1/*
2 * kexec.c - kexec system call
3 * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
4 *
5 * This source code is licensed under the GNU General Public License,
6 * Version 2.  See the file COPYING for more details.
7 */
8
9#include <linux/capability.h>
10#include <linux/mm.h>
11#include <linux/file.h>
12#include <linux/slab.h>
13#include <linux/fs.h>
14#include <linux/kexec.h>
15#include <linux/spinlock.h>
16#include <linux/list.h>
17#include <linux/highmem.h>
18#include <linux/syscalls.h>
19#include <linux/reboot.h>
20#include <linux/syscalls.h>
21#include <linux/ioport.h>
22#include <linux/hardirq.h>
23#include <linux/elf.h>
24#include <linux/elfcore.h>
25
26#include <asm/page.h>
27#include <asm/uaccess.h>
28#include <asm/io.h>
29#include <asm/system.h>
30#include <asm/semaphore.h>
31
32/* Per cpu memory for storing cpu states in case of system crash. */
33note_buf_t* crash_notes;
34
35/* Location of the reserved area for the crash kernel */
36struct resource crashk_res = {
37	.name  = "Crash kernel",
38	.start = 0,
39	.end   = 0,
40	.flags = IORESOURCE_BUSY | IORESOURCE_MEM
41};
42
43int kexec_should_crash(struct task_struct *p)
44{
45	if (in_interrupt() || !p->pid || is_init(p) || panic_on_oops)
46		return 1;
47	return 0;
48}
49
50/*
51 * When kexec transitions to the new kernel there is a one-to-one
52 * mapping between physical and virtual addresses.  On processors
53 * where you can disable the MMU this is trivial, and easy.  For
54 * others it is still a simple predictable page table to setup.
55 *
56 * In that environment kexec copies the new kernel to its final
57 * resting place.  This means I can only support memory whose
58 * physical address can fit in an unsigned long.  In particular
59 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
60 * If the assembly stub has more restrictive requirements
61 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
62 * defined more restrictively in <asm/kexec.h>.
63 *
64 * The code for the transition from the current kernel to the
65 * the new kernel is placed in the control_code_buffer, whose size
66 * is given by KEXEC_CONTROL_CODE_SIZE.  In the best case only a single
67 * page of memory is necessary, but some architectures require more.
68 * Because this memory must be identity mapped in the transition from
69 * virtual to physical addresses it must live in the range
70 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
71 * modifiable.
72 *
73 * The assembly stub in the control code buffer is passed a linked list
74 * of descriptor pages detailing the source pages of the new kernel,
75 * and the destination addresses of those source pages.  As this data
76 * structure is not used in the context of the current OS, it must
77 * be self-contained.
78 *
79 * The code has been made to work with highmem pages and will use a
80 * destination page in its final resting place (if it happens
81 * to allocate it).  The end product of this is that most of the
82 * physical address space, and most of RAM can be used.
83 *
84 * Future directions include:
85 *  - allocating a page table with the control code buffer identity
86 *    mapped, to simplify machine_kexec and make kexec_on_panic more
87 *    reliable.
88 */
89
90/*
91 * KIMAGE_NO_DEST is an impossible destination address..., for
92 * allocating pages whose destination address we do not care about.
93 */
94#define KIMAGE_NO_DEST (-1UL)
95
96static int kimage_is_destination_range(struct kimage *image,
97				       unsigned long start, unsigned long end);
98static struct page *kimage_alloc_page(struct kimage *image,
99				       gfp_t gfp_mask,
100				       unsigned long dest);
101
102static int do_kimage_alloc(struct kimage **rimage, unsigned long entry,
103	                    unsigned long nr_segments,
104                            struct kexec_segment __user *segments)
105{
106	size_t segment_bytes;
107	struct kimage *image;
108	unsigned long i;
109	int result;
110
111	/* Allocate a controlling structure */
112	result = -ENOMEM;
113	image = kzalloc(sizeof(*image), GFP_KERNEL);
114	if (!image)
115		goto out;
116
117	image->head = 0;
118	image->entry = &image->head;
119	image->last_entry = &image->head;
120	image->control_page = ~0; /* By default this does not apply */
121	image->start = entry;
122	image->type = KEXEC_TYPE_DEFAULT;
123
124	/* Initialize the list of control pages */
125	INIT_LIST_HEAD(&image->control_pages);
126
127	/* Initialize the list of destination pages */
128	INIT_LIST_HEAD(&image->dest_pages);
129
130	/* Initialize the list of unuseable pages */
131	INIT_LIST_HEAD(&image->unuseable_pages);
132
133	/* Read in the segments */
134	image->nr_segments = nr_segments;
135	segment_bytes = nr_segments * sizeof(*segments);
136	result = copy_from_user(image->segment, segments, segment_bytes);
137	if (result)
138		goto out;
139
140	/*
141	 * Verify we have good destination addresses.  The caller is
142	 * responsible for making certain we don't attempt to load
143	 * the new image into invalid or reserved areas of RAM.  This
144	 * just verifies it is an address we can use.
145	 *
146	 * Since the kernel does everything in page size chunks ensure
147	 * the destination addreses are page aligned.  Too many
148	 * special cases crop of when we don't do this.  The most
149	 * insidious is getting overlapping destination addresses
150	 * simply because addresses are changed to page size
151	 * granularity.
152	 */
153	result = -EADDRNOTAVAIL;
154	for (i = 0; i < nr_segments; i++) {
155		unsigned long mstart, mend;
156
157		mstart = image->segment[i].mem;
158		mend   = mstart + image->segment[i].memsz;
159		if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
160			goto out;
161		if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
162			goto out;
163	}
164
165	/* Verify our destination addresses do not overlap.
166	 * If we alloed overlapping destination addresses
167	 * through very weird things can happen with no
168	 * easy explanation as one segment stops on another.
169	 */
170	result = -EINVAL;
171	for (i = 0; i < nr_segments; i++) {
172		unsigned long mstart, mend;
173		unsigned long j;
174
175		mstart = image->segment[i].mem;
176		mend   = mstart + image->segment[i].memsz;
177		for (j = 0; j < i; j++) {
178			unsigned long pstart, pend;
179			pstart = image->segment[j].mem;
180			pend   = pstart + image->segment[j].memsz;
181			/* Do the segments overlap ? */
182			if ((mend > pstart) && (mstart < pend))
183				goto out;
184		}
185	}
186
187	/* Ensure our buffer sizes are strictly less than
188	 * our memory sizes.  This should always be the case,
189	 * and it is easier to check up front than to be surprised
190	 * later on.
191	 */
192	result = -EINVAL;
193	for (i = 0; i < nr_segments; i++) {
194		if (image->segment[i].bufsz > image->segment[i].memsz)
195			goto out;
196	}
197
198	result = 0;
199out:
200	if (result == 0)
201		*rimage = image;
202	else
203		kfree(image);
204
205	return result;
206
207}
208
209static int kimage_normal_alloc(struct kimage **rimage, unsigned long entry,
210				unsigned long nr_segments,
211				struct kexec_segment __user *segments)
212{
213	int result;
214	struct kimage *image;
215
216	/* Allocate and initialize a controlling structure */
217	image = NULL;
218	result = do_kimage_alloc(&image, entry, nr_segments, segments);
219	if (result)
220		goto out;
221
222	*rimage = image;
223
224	/*
225	 * Find a location for the control code buffer, and add it
226	 * the vector of segments so that it's pages will also be
227	 * counted as destination pages.
228	 */
229	result = -ENOMEM;
230	image->control_code_page = kimage_alloc_control_pages(image,
231					   get_order(KEXEC_CONTROL_CODE_SIZE));
232	if (!image->control_code_page) {
233		printk(KERN_ERR "Could not allocate control_code_buffer\n");
234		goto out;
235	}
236
237	result = 0;
238 out:
239	if (result == 0)
240		*rimage = image;
241	else
242		kfree(image);
243
244	return result;
245}
246
247static int kimage_crash_alloc(struct kimage **rimage, unsigned long entry,
248				unsigned long nr_segments,
249				struct kexec_segment __user *segments)
250{
251	int result;
252	struct kimage *image;
253	unsigned long i;
254
255	image = NULL;
256	/* Verify we have a valid entry point */
257	if ((entry < crashk_res.start) || (entry > crashk_res.end)) {
258		result = -EADDRNOTAVAIL;
259		goto out;
260	}
261
262	/* Allocate and initialize a controlling structure */
263	result = do_kimage_alloc(&image, entry, nr_segments, segments);
264	if (result)
265		goto out;
266
267	/* Enable the special crash kernel control page
268	 * allocation policy.
269	 */
270	image->control_page = crashk_res.start;
271	image->type = KEXEC_TYPE_CRASH;
272
273	/*
274	 * Verify we have good destination addresses.  Normally
275	 * the caller is responsible for making certain we don't
276	 * attempt to load the new image into invalid or reserved
277	 * areas of RAM.  But crash kernels are preloaded into a
278	 * reserved area of ram.  We must ensure the addresses
279	 * are in the reserved area otherwise preloading the
280	 * kernel could corrupt things.
281	 */
282	result = -EADDRNOTAVAIL;
283	for (i = 0; i < nr_segments; i++) {
284		unsigned long mstart, mend;
285
286		mstart = image->segment[i].mem;
287		mend = mstart + image->segment[i].memsz - 1;
288		/* Ensure we are within the crash kernel limits */
289		if ((mstart < crashk_res.start) || (mend > crashk_res.end))
290			goto out;
291	}
292
293	/*
294	 * Find a location for the control code buffer, and add
295	 * the vector of segments so that it's pages will also be
296	 * counted as destination pages.
297	 */
298	result = -ENOMEM;
299	image->control_code_page = kimage_alloc_control_pages(image,
300					   get_order(KEXEC_CONTROL_CODE_SIZE));
301	if (!image->control_code_page) {
302		printk(KERN_ERR "Could not allocate control_code_buffer\n");
303		goto out;
304	}
305
306	result = 0;
307out:
308	if (result == 0)
309		*rimage = image;
310	else
311		kfree(image);
312
313	return result;
314}
315
316static int kimage_is_destination_range(struct kimage *image,
317					unsigned long start,
318					unsigned long end)
319{
320	unsigned long i;
321
322	for (i = 0; i < image->nr_segments; i++) {
323		unsigned long mstart, mend;
324
325		mstart = image->segment[i].mem;
326		mend = mstart + image->segment[i].memsz;
327		if ((end > mstart) && (start < mend))
328			return 1;
329	}
330
331	return 0;
332}
333
334static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
335{
336	struct page *pages;
337
338	pages = alloc_pages(gfp_mask, order);
339	if (pages) {
340		unsigned int count, i;
341		pages->mapping = NULL;
342		set_page_private(pages, order);
343		count = 1 << order;
344		for (i = 0; i < count; i++)
345			SetPageReserved(pages + i);
346	}
347
348	return pages;
349}
350
351static void kimage_free_pages(struct page *page)
352{
353	unsigned int order, count, i;
354
355	order = page_private(page);
356	count = 1 << order;
357	for (i = 0; i < count; i++)
358		ClearPageReserved(page + i);
359	__free_pages(page, order);
360}
361
362static void kimage_free_page_list(struct list_head *list)
363{
364	struct list_head *pos, *next;
365
366	list_for_each_safe(pos, next, list) {
367		struct page *page;
368
369		page = list_entry(pos, struct page, lru);
370		list_del(&page->lru);
371		kimage_free_pages(page);
372	}
373}
374
375static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
376							unsigned int order)
377{
378	/* Control pages are special, they are the intermediaries
379	 * that are needed while we copy the rest of the pages
380	 * to their final resting place.  As such they must
381	 * not conflict with either the destination addresses
382	 * or memory the kernel is already using.
383	 *
384	 * The only case where we really need more than one of
385	 * these are for architectures where we cannot disable
386	 * the MMU and must instead generate an identity mapped
387	 * page table for all of the memory.
388	 *
389	 * At worst this runs in O(N) of the image size.
390	 */
391	struct list_head extra_pages;
392	struct page *pages;
393	unsigned int count;
394
395	count = 1 << order;
396	INIT_LIST_HEAD(&extra_pages);
397
398	/* Loop while I can allocate a page and the page allocated
399	 * is a destination page.
400	 */
401	do {
402		unsigned long pfn, epfn, addr, eaddr;
403
404		pages = kimage_alloc_pages(GFP_KERNEL, order);
405		if (!pages)
406			break;
407		pfn   = page_to_pfn(pages);
408		epfn  = pfn + count;
409		addr  = pfn << PAGE_SHIFT;
410		eaddr = epfn << PAGE_SHIFT;
411		if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
412			      kimage_is_destination_range(image, addr, eaddr)) {
413			list_add(&pages->lru, &extra_pages);
414			pages = NULL;
415		}
416	} while (!pages);
417
418	if (pages) {
419		/* Remember the allocated page... */
420		list_add(&pages->lru, &image->control_pages);
421
422		/* Because the page is already in it's destination
423		 * location we will never allocate another page at
424		 * that address.  Therefore kimage_alloc_pages
425		 * will not return it (again) and we don't need
426		 * to give it an entry in image->segment[].
427		 */
428	}
429	/* Deal with the destination pages I have inadvertently allocated.
430	 *
431	 * Ideally I would convert multi-page allocations into single
432	 * page allocations, and add everyting to image->dest_pages.
433	 *
434	 * For now it is simpler to just free the pages.
435	 */
436	kimage_free_page_list(&extra_pages);
437
438	return pages;
439}
440
441static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
442						      unsigned int order)
443{
444	/* Control pages are special, they are the intermediaries
445	 * that are needed while we copy the rest of the pages
446	 * to their final resting place.  As such they must
447	 * not conflict with either the destination addresses
448	 * or memory the kernel is already using.
449	 *
450	 * Control pages are also the only pags we must allocate
451	 * when loading a crash kernel.  All of the other pages
452	 * are specified by the segments and we just memcpy
453	 * into them directly.
454	 *
455	 * The only case where we really need more than one of
456	 * these are for architectures where we cannot disable
457	 * the MMU and must instead generate an identity mapped
458	 * page table for all of the memory.
459	 *
460	 * Given the low demand this implements a very simple
461	 * allocator that finds the first hole of the appropriate
462	 * size in the reserved memory region, and allocates all
463	 * of the memory up to and including the hole.
464	 */
465	unsigned long hole_start, hole_end, size;
466	struct page *pages;
467
468	pages = NULL;
469	size = (1 << order) << PAGE_SHIFT;
470	hole_start = (image->control_page + (size - 1)) & ~(size - 1);
471	hole_end   = hole_start + size - 1;
472	while (hole_end <= crashk_res.end) {
473		unsigned long i;
474
475		if (hole_end > KEXEC_CONTROL_MEMORY_LIMIT)
476			break;
477		if (hole_end > crashk_res.end)
478			break;
479		/* See if I overlap any of the segments */
480		for (i = 0; i < image->nr_segments; i++) {
481			unsigned long mstart, mend;
482
483			mstart = image->segment[i].mem;
484			mend   = mstart + image->segment[i].memsz - 1;
485			if ((hole_end >= mstart) && (hole_start <= mend)) {
486				/* Advance the hole to the end of the segment */
487				hole_start = (mend + (size - 1)) & ~(size - 1);
488				hole_end   = hole_start + size - 1;
489				break;
490			}
491		}
492		/* If I don't overlap any segments I have found my hole! */
493		if (i == image->nr_segments) {
494			pages = pfn_to_page(hole_start >> PAGE_SHIFT);
495			break;
496		}
497	}
498	if (pages)
499		image->control_page = hole_end;
500
501	return pages;
502}
503
504
505struct page *kimage_alloc_control_pages(struct kimage *image,
506					 unsigned int order)
507{
508	struct page *pages = NULL;
509
510	switch (image->type) {
511	case KEXEC_TYPE_DEFAULT:
512		pages = kimage_alloc_normal_control_pages(image, order);
513		break;
514	case KEXEC_TYPE_CRASH:
515		pages = kimage_alloc_crash_control_pages(image, order);
516		break;
517	}
518
519	return pages;
520}
521
522static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
523{
524	if (*image->entry != 0)
525		image->entry++;
526
527	if (image->entry == image->last_entry) {
528		kimage_entry_t *ind_page;
529		struct page *page;
530
531		page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
532		if (!page)
533			return -ENOMEM;
534
535		ind_page = page_address(page);
536		*image->entry = virt_to_phys(ind_page) | IND_INDIRECTION;
537		image->entry = ind_page;
538		image->last_entry = ind_page +
539				      ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
540	}
541	*image->entry = entry;
542	image->entry++;
543	*image->entry = 0;
544
545	return 0;
546}
547
548static int kimage_set_destination(struct kimage *image,
549				   unsigned long destination)
550{
551	int result;
552
553	destination &= PAGE_MASK;
554	result = kimage_add_entry(image, destination | IND_DESTINATION);
555	if (result == 0)
556		image->destination = destination;
557
558	return result;
559}
560
561
562static int kimage_add_page(struct kimage *image, unsigned long page)
563{
564	int result;
565
566	page &= PAGE_MASK;
567	result = kimage_add_entry(image, page | IND_SOURCE);
568	if (result == 0)
569		image->destination += PAGE_SIZE;
570
571	return result;
572}
573
574
575static void kimage_free_extra_pages(struct kimage *image)
576{
577	/* Walk through and free any extra destination pages I may have */
578	kimage_free_page_list(&image->dest_pages);
579
580	/* Walk through and free any unuseable pages I have cached */
581	kimage_free_page_list(&image->unuseable_pages);
582
583}
584static int kimage_terminate(struct kimage *image)
585{
586	if (*image->entry != 0)
587		image->entry++;
588
589	*image->entry = IND_DONE;
590
591	return 0;
592}
593
594#define for_each_kimage_entry(image, ptr, entry) \
595	for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
596		ptr = (entry & IND_INDIRECTION)? \
597			phys_to_virt((entry & PAGE_MASK)): ptr +1)
598
599static void kimage_free_entry(kimage_entry_t entry)
600{
601	struct page *page;
602
603	page = pfn_to_page(entry >> PAGE_SHIFT);
604	kimage_free_pages(page);
605}
606
607static void kimage_free(struct kimage *image)
608{
609	kimage_entry_t *ptr, entry;
610	kimage_entry_t ind = 0;
611
612	if (!image)
613		return;
614
615	kimage_free_extra_pages(image);
616	for_each_kimage_entry(image, ptr, entry) {
617		if (entry & IND_INDIRECTION) {
618			/* Free the previous indirection page */
619			if (ind & IND_INDIRECTION)
620				kimage_free_entry(ind);
621			/* Save this indirection page until we are
622			 * done with it.
623			 */
624			ind = entry;
625		}
626		else if (entry & IND_SOURCE)
627			kimage_free_entry(entry);
628	}
629	/* Free the final indirection page */
630	if (ind & IND_INDIRECTION)
631		kimage_free_entry(ind);
632
633	/* Handle any machine specific cleanup */
634	machine_kexec_cleanup(image);
635
636	/* Free the kexec control pages... */
637	kimage_free_page_list(&image->control_pages);
638	kfree(image);
639}
640
641static kimage_entry_t *kimage_dst_used(struct kimage *image,
642					unsigned long page)
643{
644	kimage_entry_t *ptr, entry;
645	unsigned long destination = 0;
646
647	for_each_kimage_entry(image, ptr, entry) {
648		if (entry & IND_DESTINATION)
649			destination = entry & PAGE_MASK;
650		else if (entry & IND_SOURCE) {
651			if (page == destination)
652				return ptr;
653			destination += PAGE_SIZE;
654		}
655	}
656
657	return NULL;
658}
659
660static struct page *kimage_alloc_page(struct kimage *image,
661					gfp_t gfp_mask,
662					unsigned long destination)
663{
664	/*
665	 * Here we implement safeguards to ensure that a source page
666	 * is not copied to its destination page before the data on
667	 * the destination page is no longer useful.
668	 *
669	 * To do this we maintain the invariant that a source page is
670	 * either its own destination page, or it is not a
671	 * destination page at all.
672	 *
673	 * That is slightly stronger than required, but the proof
674	 * that no problems will not occur is trivial, and the
675	 * implementation is simply to verify.
676	 *
677	 * When allocating all pages normally this algorithm will run
678	 * in O(N) time, but in the worst case it will run in O(N^2)
679	 * time.   If the runtime is a problem the data structures can
680	 * be fixed.
681	 */
682	struct page *page;
683	unsigned long addr;
684
685	/*
686	 * Walk through the list of destination pages, and see if I
687	 * have a match.
688	 */
689	list_for_each_entry(page, &image->dest_pages, lru) {
690		addr = page_to_pfn(page) << PAGE_SHIFT;
691		if (addr == destination) {
692			list_del(&page->lru);
693			return page;
694		}
695	}
696	page = NULL;
697	while (1) {
698		kimage_entry_t *old;
699
700		/* Allocate a page, if we run out of memory give up */
701		page = kimage_alloc_pages(gfp_mask, 0);
702		if (!page)
703			return NULL;
704		/* If the page cannot be used file it away */
705		if (page_to_pfn(page) >
706				(KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
707			list_add(&page->lru, &image->unuseable_pages);
708			continue;
709		}
710		addr = page_to_pfn(page) << PAGE_SHIFT;
711
712		/* If it is the destination page we want use it */
713		if (addr == destination)
714			break;
715
716		/* If the page is not a destination page use it */
717		if (!kimage_is_destination_range(image, addr,
718						  addr + PAGE_SIZE))
719			break;
720
721		/*
722		 * I know that the page is someones destination page.
723		 * See if there is already a source page for this
724		 * destination page.  And if so swap the source pages.
725		 */
726		old = kimage_dst_used(image, addr);
727		if (old) {
728			/* If so move it */
729			unsigned long old_addr;
730			struct page *old_page;
731
732			old_addr = *old & PAGE_MASK;
733			old_page = pfn_to_page(old_addr >> PAGE_SHIFT);
734			copy_highpage(page, old_page);
735			*old = addr | (*old & ~PAGE_MASK);
736
737			/* The old page I have found cannot be a
738			 * destination page, so return it.
739			 */
740			addr = old_addr;
741			page = old_page;
742			break;
743		}
744		else {
745			/* Place the page on the destination list I
746			 * will use it later.
747			 */
748			list_add(&page->lru, &image->dest_pages);
749		}
750	}
751
752	return page;
753}
754
755static int kimage_load_normal_segment(struct kimage *image,
756					 struct kexec_segment *segment)
757{
758	unsigned long maddr;
759	unsigned long ubytes, mbytes;
760	int result;
761	unsigned char __user *buf;
762
763	result = 0;
764	buf = segment->buf;
765	ubytes = segment->bufsz;
766	mbytes = segment->memsz;
767	maddr = segment->mem;
768
769	result = kimage_set_destination(image, maddr);
770	if (result < 0)
771		goto out;
772
773	while (mbytes) {
774		struct page *page;
775		char *ptr;
776		size_t uchunk, mchunk;
777
778		page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
779		if (page == 0) {
780			result  = -ENOMEM;
781			goto out;
782		}
783		result = kimage_add_page(image, page_to_pfn(page)
784								<< PAGE_SHIFT);
785		if (result < 0)
786			goto out;
787
788		ptr = kmap(page);
789		/* Start with a clear page */
790		memset(ptr, 0, PAGE_SIZE);
791		ptr += maddr & ~PAGE_MASK;
792		mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK);
793		if (mchunk > mbytes)
794			mchunk = mbytes;
795
796		uchunk = mchunk;
797		if (uchunk > ubytes)
798			uchunk = ubytes;
799
800		result = copy_from_user(ptr, buf, uchunk);
801		kunmap(page);
802		if (result) {
803			result = (result < 0) ? result : -EIO;
804			goto out;
805		}
806		ubytes -= uchunk;
807		maddr  += mchunk;
808		buf    += mchunk;
809		mbytes -= mchunk;
810	}
811out:
812	return result;
813}
814
815static int kimage_load_crash_segment(struct kimage *image,
816					struct kexec_segment *segment)
817{
818	/* For crash dumps kernels we simply copy the data from
819	 * user space to it's destination.
820	 * We do things a page at a time for the sake of kmap.
821	 */
822	unsigned long maddr;
823	unsigned long ubytes, mbytes;
824	int result;
825	unsigned char __user *buf;
826
827	result = 0;
828	buf = segment->buf;
829	ubytes = segment->bufsz;
830	mbytes = segment->memsz;
831	maddr = segment->mem;
832	while (mbytes) {
833		struct page *page;
834		char *ptr;
835		size_t uchunk, mchunk;
836
837		page = pfn_to_page(maddr >> PAGE_SHIFT);
838		if (page == 0) {
839			result  = -ENOMEM;
840			goto out;
841		}
842		ptr = kmap(page);
843		ptr += maddr & ~PAGE_MASK;
844		mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK);
845		if (mchunk > mbytes)
846			mchunk = mbytes;
847
848		uchunk = mchunk;
849		if (uchunk > ubytes) {
850			uchunk = ubytes;
851			/* Zero the trailing part of the page */
852			memset(ptr + uchunk, 0, mchunk - uchunk);
853		}
854		result = copy_from_user(ptr, buf, uchunk);
855		kexec_flush_icache_page(page);
856		kunmap(page);
857		if (result) {
858			result = (result < 0) ? result : -EIO;
859			goto out;
860		}
861		ubytes -= uchunk;
862		maddr  += mchunk;
863		buf    += mchunk;
864		mbytes -= mchunk;
865	}
866out:
867	return result;
868}
869
870static int kimage_load_segment(struct kimage *image,
871				struct kexec_segment *segment)
872{
873	int result = -ENOMEM;
874
875	switch (image->type) {
876	case KEXEC_TYPE_DEFAULT:
877		result = kimage_load_normal_segment(image, segment);
878		break;
879	case KEXEC_TYPE_CRASH:
880		result = kimage_load_crash_segment(image, segment);
881		break;
882	}
883
884	return result;
885}
886
887/*
888 * Exec Kernel system call: for obvious reasons only root may call it.
889 *
890 * This call breaks up into three pieces.
891 * - A generic part which loads the new kernel from the current
892 *   address space, and very carefully places the data in the
893 *   allocated pages.
894 *
895 * - A generic part that interacts with the kernel and tells all of
896 *   the devices to shut down.  Preventing on-going dmas, and placing
897 *   the devices in a consistent state so a later kernel can
898 *   reinitialize them.
899 *
900 * - A machine specific part that includes the syscall number
901 *   and the copies the image to it's final destination.  And
902 *   jumps into the image at entry.
903 *
904 * kexec does not sync, or unmount filesystems so if you need
905 * that to happen you need to do that yourself.
906 */
907struct kimage *kexec_image;
908struct kimage *kexec_crash_image;
909/*
910 * A home grown binary mutex.
911 * Nothing can wait so this mutex is safe to use
912 * in interrupt context :)
913 */
914static int kexec_lock;
915
916asmlinkage long sys_kexec_load(unsigned long entry, unsigned long nr_segments,
917				struct kexec_segment __user *segments,
918				unsigned long flags)
919{
920	struct kimage **dest_image, *image;
921	int locked;
922	int result;
923
924	/* We only trust the superuser with rebooting the system. */
925	if (!capable(CAP_SYS_BOOT))
926		return -EPERM;
927
928	/*
929	 * Verify we have a legal set of flags
930	 * This leaves us room for future extensions.
931	 */
932	if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK))
933		return -EINVAL;
934
935	/* Verify we are on the appropriate architecture */
936	if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) &&
937		((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT))
938		return -EINVAL;
939
940	/* Put an artificial cap on the number
941	 * of segments passed to kexec_load.
942	 */
943	if (nr_segments > KEXEC_SEGMENT_MAX)
944		return -EINVAL;
945
946	image = NULL;
947	result = 0;
948
949	/* Because we write directly to the reserved memory
950	 * region when loading crash kernels we need a mutex here to
951	 * prevent multiple crash  kernels from attempting to load
952	 * simultaneously, and to prevent a crash kernel from loading
953	 * over the top of a in use crash kernel.
954	 *
955	 * KISS: always take the mutex.
956	 */
957	locked = xchg(&kexec_lock, 1);
958	if (locked)
959		return -EBUSY;
960
961	dest_image = &kexec_image;
962	if (flags & KEXEC_ON_CRASH)
963		dest_image = &kexec_crash_image;
964	if (nr_segments > 0) {
965		unsigned long i;
966
967		/* Loading another kernel to reboot into */
968		if ((flags & KEXEC_ON_CRASH) == 0)
969			result = kimage_normal_alloc(&image, entry,
970							nr_segments, segments);
971		/* Loading another kernel to switch to if this one crashes */
972		else if (flags & KEXEC_ON_CRASH) {
973			/* Free any current crash dump kernel before
974			 * we corrupt it.
975			 */
976			kimage_free(xchg(&kexec_crash_image, NULL));
977			result = kimage_crash_alloc(&image, entry,
978						     nr_segments, segments);
979		}
980		if (result)
981			goto out;
982
983		result = machine_kexec_prepare(image);
984		if (result)
985			goto out;
986
987		for (i = 0; i < nr_segments; i++) {
988			result = kimage_load_segment(image, &image->segment[i]);
989			if (result)
990				goto out;
991		}
992		result = kimage_terminate(image);
993		if (result)
994			goto out;
995	}
996	/* Install the new kernel, and  Uninstall the old */
997	image = xchg(dest_image, image);
998
999out:
1000	locked = xchg(&kexec_lock, 0); /* Release the mutex */
1001	BUG_ON(!locked);
1002	kimage_free(image);
1003
1004	return result;
1005}
1006
1007#ifdef CONFIG_COMPAT
1008asmlinkage long compat_sys_kexec_load(unsigned long entry,
1009				unsigned long nr_segments,
1010				struct compat_kexec_segment __user *segments,
1011				unsigned long flags)
1012{
1013	struct compat_kexec_segment in;
1014	struct kexec_segment out, __user *ksegments;
1015	unsigned long i, result;
1016
1017	/* Don't allow clients that don't understand the native
1018	 * architecture to do anything.
1019	 */
1020	if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT)
1021		return -EINVAL;
1022
1023	if (nr_segments > KEXEC_SEGMENT_MAX)
1024		return -EINVAL;
1025
1026	ksegments = compat_alloc_user_space(nr_segments * sizeof(out));
1027	for (i=0; i < nr_segments; i++) {
1028		result = copy_from_user(&in, &segments[i], sizeof(in));
1029		if (result)
1030			return -EFAULT;
1031
1032		out.buf   = compat_ptr(in.buf);
1033		out.bufsz = in.bufsz;
1034		out.mem   = in.mem;
1035		out.memsz = in.memsz;
1036
1037		result = copy_to_user(&ksegments[i], &out, sizeof(out));
1038		if (result)
1039			return -EFAULT;
1040	}
1041
1042	return sys_kexec_load(entry, nr_segments, ksegments, flags);
1043}
1044#endif
1045
1046void crash_kexec(struct pt_regs *regs)
1047{
1048	int locked;
1049
1050
1051	/* Take the kexec_lock here to prevent sys_kexec_load
1052	 * running on one cpu from replacing the crash kernel
1053	 * we are using after a panic on a different cpu.
1054	 *
1055	 * If the crash kernel was not located in a fixed area
1056	 * of memory the xchg(&kexec_crash_image) would be
1057	 * sufficient.  But since I reuse the memory...
1058	 */
1059	locked = xchg(&kexec_lock, 1);
1060	if (!locked) {
1061		if (kexec_crash_image) {
1062			struct pt_regs fixed_regs;
1063			crash_setup_regs(&fixed_regs, regs);
1064			machine_crash_shutdown(&fixed_regs);
1065			machine_kexec(kexec_crash_image);
1066		}
1067		locked = xchg(&kexec_lock, 0);
1068		BUG_ON(!locked);
1069	}
1070}
1071
1072static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data,
1073			    size_t data_len)
1074{
1075	struct elf_note note;
1076
1077	note.n_namesz = strlen(name) + 1;
1078	note.n_descsz = data_len;
1079	note.n_type   = type;
1080	memcpy(buf, &note, sizeof(note));
1081	buf += (sizeof(note) + 3)/4;
1082	memcpy(buf, name, note.n_namesz);
1083	buf += (note.n_namesz + 3)/4;
1084	memcpy(buf, data, note.n_descsz);
1085	buf += (note.n_descsz + 3)/4;
1086
1087	return buf;
1088}
1089
1090static void final_note(u32 *buf)
1091{
1092	struct elf_note note;
1093
1094	note.n_namesz = 0;
1095	note.n_descsz = 0;
1096	note.n_type   = 0;
1097	memcpy(buf, &note, sizeof(note));
1098}
1099
1100void crash_save_cpu(struct pt_regs *regs, int cpu)
1101{
1102	struct elf_prstatus prstatus;
1103	u32 *buf;
1104
1105	if ((cpu < 0) || (cpu >= NR_CPUS))
1106		return;
1107
1108	/* Using ELF notes here is opportunistic.
1109	 * I need a well defined structure format
1110	 * for the data I pass, and I need tags
1111	 * on the data to indicate what information I have
1112	 * squirrelled away.  ELF notes happen to provide
1113	 * all of that, so there is no need to invent something new.
1114	 */
1115	buf = (u32*)per_cpu_ptr(crash_notes, cpu);
1116	if (!buf)
1117		return;
1118	memset(&prstatus, 0, sizeof(prstatus));
1119	prstatus.pr_pid = current->pid;
1120	elf_core_copy_regs(&prstatus.pr_reg, regs);
1121	buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
1122		      	      &prstatus, sizeof(prstatus));
1123	final_note(buf);
1124}
1125
1126static int __init crash_notes_memory_init(void)
1127{
1128	/* Allocate memory for saving cpu registers. */
1129	crash_notes = alloc_percpu(note_buf_t);
1130	if (!crash_notes) {
1131		printk("Kexec: Memory allocation for saving cpu register"
1132		" states failed\n");
1133		return -ENOMEM;
1134	}
1135	return 0;
1136}
1137module_init(crash_notes_memory_init)
1138