 * mm layer so, possibly freeing the page cache page first.
1632	 */
1633err:
1634	page_cache_release(page);
1635
1636	return NULL;
1637}
1638
1639int filemap_populate(struct vm_area_struct *vma, unsigned long addr,
1640		unsigned long len, pgprot_t prot, unsigned long pgoff,
1641		int nonblock)
1642{
1643	struct file *file = vma->vm_file;
1644	struct address_space *mapping = file->f_mapping;
1645	struct inode *inode = mapping->host;
1646	unsigned long size;
1647	struct mm_struct *mm = vma->vm_mm;
1648	struct page *page;
1649	int err;
1650
1651	if (!nonblock)
1652		force_page_cache_readahead(mapping, vma->vm_file,
1653					pgoff, len >> PAGE_CACHE_SHIFT);
1654
1655repeat:
1656	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1657	if (pgoff + (len >> PAGE_CACHE_SHIFT) > size)
1658		return -EINVAL;
1659
1660	page = filemap_getpage(file, pgoff, nonblock);
1661
1662	if (!page && !nonblock)
1663		return -ENOMEM;
1664
1665	if (page) {
1666		err = install_page(mm, vma, addr, page, prot);
1667		if (err) {
1668			page_cache_release(page);
1669			return err;
1670		}
1671	} else if (vma->vm_flags & VM_NONLINEAR) {
1672		/* No page was found just because we can't read it in now (being
1673		 * here implies nonblock != 0), but the page may exist, so set
1674		 * the PTE to fault it in later. */
1675		err = install_file_pte(mm, vma, addr, pgoff, prot);
1676		if (err)
1677			return err;
1678	}
1679
1680	len -= PAGE_SIZE;
1681	addr += PAGE_SIZE;
1682	pgoff++;
1683	if (len)
1684		goto repeat;
1685
1686	return 0;
1687}
1688EXPORT_SYMBOL(filemap_populate);
1689
1690struct vm_operations_struct generic_file_vm_ops = {
1691	.nopage		= filemap_nopage,
1692	.populate	= filemap_populate,
1693};
1694
1695/* This is used for a general mmap of a disk file */
1696
1697int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1698{
1699	struct address_space *mapping = file->f_mapping;
1700
1701	if (!mapping->a_ops->readpage)
1702		return -ENOEXEC;
1703	file_accessed(file);
1704	vma->vm_ops = &generic_file_vm_ops;
1705	return 0;
1706}
1707
1708/*
1709 * This is for filesystems which do not implement ->writepage.
1710 */
1711int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1712{
1713	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1714		return -EINVAL;
1715	return generic_file_mmap(file, vma);
1716}
1717#else
1718int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1719{
1720	return -ENOSYS;
1721}
1722int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1723{
1724	return -ENOSYS;
1725}
1726#endif /* CONFIG_MMU */
1727
1728EXPORT_SYMBOL(generic_file_mmap);
1729EXPORT_SYMBOL(generic_file_readonly_mmap);
1730
1731static struct page *__read_cache_page(struct address_space *mapping,
1732				unsigned long index,
1733				int (*filler)(void *,struct page*),
1734				void *data)
1735{
1736	struct page *page, *cached_page = NULL;
1737	int err;
1738repeat:
1739	page = find_get_page(mapping, index);
1740	if (!page) {
1741		if (!cached_page) {
1742			cached_page = page_cache_alloc_cold(mapping);
1743			if (!cached_page)
1744				return ERR_PTR(-ENOMEM);
1745		}
1746		err = add_to_page_cache_lru(cached_page, mapping,
1747					index, GFP_KERNEL);
1748		if (err == -EEXIST)
1749			goto repeat;
1750		if (err < 0) {
1751			/* Presumably ENOMEM for radix tree node */
1752			page_cache_release(cached_page);
1753			return ERR_PTR(err);
1754		}
1755		page = cached_page;
1756		cached_page = NULL;
1757		err = filler(data, page);
1758		if (err < 0) {
1759			page_cache_release(page);
1760			page = ERR_PTR(err);
1761		}
1762	}
1763	if (cached_page)
1764		page_cache_release(cached_page);
1765	return page;
1766}
1767
1768/*
1769 * Same as read_cache_page, but don't wait for page to become unlocked
1770 * after submitting it to the filler.
1771 */
1772struct page *read_cache_page_async(struct address_space *mapping,
1773				unsigned long index,
1774				int (*filler)(void *,struct page*),
1775				void *data)
1776{
1777	struct page *page;
1778	int err;
1779
1780retry:
1781	page = __read_cache_page(mapping, index, filler, data);
1782	if (IS_ERR(page))
1783		return page;
1784	if (PageUptodate(page))
1785		goto out;
1786
1787	lock_page(page);
1788	if (!page->mapping) {
1789		unlock_page(page);
1790		page_cache_release(page);
1791		goto retry;
1792	}
1793	if (PageUptodate(page)) {
1794		unlock_page(page);
1795		goto out;
1796	}
1797	err = filler(data, page);
1798	if (err < 0) {
1799		page_cache_release(page);
1800		return ERR_PTR(err);
1801	}
1802out:
1803	mark_page_accessed(page);
1804	return page;
1805}
1806EXPORT_SYMBOL(read_cache_page_async);
1807
1808/**
1809 * read_cache_page - read into page cache, fill it if needed
1810 * @mapping:	the page's address_space
1811 * @index:	the page index
1812 * @filler:	function to perform the read
1813 * @data:	destination for read data
1814 *
1815 * Read into the page cache. If a page already exists, and PageUptodate() is
1816 * not set, try to fill the page then wait for it to become unlocked.
1817 *
1818 * If the page does not get brought uptodate, return -EIO.
1819 */
1820struct page *read_cache_page(struct address_space *mapping,
1821				unsigned long index,
1822				int (*filler)(void *,struct page*),
1823				void *data)
1824{
1825	struct page *page;
1826
1827	page = read_cache_page_async(mapping, index, filler, data);
1828	if (IS_ERR(page))
1829		goto out;
1830	wait_on_page_locked(page);
1831	if (!PageUptodate(page)) {
1832		page_cache_release(page);
1833		page = ERR_PTR(-EIO);
1834	}
1835 out:
1836	return page;
1837}
1838EXPORT_SYMBOL(read_cache_page);
1839
1840/*
1841 * If the page was newly created, increment its refcount and add it to the
1842 * caller's lru-buffering pagevec.  This function is specifically for
1843 * generic_file_write().
1844 */
1845static inline struct page *
1846__grab_cache_page(struct address_space *mapping, unsigned long index,
1847			struct page **cached_page, struct pagevec *lru_pvec)
1848{
1849	int err;
1850	struct page *page;
1851repeat:
1852	page = find_lock_page(mapping, index);
1853	if (!page) {
1854		if (!*cached_page) {
1855			*cached_page = page_cache_alloc(mapping);
1856			if (!*cached_page)
1857				return NULL;
1858		}
1859		err = add_to_page_cache(*cached_page, mapping,
1860					index, GFP_KERNEL);
1861		if (err == -EEXIST)
1862			goto repeat;
1863		if (err == 0) {
1864			page = *cached_page;
1865			page_cache_get(page);
1866			if (!pagevec_add(lru_pvec, page))
1867				__pagevec_lru_add(lru_pvec);
1868			*cached_page = NULL;
1869		}
1870	}
1871	return page;
1872}
1873
1874/*
1875 * The logic we want is
1876 *
1877 *	if suid or (sgid and xgrp)
1878 *		remove privs
1879 */
1880int should_remove_suid(struct dentry *dentry)
1881{
1882	mode_t mode = dentry->d_inode->i_mode;
1883	int kill = 0;
1884
1885	/* suid always must be killed */
1886	if (unlikely(mode & S_ISUID))
1887		kill = ATTR_KILL_SUID;
1888
1889	/*
1890	 * sgid without any exec bits is just a mandatory locking mark; leave
1891	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1892	 */
1893	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1894		kill |= ATTR_KILL_SGID;
1895
1896	if (unlikely(kill && !capable(CAP_FSETID)))
1897		return kill;
1898
1899	return 0;
1900}
1901EXPORT_SYMBOL(should_remove_suid);
1902
1903int __remove_suid(struct dentry *dentry, int kill)
1904{
1905	struct iattr newattrs;
1906
1907	newattrs.ia_valid = ATTR_FORCE | kill;
1908	return notify_change(dentry, &newattrs);
1909}
1910
1911int remove_suid(struct dentry *dentry)
1912{
1913	int kill = should_remove_suid(dentry);
1914
1915	if (unlikely(kill))
1916		return __remove_suid(dentry, kill);
1917
1918	return 0;
1919}
1920EXPORT_SYMBOL(remove_suid);
1921
1922size_t
1923__filemap_copy_from_user_iovec_inatomic(char *vaddr,
1924			const struct iovec *iov, size_t base, size_t bytes)
1925{
1926	size_t copied = 0, left = 0;
1927
1928	while (bytes) {
1929		char __user *buf = iov->iov_base + base;
1930		int copy = min(bytes, iov->iov_len - base);
1931
1932		base = 0;
1933		left = __copy_from_user_inatomic_nocache(vaddr, buf, copy);
1934		copied += copy;
1935		bytes -= copy;
1936		vaddr += copy;
1937		iov++;
1938
1939		if (unlikely(left))
1940			break;
1941	}
1942	return copied - left;
1943}
1944
1945/*
1946 * Performs necessary checks before doing a write
1947 *
1948 * Can adjust writing position or amount of bytes to write.
1949 * Returns appropriate error code that caller should return or
1950 * zero in case that write should be allowed.
1951 */
1952inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1953{
1954	struct inode *inode = file->f_mapping->host;
1955	unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1956
1957        if (unlikely(*pos < 0))
1958                return -EINVAL;
1959
1960	if (!isblk) {
1961		if (file->f_flags & O_APPEND)
1962                        *pos = i_size_read(inode);
1963        /* Foxconn modified start pling 12/04/2009 */
1964        /* Remove large file limitation */
1965#if (!defined SAMBA_ENABLE)
1966		if (limit != RLIM_INFINITY) {
1967			if (*pos >= limit) {
1968				send_sig(SIGXFSZ, current, 0);
1969				return -EFBIG;
1970			}
1971			if (*count > limit - (typeof(limit))*pos) {
1972				*count = limit - (typeof(limit))*pos;
1973			}
1974		}
1975#endif
1976        /* Foxconn modified end pling 12/04/2009 */
1977	}
1978
1979    /* Foxconn modified start pling 12/04/2009 */
1980    /* Ignore LFS rule to support large files */
1981#if (!defined SAMBA_ENABLE)
1982	/*
1983	 * LFS rule
1984	 */
1985	if (unlikely(*pos + *count > MAX_NON_LFS &&
1986				!(file->f_flags & O_LARGEFILE))) {
1987		if (*pos >= MAX_NON_LFS) {
1988			send_sig(SIGXFSZ, current, 0);
1989			return -EFBIG;
1990		}
1991		if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1992			*count = MAX_NON_LFS - (unsigned long)*pos;
1993		}
1994	}
1995#endif
1996    /* Foxconn modified end pling 12/04/2009 */
1997
1998	/*
1999	 * Are we about to exceed the fs block limit ?
2000	 *
2001	 * If we have written data it becomes a short write.  If we have
2002	 * exceeded without writing data we send a signal and return EFBIG.
2003	 * Linus frestrict idea will clean these up nicely..
2004	 */
2005	if (likely(!isblk)) {
2006		if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2007			if (*count || *pos > inode->i_sb->s_maxbytes) {
2008				send_sig(SIGXFSZ, current, 0);
2009				return -EFBIG;
2010			}
2011			/* zero-length writes at ->s_maxbytes are OK */
2012		}
2013
2014		if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2015			*count = inode->i_sb->s_maxbytes - *pos;
2016	} else {
2017#ifdef CONFIG_BLOCK
2018		loff_t isize;
2019		if (bdev_read_only(I_BDEV(inode)))
2020			return -EPERM;
2021		isize = i_size_read(inode);
2022		if (*pos >= isize) {
2023			if (*count || *pos > isize)
2024				return -ENOSPC;
2025		}
2026
2027		if (*pos + *count > isize)
2028			*count = isize - *pos;
2029#else
2030		return -EPERM;
2031#endif
2032	}
2033	return 0;
2034}
2035EXPORT_SYMBOL(generic_write_checks);
2036
2037ssize_t
2038generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2039		unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2040		size_t count, size_t ocount)
2041{
2042	struct file	*file = iocb->ki_filp;
2043	struct address_space *mapping = file->f_mapping;
2044	struct inode	*inode = mapping->host;
2045	ssize_t		written;
2046
2047	if (count != ocount)
2048		*nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2049
2050	written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2051	if (written > 0) {
2052		loff_t end = pos + written;
2053		if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2054			i_size_write(inode,  end);
2055			mark_inode_dirty(inode);
2056		}
2057		*ppos = end;
2058	}
2059
2060	/*
2061	 * Sync the fs metadata but not the minor inode changes and
2062	 * of course not the data as we did direct DMA for the IO.
2063	 * i_mutex is held, which protects generic_osync_inode() from
2064	 * livelocking.  AIO O_DIRECT ops attempt to sync metadata here.
2065	 */
2066	if ((written >= 0 || written == -EIOCBQUEUED) &&
2067	    ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2068		int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
2069		if (err < 0)
2070			written = err;
2071	}
2072	return written;
2073}
2074EXPORT_SYMBOL(generic_file_direct_write);
2075
2076ssize_t
2077generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2078		unsigned long nr_segs, loff_t pos, loff_t *ppos,
2079		size_t count, ssize_t written)
2080{
2081	struct file *file = iocb->ki_filp;
2082	struct address_space * mapping = file->f_mapping;
2083	const struct address_space_operations *a_ops = mapping->a_ops;
2084	struct inode 	*inode = mapping->host;
2085	long		status = 0;
2086	struct page	*page;
2087	struct page	*cached_page = NULL;
2088	size_t		bytes;
2089	struct pagevec	lru_pvec;
2090	const struct iovec *cur_iov = iov; /* current iovec */
2091	size_t		iov_base = 0;	   /* offset in the current iovec */
2092	char __user	*buf;
2093
2094	pagevec_init(&lru_pvec, 0);
2095
2096	/*
2097	 * handle partial DIO write.  Adjust cur_iov if needed.
2098	 */
2099	if (likely(nr_segs == 1))
2100		buf = iov->iov_base + written;
2101	else {
2102		filemap_set_next_iovec(&cur_iov, &iov_base, written);
2103		buf = cur_iov->iov_base + iov_base;
2104	}
2105
2106	do {
2107		unsigned long index;
2108		unsigned long offset;
2109		size_t copied;
2110
2111		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
2112		index = pos >> PAGE_CACHE_SHIFT;
2113		bytes = PAGE_CACHE_SIZE - offset;
2114
2115		/* Limit the size of the copy to the caller's write size */
2116		bytes = min(bytes, count);
2117
2118		/* We only need to worry about prefaulting when writes are from
2119		 * user-space.  NFSd uses vfs_writev with several non-aligned
2120		 * segments in the vector, and limiting to one segment a time is
2121		 * a noticeable performance for re-write
2122		 */
2123		if (!segment_eq(get_fs(), KERNEL_DS)) {
2124			/*
2125			 * Limit the size of the copy to that of the current
2126			 * segment, because fault_in_pages_readable() doesn't
2127			 * know how to walk segments.
2128			 */
2129			bytes = min(bytes, cur_iov->iov_len - iov_base);
2130
2131			/*
2132			 * Bring in the user page that we will copy from
2133			 * _first_.  Otherwise there's a nasty deadlock on
2134			 * copying from the same page as we're writing to,
2135			 * without it being marked up-to-date.
2136			 */
2137			fault_in_pages_readable(buf, bytes);
2138		}
2139		page = __grab_cache_page(mapping,index,&cached_page,&lru_pvec);
2140		if (!page) {
2141			status = -ENOMEM;
2142			break;
2143		}
2144
2145		if (unlikely(bytes == 0)) {
2146			status = 0;
2147			copied = 0;
2148			goto zero_length_segment;
2149		}
2150
2151		status = a_ops->prepare_write(file, page, offset, offset+bytes);
2152		if (unlikely(status)) {
2153			loff_t isize = i_size_read(inode);
2154
2155			if (status != AOP_TRUNCATED_PAGE)
2156				unlock_page(page);
2157			page_cache_release(page);
2158			if (status == AOP_TRUNCATED_PAGE)
2159				continue;
2160			/*
2161			 * prepare_write() may have instantiated a few blocks
2162			 * outside i_size.  Trim these off again.
2163			 */
2164			if (pos + bytes > isize)
2165				vmtruncate(inode, isize);
2166			break;
2167		}
2168		if (likely(nr_segs == 1))
2169			copied = filemap_copy_from_user(page, offset,
2170							buf, bytes);
2171		else
2172			copied = filemap_copy_from_user_iovec(page, offset,
2173						cur_iov, iov_base, bytes);
2174		flush_dcache_page(page);
2175		status = a_ops->commit_write(file, page, offset, offset+bytes);
2176		if (status == AOP_TRUNCATED_PAGE) {
2177			page_cache_release(page);
2178			continue;
2179		}
2180zero_length_segment:
2181		if (likely(copied >= 0)) {
2182			if (!status)
2183				status = copied;
2184
2185			if (status >= 0) {
2186				written += status;
2187				count -= status;
2188				pos += status;
2189				buf += status;
2190				if (unlikely(nr_segs > 1)) {
2191					filemap_set_next_iovec(&cur_iov,
2192							&iov_base, status);
2193					if (count)
2194						buf = cur_iov->iov_base +
2195							iov_base;
2196				} else {
2197					iov_base += status;
2198				}
2199			}
2200		}
2201		if (unlikely(copied != bytes))
2202			if (status >= 0)
2203				status = -EFAULT;
2204		unlock_page(page);
2205		mark_page_accessed(page);
2206		page_cache_release(page);
2207		if (status < 0)
2208			break;
2209		balance_dirty_pages_ratelimited(mapping);
2210		cond_resched();
2211	} while (count);
2212	*ppos = pos;
2213
2214	if (cached_page)
2215		page_cache_release(cached_page);
2216
2217	/*
2218	 * For now, when the user asks for O_SYNC, we'll actually give O_DSYNC
2219	 */
2220	if (likely(status >= 0)) {
2221		if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2222			if (!a_ops->writepage || !is_sync_kiocb(iocb))
2223				status = generic_osync_inode(inode, mapping,
2224						OSYNC_METADATA|OSYNC_DATA);
2225		}
2226  	}
2227
2228	/*
2229	 * If we get here for O_DIRECT writes then we must have fallen through
2230	 * to buffered writes (block instantiation inside i_size).  So we sync
2231	 * the file data here, to try to honour O_DIRECT expectations.
2232	 */
2233	if (unlikely(file->f_flags & O_DIRECT) && written)
2234		status = filemap_write_and_wait(mapping);
2235
2236	pagevec_lru_add(&lru_pvec);
2237	return written ? written : status;
2238}
2239EXPORT_SYMBOL(generic_file_buffered_write);
2240
2241static ssize_t
2242__generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2243				unsigned long nr_segs, loff_t *ppos)
2244{
2245	struct file *file = iocb->ki_filp;
2246	struct address_space * mapping = file->f_mapping;
2247	size_t ocount;		/* original count */
2248	size_t count;		/* after file limit checks */
2249	struct inode 	*inode = mapping->host;
2250	loff_t		pos;
2251	ssize_t		written;
2252	ssize_t		err;
2253
2254	ocount = 0;
2255	err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2256	if (err)
2257		return err;
2258
2259	count = ocount;
2260	pos = *ppos;
2261
2262	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2263
2264	/* We can write back this queue in page reclaim */
2265	current->backing_dev_info = mapping->backing_dev_info;
2266	written = 0;
2267
2268	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2269	if (err)
2270		goto out;
2271
2272	if (count == 0)
2273		goto out;
2274
2275	err = remove_suid(file->f_path.dentry);
2276	if (err)
2277		goto out;
2278
2279	file_update_time(file);
2280
2281	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2282	if (unlikely(file->f_flags & O_DIRECT)) {
2283		loff_t endbyte;
2284		ssize_t written_buffered;
2285
2286		written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2287							ppos, count, ocount);
2288		if (written < 0 || written == count)
2289			goto out;
2290		/*
2291		 * direct-io write to a hole: fall through to buffered I/O
2292		 * for completing the rest of the request.
2293		 */
2294		pos += written;
2295		count -= written;
2296		written_buffered = generic_file_buffered_write(iocb, iov,
2297						nr_segs, pos, ppos, count,
2298						written);
2299		/*
2300		 * If generic_file_buffered_write() retuned a synchronous error
2301		 * then we want to return the number of bytes which were
2302		 * direct-written, or the error code if that was zero.  Note
2303		 * that this differs from normal direct-io semantics, which
2304		 * will return -EFOO even if some bytes were written.
2305		 */
2306		if (written_buffered < 0) {
2307			err = written_buffered;
2308			goto out;
2309		}
2310
2311		/*
2312		 * We need to ensure that the page cache pages are written to
2313		 * disk and invalidated to preserve the expected O_DIRECT
2314		 * semantics.
2315		 */
2316		endbyte = pos + written_buffered - written - 1;
2317		err = do_sync_mapping_range(file->f_mapping, pos, endbyte,
2318					    SYNC_FILE_RANGE_WAIT_BEFORE|
2319					    SYNC_FILE_RANGE_WRITE|
2320					    SYNC_FILE_RANGE_WAIT_AFTER);
2321		if (err == 0) {
2322			written = written_buffered;
2323			invalidate_mapping_pages(mapping,
2324						 pos >> PAGE_CACHE_SHIFT,
2325						 endbyte >> PAGE_CACHE_SHIFT);
2326		} else {
2327			/*
2328			 * We don't know how much we wrote, so just return
2329			 * the number of bytes which were direct-written
2330			 */
2331		}
2332	} else {
2333		written = generic_file_buffered_write(iocb, iov, nr_segs,
2334				pos, ppos, count, written);
2335	}
2336out:
2337	current->backing_dev_info = NULL;
2338	return written ? written : err;
2339}
2340
2341ssize_t generic_file_aio_write_nolock(struct kiocb *iocb,
2342		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
2343{
2344	struct file *file = iocb->ki_filp;
2345	struct address_space *mapping = file->f_mapping;
2346	struct inode *inode = mapping->host;
2347	ssize_t ret;
2348
2349	BUG_ON(iocb->ki_pos != pos);
2350
2351	ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2352			&iocb->ki_pos);
2353
2354	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2355		ssize_t err;
2356
2357		err = sync_page_range_nolock(inode, mapping, pos, ret);
2358		if (err < 0)
2359			ret = err;
2360	}
2361	return ret;
2362}
2363EXPORT_SYMBOL(generic_file_aio_write_nolock);
2364
2365ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2366		unsigned long nr_segs, loff_t pos)
2367{
2368	struct file *file = iocb->ki_filp;
2369	struct address_space *mapping = file->f_mapping;
2370	struct inode *inode = mapping->host;
2371	ssize_t ret;
2372
2373	BUG_ON(iocb->ki_pos != pos);
2374
2375	mutex_lock(&inode->i_mutex);
2376	ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2377			&iocb->ki_pos);
2378	mutex_unlock(&inode->i_mutex);
2379
2380	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2381		ssize_t err;
2382
2383		err = sync_page_range(inode, mapping, pos, ret);
2384		if (err < 0)
2385			ret = err;
2386	}
2387	return ret;
2388}
2389EXPORT_SYMBOL(generic_file_aio_write);
2390
2391/*
2392 * Called under i_mutex for writes to S_ISREG files.   Returns -EIO if something
2393 * went wrong during pagecache shootdown.
2394 */
2395static ssize_t
2396generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
2397	loff_t offset, unsigned long nr_segs)
2398{
2399	struct file *file = iocb->ki_filp;
2400	struct address_space *mapping = file->f_mapping;
2401	ssize_t retval;
2402	size_t write_len;
2403	pgoff_t end = 0; /* silence gcc */
2404
2405	/*
2406	 * If it's a write, unmap all mmappings of the file up-front.  This
2407	 * will cause any pte dirty bits to be propagated into the pageframes
2408	 * for the subsequent filemap_write_and_wait().
2409	 */
2410	if (rw == WRITE) {
2411		write_len = iov_length(iov, nr_segs);
2412		end = (offset + write_len - 1) >> PAGE_CACHE_SHIFT;
2413	       	if (mapping_mapped(mapping))
2414			unmap_mapping_range(mapping, offset, write_len, 0);
2415	}
2416
2417	retval = filemap_write_and_wait(mapping);
2418	if (retval)
2419		goto out;
2420
2421	/*
2422	 * After a write we want buffered reads to be sure to go to disk to get
2423	 * the new data.  We invalidate clean cached page from the region we're
2424	 * about to write.  We do this *before* the write so that we can return
2425	 * -EIO without clobbering -EIOCBQUEUED from ->direct_IO().
2426	 */
2427	if (rw == WRITE && mapping->nrpages) {
2428		retval = invalidate_inode_pages2_range(mapping,
2429					offset >> PAGE_CACHE_SHIFT, end);
2430		if (retval)
2431			goto out;
2432	}
2433
2434	retval = mapping->a_ops->direct_IO(rw, iocb, iov, offset, nr_segs);
2435	if (retval)
2436		goto out;
2437
2438	/*
2439	 * Finally, try again to invalidate clean pages which might have been
2440	 * faulted in by get_user_pages() if the source of the write was an
2441	 * mmap()ed region of the file we're writing.  That's a pretty crazy
2442	 * thing to do, so we don't support it 100%.  If this invalidation
2443	 * fails and we have -EIOCBQUEUED we ignore the failure.
2444	 */
2445	if (rw == WRITE && mapping->nrpages) {
2446		int err = invalidate_inode_pages2_range(mapping,
2447					      offset >> PAGE_CACHE_SHIFT, end);
2448		if (err && retval >= 0)
2449			retval = err;
2450	}
2451out:
2452	return retval;
2453}
2454
2455/**
2456 * try_to_release_page() - release old fs-specific metadata on a page
2457 *
2458 * @page: the page which the kernel is trying to free
2459 * @gfp_mask: memory allocation flags (and I/O mode)
2460 *
2461 * The address_space is to try to release any data against the page
2462 * (presumably at page->private).  If the release was successful, return `1'.
2463 * Otherwise return zero.
2464 *
2465 * The @gfp_mask argument specifies whether I/O may be performed to release
2466 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
2467 *
2468 * NOTE: @gfp_mask may go away, and this function may become non-blocking.
2469 */
2470int try_to_release_page(struct page *page, gfp_t gfp_mask)
2471{
2472	struct address_space * const mapping = page->mapping;
2473
2474	BUG_ON(!PageLocked(page));
2475	if (PageWriteback(page))
2476		return 0;
2477
2478	if (mapping && mapping->a_ops->releasepage)
2479		return mapping->a_ops->releasepage(page, gfp_mask);
2480	return try_to_free_buffers(page);
2481}
2482
2483EXPORT_SYMBOL(try_to_release_page);
2484