1/* Software floating-point emulation. Common operations.
2   Copyright (C) 1997,1998,1999 Free Software Foundation, Inc.
3   This file is part of the GNU C Library.
4   Contributed by Richard Henderson (rth@cygnus.com),
5		  Jakub Jelinek (jj@ultra.linux.cz),
6		  David S. Miller (davem@redhat.com) and
7		  Peter Maydell (pmaydell@chiark.greenend.org.uk).
8
9   The GNU C Library is free software; you can redistribute it and/or
10   modify it under the terms of the GNU Library General Public License as
11   published by the Free Software Foundation; either version 2 of the
12   License, or (at your option) any later version.
13
14   The GNU C Library is distributed in the hope that it will be useful,
15   but WITHOUT ANY WARRANTY; without even the implied warranty of
16   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17   Library General Public License for more details.
18
19   You should have received a copy of the GNU Library General Public
20   License along with the GNU C Library; see the file COPYING.LIB.  If
21   not, write to the Free Software Foundation, Inc.,
22   59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */
23
24#ifndef __MATH_EMU_OP_COMMON_H__
25#define __MATH_EMU_OP_COMMON_H__
26
27#define _FP_DECL(wc, X)			\
28  _FP_I_TYPE X##_c=0, X##_s=0, X##_e=0;	\
29  _FP_FRAC_DECL_##wc(X)
30
31/*
32 * Finish truely unpacking a native fp value by classifying the kind
33 * of fp value and normalizing both the exponent and the fraction.
34 */
35
36#define _FP_UNPACK_CANONICAL(fs, wc, X)					\
37do {									\
38  switch (X##_e)							\
39  {									\
40  default:								\
41    _FP_FRAC_HIGH_RAW_##fs(X) |= _FP_IMPLBIT_##fs;			\
42    _FP_FRAC_SLL_##wc(X, _FP_WORKBITS);					\
43    X##_e -= _FP_EXPBIAS_##fs;						\
44    X##_c = FP_CLS_NORMAL;						\
45    break;								\
46									\
47  case 0:								\
48    if (_FP_FRAC_ZEROP_##wc(X))						\
49      X##_c = FP_CLS_ZERO;						\
50    else								\
51      {									\
52	/* a denormalized number */					\
53	_FP_I_TYPE _shift;						\
54	_FP_FRAC_CLZ_##wc(_shift, X);					\
55	_shift -= _FP_FRACXBITS_##fs;					\
56	_FP_FRAC_SLL_##wc(X, (_shift+_FP_WORKBITS));			\
57	X##_e -= _FP_EXPBIAS_##fs - 1 + _shift;				\
58	X##_c = FP_CLS_NORMAL;						\
59	FP_SET_EXCEPTION(FP_EX_DENORM);					\
60	if (FP_DENORM_ZERO)						\
61	  {								\
62	    FP_SET_EXCEPTION(FP_EX_INEXACT);				\
63	    X##_c = FP_CLS_ZERO;					\
64	  }								\
65      }									\
66    break;								\
67									\
68  case _FP_EXPMAX_##fs:							\
69    if (_FP_FRAC_ZEROP_##wc(X))						\
70      X##_c = FP_CLS_INF;						\
71    else								\
72      {									\
73	X##_c = FP_CLS_NAN;						\
74	/* Check for signaling NaN */					\
75	if (!(_FP_FRAC_HIGH_RAW_##fs(X) & _FP_QNANBIT_##fs))		\
76	  FP_SET_EXCEPTION(FP_EX_INVALID);				\
77      }									\
78    break;								\
79  }									\
80} while (0)
81
82/*
83 * Before packing the bits back into the native fp result, take care
84 * of such mundane things as rounding and overflow.  Also, for some
85 * kinds of fp values, the original parts may not have been fully
86 * extracted -- but that is ok, we can regenerate them now.
87 */
88
89#define _FP_PACK_CANONICAL(fs, wc, X)				\
90do {								\
91  switch (X##_c)						\
92  {								\
93  case FP_CLS_NORMAL:						\
94    X##_e += _FP_EXPBIAS_##fs;					\
95    if (X##_e > 0)						\
96      {								\
97	_FP_ROUND(wc, X);					\
98	if (_FP_FRAC_OVERP_##wc(fs, X))				\
99	  {							\
100	    _FP_FRAC_CLEAR_OVERP_##wc(fs, X);			\
101	    X##_e++;						\
102	  }							\
103	_FP_FRAC_SRL_##wc(X, _FP_WORKBITS);			\
104	if (X##_e >= _FP_EXPMAX_##fs)				\
105	  {							\
106	    /* overflow */					\
107	    switch (FP_ROUNDMODE)				\
108	      {							\
109	      case FP_RND_NEAREST:				\
110		X##_c = FP_CLS_INF;				\
111		break;						\
112	      case FP_RND_PINF:					\
113		if (!X##_s) X##_c = FP_CLS_INF;			\
114		break;						\
115	      case FP_RND_MINF:					\
116		if (X##_s) X##_c = FP_CLS_INF;			\
117		break;						\
118	      }							\
119	    if (X##_c == FP_CLS_INF)				\
120	      {							\
121		/* Overflow to infinity */			\
122		X##_e = _FP_EXPMAX_##fs;			\
123		_FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc);	\
124	      }							\
125	    else						\
126	      {							\
127		/* Overflow to maximum normal */		\
128		X##_e = _FP_EXPMAX_##fs - 1;			\
129		_FP_FRAC_SET_##wc(X, _FP_MAXFRAC_##wc);		\
130	      }							\
131	    FP_SET_EXCEPTION(FP_EX_OVERFLOW);			\
132            FP_SET_EXCEPTION(FP_EX_INEXACT);			\
133	  }							\
134      }								\
135    else							\
136      {								\
137	/* we've got a denormalized number */			\
138	X##_e = -X##_e + 1;					\
139	if (X##_e <= _FP_WFRACBITS_##fs)			\
140	  {							\
141	    _FP_FRAC_SRS_##wc(X, X##_e, _FP_WFRACBITS_##fs);	\
142	    _FP_ROUND(wc, X);					\
143	    if (_FP_FRAC_HIGH_##fs(X)				\
144		& (_FP_OVERFLOW_##fs >> 1))			\
145	      {							\
146	        X##_e = 1;					\
147	        _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc);	\
148	      }							\
149	    else						\
150	      {							\
151		X##_e = 0;					\
152		_FP_FRAC_SRL_##wc(X, _FP_WORKBITS);		\
153		FP_SET_EXCEPTION(FP_EX_UNDERFLOW);		\
154	      }							\
155	  }							\
156	else							\
157	  {							\
158	    /* underflow to zero */				\
159	    X##_e = 0;						\
160	    if (!_FP_FRAC_ZEROP_##wc(X))			\
161	      {							\
162	        _FP_FRAC_SET_##wc(X, _FP_MINFRAC_##wc);		\
163	        _FP_ROUND(wc, X);				\
164	        _FP_FRAC_LOW_##wc(X) >>= (_FP_WORKBITS);	\
165	      }							\
166	    FP_SET_EXCEPTION(FP_EX_UNDERFLOW);			\
167	  }							\
168      }								\
169    break;							\
170								\
171  case FP_CLS_ZERO:						\
172    X##_e = 0;							\
173    _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc);			\
174    break;							\
175								\
176  case FP_CLS_INF:						\
177    X##_e = _FP_EXPMAX_##fs;					\
178    _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc);			\
179    break;							\
180								\
181  case FP_CLS_NAN:						\
182    X##_e = _FP_EXPMAX_##fs;					\
183    if (!_FP_KEEPNANFRACP)					\
184      {								\
185	_FP_FRAC_SET_##wc(X, _FP_NANFRAC_##fs);			\
186	X##_s = _FP_NANSIGN_##fs;				\
187      }								\
188    else							\
189      _FP_FRAC_HIGH_RAW_##fs(X) |= _FP_QNANBIT_##fs;		\
190    break;							\
191  }								\
192} while (0)
193
194/* This one accepts raw argument and not cooked,  returns
195 * 1 if X is a signaling NaN.
196 */
197#define _FP_ISSIGNAN(fs, wc, X)					\
198({								\
199  int __ret = 0;						\
200  if (X##_e == _FP_EXPMAX_##fs)					\
201    {								\
202      if (!_FP_FRAC_ZEROP_##wc(X)				\
203	  && !(_FP_FRAC_HIGH_RAW_##fs(X) & _FP_QNANBIT_##fs))	\
204	__ret = 1;						\
205    }								\
206  __ret;							\
207})
208
209
210
211
212
213/*
214 * Main addition routine.  The input values should be cooked.
215 */
216
217#define _FP_ADD_INTERNAL(fs, wc, R, X, Y, OP)				     \
218do {									     \
219  switch (_FP_CLS_COMBINE(X##_c, Y##_c))				     \
220  {									     \
221  case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NORMAL):			     \
222    {									     \
223      /* shift the smaller number so that its exponent matches the larger */ \
224      _FP_I_TYPE diff = X##_e - Y##_e;					     \
225									     \
226      if (diff < 0)							     \
227	{								     \
228	  diff = -diff;							     \
229	  if (diff <= _FP_WFRACBITS_##fs)				     \
230	    _FP_FRAC_SRS_##wc(X, diff, _FP_WFRACBITS_##fs);		     \
231	  else if (!_FP_FRAC_ZEROP_##wc(X))				     \
232	    _FP_FRAC_SET_##wc(X, _FP_MINFRAC_##wc);			     \
233	  R##_e = Y##_e;						     \
234	}								     \
235      else								     \
236	{								     \
237	  if (diff > 0)							     \
238	    {								     \
239	      if (diff <= _FP_WFRACBITS_##fs)				     \
240	        _FP_FRAC_SRS_##wc(Y, diff, _FP_WFRACBITS_##fs);		     \
241	      else if (!_FP_FRAC_ZEROP_##wc(Y))				     \
242	        _FP_FRAC_SET_##wc(Y, _FP_MINFRAC_##wc);			     \
243	    }								     \
244	  R##_e = X##_e;						     \
245	}								     \
246									     \
247      R##_c = FP_CLS_NORMAL;						     \
248									     \
249      if (X##_s == Y##_s)						     \
250	{								     \
251	  R##_s = X##_s;						     \
252	  _FP_FRAC_ADD_##wc(R, X, Y);					     \
253	  if (_FP_FRAC_OVERP_##wc(fs, R))				     \
254	    {								     \
255	      _FP_FRAC_SRS_##wc(R, 1, _FP_WFRACBITS_##fs);		     \
256	      R##_e++;							     \
257	    }								     \
258	}								     \
259      else								     \
260	{								     \
261	  R##_s = X##_s;						     \
262	  _FP_FRAC_SUB_##wc(R, X, Y);					     \
263	  if (_FP_FRAC_ZEROP_##wc(R))					     \
264	    {								     \
265	      /* return an exact zero */				     \
266	      if (FP_ROUNDMODE == FP_RND_MINF)				     \
267		R##_s |= Y##_s;						     \
268	      else							     \
269		R##_s &= Y##_s;						     \
270	      R##_c = FP_CLS_ZERO;					     \
271	    }								     \
272	  else								     \
273	    {								     \
274	      if (_FP_FRAC_NEGP_##wc(R))				     \
275		{							     \
276		  _FP_FRAC_SUB_##wc(R, Y, X);				     \
277		  R##_s = Y##_s;					     \
278		}							     \
279									     \
280	      /* renormalize after subtraction */			     \
281	      _FP_FRAC_CLZ_##wc(diff, R);				     \
282	      diff -= _FP_WFRACXBITS_##fs;				     \
283	      if (diff)							     \
284		{							     \
285		  R##_e -= diff;					     \
286		  _FP_FRAC_SLL_##wc(R, diff);				     \
287		}							     \
288	    }								     \
289	}								     \
290      break;								     \
291    }									     \
292									     \
293  case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NAN):				     \
294    _FP_CHOOSENAN(fs, wc, R, X, Y, OP);					     \
295    break;								     \
296									     \
297  case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_ZERO):			     \
298    R##_e = X##_e;							     \
299  case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NORMAL):			     \
300  case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_INF):				     \
301  case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_ZERO):				     \
302    _FP_FRAC_COPY_##wc(R, X);						     \
303    R##_s = X##_s;							     \
304    R##_c = X##_c;							     \
305    break;								     \
306									     \
307  case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NORMAL):			     \
308    R##_e = Y##_e;							     \
309  case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NAN):			     \
310  case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NAN):				     \
311  case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NAN):				     \
312    _FP_FRAC_COPY_##wc(R, Y);						     \
313    R##_s = Y##_s;							     \
314    R##_c = Y##_c;							     \
315    break;								     \
316									     \
317  case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_INF):				     \
318    if (X##_s != Y##_s)							     \
319      {									     \
320	/* +INF + -INF => NAN */					     \
321	_FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs);				     \
322	R##_s = _FP_NANSIGN_##fs;					     \
323	R##_c = FP_CLS_NAN;						     \
324	FP_SET_EXCEPTION(FP_EX_INVALID);				     \
325	break;								     \
326      }									     \
327    /* FALLTHRU */							     \
328									     \
329  case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NORMAL):			     \
330  case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_ZERO):				     \
331    R##_s = X##_s;							     \
332    R##_c = FP_CLS_INF;							     \
333    break;								     \
334									     \
335  case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_INF):			     \
336  case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_INF):				     \
337    R##_s = Y##_s;							     \
338    R##_c = FP_CLS_INF;							     \
339    break;								     \
340									     \
341  case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_ZERO):			     \
342    /* make sure the sign is correct */					     \
343    if (FP_ROUNDMODE == FP_RND_MINF)					     \
344      R##_s = X##_s | Y##_s;						     \
345    else								     \
346      R##_s = X##_s & Y##_s;						     \
347    R##_c = FP_CLS_ZERO;						     \
348    break;								     \
349									     \
350  default:								     \
351    abort();								     \
352  }									     \
353} while (0)
354
355#define _FP_ADD(fs, wc, R, X, Y) _FP_ADD_INTERNAL(fs, wc, R, X, Y, '+')
356#define _FP_SUB(fs, wc, R, X, Y)					     \
357  do {									     \
358    if (Y##_c != FP_CLS_NAN) Y##_s ^= 1;				     \
359    _FP_ADD_INTERNAL(fs, wc, R, X, Y, '-');				     \
360  } while (0)
361
362
363
364#define _FP_NEG(fs, wc, R, X)		\
365  do {					\
366    _FP_FRAC_COPY_##wc(R, X);		\
367    R##_c = X##_c;			\
368    R##_e = X##_e;			\
369    R##_s = 1 ^ X##_s;			\
370  } while (0)
371
372
373/*
374 * Main multiplication routine.  The input values should be cooked.
375 */
376
377#define _FP_MUL(fs, wc, R, X, Y)			\
378do {							\
379  R##_s = X##_s ^ Y##_s;				\
380  switch (_FP_CLS_COMBINE(X##_c, Y##_c))		\
381  {							\
382  case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NORMAL):	\
383    R##_c = FP_CLS_NORMAL;				\
384    R##_e = X##_e + Y##_e + 1;				\
385							\
386    _FP_MUL_MEAT_##fs(R,X,Y);				\
387							\
388    if (_FP_FRAC_OVERP_##wc(fs, R))			\
389      _FP_FRAC_SRS_##wc(R, 1, _FP_WFRACBITS_##fs);	\
390    else						\
391      R##_e--;						\
392    break;						\
393							\
394  case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NAN):		\
395    _FP_CHOOSENAN(fs, wc, R, X, Y, '*');		\
396    break;						\
397							\
398  case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NORMAL):	\
399  case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_INF):		\
400  case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_ZERO):		\
401    R##_s = X##_s;					\
402							\
403  case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_INF):		\
404  case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NORMAL):	\
405  case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NORMAL):	\
406  case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_ZERO):	\
407    _FP_FRAC_COPY_##wc(R, X);				\
408    R##_c = X##_c;					\
409    break;						\
410							\
411  case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NAN):	\
412  case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NAN):		\
413  case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NAN):		\
414    R##_s = Y##_s;					\
415							\
416  case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_INF):	\
417  case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_ZERO):	\
418    _FP_FRAC_COPY_##wc(R, Y);				\
419    R##_c = Y##_c;					\
420    break;						\
421							\
422  case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_ZERO):		\
423  case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_INF):		\
424    R##_s = _FP_NANSIGN_##fs;				\
425    R##_c = FP_CLS_NAN;					\
426    _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs);		\
427    FP_SET_EXCEPTION(FP_EX_INVALID);			\
428    break;						\
429							\
430  default:						\
431    abort();						\
432  }							\
433} while (0)
434
435
436/*
437 * Main division routine.  The input values should be cooked.
438 */
439
440#define _FP_DIV(fs, wc, R, X, Y)			\
441do {							\
442  R##_s = X##_s ^ Y##_s;				\
443  switch (_FP_CLS_COMBINE(X##_c, Y##_c))		\
444  {							\
445  case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NORMAL):	\
446    R##_c = FP_CLS_NORMAL;				\
447    R##_e = X##_e - Y##_e;				\
448							\
449    _FP_DIV_MEAT_##fs(R,X,Y);				\
450    break;						\
451							\
452  case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NAN):		\
453    _FP_CHOOSENAN(fs, wc, R, X, Y, '/');		\
454    break;						\
455							\
456  case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NORMAL):	\
457  case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_INF):		\
458  case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_ZERO):		\
459    R##_s = X##_s;					\
460    _FP_FRAC_COPY_##wc(R, X);				\
461    R##_c = X##_c;					\
462    break;						\
463							\
464  case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NAN):	\
465  case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NAN):		\
466  case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NAN):		\
467    R##_s = Y##_s;					\
468    _FP_FRAC_COPY_##wc(R, Y);				\
469    R##_c = Y##_c;					\
470    break;						\
471							\
472  case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_INF):	\
473  case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_INF):		\
474  case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NORMAL):	\
475    R##_c = FP_CLS_ZERO;				\
476    break;						\
477							\
478  case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_ZERO):	\
479    FP_SET_EXCEPTION(FP_EX_DIVZERO);			\
480  case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_ZERO):		\
481  case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NORMAL):	\
482    R##_c = FP_CLS_INF;					\
483    break;						\
484							\
485  case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_INF):		\
486  case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_ZERO):	\
487    R##_s = _FP_NANSIGN_##fs;				\
488    R##_c = FP_CLS_NAN;					\
489    _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs);		\
490    FP_SET_EXCEPTION(FP_EX_INVALID);			\
491    break;						\
492							\
493  default:						\
494    abort();						\
495  }							\
496} while (0)
497
498
499/*
500 * Main differential comparison routine.  The inputs should be raw not
501 * cooked.  The return is -1,0,1 for normal values, 2 otherwise.
502 */
503
504#define _FP_CMP(fs, wc, ret, X, Y, un)					\
505  do {									\
506    /* NANs are unordered */						\
507    if ((X##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(X))		\
508	|| (Y##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(Y)))	\
509      {									\
510	ret = un;							\
511      }									\
512    else								\
513      {									\
514	int __is_zero_x;						\
515	int __is_zero_y;						\
516									\
517	__is_zero_x = (!X##_e && _FP_FRAC_ZEROP_##wc(X)) ? 1 : 0;	\
518	__is_zero_y = (!Y##_e && _FP_FRAC_ZEROP_##wc(Y)) ? 1 : 0;	\
519									\
520	if (__is_zero_x && __is_zero_y)					\
521		ret = 0;						\
522	else if (__is_zero_x)						\
523		ret = Y##_s ? 1 : -1;					\
524	else if (__is_zero_y)						\
525		ret = X##_s ? -1 : 1;					\
526	else if (X##_s != Y##_s)					\
527	  ret = X##_s ? -1 : 1;						\
528	else if (X##_e > Y##_e)						\
529	  ret = X##_s ? -1 : 1;						\
530	else if (X##_e < Y##_e)						\
531	  ret = X##_s ? 1 : -1;						\
532	else if (_FP_FRAC_GT_##wc(X, Y))				\
533	  ret = X##_s ? -1 : 1;						\
534	else if (_FP_FRAC_GT_##wc(Y, X))				\
535	  ret = X##_s ? 1 : -1;						\
536	else								\
537	  ret = 0;							\
538      }									\
539  } while (0)
540
541
542/* Simplification for strict equality.  */
543
544#define _FP_CMP_EQ(fs, wc, ret, X, Y)					  \
545  do {									  \
546    /* NANs are unordered */						  \
547    if ((X##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(X))		  \
548	|| (Y##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(Y)))	  \
549      {									  \
550	ret = 1;							  \
551      }									  \
552    else								  \
553      {									  \
554	ret = !(X##_e == Y##_e						  \
555		&& _FP_FRAC_EQ_##wc(X, Y)				  \
556		&& (X##_s == Y##_s || !X##_e && _FP_FRAC_ZEROP_##wc(X))); \
557      }									  \
558  } while (0)
559
560/*
561 * Main square root routine.  The input value should be cooked.
562 */
563
564#define _FP_SQRT(fs, wc, R, X)						\
565do {									\
566    _FP_FRAC_DECL_##wc(T); _FP_FRAC_DECL_##wc(S);			\
567    _FP_W_TYPE q;							\
568    switch (X##_c)							\
569    {									\
570    case FP_CLS_NAN:							\
571	_FP_FRAC_COPY_##wc(R, X);					\
572	R##_s = X##_s;							\
573    	R##_c = FP_CLS_NAN;						\
574    	break;								\
575    case FP_CLS_INF:							\
576    	if (X##_s)							\
577    	  {								\
578    	    R##_s = _FP_NANSIGN_##fs;					\
579	    R##_c = FP_CLS_NAN; /* NAN */				\
580	    _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs);			\
581	    FP_SET_EXCEPTION(FP_EX_INVALID);				\
582    	  }								\
583    	else								\
584    	  {								\
585    	    R##_s = 0;							\
586    	    R##_c = FP_CLS_INF; /* sqrt(+inf) = +inf */			\
587    	  }								\
588    	break;								\
589    case FP_CLS_ZERO:							\
590	R##_s = X##_s;							\
591	R##_c = FP_CLS_ZERO; /* sqrt(+-0) = +-0 */			\
592	break;								\
593    case FP_CLS_NORMAL:							\
594    	R##_s = 0;							\
595        if (X##_s)							\
596          {								\
597	    R##_c = FP_CLS_NAN; /* sNAN */				\
598	    R##_s = _FP_NANSIGN_##fs;					\
599	    _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs);			\
600	    FP_SET_EXCEPTION(FP_EX_INVALID);				\
601	    break;							\
602          }								\
603    	R##_c = FP_CLS_NORMAL;						\
604        if (X##_e & 1)							\
605          _FP_FRAC_SLL_##wc(X, 1);					\
606        R##_e = X##_e >> 1;						\
607        _FP_FRAC_SET_##wc(S, _FP_ZEROFRAC_##wc);			\
608        _FP_FRAC_SET_##wc(R, _FP_ZEROFRAC_##wc);			\
609        q = _FP_OVERFLOW_##fs >> 1;					\
610        _FP_SQRT_MEAT_##wc(R, S, T, X, q);				\
611    }									\
612  } while (0)
613
614/*
615 * Convert from FP to integer
616 */
617
618/* RSIGNED can have following values:
619 * 0:  the number is required to be 0..(2^rsize)-1, if not, NV is set plus
620 *     the result is either 0 or (2^rsize)-1 depending on the sign in such case.
621 * 1:  the number is required to be -(2^(rsize-1))..(2^(rsize-1))-1, if not, NV is
622 *     set plus the result is either -(2^(rsize-1)) or (2^(rsize-1))-1 depending
623 *     on the sign in such case.
624 * 2:  the number is required to be -(2^(rsize-1))..(2^(rsize-1))-1, if not, NV is
625 *     set plus the result is truncated to fit into destination.
626 * -1: the number is required to be -(2^(rsize-1))..(2^rsize)-1, if not, NV is
627 *     set plus the result is either -(2^(rsize-1)) or (2^(rsize-1))-1 depending
628 *     on the sign in such case.
629 */
630#define _FP_TO_INT(fs, wc, r, X, rsize, rsigned)				\
631  do {										\
632    switch (X##_c)								\
633      {										\
634      case FP_CLS_NORMAL:							\
635	if (X##_e < 0)								\
636	  {									\
637	    FP_SET_EXCEPTION(FP_EX_INEXACT);					\
638	  case FP_CLS_ZERO:							\
639	    r = 0;								\
640	  }									\
641	else if (X##_e >= rsize - (rsigned > 0 || X##_s)			\
642		 || (!rsigned && X##_s))					\
643	  {	/* overflow */							\
644	  case FP_CLS_NAN:                                                      \
645	  case FP_CLS_INF:							\
646	    if (rsigned == 2)							\
647	      {									\
648		if (X##_c != FP_CLS_NORMAL					\
649		    || X##_e >= rsize - 1 + _FP_WFRACBITS_##fs)			\
650		  r = 0;							\
651		else								\
652		  {								\
653		    _FP_FRAC_SLL_##wc(X, (X##_e - _FP_WFRACBITS_##fs + 1));	\
654		    _FP_FRAC_ASSEMBLE_##wc(r, X, rsize);			\
655		  }								\
656	      }									\
657	    else if (rsigned)							\
658	      {									\
659		r = 1;								\
660		r <<= rsize - 1;						\
661		r -= 1 - X##_s;							\
662	      }									\
663	    else								\
664	      {									\
665		r = 0;								\
666		if (X##_s)							\
667		  r = ~r;							\
668	      }									\
669	    FP_SET_EXCEPTION(FP_EX_INVALID);					\
670	  }									\
671	else									\
672	  {									\
673	    if (_FP_W_TYPE_SIZE*wc < rsize)					\
674	      {									\
675		_FP_FRAC_ASSEMBLE_##wc(r, X, rsize);				\
676		r <<= X##_e - _FP_WFRACBITS_##fs;				\
677	      }									\
678	    else								\
679	      {									\
680		if (X##_e >= _FP_WFRACBITS_##fs)				\
681		  _FP_FRAC_SLL_##wc(X, (X##_e - _FP_WFRACBITS_##fs + 1));	\
682		else if (X##_e < _FP_WFRACBITS_##fs - 1)			\
683		  {								\
684		    _FP_FRAC_SRS_##wc(X, (_FP_WFRACBITS_##fs - X##_e - 2),	\
685				      _FP_WFRACBITS_##fs);			\
686		    if (_FP_FRAC_LOW_##wc(X) & 1)				\
687		      FP_SET_EXCEPTION(FP_EX_INEXACT);				\
688		    _FP_FRAC_SRL_##wc(X, 1);					\
689		  }								\
690		_FP_FRAC_ASSEMBLE_##wc(r, X, rsize);				\
691	      }									\
692	    if (rsigned && X##_s)						\
693	      r = -r;								\
694	  }									\
695	break;									\
696      }										\
697  } while (0)
698
699#define _FP_TO_INT_ROUND(fs, wc, r, X, rsize, rsigned)				\
700  do {										\
701    r = 0;									\
702    switch (X##_c)								\
703      {										\
704      case FP_CLS_NORMAL:							\
705	if (X##_e >= _FP_FRACBITS_##fs - 1)					\
706	  {									\
707	    if (X##_e < rsize - 1 + _FP_WFRACBITS_##fs)				\
708	      {									\
709		if (X##_e >= _FP_WFRACBITS_##fs - 1)				\
710		  {								\
711		    _FP_FRAC_ASSEMBLE_##wc(r, X, rsize);			\
712		    r <<= X##_e - _FP_WFRACBITS_##fs + 1;			\
713		  }								\
714		else								\
715		  {								\
716		    _FP_FRAC_SRL_##wc(X, _FP_WORKBITS - X##_e			\
717				      + _FP_FRACBITS_##fs - 1);			\
718		    _FP_FRAC_ASSEMBLE_##wc(r, X, rsize);			\
719		  }								\
720	      }									\
721	  }									\
722	else									\
723	  {									\
724	    if (X##_e <= -_FP_WORKBITS - 1)					\
725	      _FP_FRAC_SET_##wc(X, _FP_MINFRAC_##wc);				\
726	    else								\
727	      _FP_FRAC_SRS_##wc(X, _FP_FRACBITS_##fs - 1 - X##_e,		\
728				_FP_WFRACBITS_##fs);				\
729	    _FP_ROUND(wc, X);							\
730	    _FP_FRAC_SRL_##wc(X, _FP_WORKBITS);					\
731	    _FP_FRAC_ASSEMBLE_##wc(r, X, rsize);				\
732	  }									\
733	if (rsigned && X##_s)							\
734	  r = -r;								\
735	if (X##_e >= rsize - (rsigned > 0 || X##_s)				\
736	    || (!rsigned && X##_s))						\
737	  {	/* overflow */							\
738	  case FP_CLS_NAN:                                                      \
739	  case FP_CLS_INF:							\
740	    if (!rsigned)							\
741	      {									\
742		r = 0;								\
743		if (X##_s)							\
744		  r = ~r;							\
745	      }									\
746	    else if (rsigned != 2)						\
747	      {									\
748		r = 1;								\
749		r <<= rsize - 1;						\
750		r -= 1 - X##_s;							\
751	      }									\
752	    FP_SET_EXCEPTION(FP_EX_INVALID);					\
753	  }									\
754	break;									\
755      case FP_CLS_ZERO:								\
756        break;									\
757      }										\
758  } while (0)
759
760#define _FP_FROM_INT(fs, wc, X, r, rsize, rtype)			\
761  do {									\
762    if (r)								\
763      {									\
764        unsigned rtype ur_;						\
765	X##_c = FP_CLS_NORMAL;						\
766									\
767	if ((X##_s = (r < 0)))						\
768	  ur_ = (unsigned rtype) -r;					\
769	else								\
770	  ur_ = (unsigned rtype) r;					\
771	if (rsize <= _FP_W_TYPE_SIZE)					\
772	  __FP_CLZ(X##_e, ur_);						\
773	else								\
774	  __FP_CLZ_2(X##_e, (_FP_W_TYPE)(ur_ >> _FP_W_TYPE_SIZE), 	\
775		     (_FP_W_TYPE)ur_);					\
776	if (rsize < _FP_W_TYPE_SIZE)					\
777		X##_e -= (_FP_W_TYPE_SIZE - rsize);			\
778	X##_e = rsize - X##_e - 1;					\
779									\
780	if (_FP_FRACBITS_##fs < rsize && _FP_WFRACBITS_##fs < X##_e)	\
781	  __FP_FRAC_SRS_1(ur_, (X##_e - _FP_WFRACBITS_##fs + 1), rsize);\
782	_FP_FRAC_DISASSEMBLE_##wc(X, ur_, rsize);			\
783	if ((_FP_WFRACBITS_##fs - X##_e - 1) > 0)			\
784	  _FP_FRAC_SLL_##wc(X, (_FP_WFRACBITS_##fs - X##_e - 1));	\
785      }									\
786    else								\
787      {									\
788	X##_c = FP_CLS_ZERO, X##_s = 0;					\
789      }									\
790  } while (0)
791
792
793#define FP_CONV(dfs,sfs,dwc,swc,D,S)			\
794  do {							\
795    _FP_FRAC_CONV_##dwc##_##swc(dfs, sfs, D, S);	\
796    D##_e = S##_e;					\
797    D##_c = S##_c;					\
798    D##_s = S##_s;					\
799  } while (0)
800
801/*
802 * Helper primitives.
803 */
804
805/* Count leading zeros in a word.  */
806
807#ifndef __FP_CLZ
808#if _FP_W_TYPE_SIZE < 64
809/* this is just to shut the compiler up about shifts > word length -- PMM 02/1998 */
810#define __FP_CLZ(r, x)				\
811  do {						\
812    _FP_W_TYPE _t = (x);			\
813    r = _FP_W_TYPE_SIZE - 1;			\
814    if (_t > 0xffff) r -= 16;			\
815    if (_t > 0xffff) _t >>= 16;			\
816    if (_t > 0xff) r -= 8;			\
817    if (_t > 0xff) _t >>= 8;			\
818    if (_t & 0xf0) r -= 4;			\
819    if (_t & 0xf0) _t >>= 4;			\
820    if (_t & 0xc) r -= 2;			\
821    if (_t & 0xc) _t >>= 2;			\
822    if (_t & 0x2) r -= 1;			\
823  } while (0)
824#else /* not _FP_W_TYPE_SIZE < 64 */
825#define __FP_CLZ(r, x)				\
826  do {						\
827    _FP_W_TYPE _t = (x);			\
828    r = _FP_W_TYPE_SIZE - 1;			\
829    if (_t > 0xffffffff) r -= 32;		\
830    if (_t > 0xffffffff) _t >>= 32;		\
831    if (_t > 0xffff) r -= 16;			\
832    if (_t > 0xffff) _t >>= 16;			\
833    if (_t > 0xff) r -= 8;			\
834    if (_t > 0xff) _t >>= 8;			\
835    if (_t & 0xf0) r -= 4;			\
836    if (_t & 0xf0) _t >>= 4;			\
837    if (_t & 0xc) r -= 2;			\
838    if (_t & 0xc) _t >>= 2;			\
839    if (_t & 0x2) r -= 1;			\
840  } while (0)
841#endif /* not _FP_W_TYPE_SIZE < 64 */
842#endif /* ndef __FP_CLZ */
843
844#define _FP_DIV_HELP_imm(q, r, n, d)		\
845  do {						\
846    q = n / d, r = n % d;			\
847  } while (0)
848
849#endif /* __MATH_EMU_OP_COMMON_H__ */
850