1#define DEBG(x)
2#define DEBG1(x)
3/* inflate.c -- Not copyrighted 1992 by Mark Adler
4   version c10p1, 10 January 1993 */
5
6/*
7 * Adapted for booting Linux by Hannu Savolainen 1993
8 * based on gzip-1.0.3
9 *
10 * Nicolas Pitre <nico@cam.org>, 1999/04/14 :
11 *   Little mods for all variable to reside either into rodata or bss segments
12 *   by marking constant variables with 'const' and initializing all the others
13 *   at run-time only.  This allows for the kernel uncompressor to run
14 *   directly from Flash or ROM memory on embedded systems.
15 */
16
17/*
18   Inflate deflated (PKZIP's method 8 compressed) data.  The compression
19   method searches for as much of the current string of bytes (up to a
20   length of 258) in the previous 32 K bytes.  If it doesn't find any
21   matches (of at least length 3), it codes the next byte.  Otherwise, it
22   codes the length of the matched string and its distance backwards from
23   the current position.  There is a single Huffman code that codes both
24   single bytes (called "literals") and match lengths.  A second Huffman
25   code codes the distance information, which follows a length code.  Each
26   length or distance code actually represents a base value and a number
27   of "extra" (sometimes zero) bits to get to add to the base value.  At
28   the end of each deflated block is a special end-of-block (EOB) literal/
29   length code.  The decoding process is basically: get a literal/length
30   code; if EOB then done; if a literal, emit the decoded byte; if a
31   length then get the distance and emit the referred-to bytes from the
32   sliding window of previously emitted data.
33
34   There are (currently) three kinds of inflate blocks: stored, fixed, and
35   dynamic.  The compressor deals with some chunk of data at a time, and
36   decides which method to use on a chunk-by-chunk basis.  A chunk might
37   typically be 32 K or 64 K.  If the chunk is incompressible, then the
38   "stored" method is used.  In this case, the bytes are simply stored as
39   is, eight bits per byte, with none of the above coding.  The bytes are
40   preceded by a count, since there is no longer an EOB code.
41
42   If the data is compressible, then either the fixed or dynamic methods
43   are used.  In the dynamic method, the compressed data is preceded by
44   an encoding of the literal/length and distance Huffman codes that are
45   to be used to decode this block.  The representation is itself Huffman
46   coded, and so is preceded by a description of that code.  These code
47   descriptions take up a little space, and so for small blocks, there is
48   a predefined set of codes, called the fixed codes.  The fixed method is
49   used if the block codes up smaller that way (usually for quite small
50   chunks), otherwise the dynamic method is used.  In the latter case, the
51   codes are customized to the probabilities in the current block, and so
52   can code it much better than the pre-determined fixed codes.
53
54   The Huffman codes themselves are decoded using a multi-level table
55   lookup, in order to maximize the speed of decoding plus the speed of
56   building the decoding tables.  See the comments below that precede the
57   lbits and dbits tuning parameters.
58 */
59
60
61/*
62   Notes beyond the 1.93a appnote.txt:
63
64   1. Distance pointers never point before the beginning of the output
65      stream.
66   2. Distance pointers can point back across blocks, up to 32k away.
67   3. There is an implied maximum of 7 bits for the bit length table and
68      15 bits for the actual data.
69   4. If only one code exists, then it is encoded using one bit.  (Zero
70      would be more efficient, but perhaps a little confusing.)  If two
71      codes exist, they are coded using one bit each (0 and 1).
72   5. There is no way of sending zero distance codes--a dummy must be
73      sent if there are none.  (History: a pre 2.0 version of PKZIP would
74      store blocks with no distance codes, but this was discovered to be
75      too harsh a criterion.)  Valid only for 1.93a.  2.04c does allow
76      zero distance codes, which is sent as one code of zero bits in
77      length.
78   6. There are up to 286 literal/length codes.  Code 256 represents the
79      end-of-block.  Note however that the static length tree defines
80      288 codes just to fill out the Huffman codes.  Codes 286 and 287
81      cannot be used though, since there is no length base or extra bits
82      defined for them.  Similarly, there are up to 30 distance codes.
83      However, static trees define 32 codes (all 5 bits) to fill out the
84      Huffman codes, but the last two had better not show up in the data.
85   7. Unzip can check dynamic Huffman blocks for complete code sets.
86      The exception is that a single code would not be complete (see #4).
87   8. The five bits following the block type is really the number of
88      literal codes sent minus 257.
89   9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits
90      (1+6+6).  Therefore, to output three times the length, you output
91      three codes (1+1+1), whereas to output four times the same length,
92      you only need two codes (1+3).  Hmm.
93  10. In the tree reconstruction algorithm, Code = Code + Increment
94      only if BitLength(i) is not zero.  (Pretty obvious.)
95  11. Correction: 4 Bits: # of Bit Length codes - 4     (4 - 19)
96  12. Note: length code 284 can represent 227-258, but length code 285
97      really is 258.  The last length deserves its own, short code
98      since it gets used a lot in very redundant files.  The length
99      258 is special since 258 - 3 (the min match length) is 255.
100  13. The literal/length and distance code bit lengths are read as a
101      single stream of lengths.  It is possible (and advantageous) for
102      a repeat code (16, 17, or 18) to go across the boundary between
103      the two sets of lengths.
104 */
105#include <linux/compiler.h>
106
107#ifdef RCSID
108static char rcsid[] = "#Id: inflate.c,v 0.14 1993/06/10 13:27:04 jloup Exp #";
109#endif
110
111#ifndef STATIC
112
113#if defined(STDC_HEADERS) || defined(HAVE_STDLIB_H)
114#  include <sys/types.h>
115#  include <stdlib.h>
116#endif
117
118#include "gzip.h"
119#define STATIC
120#endif /* !STATIC */
121
122#ifndef INIT
123#define INIT
124#endif
125
126#define slide window
127
128/* Huffman code lookup table entry--this entry is four bytes for machines
129   that have 16-bit pointers (e.g. PC's in the small or medium model).
130   Valid extra bits are 0..13.  e == 15 is EOB (end of block), e == 16
131   means that v is a literal, 16 < e < 32 means that v is a pointer to
132   the next table, which codes e - 16 bits, and lastly e == 99 indicates
133   an unused code.  If a code with e == 99 is looked up, this implies an
134   error in the data. */
135struct huft {
136  uch e;                /* number of extra bits or operation */
137  uch b;                /* number of bits in this code or subcode */
138  union {
139    ush n;              /* literal, length base, or distance base */
140    struct huft *t;     /* pointer to next level of table */
141  } v;
142};
143
144
145/* Function prototypes */
146STATIC int INIT huft_build OF((unsigned *, unsigned, unsigned,
147		const ush *, const ush *, struct huft **, int *));
148STATIC int INIT huft_free OF((struct huft *));
149STATIC int INIT inflate_codes OF((struct huft *, struct huft *, int, int));
150STATIC int INIT inflate_stored OF((void));
151STATIC int INIT inflate_fixed OF((void));
152STATIC int INIT inflate_dynamic OF((void));
153STATIC int INIT inflate_block OF((int *));
154STATIC int INIT inflate OF((void));
155
156
157/* The inflate algorithm uses a sliding 32 K byte window on the uncompressed
158   stream to find repeated byte strings.  This is implemented here as a
159   circular buffer.  The index is updated simply by incrementing and then
160   ANDing with 0x7fff (32K-1). */
161/* It is left to other modules to supply the 32 K area.  It is assumed
162   to be usable as if it were declared "uch slide[32768];" or as just
163   "uch *slide;" and then malloc'ed in the latter case.  The definition
164   must be in unzip.h, included above. */
165/* unsigned wp;             current position in slide */
166#define wp outcnt
167#define flush_output(w) (wp=(w),flush_window())
168
169/* Tables for deflate from PKZIP's appnote.txt. */
170static const unsigned border[] = {    /* Order of the bit length code lengths */
171        16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
172static const ush cplens[] = {         /* Copy lengths for literal codes 257..285 */
173        3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
174        35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
175        /* note: see note #13 above about the 258 in this list. */
176static const ush cplext[] = {         /* Extra bits for literal codes 257..285 */
177        0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
178        3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 99, 99}; /* 99==invalid */
179static const ush cpdist[] = {         /* Copy offsets for distance codes 0..29 */
180        1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
181        257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
182        8193, 12289, 16385, 24577};
183static const ush cpdext[] = {         /* Extra bits for distance codes */
184        0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
185        7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
186        12, 12, 13, 13};
187
188
189
190/* Macros for inflate() bit peeking and grabbing.
191   The usage is:
192
193        NEEDBITS(j)
194        x = b & mask_bits[j];
195        DUMPBITS(j)
196
197   where NEEDBITS makes sure that b has at least j bits in it, and
198   DUMPBITS removes the bits from b.  The macros use the variable k
199   for the number of bits in b.  Normally, b and k are register
200   variables for speed, and are initialized at the beginning of a
201   routine that uses these macros from a global bit buffer and count.
202
203   If we assume that EOB will be the longest code, then we will never
204   ask for bits with NEEDBITS that are beyond the end of the stream.
205   So, NEEDBITS should not read any more bytes than are needed to
206   meet the request.  Then no bytes need to be "returned" to the buffer
207   at the end of the last block.
208
209   However, this assumption is not true for fixed blocks--the EOB code
210   is 7 bits, but the other literal/length codes can be 8 or 9 bits.
211   (The EOB code is shorter than other codes because fixed blocks are
212   generally short.  So, while a block always has an EOB, many other
213   literal/length codes have a significantly lower probability of
214   showing up at all.)  However, by making the first table have a
215   lookup of seven bits, the EOB code will be found in that first
216   lookup, and so will not require that too many bits be pulled from
217   the stream.
218 */
219
220STATIC ulg bb;                         /* bit buffer */
221STATIC unsigned bk;                    /* bits in bit buffer */
222
223STATIC const ush mask_bits[] = {
224    0x0000,
225    0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
226    0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
227};
228
229#define NEXTBYTE()  ({ int v = get_byte(); if (v < 0) goto underrun; (uch)v; })
230#define NEEDBITS(n) {while(k<(n)){b|=((ulg)NEXTBYTE())<<k;k+=8;}}
231#define DUMPBITS(n) {b>>=(n);k-=(n);}
232
233
234/*
235   Huffman code decoding is performed using a multi-level table lookup.
236   The fastest way to decode is to simply build a lookup table whose
237   size is determined by the longest code.  However, the time it takes
238   to build this table can also be a factor if the data being decoded
239   is not very long.  The most common codes are necessarily the
240   shortest codes, so those codes dominate the decoding time, and hence
241   the speed.  The idea is you can have a shorter table that decodes the
242   shorter, more probable codes, and then point to subsidiary tables for
243   the longer codes.  The time it costs to decode the longer codes is
244   then traded against the time it takes to make longer tables.
245
246   This results of this trade are in the variables lbits and dbits
247   below.  lbits is the number of bits the first level table for literal/
248   length codes can decode in one step, and dbits is the same thing for
249   the distance codes.  Subsequent tables are also less than or equal to
250   those sizes.  These values may be adjusted either when all of the
251   codes are shorter than that, in which case the longest code length in
252   bits is used, or when the shortest code is *longer* than the requested
253   table size, in which case the length of the shortest code in bits is
254   used.
255
256   There are two different values for the two tables, since they code a
257   different number of possibilities each.  The literal/length table
258   codes 286 possible values, or in a flat code, a little over eight
259   bits.  The distance table codes 30 possible values, or a little less
260   than five bits, flat.  The optimum values for speed end up being
261   about one bit more than those, so lbits is 8+1 and dbits is 5+1.
262   The optimum values may differ though from machine to machine, and
263   possibly even between compilers.  Your mileage may vary.
264 */
265
266
267STATIC const int lbits = 9;          /* bits in base literal/length lookup table */
268STATIC const int dbits = 6;          /* bits in base distance lookup table */
269
270
271/* If BMAX needs to be larger than 16, then h and x[] should be ulg. */
272#define BMAX 16         /* maximum bit length of any code (16 for explode) */
273#define N_MAX 288       /* maximum number of codes in any set */
274
275
276STATIC unsigned hufts;         /* track memory usage */
277
278
279STATIC int INIT huft_build(
280	unsigned *b,            /* code lengths in bits (all assumed <= BMAX) */
281	unsigned n,             /* number of codes (assumed <= N_MAX) */
282	unsigned s,             /* number of simple-valued codes (0..s-1) */
283	const ush *d,           /* list of base values for non-simple codes */
284	const ush *e,           /* list of extra bits for non-simple codes */
285	struct huft **t,        /* result: starting table */
286	int *m                  /* maximum lookup bits, returns actual */
287	)
288/* Given a list of code lengths and a maximum table size, make a set of
289   tables to decode that set of codes.  Return zero on success, one if
290   the given code set is incomplete (the tables are still built in this
291   case), two if the input is invalid (all zero length codes or an
292   oversubscribed set of lengths), and three if not enough memory. */
293{
294  unsigned a;                   /* counter for codes of length k */
295  unsigned f;                   /* i repeats in table every f entries */
296  int g;                        /* maximum code length */
297  int h;                        /* table level */
298  register unsigned i;          /* counter, current code */
299  register unsigned j;          /* counter */
300  register int k;               /* number of bits in current code */
301  int l;                        /* bits per table (returned in m) */
302  register unsigned *p;         /* pointer into c[], b[], or v[] */
303  register struct huft *q;      /* points to current table */
304  struct huft r;                /* table entry for structure assignment */
305  register int w;               /* bits before this table == (l * h) */
306  unsigned *xp;                 /* pointer into x */
307  int y;                        /* number of dummy codes added */
308  unsigned z;                   /* number of entries in current table */
309  struct {
310    unsigned c[BMAX+1];           /* bit length count table */
311    struct huft *u[BMAX];         /* table stack */
312    unsigned v[N_MAX];            /* values in order of bit length */
313    unsigned x[BMAX+1];           /* bit offsets, then code stack */
314  } *stk;
315  unsigned *c, *v, *x;
316  struct huft **u;
317  int ret;
318
319DEBG("huft1 ");
320
321  stk = malloc(sizeof(*stk));
322  if (stk == NULL)
323    return 3;			/* out of memory */
324
325  c = stk->c;
326  v = stk->v;
327  x = stk->x;
328  u = stk->u;
329
330  /* Generate counts for each bit length */
331  memzero(stk->c, sizeof(stk->c));
332  p = b;  i = n;
333  do {
334    Tracecv(*p, (stderr, (n-i >= ' ' && n-i <= '~' ? "%c %d\n" : "0x%x %d\n"),
335	    n-i, *p));
336    c[*p]++;                    /* assume all entries <= BMAX */
337    p++;                      /* Can't combine with above line (Solaris bug) */
338  } while (--i);
339  if (c[0] == n)                /* null input--all zero length codes */
340  {
341    *t = (struct huft *)NULL;
342    *m = 0;
343    ret = 2;
344    goto out;
345  }
346
347DEBG("huft2 ");
348
349  /* Find minimum and maximum length, bound *m by those */
350  l = *m;
351  for (j = 1; j <= BMAX; j++)
352    if (c[j])
353      break;
354  k = j;                        /* minimum code length */
355  if ((unsigned)l < j)
356    l = j;
357  for (i = BMAX; i; i--)
358    if (c[i])
359      break;
360  g = i;                        /* maximum code length */
361  if ((unsigned)l > i)
362    l = i;
363  *m = l;
364
365DEBG("huft3 ");
366
367  /* Adjust last length count to fill out codes, if needed */
368  for (y = 1 << j; j < i; j++, y <<= 1)
369    if ((y -= c[j]) < 0) {
370      ret = 2;                 /* bad input: more codes than bits */
371      goto out;
372    }
373  if ((y -= c[i]) < 0) {
374    ret = 2;
375    goto out;
376  }
377  c[i] += y;
378
379DEBG("huft4 ");
380
381  /* Generate starting offsets into the value table for each length */
382  x[1] = j = 0;
383  p = c + 1;  xp = x + 2;
384  while (--i) {                 /* note that i == g from above */
385    *xp++ = (j += *p++);
386  }
387
388DEBG("huft5 ");
389
390  /* Make a table of values in order of bit lengths */
391  p = b;  i = 0;
392  do {
393    if ((j = *p++) != 0)
394      v[x[j]++] = i;
395  } while (++i < n);
396  n = x[g];                   /* set n to length of v */
397
398DEBG("h6 ");
399
400  /* Generate the Huffman codes and for each, make the table entries */
401  x[0] = i = 0;                 /* first Huffman code is zero */
402  p = v;                        /* grab values in bit order */
403  h = -1;                       /* no tables yet--level -1 */
404  w = -l;                       /* bits decoded == (l * h) */
405  u[0] = (struct huft *)NULL;   /* just to keep compilers happy */
406  q = (struct huft *)NULL;      /* ditto */
407  z = 0;                        /* ditto */
408DEBG("h6a ");
409
410  /* go through the bit lengths (k already is bits in shortest code) */
411  for (; k <= g; k++)
412  {
413DEBG("h6b ");
414    a = c[k];
415    while (a--)
416    {
417DEBG("h6b1 ");
418      /* here i is the Huffman code of length k bits for value *p */
419      /* make tables up to required level */
420      while (k > w + l)
421      {
422DEBG1("1 ");
423        h++;
424        w += l;                 /* previous table always l bits */
425
426        /* compute minimum size table less than or equal to l bits */
427        z = (z = g - w) > (unsigned)l ? l : z;  /* upper limit on table size */
428        if ((f = 1 << (j = k - w)) > a + 1)     /* try a k-w bit table */
429        {                       /* too few codes for k-w bit table */
430DEBG1("2 ");
431          f -= a + 1;           /* deduct codes from patterns left */
432          xp = c + k;
433          if (j < z)
434            while (++j < z)       /* try smaller tables up to z bits */
435            {
436              if ((f <<= 1) <= *++xp)
437                break;            /* enough codes to use up j bits */
438              f -= *xp;           /* else deduct codes from patterns */
439            }
440        }
441DEBG1("3 ");
442        z = 1 << j;             /* table entries for j-bit table */
443
444        /* allocate and link in new table */
445        if ((q = (struct huft *)malloc((z + 1)*sizeof(struct huft))) ==
446            (struct huft *)NULL)
447        {
448          if (h)
449            huft_free(u[0]);
450          ret = 3;             /* not enough memory */
451	  goto out;
452        }
453DEBG1("4 ");
454        hufts += z + 1;         /* track memory usage */
455        *t = q + 1;             /* link to list for huft_free() */
456        *(t = &(q->v.t)) = (struct huft *)NULL;
457        u[h] = ++q;             /* table starts after link */
458
459DEBG1("5 ");
460        /* connect to last table, if there is one */
461        if (h)
462        {
463          x[h] = i;             /* save pattern for backing up */
464          r.b = (uch)l;         /* bits to dump before this table */
465          r.e = (uch)(16 + j);  /* bits in this table */
466          r.v.t = q;            /* pointer to this table */
467          j = i >> (w - l);     /* (get around Turbo C bug) */
468          u[h-1][j] = r;        /* connect to last table */
469        }
470DEBG1("6 ");
471      }
472DEBG("h6c ");
473
474      /* set up table entry in r */
475      r.b = (uch)(k - w);
476      if (p >= v + n)
477        r.e = 99;               /* out of values--invalid code */
478      else if (*p < s)
479      {
480        r.e = (uch)(*p < 256 ? 16 : 15);    /* 256 is end-of-block code */
481        r.v.n = (ush)(*p);             /* simple code is just the value */
482	p++;                           /* one compiler does not like *p++ */
483      }
484      else
485      {
486        r.e = (uch)e[*p - s];   /* non-simple--look up in lists */
487        r.v.n = d[*p++ - s];
488      }
489DEBG("h6d ");
490
491      /* fill code-like entries with r */
492      f = 1 << (k - w);
493      for (j = i >> w; j < z; j += f)
494        q[j] = r;
495
496      /* backwards increment the k-bit code i */
497      for (j = 1 << (k - 1); i & j; j >>= 1)
498        i ^= j;
499      i ^= j;
500
501      /* backup over finished tables */
502      while ((i & ((1 << w) - 1)) != x[h])
503      {
504        h--;                    /* don't need to update q */
505        w -= l;
506      }
507DEBG("h6e ");
508    }
509DEBG("h6f ");
510  }
511
512DEBG("huft7 ");
513
514  /* Return true (1) if we were given an incomplete table */
515  ret = y != 0 && g != 1;
516
517  out:
518  free(stk);
519  return ret;
520}
521
522
523
524STATIC int INIT huft_free(
525	struct huft *t         /* table to free */
526	)
527/* Free the malloc'ed tables built by huft_build(), which makes a linked
528   list of the tables it made, with the links in a dummy first entry of
529   each table. */
530{
531  register struct huft *p, *q;
532
533
534  /* Go through linked list, freeing from the malloced (t[-1]) address. */
535  p = t;
536  while (p != (struct huft *)NULL)
537  {
538    q = (--p)->v.t;
539    free((char*)p);
540    p = q;
541  }
542  return 0;
543}
544
545
546STATIC int INIT inflate_codes(
547	struct huft *tl,    /* literal/length decoder tables */
548	struct huft *td,    /* distance decoder tables */
549	int bl,             /* number of bits decoded by tl[] */
550	int bd              /* number of bits decoded by td[] */
551	)
552/* inflate (decompress) the codes in a deflated (compressed) block.
553   Return an error code or zero if it all goes ok. */
554{
555  register unsigned e;  /* table entry flag/number of extra bits */
556  unsigned n, d;        /* length and index for copy */
557  unsigned w;           /* current window position */
558  struct huft *t;       /* pointer to table entry */
559  unsigned ml, md;      /* masks for bl and bd bits */
560  register ulg b;       /* bit buffer */
561  register unsigned k;  /* number of bits in bit buffer */
562
563
564  /* make local copies of globals */
565  b = bb;                       /* initialize bit buffer */
566  k = bk;
567  w = wp;                       /* initialize window position */
568
569  /* inflate the coded data */
570  ml = mask_bits[bl];           /* precompute masks for speed */
571  md = mask_bits[bd];
572  for (;;)                      /* do until end of block */
573  {
574    NEEDBITS((unsigned)bl)
575    if ((e = (t = tl + ((unsigned)b & ml))->e) > 16)
576      do {
577        if (e == 99)
578          return 1;
579        DUMPBITS(t->b)
580        e -= 16;
581        NEEDBITS(e)
582      } while ((e = (t = t->v.t + ((unsigned)b & mask_bits[e]))->e) > 16);
583    DUMPBITS(t->b)
584    if (e == 16)                /* then it's a literal */
585    {
586      slide[w++] = (uch)t->v.n;
587      Tracevv((stderr, "%c", slide[w-1]));
588      if (w == WSIZE)
589      {
590        flush_output(w);
591        w = 0;
592      }
593    }
594    else                        /* it's an EOB or a length */
595    {
596      /* exit if end of block */
597      if (e == 15)
598        break;
599
600      /* get length of block to copy */
601      NEEDBITS(e)
602      n = t->v.n + ((unsigned)b & mask_bits[e]);
603      DUMPBITS(e);
604
605      /* decode distance of block to copy */
606      NEEDBITS((unsigned)bd)
607      if ((e = (t = td + ((unsigned)b & md))->e) > 16)
608        do {
609          if (e == 99)
610            return 1;
611          DUMPBITS(t->b)
612          e -= 16;
613          NEEDBITS(e)
614        } while ((e = (t = t->v.t + ((unsigned)b & mask_bits[e]))->e) > 16);
615      DUMPBITS(t->b)
616      NEEDBITS(e)
617      d = w - t->v.n - ((unsigned)b & mask_bits[e]);
618      DUMPBITS(e)
619      Tracevv((stderr,"\\[%d,%d]", w-d, n));
620
621      /* do the copy */
622      do {
623        n -= (e = (e = WSIZE - ((d &= WSIZE-1) > w ? d : w)) > n ? n : e);
624#if !defined(NOMEMCPY) && !defined(DEBUG)
625        if (w - d >= e)         /* (this test assumes unsigned comparison) */
626        {
627          memcpy(slide + w, slide + d, e);
628          w += e;
629          d += e;
630        }
631        else                      /* do it slow to avoid memcpy() overlap */
632#endif /* !NOMEMCPY */
633          do {
634            slide[w++] = slide[d++];
635	    Tracevv((stderr, "%c", slide[w-1]));
636          } while (--e);
637        if (w == WSIZE)
638        {
639          flush_output(w);
640          w = 0;
641        }
642      } while (n);
643    }
644  }
645
646
647  /* restore the globals from the locals */
648  wp = w;                       /* restore global window pointer */
649  bb = b;                       /* restore global bit buffer */
650  bk = k;
651
652  /* done */
653  return 0;
654
655 underrun:
656  return 4;			/* Input underrun */
657}
658
659
660
661STATIC int INIT inflate_stored(void)
662/* "decompress" an inflated type 0 (stored) block. */
663{
664  unsigned n;           /* number of bytes in block */
665  unsigned w;           /* current window position */
666  register ulg b;       /* bit buffer */
667  register unsigned k;  /* number of bits in bit buffer */
668
669DEBG("<stor");
670
671  /* make local copies of globals */
672  b = bb;                       /* initialize bit buffer */
673  k = bk;
674  w = wp;                       /* initialize window position */
675
676
677  /* go to byte boundary */
678  n = k & 7;
679  DUMPBITS(n);
680
681
682  /* get the length and its complement */
683  NEEDBITS(16)
684  n = ((unsigned)b & 0xffff);
685  DUMPBITS(16)
686  NEEDBITS(16)
687  if (n != (unsigned)((~b) & 0xffff))
688    return 1;                   /* error in compressed data */
689  DUMPBITS(16)
690
691
692  /* read and output the compressed data */
693  while (n--)
694  {
695    NEEDBITS(8)
696    slide[w++] = (uch)b;
697    if (w == WSIZE)
698    {
699      flush_output(w);
700      w = 0;
701    }
702    DUMPBITS(8)
703  }
704
705
706  /* restore the globals from the locals */
707  wp = w;                       /* restore global window pointer */
708  bb = b;                       /* restore global bit buffer */
709  bk = k;
710
711  DEBG(">");
712  return 0;
713
714 underrun:
715  return 4;			/* Input underrun */
716}
717
718
719/*
720 * We use `noinline' here to prevent gcc-3.5 from using too much stack space
721 */
722STATIC int noinline INIT inflate_fixed(void)
723/* decompress an inflated type 1 (fixed Huffman codes) block.  We should
724   either replace this with a custom decoder, or at least precompute the
725   Huffman tables. */
726{
727  int i;                /* temporary variable */
728  struct huft *tl;      /* literal/length code table */
729  struct huft *td;      /* distance code table */
730  int bl;               /* lookup bits for tl */
731  int bd;               /* lookup bits for td */
732  unsigned *l;          /* length list for huft_build */
733
734DEBG("<fix");
735
736  l = malloc(sizeof(*l) * 288);
737  if (l == NULL)
738    return 3;			/* out of memory */
739
740  /* set up literal table */
741  for (i = 0; i < 144; i++)
742    l[i] = 8;
743  for (; i < 256; i++)
744    l[i] = 9;
745  for (; i < 280; i++)
746    l[i] = 7;
747  for (; i < 288; i++)          /* make a complete, but wrong code set */
748    l[i] = 8;
749  bl = 7;
750  if ((i = huft_build(l, 288, 257, cplens, cplext, &tl, &bl)) != 0) {
751    free(l);
752    return i;
753  }
754
755  /* set up distance table */
756  for (i = 0; i < 30; i++)      /* make an incomplete code set */
757    l[i] = 5;
758  bd = 5;
759  if ((i = huft_build(l, 30, 0, cpdist, cpdext, &td, &bd)) > 1)
760  {
761    huft_free(tl);
762    free(l);
763
764    DEBG(">");
765    return i;
766  }
767
768
769  /* decompress until an end-of-block code */
770  if (inflate_codes(tl, td, bl, bd)) {
771    free(l);
772    return 1;
773  }
774
775  /* free the decoding tables, return */
776  free(l);
777  huft_free(tl);
778  huft_free(td);
779  return 0;
780}
781
782
783/*
784 * We use `noinline' here to prevent gcc-3.5 from using too much stack space
785 */
786STATIC int noinline INIT inflate_dynamic(void)
787/* decompress an inflated type 2 (dynamic Huffman codes) block. */
788{
789  int i;                /* temporary variables */
790  unsigned j;
791  unsigned l;           /* last length */
792  unsigned m;           /* mask for bit lengths table */
793  unsigned n;           /* number of lengths to get */
794  struct huft *tl;      /* literal/length code table */
795  struct huft *td;      /* distance code table */
796  int bl;               /* lookup bits for tl */
797  int bd;               /* lookup bits for td */
798  unsigned nb;          /* number of bit length codes */
799  unsigned nl;          /* number of literal/length codes */
800  unsigned nd;          /* number of distance codes */
801  unsigned *ll;         /* literal/length and distance code lengths */
802  register ulg b;       /* bit buffer */
803  register unsigned k;  /* number of bits in bit buffer */
804  int ret;
805
806DEBG("<dyn");
807
808#ifdef PKZIP_BUG_WORKAROUND
809  ll = malloc(sizeof(*ll) * (288+32));  /* literal/length and distance code lengths */
810#else
811  ll = malloc(sizeof(*ll) * (286+30));  /* literal/length and distance code lengths */
812#endif
813
814  /* make local bit buffer */
815  b = bb;
816  k = bk;
817
818
819  /* read in table lengths */
820  NEEDBITS(5)
821  nl = 257 + ((unsigned)b & 0x1f);      /* number of literal/length codes */
822  DUMPBITS(5)
823  NEEDBITS(5)
824  nd = 1 + ((unsigned)b & 0x1f);        /* number of distance codes */
825  DUMPBITS(5)
826  NEEDBITS(4)
827  nb = 4 + ((unsigned)b & 0xf);         /* number of bit length codes */
828  DUMPBITS(4)
829#ifdef PKZIP_BUG_WORKAROUND
830  if (nl > 288 || nd > 32)
831#else
832  if (nl > 286 || nd > 30)
833#endif
834  {
835    ret = 1;             /* bad lengths */
836    goto out;
837  }
838
839DEBG("dyn1 ");
840
841  /* read in bit-length-code lengths */
842  for (j = 0; j < nb; j++)
843  {
844    NEEDBITS(3)
845    ll[border[j]] = (unsigned)b & 7;
846    DUMPBITS(3)
847  }
848  for (; j < 19; j++)
849    ll[border[j]] = 0;
850
851DEBG("dyn2 ");
852
853  /* build decoding table for trees--single level, 7 bit lookup */
854  bl = 7;
855  if ((i = huft_build(ll, 19, 19, NULL, NULL, &tl, &bl)) != 0)
856  {
857    if (i == 1)
858      huft_free(tl);
859    ret = i;                   /* incomplete code set */
860    goto out;
861  }
862
863DEBG("dyn3 ");
864
865  /* read in literal and distance code lengths */
866  n = nl + nd;
867  m = mask_bits[bl];
868  i = l = 0;
869  while ((unsigned)i < n)
870  {
871    NEEDBITS((unsigned)bl)
872    j = (td = tl + ((unsigned)b & m))->b;
873    DUMPBITS(j)
874    j = td->v.n;
875    if (j < 16)                 /* length of code in bits (0..15) */
876      ll[i++] = l = j;          /* save last length in l */
877    else if (j == 16)           /* repeat last length 3 to 6 times */
878    {
879      NEEDBITS(2)
880      j = 3 + ((unsigned)b & 3);
881      DUMPBITS(2)
882      if ((unsigned)i + j > n) {
883        ret = 1;
884	goto out;
885      }
886      while (j--)
887        ll[i++] = l;
888    }
889    else if (j == 17)           /* 3 to 10 zero length codes */
890    {
891      NEEDBITS(3)
892      j = 3 + ((unsigned)b & 7);
893      DUMPBITS(3)
894      if ((unsigned)i + j > n) {
895        ret = 1;
896	goto out;
897      }
898      while (j--)
899        ll[i++] = 0;
900      l = 0;
901    }
902    else                        /* j == 18: 11 to 138 zero length codes */
903    {
904      NEEDBITS(7)
905      j = 11 + ((unsigned)b & 0x7f);
906      DUMPBITS(7)
907      if ((unsigned)i + j > n) {
908        ret = 1;
909	goto out;
910      }
911      while (j--)
912        ll[i++] = 0;
913      l = 0;
914    }
915  }
916
917DEBG("dyn4 ");
918
919  /* free decoding table for trees */
920  huft_free(tl);
921
922DEBG("dyn5 ");
923
924  /* restore the global bit buffer */
925  bb = b;
926  bk = k;
927
928DEBG("dyn5a ");
929
930  /* build the decoding tables for literal/length and distance codes */
931  bl = lbits;
932  if ((i = huft_build(ll, nl, 257, cplens, cplext, &tl, &bl)) != 0)
933  {
934DEBG("dyn5b ");
935    if (i == 1) {
936      error("incomplete literal tree");
937      huft_free(tl);
938    }
939    ret = i;                   /* incomplete code set */
940    goto out;
941  }
942DEBG("dyn5c ");
943  bd = dbits;
944  if ((i = huft_build(ll + nl, nd, 0, cpdist, cpdext, &td, &bd)) != 0)
945  {
946DEBG("dyn5d ");
947    if (i == 1) {
948      error("incomplete distance tree");
949#ifdef PKZIP_BUG_WORKAROUND
950      i = 0;
951    }
952#else
953      huft_free(td);
954    }
955    huft_free(tl);
956    ret = i;                   /* incomplete code set */
957    goto out;
958#endif
959  }
960
961DEBG("dyn6 ");
962
963  /* decompress until an end-of-block code */
964  if (inflate_codes(tl, td, bl, bd)) {
965    ret = 1;
966    goto out;
967  }
968
969DEBG("dyn7 ");
970
971  /* free the decoding tables, return */
972  huft_free(tl);
973  huft_free(td);
974
975  DEBG(">");
976  ret = 0;
977out:
978  free(ll);
979  return ret;
980
981underrun:
982  ret = 4;			/* Input underrun */
983  goto out;
984}
985
986
987
988STATIC int INIT inflate_block(
989	int *e                  /* last block flag */
990	)
991/* decompress an inflated block */
992{
993  unsigned t;           /* block type */
994  register ulg b;       /* bit buffer */
995  register unsigned k;  /* number of bits in bit buffer */
996
997  DEBG("<blk");
998
999  /* make local bit buffer */
1000  b = bb;
1001  k = bk;
1002
1003
1004  /* read in last block bit */
1005  NEEDBITS(1)
1006  *e = (int)b & 1;
1007  DUMPBITS(1)
1008
1009
1010  /* read in block type */
1011  NEEDBITS(2)
1012  t = (unsigned)b & 3;
1013  DUMPBITS(2)
1014
1015
1016  /* restore the global bit buffer */
1017  bb = b;
1018  bk = k;
1019
1020  /* inflate that block type */
1021  if (t == 2)
1022    return inflate_dynamic();
1023  if (t == 0)
1024    return inflate_stored();
1025  if (t == 1)
1026    return inflate_fixed();
1027
1028  DEBG(">");
1029
1030  /* bad block type */
1031  return 2;
1032
1033 underrun:
1034  return 4;			/* Input underrun */
1035}
1036
1037
1038
1039STATIC int INIT inflate(void)
1040/* decompress an inflated entry */
1041{
1042  int e;                /* last block flag */
1043  int r;                /* result code */
1044  unsigned h;           /* maximum struct huft's malloc'ed */
1045  void *ptr;
1046
1047  /* initialize window, bit buffer */
1048  wp = 0;
1049  bk = 0;
1050  bb = 0;
1051
1052
1053  /* decompress until the last block */
1054  h = 0;
1055  do {
1056    hufts = 0;
1057    gzip_mark(&ptr);
1058    if ((r = inflate_block(&e)) != 0) {
1059      gzip_release(&ptr);
1060      return r;
1061    }
1062    gzip_release(&ptr);
1063    if (hufts > h)
1064      h = hufts;
1065  } while (!e);
1066
1067  /* Undo too much lookahead. The next read will be byte aligned so we
1068   * can discard unused bits in the last meaningful byte.
1069   */
1070  while (bk >= 8) {
1071    bk -= 8;
1072    inptr--;
1073  }
1074
1075  /* flush out slide */
1076  flush_output(wp);
1077
1078
1079  /* return success */
1080#ifdef DEBUG
1081  fprintf(stderr, "<%u> ", h);
1082#endif /* DEBUG */
1083  return 0;
1084}
1085
1086/**********************************************************************
1087 *
1088 * The following are support routines for inflate.c
1089 *
1090 **********************************************************************/
1091
1092static ulg crc_32_tab[256];
1093static ulg crc;		/* initialized in makecrc() so it'll reside in bss */
1094#define CRC_VALUE (crc ^ 0xffffffffUL)
1095
1096/*
1097 * Code to compute the CRC-32 table. Borrowed from
1098 * gzip-1.0.3/makecrc.c.
1099 */
1100
1101static void INIT
1102makecrc(void)
1103{
1104/* Not copyrighted 1990 Mark Adler	*/
1105
1106  unsigned long c;      /* crc shift register */
1107  unsigned long e;      /* polynomial exclusive-or pattern */
1108  int i;                /* counter for all possible eight bit values */
1109  int k;                /* byte being shifted into crc apparatus */
1110
1111  /* terms of polynomial defining this crc (except x^32): */
1112  static const int p[] = {0,1,2,4,5,7,8,10,11,12,16,22,23,26};
1113
1114  /* Make exclusive-or pattern from polynomial */
1115  e = 0;
1116  for (i = 0; i < sizeof(p)/sizeof(int); i++)
1117    e |= 1L << (31 - p[i]);
1118
1119  crc_32_tab[0] = 0;
1120
1121  for (i = 1; i < 256; i++)
1122  {
1123    c = 0;
1124    for (k = i | 256; k != 1; k >>= 1)
1125    {
1126      c = c & 1 ? (c >> 1) ^ e : c >> 1;
1127      if (k & 1)
1128        c ^= e;
1129    }
1130    crc_32_tab[i] = c;
1131  }
1132
1133  /* this is initialized here so this code could reside in ROM */
1134  crc = (ulg)0xffffffffUL; /* shift register contents */
1135}
1136
1137/* gzip flag byte */
1138#define ASCII_FLAG   0x01 /* bit 0 set: file probably ASCII text */
1139#define CONTINUATION 0x02 /* bit 1 set: continuation of multi-part gzip file */
1140#define EXTRA_FIELD  0x04 /* bit 2 set: extra field present */
1141#define ORIG_NAME    0x08 /* bit 3 set: original file name present */
1142#define COMMENT      0x10 /* bit 4 set: file comment present */
1143#define ENCRYPTED    0x20 /* bit 5 set: file is encrypted */
1144#define RESERVED     0xC0 /* bit 6,7:   reserved */
1145
1146/*
1147 * Do the uncompression!
1148 */
1149static int INIT gunzip(void)
1150{
1151    uch flags;
1152    unsigned char magic[2]; /* magic header */
1153    char method;
1154    ulg orig_crc = 0;       /* original crc */
1155    ulg orig_len = 0;       /* original uncompressed length */
1156    int res;
1157
1158    magic[0] = NEXTBYTE();
1159    magic[1] = NEXTBYTE();
1160    method   = NEXTBYTE();
1161
1162    if (magic[0] != 037 ||
1163	((magic[1] != 0213) && (magic[1] != 0236))) {
1164	    error("bad gzip magic numbers");
1165	    return -1;
1166    }
1167
1168    /* We only support method #8, DEFLATED */
1169    if (method != 8)  {
1170	    error("internal error, invalid method");
1171	    return -1;
1172    }
1173
1174    flags  = (uch)get_byte();
1175    if ((flags & ENCRYPTED) != 0) {
1176	    error("Input is encrypted");
1177	    return -1;
1178    }
1179    if ((flags & CONTINUATION) != 0) {
1180	    error("Multi part input");
1181	    return -1;
1182    }
1183    if ((flags & RESERVED) != 0) {
1184	    error("Input has invalid flags");
1185	    return -1;
1186    }
1187    NEXTBYTE();	/* Get timestamp */
1188    NEXTBYTE();
1189    NEXTBYTE();
1190    NEXTBYTE();
1191
1192    (void)NEXTBYTE();  /* Ignore extra flags for the moment */
1193    (void)NEXTBYTE();  /* Ignore OS type for the moment */
1194
1195    if ((flags & EXTRA_FIELD) != 0) {
1196	    unsigned len = (unsigned)NEXTBYTE();
1197	    len |= ((unsigned)NEXTBYTE())<<8;
1198	    while (len--) (void)NEXTBYTE();
1199    }
1200
1201    /* Get original file name if it was truncated */
1202    if ((flags & ORIG_NAME) != 0) {
1203	    /* Discard the old name */
1204	    while (NEXTBYTE() != 0) /* null */ ;
1205    }
1206
1207    /* Discard file comment if any */
1208    if ((flags & COMMENT) != 0) {
1209	    while (NEXTBYTE() != 0) /* null */ ;
1210    }
1211
1212    /* Decompress */
1213    if ((res = inflate())) {
1214	    switch (res) {
1215	    case 0:
1216		    break;
1217	    case 1:
1218		    error("invalid compressed format (err=1)");
1219		    break;
1220	    case 2:
1221		    error("invalid compressed format (err=2)");
1222		    break;
1223	    case 3:
1224		    error("out of memory");
1225		    break;
1226	    case 4:
1227		    error("out of input data");
1228		    break;
1229	    default:
1230		    error("invalid compressed format (other)");
1231	    }
1232	    return -1;
1233    }
1234
1235    /* Get the crc and original length */
1236    /* crc32  (see algorithm.doc)
1237     * uncompressed input size modulo 2^32
1238     */
1239    orig_crc = (ulg) NEXTBYTE();
1240    orig_crc |= (ulg) NEXTBYTE() << 8;
1241    orig_crc |= (ulg) NEXTBYTE() << 16;
1242    orig_crc |= (ulg) NEXTBYTE() << 24;
1243
1244    orig_len = (ulg) NEXTBYTE();
1245    orig_len |= (ulg) NEXTBYTE() << 8;
1246    orig_len |= (ulg) NEXTBYTE() << 16;
1247    orig_len |= (ulg) NEXTBYTE() << 24;
1248
1249    /* Validate decompression */
1250    if (orig_crc != CRC_VALUE) {
1251	    error("crc error");
1252	    return -1;
1253    }
1254    if (orig_len != bytes_out) {
1255	    error("length error");
1256	    return -1;
1257    }
1258    return 0;
1259
1260 underrun:			/* NEXTBYTE() goto's here if needed */
1261    error("out of input data");
1262    return -1;
1263}
1264