1/*
2 * Linux Security plug
3 *
4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5 * Copyright (C) 2001 Greg Kroah-Hartman <greg@kroah.com>
6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7 * Copyright (C) 2001 James Morris <jmorris@intercode.com.au>
8 * Copyright (C) 2001 Silicon Graphics, Inc. (Trust Technology Group)
9 *
10 *	This program is free software; you can redistribute it and/or modify
11 *	it under the terms of the GNU General Public License as published by
12 *	the Free Software Foundation; either version 2 of the License, or
13 *	(at your option) any later version.
14 *
15 *	Due to this file being licensed under the GPL there is controversy over
16 *	whether this permits you to write a module that #includes this file
17 *	without placing your module under the GPL.  Please consult a lawyer for
18 *	advice before doing this.
19 *
20 */
21
22#ifndef __LINUX_SECURITY_H
23#define __LINUX_SECURITY_H
24
25#include <linux/fs.h>
26#include <linux/binfmts.h>
27#include <linux/signal.h>
28#include <linux/resource.h>
29#include <linux/sem.h>
30#include <linux/shm.h>
31#include <linux/msg.h>
32#include <linux/sched.h>
33#include <linux/key.h>
34#include <linux/xfrm.h>
35#include <net/flow.h>
36
37struct ctl_table;
38
39/*
40 * These functions are in security/capability.c and are used
41 * as the default capabilities functions
42 */
43extern int cap_capable (struct task_struct *tsk, int cap);
44extern int cap_settime (struct timespec *ts, struct timezone *tz);
45extern int cap_ptrace (struct task_struct *parent, struct task_struct *child);
46extern int cap_capget (struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted);
47extern int cap_capset_check (struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted);
48extern void cap_capset_set (struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted);
49extern int cap_bprm_set_security (struct linux_binprm *bprm);
50extern void cap_bprm_apply_creds (struct linux_binprm *bprm, int unsafe);
51extern int cap_bprm_secureexec(struct linux_binprm *bprm);
52extern int cap_inode_setxattr(struct dentry *dentry, char *name, void *value, size_t size, int flags);
53extern int cap_inode_removexattr(struct dentry *dentry, char *name);
54extern int cap_task_post_setuid (uid_t old_ruid, uid_t old_euid, uid_t old_suid, int flags);
55extern void cap_task_reparent_to_init (struct task_struct *p);
56extern int cap_syslog (int type);
57extern int cap_vm_enough_memory (long pages);
58
59struct msghdr;
60struct sk_buff;
61struct sock;
62struct sockaddr;
63struct socket;
64struct flowi;
65struct dst_entry;
66struct xfrm_selector;
67struct xfrm_policy;
68struct xfrm_state;
69struct xfrm_user_sec_ctx;
70
71extern int cap_netlink_send(struct sock *sk, struct sk_buff *skb);
72extern int cap_netlink_recv(struct sk_buff *skb, int cap);
73
74/*
75 * Values used in the task_security_ops calls
76 */
77/* setuid or setgid, id0 == uid or gid */
78#define LSM_SETID_ID	1
79
80/* setreuid or setregid, id0 == real, id1 == eff */
81#define LSM_SETID_RE	2
82
83/* setresuid or setresgid, id0 == real, id1 == eff, uid2 == saved */
84#define LSM_SETID_RES	4
85
86/* setfsuid or setfsgid, id0 == fsuid or fsgid */
87#define LSM_SETID_FS	8
88
89/* forward declares to avoid warnings */
90struct nfsctl_arg;
91struct sched_param;
92struct swap_info_struct;
93struct request_sock;
94
95/* bprm_apply_creds unsafe reasons */
96#define LSM_UNSAFE_SHARE	1
97#define LSM_UNSAFE_PTRACE	2
98#define LSM_UNSAFE_PTRACE_CAP	4
99
100#ifdef CONFIG_SECURITY
101
102/**
103 * struct security_operations - main security structure
104 *
105 * Security hooks for program execution operations.
106 *
107 * @bprm_alloc_security:
108 *	Allocate and attach a security structure to the @bprm->security field.
109 *	The security field is initialized to NULL when the bprm structure is
110 *	allocated.
111 *	@bprm contains the linux_binprm structure to be modified.
112 *	Return 0 if operation was successful.
113 * @bprm_free_security:
114 *	@bprm contains the linux_binprm structure to be modified.
115 *	Deallocate and clear the @bprm->security field.
116 * @bprm_apply_creds:
117 *	Compute and set the security attributes of a process being transformed
118 *	by an execve operation based on the old attributes (current->security)
119 *	and the information saved in @bprm->security by the set_security hook.
120 *	Since this hook function (and its caller) are void, this hook can not
121 *	return an error.  However, it can leave the security attributes of the
122 *	process unchanged if an access failure occurs at this point.
123 *	bprm_apply_creds is called under task_lock.  @unsafe indicates various
124 *	reasons why it may be unsafe to change security state.
125 *	@bprm contains the linux_binprm structure.
126 * @bprm_post_apply_creds:
127 *	Runs after bprm_apply_creds with the task_lock dropped, so that
128 *	functions which cannot be called safely under the task_lock can
129 *	be used.  This hook is a good place to perform state changes on
130 *	the process such as closing open file descriptors to which access
131 *	is no longer granted if the attributes were changed.
132 *	Note that a security module might need to save state between
133 *	bprm_apply_creds and bprm_post_apply_creds to store the decision
134 *	on whether the process may proceed.
135 *	@bprm contains the linux_binprm structure.
136 * @bprm_set_security:
137 *	Save security information in the bprm->security field, typically based
138 *	on information about the bprm->file, for later use by the apply_creds
139 *	hook.  This hook may also optionally check permissions (e.g. for
140 *	transitions between security domains).
141 *	This hook may be called multiple times during a single execve, e.g. for
142 *	interpreters.  The hook can tell whether it has already been called by
143 *	checking to see if @bprm->security is non-NULL.  If so, then the hook
144 *	may decide either to retain the security information saved earlier or
145 *	to replace it.
146 *	@bprm contains the linux_binprm structure.
147 *	Return 0 if the hook is successful and permission is granted.
148 * @bprm_check_security:
149 * 	This hook mediates the point when a search for a binary handler	will
150 * 	begin.  It allows a check the @bprm->security value which is set in
151 * 	the preceding set_security call.  The primary difference from
152 * 	set_security is that the argv list and envp list are reliably
153 * 	available in @bprm.  This hook may be called multiple times
154 * 	during a single execve; and in each pass set_security is called
155 * 	first.
156 * 	@bprm contains the linux_binprm structure.
157 *	Return 0 if the hook is successful and permission is granted.
158 * @bprm_secureexec:
159 *      Return a boolean value (0 or 1) indicating whether a "secure exec"
160 *      is required.  The flag is passed in the auxiliary table
161 *      on the initial stack to the ELF interpreter to indicate whether libc
162 *      should enable secure mode.
163 *      @bprm contains the linux_binprm structure.
164 *
165 * Security hooks for filesystem operations.
166 *
167 * @sb_alloc_security:
168 *	Allocate and attach a security structure to the sb->s_security field.
169 *	The s_security field is initialized to NULL when the structure is
170 *	allocated.
171 *	@sb contains the super_block structure to be modified.
172 *	Return 0 if operation was successful.
173 * @sb_free_security:
174 *	Deallocate and clear the sb->s_security field.
175 *	@sb contains the super_block structure to be modified.
176 * @sb_statfs:
177 *	Check permission before obtaining filesystem statistics for the @mnt
178 *	mountpoint.
179 *	@dentry is a handle on the superblock for the filesystem.
180 *	Return 0 if permission is granted.
181 * @sb_mount:
182 *	Check permission before an object specified by @dev_name is mounted on
183 *	the mount point named by @nd.  For an ordinary mount, @dev_name
184 *	identifies a device if the file system type requires a device.  For a
185 *	remount (@flags & MS_REMOUNT), @dev_name is irrelevant.  For a
186 *	loopback/bind mount (@flags & MS_BIND), @dev_name identifies the
187 *	pathname of the object being mounted.
188 *	@dev_name contains the name for object being mounted.
189 *	@nd contains the nameidata structure for mount point object.
190 *	@type contains the filesystem type.
191 *	@flags contains the mount flags.
192 *	@data contains the filesystem-specific data.
193 *	Return 0 if permission is granted.
194 * @sb_copy_data:
195 *	Allow mount option data to be copied prior to parsing by the filesystem,
196 *	so that the security module can extract security-specific mount
197 *	options cleanly (a filesystem may modify the data e.g. with strsep()).
198 *	This also allows the original mount data to be stripped of security-
199 *	specific options to avoid having to make filesystems aware of them.
200 *	@type the type of filesystem being mounted.
201 *	@orig the original mount data copied from userspace.
202 *	@copy copied data which will be passed to the security module.
203 *	Returns 0 if the copy was successful.
204 * @sb_check_sb:
205 *	Check permission before the device with superblock @mnt->sb is mounted
206 *	on the mount point named by @nd.
207 *	@mnt contains the vfsmount for device being mounted.
208 *	@nd contains the nameidata object for the mount point.
209 *	Return 0 if permission is granted.
210 * @sb_umount:
211 *	Check permission before the @mnt file system is unmounted.
212 *	@mnt contains the mounted file system.
213 *	@flags contains the unmount flags, e.g. MNT_FORCE.
214 *	Return 0 if permission is granted.
215 * @sb_umount_close:
216 *	Close any files in the @mnt mounted filesystem that are held open by
217 *	the security module.  This hook is called during an umount operation
218 *	prior to checking whether the filesystem is still busy.
219 *	@mnt contains the mounted filesystem.
220 * @sb_umount_busy:
221 *	Handle a failed umount of the @mnt mounted filesystem, e.g.  re-opening
222 *	any files that were closed by umount_close.  This hook is called during
223 *	an umount operation if the umount fails after a call to the
224 *	umount_close hook.
225 *	@mnt contains the mounted filesystem.
226 * @sb_post_remount:
227 *	Update the security module's state when a filesystem is remounted.
228 *	This hook is only called if the remount was successful.
229 *	@mnt contains the mounted file system.
230 *	@flags contains the new filesystem flags.
231 *	@data contains the filesystem-specific data.
232 * @sb_post_mountroot:
233 *	Update the security module's state when the root filesystem is mounted.
234 *	This hook is only called if the mount was successful.
235 * @sb_post_addmount:
236 *	Update the security module's state when a filesystem is mounted.
237 *	This hook is called any time a mount is successfully grafetd to
238 *	the tree.
239 *	@mnt contains the mounted filesystem.
240 *	@mountpoint_nd contains the nameidata structure for the mount point.
241 * @sb_pivotroot:
242 *	Check permission before pivoting the root filesystem.
243 *	@old_nd contains the nameidata structure for the new location of the current root (put_old).
244 *      @new_nd contains the nameidata structure for the new root (new_root).
245 *	Return 0 if permission is granted.
246 * @sb_post_pivotroot:
247 *	Update module state after a successful pivot.
248 *	@old_nd contains the nameidata structure for the old root.
249 *      @new_nd contains the nameidata structure for the new root.
250 *
251 * Security hooks for inode operations.
252 *
253 * @inode_alloc_security:
254 *	Allocate and attach a security structure to @inode->i_security.  The
255 *	i_security field is initialized to NULL when the inode structure is
256 *	allocated.
257 *	@inode contains the inode structure.
258 *	Return 0 if operation was successful.
259 * @inode_free_security:
260 *	@inode contains the inode structure.
261 *	Deallocate the inode security structure and set @inode->i_security to
262 *	NULL.
263 * @inode_init_security:
264 * 	Obtain the security attribute name suffix and value to set on a newly
265 *	created inode and set up the incore security field for the new inode.
266 *	This hook is called by the fs code as part of the inode creation
267 *	transaction and provides for atomic labeling of the inode, unlike
268 *	the post_create/mkdir/... hooks called by the VFS.  The hook function
269 *	is expected to allocate the name and value via kmalloc, with the caller
270 *	being responsible for calling kfree after using them.
271 *	If the security module does not use security attributes or does
272 *	not wish to put a security attribute on this particular inode,
273 *	then it should return -EOPNOTSUPP to skip this processing.
274 *	@inode contains the inode structure of the newly created inode.
275 *	@dir contains the inode structure of the parent directory.
276 *	@name will be set to the allocated name suffix (e.g. selinux).
277 *	@value will be set to the allocated attribute value.
278 *	@len will be set to the length of the value.
279 *	Returns 0 if @name and @value have been successfully set,
280 *		-EOPNOTSUPP if no security attribute is needed, or
281 *		-ENOMEM on memory allocation failure.
282 * @inode_create:
283 *	Check permission to create a regular file.
284 *	@dir contains inode structure of the parent of the new file.
285 *	@dentry contains the dentry structure for the file to be created.
286 *	@mode contains the file mode of the file to be created.
287 *	Return 0 if permission is granted.
288 * @inode_link:
289 *	Check permission before creating a new hard link to a file.
290 *	@old_dentry contains the dentry structure for an existing link to the file.
291 *	@dir contains the inode structure of the parent directory of the new link.
292 *	@new_dentry contains the dentry structure for the new link.
293 *	Return 0 if permission is granted.
294 * @inode_unlink:
295 *	Check the permission to remove a hard link to a file.
296 *	@dir contains the inode structure of parent directory of the file.
297 *	@dentry contains the dentry structure for file to be unlinked.
298 *	Return 0 if permission is granted.
299 * @inode_symlink:
300 *	Check the permission to create a symbolic link to a file.
301 *	@dir contains the inode structure of parent directory of the symbolic link.
302 *	@dentry contains the dentry structure of the symbolic link.
303 *	@old_name contains the pathname of file.
304 *	Return 0 if permission is granted.
305 * @inode_mkdir:
306 *	Check permissions to create a new directory in the existing directory
307 *	associated with inode strcture @dir.
308 *	@dir containst the inode structure of parent of the directory to be created.
309 *	@dentry contains the dentry structure of new directory.
310 *	@mode contains the mode of new directory.
311 *	Return 0 if permission is granted.
312 * @inode_rmdir:
313 *	Check the permission to remove a directory.
314 *	@dir contains the inode structure of parent of the directory to be removed.
315 *	@dentry contains the dentry structure of directory to be removed.
316 *	Return 0 if permission is granted.
317 * @inode_mknod:
318 *	Check permissions when creating a special file (or a socket or a fifo
319 *	file created via the mknod system call).  Note that if mknod operation
320 *	is being done for a regular file, then the create hook will be called
321 *	and not this hook.
322 *	@dir contains the inode structure of parent of the new file.
323 *	@dentry contains the dentry structure of the new file.
324 *	@mode contains the mode of the new file.
325 *	@dev contains the device number.
326 *	Return 0 if permission is granted.
327 * @inode_rename:
328 *	Check for permission to rename a file or directory.
329 *	@old_dir contains the inode structure for parent of the old link.
330 *	@old_dentry contains the dentry structure of the old link.
331 *	@new_dir contains the inode structure for parent of the new link.
332 *	@new_dentry contains the dentry structure of the new link.
333 *	Return 0 if permission is granted.
334 * @inode_readlink:
335 *	Check the permission to read the symbolic link.
336 *	@dentry contains the dentry structure for the file link.
337 *	Return 0 if permission is granted.
338 * @inode_follow_link:
339 *	Check permission to follow a symbolic link when looking up a pathname.
340 *	@dentry contains the dentry structure for the link.
341 *	@nd contains the nameidata structure for the parent directory.
342 *	Return 0 if permission is granted.
343 * @inode_permission:
344 *	Check permission before accessing an inode.  This hook is called by the
345 *	existing Linux permission function, so a security module can use it to
346 *	provide additional checking for existing Linux permission checks.
347 *	Notice that this hook is called when a file is opened (as well as many
348 *	other operations), whereas the file_security_ops permission hook is
349 *	called when the actual read/write operations are performed.
350 *	@inode contains the inode structure to check.
351 *	@mask contains the permission mask.
352 *     @nd contains the nameidata (may be NULL).
353 *	Return 0 if permission is granted.
354 * @inode_setattr:
355 *	Check permission before setting file attributes.  Note that the kernel
356 *	call to notify_change is performed from several locations, whenever
357 *	file attributes change (such as when a file is truncated, chown/chmod
358 *	operations, transferring disk quotas, etc).
359 *	@dentry contains the dentry structure for the file.
360 *	@attr is the iattr structure containing the new file attributes.
361 *	Return 0 if permission is granted.
362 * @inode_getattr:
363 *	Check permission before obtaining file attributes.
364 *	@mnt is the vfsmount where the dentry was looked up
365 *	@dentry contains the dentry structure for the file.
366 *	Return 0 if permission is granted.
367 * @inode_delete:
368 *	@inode contains the inode structure for deleted inode.
369 *	This hook is called when a deleted inode is released (i.e. an inode
370 *	with no hard links has its use count drop to zero).  A security module
371 *	can use this hook to release any persistent label associated with the
372 *	inode.
373 * @inode_setxattr:
374 * 	Check permission before setting the extended attributes
375 * 	@value identified by @name for @dentry.
376 * 	Return 0 if permission is granted.
377 * @inode_post_setxattr:
378 * 	Update inode security field after successful setxattr operation.
379 * 	@value identified by @name for @dentry.
380 * @inode_getxattr:
381 * 	Check permission before obtaining the extended attributes
382 * 	identified by @name for @dentry.
383 * 	Return 0 if permission is granted.
384 * @inode_listxattr:
385 * 	Check permission before obtaining the list of extended attribute
386 * 	names for @dentry.
387 * 	Return 0 if permission is granted.
388 * @inode_removexattr:
389 * 	Check permission before removing the extended attribute
390 * 	identified by @name for @dentry.
391 * 	Return 0 if permission is granted.
392 * @inode_getsecurity:
393 *	Copy the extended attribute representation of the security label
394 *	associated with @name for @inode into @buffer.  @buffer may be
395 *	NULL to request the size of the buffer required.  @size indicates
396 *	the size of @buffer in bytes.  Note that @name is the remainder
397 *	of the attribute name after the security. prefix has been removed.
398 *	@err is the return value from the preceding fs getxattr call,
399 *	and can be used by the security module to determine whether it
400 *	should try and canonicalize the attribute value.
401 *	Return number of bytes used/required on success.
402 * @inode_setsecurity:
403 *	Set the security label associated with @name for @inode from the
404 *	extended attribute value @value.  @size indicates the size of the
405 *	@value in bytes.  @flags may be XATTR_CREATE, XATTR_REPLACE, or 0.
406 *	Note that @name is the remainder of the attribute name after the
407 *	security. prefix has been removed.
408 *	Return 0 on success.
409 * @inode_listsecurity:
410 *	Copy the extended attribute names for the security labels
411 *	associated with @inode into @buffer.  The maximum size of @buffer
412 *	is specified by @buffer_size.  @buffer may be NULL to request
413 *	the size of the buffer required.
414 *	Returns number of bytes used/required on success.
415 *
416 * Security hooks for file operations
417 *
418 * @file_permission:
419 *	Check file permissions before accessing an open file.  This hook is
420 *	called by various operations that read or write files.  A security
421 *	module can use this hook to perform additional checking on these
422 *	operations, e.g.  to revalidate permissions on use to support privilege
423 *	bracketing or policy changes.  Notice that this hook is used when the
424 *	actual read/write operations are performed, whereas the
425 *	inode_security_ops hook is called when a file is opened (as well as
426 *	many other operations).
427 *	Caveat:  Although this hook can be used to revalidate permissions for
428 *	various system call operations that read or write files, it does not
429 *	address the revalidation of permissions for memory-mapped files.
430 *	Security modules must handle this separately if they need such
431 *	revalidation.
432 *	@file contains the file structure being accessed.
433 *	@mask contains the requested permissions.
434 *	Return 0 if permission is granted.
435 * @file_alloc_security:
436 *	Allocate and attach a security structure to the file->f_security field.
437 *	The security field is initialized to NULL when the structure is first
438 *	created.
439 *	@file contains the file structure to secure.
440 *	Return 0 if the hook is successful and permission is granted.
441 * @file_free_security:
442 *	Deallocate and free any security structures stored in file->f_security.
443 *	@file contains the file structure being modified.
444 * @file_ioctl:
445 *	@file contains the file structure.
446 *	@cmd contains the operation to perform.
447 *	@arg contains the operational arguments.
448 *	Check permission for an ioctl operation on @file.  Note that @arg can
449 *	sometimes represents a user space pointer; in other cases, it may be a
450 *	simple integer value.  When @arg represents a user space pointer, it
451 *	should never be used by the security module.
452 *	Return 0 if permission is granted.
453 * @file_mmap :
454 *	Check permissions for a mmap operation.  The @file may be NULL, e.g.
455 *	if mapping anonymous memory.
456 *	@file contains the file structure for file to map (may be NULL).
457 *	@reqprot contains the protection requested by the application.
458 *	@prot contains the protection that will be applied by the kernel.
459 *	@flags contains the operational flags.
460 *	Return 0 if permission is granted.
461 * @file_mprotect:
462 *	Check permissions before changing memory access permissions.
463 *	@vma contains the memory region to modify.
464 *	@reqprot contains the protection requested by the application.
465 *	@prot contains the protection that will be applied by the kernel.
466 *	Return 0 if permission is granted.
467 * @file_lock:
468 *	Check permission before performing file locking operations.
469 *	Note: this hook mediates both flock and fcntl style locks.
470 *	@file contains the file structure.
471 *	@cmd contains the posix-translated lock operation to perform
472 *	(e.g. F_RDLCK, F_WRLCK).
473 *	Return 0 if permission is granted.
474 * @file_fcntl:
475 *	Check permission before allowing the file operation specified by @cmd
476 *	from being performed on the file @file.  Note that @arg can sometimes
477 *	represents a user space pointer; in other cases, it may be a simple
478 *	integer value.  When @arg represents a user space pointer, it should
479 *	never be used by the security module.
480 *	@file contains the file structure.
481 *	@cmd contains the operation to be performed.
482 *	@arg contains the operational arguments.
483 *	Return 0 if permission is granted.
484 * @file_set_fowner:
485 *	Save owner security information (typically from current->security) in
486 *	file->f_security for later use by the send_sigiotask hook.
487 *	@file contains the file structure to update.
488 *	Return 0 on success.
489 * @file_send_sigiotask:
490 *	Check permission for the file owner @fown to send SIGIO or SIGURG to the
491 *	process @tsk.  Note that this hook is sometimes called from interrupt.
492 *	Note that the fown_struct, @fown, is never outside the context of a
493 *	struct file, so the file structure (and associated security information)
494 *	can always be obtained:
495 *		container_of(fown, struct file, f_owner)
496 * 	@tsk contains the structure of task receiving signal.
497 *	@fown contains the file owner information.
498 *	@sig is the signal that will be sent.  When 0, kernel sends SIGIO.
499 *	Return 0 if permission is granted.
500 * @file_receive:
501 *	This hook allows security modules to control the ability of a process
502 *	to receive an open file descriptor via socket IPC.
503 *	@file contains the file structure being received.
504 *	Return 0 if permission is granted.
505 *
506 * Security hooks for task operations.
507 *
508 * @task_create:
509 *	Check permission before creating a child process.  See the clone(2)
510 *	manual page for definitions of the @clone_flags.
511 *	@clone_flags contains the flags indicating what should be shared.
512 *	Return 0 if permission is granted.
513 * @task_alloc_security:
514 *	@p contains the task_struct for child process.
515 *	Allocate and attach a security structure to the p->security field. The
516 *	security field is initialized to NULL when the task structure is
517 *	allocated.
518 *	Return 0 if operation was successful.
519 * @task_free_security:
520 *	@p contains the task_struct for process.
521 *	Deallocate and clear the p->security field.
522 * @task_setuid:
523 *	Check permission before setting one or more of the user identity
524 *	attributes of the current process.  The @flags parameter indicates
525 *	which of the set*uid system calls invoked this hook and how to
526 *	interpret the @id0, @id1, and @id2 parameters.  See the LSM_SETID
527 *	definitions at the beginning of this file for the @flags values and
528 *	their meanings.
529 *	@id0 contains a uid.
530 *	@id1 contains a uid.
531 *	@id2 contains a uid.
532 *	@flags contains one of the LSM_SETID_* values.
533 *	Return 0 if permission is granted.
534 * @task_post_setuid:
535 *	Update the module's state after setting one or more of the user
536 *	identity attributes of the current process.  The @flags parameter
537 *	indicates which of the set*uid system calls invoked this hook.  If
538 *	@flags is LSM_SETID_FS, then @old_ruid is the old fs uid and the other
539 *	parameters are not used.
540 *	@old_ruid contains the old real uid (or fs uid if LSM_SETID_FS).
541 *	@old_euid contains the old effective uid (or -1 if LSM_SETID_FS).
542 *	@old_suid contains the old saved uid (or -1 if LSM_SETID_FS).
543 *	@flags contains one of the LSM_SETID_* values.
544 *	Return 0 on success.
545 * @task_setgid:
546 *	Check permission before setting one or more of the group identity
547 *	attributes of the current process.  The @flags parameter indicates
548 *	which of the set*gid system calls invoked this hook and how to
549 *	interpret the @id0, @id1, and @id2 parameters.  See the LSM_SETID
550 *	definitions at the beginning of this file for the @flags values and
551 *	their meanings.
552 *	@id0 contains a gid.
553 *	@id1 contains a gid.
554 *	@id2 contains a gid.
555 *	@flags contains one of the LSM_SETID_* values.
556 *	Return 0 if permission is granted.
557 * @task_setpgid:
558 *	Check permission before setting the process group identifier of the
559 *	process @p to @pgid.
560 *	@p contains the task_struct for process being modified.
561 *	@pgid contains the new pgid.
562 *	Return 0 if permission is granted.
563 * @task_getpgid:
564 *	Check permission before getting the process group identifier of the
565 *	process @p.
566 *	@p contains the task_struct for the process.
567 *	Return 0 if permission is granted.
568 * @task_getsid:
569 *	Check permission before getting the session identifier of the process
570 *	@p.
571 *	@p contains the task_struct for the process.
572 *	Return 0 if permission is granted.
573 * @task_getsecid:
574 *	Retrieve the security identifier of the process @p.
575 *	@p contains the task_struct for the process and place is into @secid.
576 * @task_setgroups:
577 *	Check permission before setting the supplementary group set of the
578 *	current process.
579 *	@group_info contains the new group information.
580 *	Return 0 if permission is granted.
581 * @task_setnice:
582 *	Check permission before setting the nice value of @p to @nice.
583 *	@p contains the task_struct of process.
584 *	@nice contains the new nice value.
585 *	Return 0 if permission is granted.
586 * @task_setioprio
587 *	Check permission before setting the ioprio value of @p to @ioprio.
588 *	@p contains the task_struct of process.
589 *	@ioprio contains the new ioprio value
590 *	Return 0 if permission is granted.
591 * @task_getioprio
592 *	Check permission before getting the ioprio value of @p.
593 *	@p contains the task_struct of process.
594 *	Return 0 if permission is granted.
595 * @task_setrlimit:
596 *	Check permission before setting the resource limits of the current
597 *	process for @resource to @new_rlim.  The old resource limit values can
598 *	be examined by dereferencing (current->signal->rlim + resource).
599 *	@resource contains the resource whose limit is being set.
600 *	@new_rlim contains the new limits for @resource.
601 *	Return 0 if permission is granted.
602 * @task_setscheduler:
603 *	Check permission before setting scheduling policy and/or parameters of
604 *	process @p based on @policy and @lp.
605 *	@p contains the task_struct for process.
606 *	@policy contains the scheduling policy.
607 *	@lp contains the scheduling parameters.
608 *	Return 0 if permission is granted.
609 * @task_getscheduler:
610 *	Check permission before obtaining scheduling information for process
611 *	@p.
612 *	@p contains the task_struct for process.
613 *	Return 0 if permission is granted.
614 * @task_movememory
615 *	Check permission before moving memory owned by process @p.
616 *	@p contains the task_struct for process.
617 *	Return 0 if permission is granted.
618 * @task_kill:
619 *	Check permission before sending signal @sig to @p.  @info can be NULL,
620 *	the constant 1, or a pointer to a siginfo structure.  If @info is 1 or
621 *	SI_FROMKERNEL(info) is true, then the signal should be viewed as coming
622 *	from the kernel and should typically be permitted.
623 *	SIGIO signals are handled separately by the send_sigiotask hook in
624 *	file_security_ops.
625 *	@p contains the task_struct for process.
626 *	@info contains the signal information.
627 *	@sig contains the signal value.
628 *	@secid contains the sid of the process where the signal originated
629 *	Return 0 if permission is granted.
630 * @task_wait:
631 *	Check permission before allowing a process to reap a child process @p
632 *	and collect its status information.
633 *	@p contains the task_struct for process.
634 *	Return 0 if permission is granted.
635 * @task_prctl:
636 *	Check permission before performing a process control operation on the
637 *	current process.
638 *	@option contains the operation.
639 *	@arg2 contains a argument.
640 *	@arg3 contains a argument.
641 *	@arg4 contains a argument.
642 *	@arg5 contains a argument.
643 *	Return 0 if permission is granted.
644 * @task_reparent_to_init:
645 * 	Set the security attributes in @p->security for a kernel thread that
646 * 	is being reparented to the init task.
647 *	@p contains the task_struct for the kernel thread.
648 * @task_to_inode:
649 * 	Set the security attributes for an inode based on an associated task's
650 * 	security attributes, e.g. for /proc/pid inodes.
651 *	@p contains the task_struct for the task.
652 *	@inode contains the inode structure for the inode.
653 *
654 * Security hooks for Netlink messaging.
655 *
656 * @netlink_send:
657 *	Save security information for a netlink message so that permission
658 *	checking can be performed when the message is processed.  The security
659 *	information can be saved using the eff_cap field of the
660 *      netlink_skb_parms structure.  Also may be used to provide fine
661 *	grained control over message transmission.
662 *	@sk associated sock of task sending the message.,
663 *	@skb contains the sk_buff structure for the netlink message.
664 *	Return 0 if the information was successfully saved and message
665 *	is allowed to be transmitted.
666 * @netlink_recv:
667 *	Check permission before processing the received netlink message in
668 *	@skb.
669 *	@skb contains the sk_buff structure for the netlink message.
670 *	@cap indicates the capability required
671 *	Return 0 if permission is granted.
672 *
673 * Security hooks for Unix domain networking.
674 *
675 * @unix_stream_connect:
676 *	Check permissions before establishing a Unix domain stream connection
677 *	between @sock and @other.
678 *	@sock contains the socket structure.
679 *	@other contains the peer socket structure.
680 *	Return 0 if permission is granted.
681 * @unix_may_send:
682 *	Check permissions before connecting or sending datagrams from @sock to
683 *	@other.
684 *	@sock contains the socket structure.
685 *	@sock contains the peer socket structure.
686 *	Return 0 if permission is granted.
687 *
688 * The @unix_stream_connect and @unix_may_send hooks were necessary because
689 * Linux provides an alternative to the conventional file name space for Unix
690 * domain sockets.  Whereas binding and connecting to sockets in the file name
691 * space is mediated by the typical file permissions (and caught by the mknod
692 * and permission hooks in inode_security_ops), binding and connecting to
693 * sockets in the abstract name space is completely unmediated.  Sufficient
694 * control of Unix domain sockets in the abstract name space isn't possible
695 * using only the socket layer hooks, since we need to know the actual target
696 * socket, which is not looked up until we are inside the af_unix code.
697 *
698 * Security hooks for socket operations.
699 *
700 * @socket_create:
701 *	Check permissions prior to creating a new socket.
702 *	@family contains the requested protocol family.
703 *	@type contains the requested communications type.
704 *	@protocol contains the requested protocol.
705 *	@kern set to 1 if a kernel socket.
706 *	Return 0 if permission is granted.
707 * @socket_post_create:
708 *	This hook allows a module to update or allocate a per-socket security
709 *	structure. Note that the security field was not added directly to the
710 *	socket structure, but rather, the socket security information is stored
711 *	in the associated inode.  Typically, the inode alloc_security hook will
712 *	allocate and and attach security information to
713 *	sock->inode->i_security.  This hook may be used to update the
714 *	sock->inode->i_security field with additional information that wasn't
715 *	available when the inode was allocated.
716 *	@sock contains the newly created socket structure.
717 *	@family contains the requested protocol family.
718 *	@type contains the requested communications type.
719 *	@protocol contains the requested protocol.
720 *	@kern set to 1 if a kernel socket.
721 * @socket_bind:
722 *	Check permission before socket protocol layer bind operation is
723 *	performed and the socket @sock is bound to the address specified in the
724 *	@address parameter.
725 *	@sock contains the socket structure.
726 *	@address contains the address to bind to.
727 *	@addrlen contains the length of address.
728 *	Return 0 if permission is granted.
729 * @socket_connect:
730 *	Check permission before socket protocol layer connect operation
731 *	attempts to connect socket @sock to a remote address, @address.
732 *	@sock contains the socket structure.
733 *	@address contains the address of remote endpoint.
734 *	@addrlen contains the length of address.
735 *	Return 0 if permission is granted.
736 * @socket_listen:
737 *	Check permission before socket protocol layer listen operation.
738 *	@sock contains the socket structure.
739 *	@backlog contains the maximum length for the pending connection queue.
740 *	Return 0 if permission is granted.
741 * @socket_accept:
742 *	Check permission before accepting a new connection.  Note that the new
743 *	socket, @newsock, has been created and some information copied to it,
744 *	but the accept operation has not actually been performed.
745 *	@sock contains the listening socket structure.
746 *	@newsock contains the newly created server socket for connection.
747 *	Return 0 if permission is granted.
748 * @socket_post_accept:
749 *	This hook allows a security module to copy security
750 *	information into the newly created socket's inode.
751 *	@sock contains the listening socket structure.
752 *	@newsock contains the newly created server socket for connection.
753 * @socket_sendmsg:
754 *	Check permission before transmitting a message to another socket.
755 *	@sock contains the socket structure.
756 *	@msg contains the message to be transmitted.
757 *	@size contains the size of message.
758 *	Return 0 if permission is granted.
759 * @socket_recvmsg:
760 *	Check permission before receiving a message from a socket.
761 *	@sock contains the socket structure.
762 *	@msg contains the message structure.
763 *	@size contains the size of message structure.
764 *	@flags contains the operational flags.
765 *	Return 0 if permission is granted.
766 * @socket_getsockname:
767 *	Check permission before the local address (name) of the socket object
768 *	@sock is retrieved.
769 *	@sock contains the socket structure.
770 *	Return 0 if permission is granted.
771 * @socket_getpeername:
772 *	Check permission before the remote address (name) of a socket object
773 *	@sock is retrieved.
774 *	@sock contains the socket structure.
775 *	Return 0 if permission is granted.
776 * @socket_getsockopt:
777 *	Check permissions before retrieving the options associated with socket
778 *	@sock.
779 *	@sock contains the socket structure.
780 *	@level contains the protocol level to retrieve option from.
781 *	@optname contains the name of option to retrieve.
782 *	Return 0 if permission is granted.
783 * @socket_setsockopt:
784 *	Check permissions before setting the options associated with socket
785 *	@sock.
786 *	@sock contains the socket structure.
787 *	@level contains the protocol level to set options for.
788 *	@optname contains the name of the option to set.
789 *	Return 0 if permission is granted.
790 * @socket_shutdown:
791 *	Checks permission before all or part of a connection on the socket
792 *	@sock is shut down.
793 *	@sock contains the socket structure.
794 *	@how contains the flag indicating how future sends and receives are handled.
795 *	Return 0 if permission is granted.
796 * @socket_sock_rcv_skb:
797 *	Check permissions on incoming network packets.  This hook is distinct
798 *	from Netfilter's IP input hooks since it is the first time that the
799 *	incoming sk_buff @skb has been associated with a particular socket, @sk.
800 *	@sk contains the sock (not socket) associated with the incoming sk_buff.
801 *	@skb contains the incoming network data.
802 * @socket_getpeersec:
803 *	This hook allows the security module to provide peer socket security
804 *	state to userspace via getsockopt SO_GETPEERSEC.
805 *	@sock is the local socket.
806 *	@optval userspace memory where the security state is to be copied.
807 *	@optlen userspace int where the module should copy the actual length
808 *	of the security state.
809 *	@len as input is the maximum length to copy to userspace provided
810 *	by the caller.
811 *	Return 0 if all is well, otherwise, typical getsockopt return
812 *	values.
813 * @sk_alloc_security:
814 *      Allocate and attach a security structure to the sk->sk_security field,
815 *      which is used to copy security attributes between local stream sockets.
816 * @sk_free_security:
817 *	Deallocate security structure.
818 * @sk_clone_security:
819 *	Clone/copy security structure.
820 * @sk_getsecid:
821 *	Retrieve the LSM-specific secid for the sock to enable caching of network
822 *	authorizations.
823 * @sock_graft:
824 *	Sets the socket's isec sid to the sock's sid.
825 * @inet_conn_request:
826 *	Sets the openreq's sid to socket's sid with MLS portion taken from peer sid.
827 * @inet_csk_clone:
828 *	Sets the new child socket's sid to the openreq sid.
829 * @inet_conn_established:
830 *     Sets the connection's peersid to the secmark on skb.
831 * @req_classify_flow:
832 *	Sets the flow's sid to the openreq sid.
833 *
834 * Security hooks for XFRM operations.
835 *
836 * @xfrm_policy_alloc_security:
837 *	@xp contains the xfrm_policy being added to Security Policy Database
838 *	used by the XFRM system.
839 *	@sec_ctx contains the security context information being provided by
840 *	the user-level policy update program (e.g., setkey).
841 *	Allocate a security structure to the xp->security field; the security
842 *	field is initialized to NULL when the xfrm_policy is allocated.
843 *	Return 0 if operation was successful (memory to allocate, legal context)
844 * @xfrm_policy_clone_security:
845 *	@old contains an existing xfrm_policy in the SPD.
846 *	@new contains a new xfrm_policy being cloned from old.
847 *	Allocate a security structure to the new->security field
848 *	that contains the information from the old->security field.
849 *	Return 0 if operation was successful (memory to allocate).
850 * @xfrm_policy_free_security:
851 *	@xp contains the xfrm_policy
852 *	Deallocate xp->security.
853 * @xfrm_policy_delete_security:
854 *	@xp contains the xfrm_policy.
855 *	Authorize deletion of xp->security.
856 * @xfrm_state_alloc_security:
857 *	@x contains the xfrm_state being added to the Security Association
858 *	Database by the XFRM system.
859 *	@sec_ctx contains the security context information being provided by
860 *	the user-level SA generation program (e.g., setkey or racoon).
861 *	@secid contains the secid from which to take the mls portion of the context.
862 *	Allocate a security structure to the x->security field; the security
863 *	field is initialized to NULL when the xfrm_state is allocated. Set the
864 *	context to correspond to either sec_ctx or polsec, with the mls portion
865 *	taken from secid in the latter case.
866 *	Return 0 if operation was successful (memory to allocate, legal context).
867 * @xfrm_state_free_security:
868 *	@x contains the xfrm_state.
869 *	Deallocate x->security.
870 * @xfrm_state_delete_security:
871 *	@x contains the xfrm_state.
872 *	Authorize deletion of x->security.
873 * @xfrm_policy_lookup:
874 *	@xp contains the xfrm_policy for which the access control is being
875 *	checked.
876 *	@fl_secid contains the flow security label that is used to authorize
877 *	access to the policy xp.
878 *	@dir contains the direction of the flow (input or output).
879 *	Check permission when a flow selects a xfrm_policy for processing
880 *	XFRMs on a packet.  The hook is called when selecting either a
881 *	per-socket policy or a generic xfrm policy.
882 *	Return 0 if permission is granted, -ESRCH otherwise, or -errno
883 *	on other errors.
884 * @xfrm_state_pol_flow_match:
885 *	@x contains the state to match.
886 *	@xp contains the policy to check for a match.
887 *	@fl contains the flow to check for a match.
888 *	Return 1 if there is a match.
889 * @xfrm_decode_session:
890 *	@skb points to skb to decode.
891 *	@secid points to the flow key secid to set.
892 *	@ckall says if all xfrms used should be checked for same secid.
893 *	Return 0 if ckall is zero or all xfrms used have the same secid.
894 *
895 * Security hooks affecting all Key Management operations
896 *
897 * @key_alloc:
898 *	Permit allocation of a key and assign security data. Note that key does
899 *	not have a serial number assigned at this point.
900 *	@key points to the key.
901 *	@flags is the allocation flags
902 *	Return 0 if permission is granted, -ve error otherwise.
903 * @key_free:
904 *	Notification of destruction; free security data.
905 *	@key points to the key.
906 *	No return value.
907 * @key_permission:
908 *	See whether a specific operational right is granted to a process on a
909 *      key.
910 *	@key_ref refers to the key (key pointer + possession attribute bit).
911 *	@context points to the process to provide the context against which to
912 *       evaluate the security data on the key.
913 *	@perm describes the combination of permissions required of this key.
914 *	Return 1 if permission granted, 0 if permission denied and -ve it the
915 *      normal permissions model should be effected.
916 *
917 * Security hooks affecting all System V IPC operations.
918 *
919 * @ipc_permission:
920 *	Check permissions for access to IPC
921 *	@ipcp contains the kernel IPC permission structure
922 *	@flag contains the desired (requested) permission set
923 *	Return 0 if permission is granted.
924 *
925 * Security hooks for individual messages held in System V IPC message queues
926 * @msg_msg_alloc_security:
927 *	Allocate and attach a security structure to the msg->security field.
928 *	The security field is initialized to NULL when the structure is first
929 *	created.
930 *	@msg contains the message structure to be modified.
931 *	Return 0 if operation was successful and permission is granted.
932 * @msg_msg_free_security:
933 *	Deallocate the security structure for this message.
934 *	@msg contains the message structure to be modified.
935 *
936 * Security hooks for System V IPC Message Queues
937 *
938 * @msg_queue_alloc_security:
939 *	Allocate and attach a security structure to the
940 *	msq->q_perm.security field. The security field is initialized to
941 *	NULL when the structure is first created.
942 *	@msq contains the message queue structure to be modified.
943 *	Return 0 if operation was successful and permission is granted.
944 * @msg_queue_free_security:
945 *	Deallocate security structure for this message queue.
946 *	@msq contains the message queue structure to be modified.
947 * @msg_queue_associate:
948 *	Check permission when a message queue is requested through the
949 *	msgget system call.  This hook is only called when returning the
950 *	message queue identifier for an existing message queue, not when a
951 *	new message queue is created.
952 *	@msq contains the message queue to act upon.
953 *	@msqflg contains the operation control flags.
954 *	Return 0 if permission is granted.
955 * @msg_queue_msgctl:
956 *	Check permission when a message control operation specified by @cmd
957 *	is to be performed on the message queue @msq.
958 *	The @msq may be NULL, e.g. for IPC_INFO or MSG_INFO.
959 *	@msq contains the message queue to act upon.  May be NULL.
960 *	@cmd contains the operation to be performed.
961 *	Return 0 if permission is granted.
962 * @msg_queue_msgsnd:
963 *	Check permission before a message, @msg, is enqueued on the message
964 *	queue, @msq.
965 *	@msq contains the message queue to send message to.
966 *	@msg contains the message to be enqueued.
967 *	@msqflg contains operational flags.
968 *	Return 0 if permission is granted.
969 * @msg_queue_msgrcv:
970 *	Check permission before a message, @msg, is removed from the message
971 *	queue, @msq.  The @target task structure contains a pointer to the
972 *	process that will be receiving the message (not equal to the current
973 *	process when inline receives are being performed).
974 *	@msq contains the message queue to retrieve message from.
975 *	@msg contains the message destination.
976 *	@target contains the task structure for recipient process.
977 *	@type contains the type of message requested.
978 *	@mode contains the operational flags.
979 *	Return 0 if permission is granted.
980 *
981 * Security hooks for System V Shared Memory Segments
982 *
983 * @shm_alloc_security:
984 *	Allocate and attach a security structure to the shp->shm_perm.security
985 *	field.  The security field is initialized to NULL when the structure is
986 *	first created.
987 *	@shp contains the shared memory structure to be modified.
988 *	Return 0 if operation was successful and permission is granted.
989 * @shm_free_security:
990 *	Deallocate the security struct for this memory segment.
991 *	@shp contains the shared memory structure to be modified.
992 * @shm_associate:
993 *	Check permission when a shared memory region is requested through the
994 *	shmget system call.  This hook is only called when returning the shared
995 *	memory region identifier for an existing region, not when a new shared
996 *	memory region is created.
997 *	@shp contains the shared memory structure to be modified.
998 *	@shmflg contains the operation control flags.
999 *	Return 0 if permission is granted.
1000 * @shm_shmctl:
1001 *	Check permission when a shared memory control operation specified by
1002 *	@cmd is to be performed on the shared memory region @shp.
1003 *	The @shp may be NULL, e.g. for IPC_INFO or SHM_INFO.
1004 *	@shp contains shared memory structure to be modified.
1005 *	@cmd contains the operation to be performed.
1006 *	Return 0 if permission is granted.
1007 * @shm_shmat:
1008 *	Check permissions prior to allowing the shmat system call to attach the
1009 *	shared memory segment @shp to the data segment of the calling process.
1010 *	The attaching address is specified by @shmaddr.
1011 *	@shp contains the shared memory structure to be modified.
1012 *	@shmaddr contains the address to attach memory region to.
1013 *	@shmflg contains the operational flags.
1014 *	Return 0 if permission is granted.
1015 *
1016 * Security hooks for System V Semaphores
1017 *
1018 * @sem_alloc_security:
1019 *	Allocate and attach a security structure to the sma->sem_perm.security
1020 *	field.  The security field is initialized to NULL when the structure is
1021 *	first created.
1022 *	@sma contains the semaphore structure
1023 *	Return 0 if operation was successful and permission is granted.
1024 * @sem_free_security:
1025 *	deallocate security struct for this semaphore
1026 *	@sma contains the semaphore structure.
1027 * @sem_associate:
1028 *	Check permission when a semaphore is requested through the semget
1029 *	system call.  This hook is only called when returning the semaphore
1030 *	identifier for an existing semaphore, not when a new one must be
1031 *	created.
1032 *	@sma contains the semaphore structure.
1033 *	@semflg contains the operation control flags.
1034 *	Return 0 if permission is granted.
1035 * @sem_semctl:
1036 *	Check permission when a semaphore operation specified by @cmd is to be
1037 *	performed on the semaphore @sma.  The @sma may be NULL, e.g. for
1038 *	IPC_INFO or SEM_INFO.
1039 *	@sma contains the semaphore structure.  May be NULL.
1040 *	@cmd contains the operation to be performed.
1041 *	Return 0 if permission is granted.
1042 * @sem_semop
1043 *	Check permissions before performing operations on members of the
1044 *	semaphore set @sma.  If the @alter flag is nonzero, the semaphore set
1045 *      may be modified.
1046 *	@sma contains the semaphore structure.
1047 *	@sops contains the operations to perform.
1048 *	@nsops contains the number of operations to perform.
1049 *	@alter contains the flag indicating whether changes are to be made.
1050 *	Return 0 if permission is granted.
1051 *
1052 * @ptrace:
1053 *	Check permission before allowing the @parent process to trace the
1054 *	@child process.
1055 *	Security modules may also want to perform a process tracing check
1056 *	during an execve in the set_security or apply_creds hooks of
1057 *	binprm_security_ops if the process is being traced and its security
1058 *	attributes would be changed by the execve.
1059 *	@parent contains the task_struct structure for parent process.
1060 *	@child contains the task_struct structure for child process.
1061 *	Return 0 if permission is granted.
1062 * @capget:
1063 *	Get the @effective, @inheritable, and @permitted capability sets for
1064 *	the @target process.  The hook may also perform permission checking to
1065 *	determine if the current process is allowed to see the capability sets
1066 *	of the @target process.
1067 *	@target contains the task_struct structure for target process.
1068 *	@effective contains the effective capability set.
1069 *	@inheritable contains the inheritable capability set.
1070 *	@permitted contains the permitted capability set.
1071 *	Return 0 if the capability sets were successfully obtained.
1072 * @capset_check:
1073 *	Check permission before setting the @effective, @inheritable, and
1074 *	@permitted capability sets for the @target process.
1075 *	Caveat:  @target is also set to current if a set of processes is
1076 *	specified (i.e. all processes other than current and init or a
1077 *	particular process group).  Hence, the capset_set hook may need to
1078 *	revalidate permission to the actual target process.
1079 *	@target contains the task_struct structure for target process.
1080 *	@effective contains the effective capability set.
1081 *	@inheritable contains the inheritable capability set.
1082 *	@permitted contains the permitted capability set.
1083 *	Return 0 if permission is granted.
1084 * @capset_set:
1085 *	Set the @effective, @inheritable, and @permitted capability sets for
1086 *	the @target process.  Since capset_check cannot always check permission
1087 *	to the real @target process, this hook may also perform permission
1088 *	checking to determine if the current process is allowed to set the
1089 *	capability sets of the @target process.  However, this hook has no way
1090 *	of returning an error due to the structure of the sys_capset code.
1091 *	@target contains the task_struct structure for target process.
1092 *	@effective contains the effective capability set.
1093 *	@inheritable contains the inheritable capability set.
1094 *	@permitted contains the permitted capability set.
1095 * @capable:
1096 *	Check whether the @tsk process has the @cap capability.
1097 *	@tsk contains the task_struct for the process.
1098 *	@cap contains the capability <include/linux/capability.h>.
1099 *	Return 0 if the capability is granted for @tsk.
1100 * @acct:
1101 *	Check permission before enabling or disabling process accounting.  If
1102 *	accounting is being enabled, then @file refers to the open file used to
1103 *	store accounting records.  If accounting is being disabled, then @file
1104 *	is NULL.
1105 *	@file contains the file structure for the accounting file (may be NULL).
1106 *	Return 0 if permission is granted.
1107 * @sysctl:
1108 *	Check permission before accessing the @table sysctl variable in the
1109 *	manner specified by @op.
1110 *	@table contains the ctl_table structure for the sysctl variable.
1111 *	@op contains the operation (001 = search, 002 = write, 004 = read).
1112 *	Return 0 if permission is granted.
1113 * @syslog:
1114 *	Check permission before accessing the kernel message ring or changing
1115 *	logging to the console.
1116 *	See the syslog(2) manual page for an explanation of the @type values.
1117 *	@type contains the type of action.
1118 *	Return 0 if permission is granted.
1119 * @settime:
1120 *	Check permission to change the system time.
1121 *	struct timespec and timezone are defined in include/linux/time.h
1122 *	@ts contains new time
1123 *	@tz contains new timezone
1124 *	Return 0 if permission is granted.
1125 * @vm_enough_memory:
1126 *	Check permissions for allocating a new virtual mapping.
1127 *      @pages contains the number of pages.
1128 *	Return 0 if permission is granted.
1129 *
1130 * @register_security:
1131 * 	allow module stacking.
1132 * 	@name contains the name of the security module being stacked.
1133 * 	@ops contains a pointer to the struct security_operations of the module to stack.
1134 * @unregister_security:
1135 *	remove a stacked module.
1136 *	@name contains the name of the security module being unstacked.
1137 *	@ops contains a pointer to the struct security_operations of the module to unstack.
1138 *
1139 * @secid_to_secctx:
1140 *	Convert secid to security context.
1141 *	@secid contains the security ID.
1142 *	@secdata contains the pointer that stores the converted security context.
1143 *
1144 * @release_secctx:
1145 *	Release the security context.
1146 *	@secdata contains the security context.
1147 *	@seclen contains the length of the security context.
1148 *
1149 * This is the main security structure.
1150 */
1151struct security_operations {
1152	int (*ptrace) (struct task_struct * parent, struct task_struct * child);
1153	int (*capget) (struct task_struct * target,
1154		       kernel_cap_t * effective,
1155		       kernel_cap_t * inheritable, kernel_cap_t * permitted);
1156	int (*capset_check) (struct task_struct * target,
1157			     kernel_cap_t * effective,
1158			     kernel_cap_t * inheritable,
1159			     kernel_cap_t * permitted);
1160	void (*capset_set) (struct task_struct * target,
1161			    kernel_cap_t * effective,
1162			    kernel_cap_t * inheritable,
1163			    kernel_cap_t * permitted);
1164	int (*capable) (struct task_struct * tsk, int cap);
1165	int (*acct) (struct file * file);
1166	int (*sysctl) (struct ctl_table * table, int op);
1167	int (*quotactl) (int cmds, int type, int id, struct super_block * sb);
1168	int (*quota_on) (struct dentry * dentry);
1169	int (*syslog) (int type);
1170	int (*settime) (struct timespec *ts, struct timezone *tz);
1171	int (*vm_enough_memory) (long pages);
1172
1173	int (*bprm_alloc_security) (struct linux_binprm * bprm);
1174	void (*bprm_free_security) (struct linux_binprm * bprm);
1175	void (*bprm_apply_creds) (struct linux_binprm * bprm, int unsafe);
1176	void (*bprm_post_apply_creds) (struct linux_binprm * bprm);
1177	int (*bprm_set_security) (struct linux_binprm * bprm);
1178	int (*bprm_check_security) (struct linux_binprm * bprm);
1179	int (*bprm_secureexec) (struct linux_binprm * bprm);
1180
1181	int (*sb_alloc_security) (struct super_block * sb);
1182	void (*sb_free_security) (struct super_block * sb);
1183	int (*sb_copy_data)(struct file_system_type *type,
1184			    void *orig, void *copy);
1185	int (*sb_kern_mount) (struct super_block *sb, void *data);
1186	int (*sb_statfs) (struct dentry *dentry);
1187	int (*sb_mount) (char *dev_name, struct nameidata * nd,
1188			 char *type, unsigned long flags, void *data);
1189	int (*sb_check_sb) (struct vfsmount * mnt, struct nameidata * nd);
1190	int (*sb_umount) (struct vfsmount * mnt, int flags);
1191	void (*sb_umount_close) (struct vfsmount * mnt);
1192	void (*sb_umount_busy) (struct vfsmount * mnt);
1193	void (*sb_post_remount) (struct vfsmount * mnt,
1194				 unsigned long flags, void *data);
1195	void (*sb_post_mountroot) (void);
1196	void (*sb_post_addmount) (struct vfsmount * mnt,
1197				  struct nameidata * mountpoint_nd);
1198	int (*sb_pivotroot) (struct nameidata * old_nd,
1199			     struct nameidata * new_nd);
1200	void (*sb_post_pivotroot) (struct nameidata * old_nd,
1201				   struct nameidata * new_nd);
1202
1203	int (*inode_alloc_security) (struct inode *inode);
1204	void (*inode_free_security) (struct inode *inode);
1205	int (*inode_init_security) (struct inode *inode, struct inode *dir,
1206				    char **name, void **value, size_t *len);
1207	int (*inode_create) (struct inode *dir,
1208	                     struct dentry *dentry, int mode);
1209	int (*inode_link) (struct dentry *old_dentry,
1210	                   struct inode *dir, struct dentry *new_dentry);
1211	int (*inode_unlink) (struct inode *dir, struct dentry *dentry);
1212	int (*inode_symlink) (struct inode *dir,
1213	                      struct dentry *dentry, const char *old_name);
1214	int (*inode_mkdir) (struct inode *dir, struct dentry *dentry, int mode);
1215	int (*inode_rmdir) (struct inode *dir, struct dentry *dentry);
1216	int (*inode_mknod) (struct inode *dir, struct dentry *dentry,
1217	                    int mode, dev_t dev);
1218	int (*inode_rename) (struct inode *old_dir, struct dentry *old_dentry,
1219	                     struct inode *new_dir, struct dentry *new_dentry);
1220	int (*inode_readlink) (struct dentry *dentry);
1221	int (*inode_follow_link) (struct dentry *dentry, struct nameidata *nd);
1222	int (*inode_permission) (struct inode *inode, int mask, struct nameidata *nd);
1223	int (*inode_setattr)	(struct dentry *dentry, struct iattr *attr);
1224	int (*inode_getattr) (struct vfsmount *mnt, struct dentry *dentry);
1225        void (*inode_delete) (struct inode *inode);
1226	int (*inode_setxattr) (struct dentry *dentry, char *name, void *value,
1227			       size_t size, int flags);
1228	void (*inode_post_setxattr) (struct dentry *dentry, char *name, void *value,
1229				     size_t size, int flags);
1230	int (*inode_getxattr) (struct dentry *dentry, char *name);
1231	int (*inode_listxattr) (struct dentry *dentry);
1232	int (*inode_removexattr) (struct dentry *dentry, char *name);
1233	const char *(*inode_xattr_getsuffix) (void);
1234  	int (*inode_getsecurity)(const struct inode *inode, const char *name, void *buffer, size_t size, int err);
1235  	int (*inode_setsecurity)(struct inode *inode, const char *name, const void *value, size_t size, int flags);
1236  	int (*inode_listsecurity)(struct inode *inode, char *buffer, size_t buffer_size);
1237
1238	int (*file_permission) (struct file * file, int mask);
1239	int (*file_alloc_security) (struct file * file);
1240	void (*file_free_security) (struct file * file);
1241	int (*file_ioctl) (struct file * file, unsigned int cmd,
1242			   unsigned long arg);
1243	int (*file_mmap) (struct file * file,
1244			  unsigned long reqprot,
1245			  unsigned long prot, unsigned long flags);
1246	int (*file_mprotect) (struct vm_area_struct * vma,
1247			      unsigned long reqprot,
1248			      unsigned long prot);
1249	int (*file_lock) (struct file * file, unsigned int cmd);
1250	int (*file_fcntl) (struct file * file, unsigned int cmd,
1251			   unsigned long arg);
1252	int (*file_set_fowner) (struct file * file);
1253	int (*file_send_sigiotask) (struct task_struct * tsk,
1254				    struct fown_struct * fown, int sig);
1255	int (*file_receive) (struct file * file);
1256
1257	int (*task_create) (unsigned long clone_flags);
1258	int (*task_alloc_security) (struct task_struct * p);
1259	void (*task_free_security) (struct task_struct * p);
1260	int (*task_setuid) (uid_t id0, uid_t id1, uid_t id2, int flags);
1261	int (*task_post_setuid) (uid_t old_ruid /* or fsuid */ ,
1262				 uid_t old_euid, uid_t old_suid, int flags);
1263	int (*task_setgid) (gid_t id0, gid_t id1, gid_t id2, int flags);
1264	int (*task_setpgid) (struct task_struct * p, pid_t pgid);
1265	int (*task_getpgid) (struct task_struct * p);
1266	int (*task_getsid) (struct task_struct * p);
1267	void (*task_getsecid) (struct task_struct * p, u32 * secid);
1268	int (*task_setgroups) (struct group_info *group_info);
1269	int (*task_setnice) (struct task_struct * p, int nice);
1270	int (*task_setioprio) (struct task_struct * p, int ioprio);
1271	int (*task_getioprio) (struct task_struct * p);
1272	int (*task_setrlimit) (unsigned int resource, struct rlimit * new_rlim);
1273	int (*task_setscheduler) (struct task_struct * p, int policy,
1274				  struct sched_param * lp);
1275	int (*task_getscheduler) (struct task_struct * p);
1276	int (*task_movememory) (struct task_struct * p);
1277	int (*task_kill) (struct task_struct * p,
1278			  struct siginfo * info, int sig, u32 secid);
1279	int (*task_wait) (struct task_struct * p);
1280	int (*task_prctl) (int option, unsigned long arg2,
1281			   unsigned long arg3, unsigned long arg4,
1282			   unsigned long arg5);
1283	void (*task_reparent_to_init) (struct task_struct * p);
1284	void (*task_to_inode)(struct task_struct *p, struct inode *inode);
1285
1286	int (*ipc_permission) (struct kern_ipc_perm * ipcp, short flag);
1287
1288	int (*msg_msg_alloc_security) (struct msg_msg * msg);
1289	void (*msg_msg_free_security) (struct msg_msg * msg);
1290
1291	int (*msg_queue_alloc_security) (struct msg_queue * msq);
1292	void (*msg_queue_free_security) (struct msg_queue * msq);
1293	int (*msg_queue_associate) (struct msg_queue * msq, int msqflg);
1294	int (*msg_queue_msgctl) (struct msg_queue * msq, int cmd);
1295	int (*msg_queue_msgsnd) (struct msg_queue * msq,
1296				 struct msg_msg * msg, int msqflg);
1297	int (*msg_queue_msgrcv) (struct msg_queue * msq,
1298				 struct msg_msg * msg,
1299				 struct task_struct * target,
1300				 long type, int mode);
1301
1302	int (*shm_alloc_security) (struct shmid_kernel * shp);
1303	void (*shm_free_security) (struct shmid_kernel * shp);
1304	int (*shm_associate) (struct shmid_kernel * shp, int shmflg);
1305	int (*shm_shmctl) (struct shmid_kernel * shp, int cmd);
1306	int (*shm_shmat) (struct shmid_kernel * shp,
1307			  char __user *shmaddr, int shmflg);
1308
1309	int (*sem_alloc_security) (struct sem_array * sma);
1310	void (*sem_free_security) (struct sem_array * sma);
1311	int (*sem_associate) (struct sem_array * sma, int semflg);
1312	int (*sem_semctl) (struct sem_array * sma, int cmd);
1313	int (*sem_semop) (struct sem_array * sma,
1314			  struct sembuf * sops, unsigned nsops, int alter);
1315
1316	int (*netlink_send) (struct sock * sk, struct sk_buff * skb);
1317	int (*netlink_recv) (struct sk_buff * skb, int cap);
1318
1319	/* allow module stacking */
1320	int (*register_security) (const char *name,
1321	                          struct security_operations *ops);
1322	int (*unregister_security) (const char *name,
1323	                            struct security_operations *ops);
1324
1325	void (*d_instantiate) (struct dentry *dentry, struct inode *inode);
1326
1327 	int (*getprocattr)(struct task_struct *p, char *name, char **value);
1328 	int (*setprocattr)(struct task_struct *p, char *name, void *value, size_t size);
1329	int (*secid_to_secctx)(u32 secid, char **secdata, u32 *seclen);
1330	void (*release_secctx)(char *secdata, u32 seclen);
1331
1332#ifdef CONFIG_SECURITY_NETWORK
1333	int (*unix_stream_connect) (struct socket * sock,
1334				    struct socket * other, struct sock * newsk);
1335	int (*unix_may_send) (struct socket * sock, struct socket * other);
1336
1337	int (*socket_create) (int family, int type, int protocol, int kern);
1338	int (*socket_post_create) (struct socket * sock, int family,
1339				   int type, int protocol, int kern);
1340	int (*socket_bind) (struct socket * sock,
1341			    struct sockaddr * address, int addrlen);
1342	int (*socket_connect) (struct socket * sock,
1343			       struct sockaddr * address, int addrlen);
1344	int (*socket_listen) (struct socket * sock, int backlog);
1345	int (*socket_accept) (struct socket * sock, struct socket * newsock);
1346	void (*socket_post_accept) (struct socket * sock,
1347				    struct socket * newsock);
1348	int (*socket_sendmsg) (struct socket * sock,
1349			       struct msghdr * msg, int size);
1350	int (*socket_recvmsg) (struct socket * sock,
1351			       struct msghdr * msg, int size, int flags);
1352	int (*socket_getsockname) (struct socket * sock);
1353	int (*socket_getpeername) (struct socket * sock);
1354	int (*socket_getsockopt) (struct socket * sock, int level, int optname);
1355	int (*socket_setsockopt) (struct socket * sock, int level, int optname);
1356	int (*socket_shutdown) (struct socket * sock, int how);
1357	int (*socket_sock_rcv_skb) (struct sock * sk, struct sk_buff * skb);
1358	int (*socket_getpeersec_stream) (struct socket *sock, char __user *optval, int __user *optlen, unsigned len);
1359	int (*socket_getpeersec_dgram) (struct socket *sock, struct sk_buff *skb, u32 *secid);
1360	int (*sk_alloc_security) (struct sock *sk, int family, gfp_t priority);
1361	void (*sk_free_security) (struct sock *sk);
1362	void (*sk_clone_security) (const struct sock *sk, struct sock *newsk);
1363	void (*sk_getsecid) (struct sock *sk, u32 *secid);
1364	void (*sock_graft)(struct sock* sk, struct socket *parent);
1365	int (*inet_conn_request)(struct sock *sk, struct sk_buff *skb,
1366					struct request_sock *req);
1367	void (*inet_csk_clone)(struct sock *newsk, const struct request_sock *req);
1368	void (*inet_conn_established)(struct sock *sk, struct sk_buff *skb);
1369	void (*req_classify_flow)(const struct request_sock *req, struct flowi *fl);
1370#endif	/* CONFIG_SECURITY_NETWORK */
1371
1372#ifdef CONFIG_SECURITY_NETWORK_XFRM
1373	int (*xfrm_policy_alloc_security) (struct xfrm_policy *xp,
1374			struct xfrm_user_sec_ctx *sec_ctx);
1375	int (*xfrm_policy_clone_security) (struct xfrm_policy *old, struct xfrm_policy *new);
1376	void (*xfrm_policy_free_security) (struct xfrm_policy *xp);
1377	int (*xfrm_policy_delete_security) (struct xfrm_policy *xp);
1378	int (*xfrm_state_alloc_security) (struct xfrm_state *x,
1379		struct xfrm_user_sec_ctx *sec_ctx,
1380		u32 secid);
1381	void (*xfrm_state_free_security) (struct xfrm_state *x);
1382	int (*xfrm_state_delete_security) (struct xfrm_state *x);
1383	int (*xfrm_policy_lookup)(struct xfrm_policy *xp, u32 fl_secid, u8 dir);
1384	int (*xfrm_state_pol_flow_match)(struct xfrm_state *x,
1385			struct xfrm_policy *xp, struct flowi *fl);
1386	int (*xfrm_decode_session)(struct sk_buff *skb, u32 *secid, int ckall);
1387#endif	/* CONFIG_SECURITY_NETWORK_XFRM */
1388
1389	/* key management security hooks */
1390#ifdef CONFIG_KEYS
1391	int (*key_alloc)(struct key *key, struct task_struct *tsk, unsigned long flags);
1392	void (*key_free)(struct key *key);
1393	int (*key_permission)(key_ref_t key_ref,
1394			      struct task_struct *context,
1395			      key_perm_t perm);
1396
1397#endif	/* CONFIG_KEYS */
1398
1399};
1400
1401/* global variables */
1402extern struct security_operations *security_ops;
1403
1404/* inline stuff */
1405static inline int security_ptrace (struct task_struct * parent, struct task_struct * child)
1406{
1407	return security_ops->ptrace (parent, child);
1408}
1409
1410static inline int security_capget (struct task_struct *target,
1411				   kernel_cap_t *effective,
1412				   kernel_cap_t *inheritable,
1413				   kernel_cap_t *permitted)
1414{
1415	return security_ops->capget (target, effective, inheritable, permitted);
1416}
1417
1418static inline int security_capset_check (struct task_struct *target,
1419					 kernel_cap_t *effective,
1420					 kernel_cap_t *inheritable,
1421					 kernel_cap_t *permitted)
1422{
1423	return security_ops->capset_check (target, effective, inheritable, permitted);
1424}
1425
1426static inline void security_capset_set (struct task_struct *target,
1427					kernel_cap_t *effective,
1428					kernel_cap_t *inheritable,
1429					kernel_cap_t *permitted)
1430{
1431	security_ops->capset_set (target, effective, inheritable, permitted);
1432}
1433
1434static inline int security_capable(struct task_struct *tsk, int cap)
1435{
1436	return security_ops->capable(tsk, cap);
1437}
1438
1439static inline int security_acct (struct file *file)
1440{
1441	return security_ops->acct (file);
1442}
1443
1444static inline int security_sysctl(struct ctl_table *table, int op)
1445{
1446	return security_ops->sysctl(table, op);
1447}
1448
1449static inline int security_quotactl (int cmds, int type, int id,
1450				     struct super_block *sb)
1451{
1452	return security_ops->quotactl (cmds, type, id, sb);
1453}
1454
1455static inline int security_quota_on (struct dentry * dentry)
1456{
1457	return security_ops->quota_on (dentry);
1458}
1459
1460static inline int security_syslog(int type)
1461{
1462	return security_ops->syslog(type);
1463}
1464
1465static inline int security_settime(struct timespec *ts, struct timezone *tz)
1466{
1467	return security_ops->settime(ts, tz);
1468}
1469
1470
1471static inline int security_vm_enough_memory(long pages)
1472{
1473	return security_ops->vm_enough_memory(pages);
1474}
1475
1476static inline int security_bprm_alloc (struct linux_binprm *bprm)
1477{
1478	return security_ops->bprm_alloc_security (bprm);
1479}
1480static inline void security_bprm_free (struct linux_binprm *bprm)
1481{
1482	security_ops->bprm_free_security (bprm);
1483}
1484static inline void security_bprm_apply_creds (struct linux_binprm *bprm, int unsafe)
1485{
1486	security_ops->bprm_apply_creds (bprm, unsafe);
1487}
1488static inline void security_bprm_post_apply_creds (struct linux_binprm *bprm)
1489{
1490	security_ops->bprm_post_apply_creds (bprm);
1491}
1492static inline int security_bprm_set (struct linux_binprm *bprm)
1493{
1494	return security_ops->bprm_set_security (bprm);
1495}
1496
1497static inline int security_bprm_check (struct linux_binprm *bprm)
1498{
1499	return security_ops->bprm_check_security (bprm);
1500}
1501
1502static inline int security_bprm_secureexec (struct linux_binprm *bprm)
1503{
1504	return security_ops->bprm_secureexec (bprm);
1505}
1506
1507static inline int security_sb_alloc (struct super_block *sb)
1508{
1509	return security_ops->sb_alloc_security (sb);
1510}
1511
1512static inline void security_sb_free (struct super_block *sb)
1513{
1514	security_ops->sb_free_security (sb);
1515}
1516
1517static inline int security_sb_copy_data (struct file_system_type *type,
1518					 void *orig, void *copy)
1519{
1520	return security_ops->sb_copy_data (type, orig, copy);
1521}
1522
1523static inline int security_sb_kern_mount (struct super_block *sb, void *data)
1524{
1525	return security_ops->sb_kern_mount (sb, data);
1526}
1527
1528static inline int security_sb_statfs (struct dentry *dentry)
1529{
1530	return security_ops->sb_statfs (dentry);
1531}
1532
1533static inline int security_sb_mount (char *dev_name, struct nameidata *nd,
1534				    char *type, unsigned long flags,
1535				    void *data)
1536{
1537	return security_ops->sb_mount (dev_name, nd, type, flags, data);
1538}
1539
1540static inline int security_sb_check_sb (struct vfsmount *mnt,
1541					struct nameidata *nd)
1542{
1543	return security_ops->sb_check_sb (mnt, nd);
1544}
1545
1546static inline int security_sb_umount (struct vfsmount *mnt, int flags)
1547{
1548	return security_ops->sb_umount (mnt, flags);
1549}
1550
1551static inline void security_sb_umount_close (struct vfsmount *mnt)
1552{
1553	security_ops->sb_umount_close (mnt);
1554}
1555
1556static inline void security_sb_umount_busy (struct vfsmount *mnt)
1557{
1558	security_ops->sb_umount_busy (mnt);
1559}
1560
1561static inline void security_sb_post_remount (struct vfsmount *mnt,
1562					     unsigned long flags, void *data)
1563{
1564	security_ops->sb_post_remount (mnt, flags, data);
1565}
1566
1567static inline void security_sb_post_mountroot (void)
1568{
1569	security_ops->sb_post_mountroot ();
1570}
1571
1572static inline void security_sb_post_addmount (struct vfsmount *mnt,
1573					      struct nameidata *mountpoint_nd)
1574{
1575	security_ops->sb_post_addmount (mnt, mountpoint_nd);
1576}
1577
1578static inline int security_sb_pivotroot (struct nameidata *old_nd,
1579					 struct nameidata *new_nd)
1580{
1581	return security_ops->sb_pivotroot (old_nd, new_nd);
1582}
1583
1584static inline void security_sb_post_pivotroot (struct nameidata *old_nd,
1585					       struct nameidata *new_nd)
1586{
1587	security_ops->sb_post_pivotroot (old_nd, new_nd);
1588}
1589
1590static inline int security_inode_alloc (struct inode *inode)
1591{
1592	inode->i_security = NULL;
1593	return security_ops->inode_alloc_security (inode);
1594}
1595
1596static inline void security_inode_free (struct inode *inode)
1597{
1598	security_ops->inode_free_security (inode);
1599}
1600
1601static inline int security_inode_init_security (struct inode *inode,
1602						struct inode *dir,
1603						char **name,
1604						void **value,
1605						size_t *len)
1606{
1607	if (unlikely (IS_PRIVATE (inode)))
1608		return -EOPNOTSUPP;
1609	return security_ops->inode_init_security (inode, dir, name, value, len);
1610}
1611
1612static inline int security_inode_create (struct inode *dir,
1613					 struct dentry *dentry,
1614					 int mode)
1615{
1616	if (unlikely (IS_PRIVATE (dir)))
1617		return 0;
1618	return security_ops->inode_create (dir, dentry, mode);
1619}
1620
1621static inline int security_inode_link (struct dentry *old_dentry,
1622				       struct inode *dir,
1623				       struct dentry *new_dentry)
1624{
1625	if (unlikely (IS_PRIVATE (old_dentry->d_inode)))
1626		return 0;
1627	return security_ops->inode_link (old_dentry, dir, new_dentry);
1628}
1629
1630static inline int security_inode_unlink (struct inode *dir,
1631					 struct dentry *dentry)
1632{
1633	if (unlikely (IS_PRIVATE (dentry->d_inode)))
1634		return 0;
1635	return security_ops->inode_unlink (dir, dentry);
1636}
1637
1638static inline int security_inode_symlink (struct inode *dir,
1639					  struct dentry *dentry,
1640					  const char *old_name)
1641{
1642	if (unlikely (IS_PRIVATE (dir)))
1643		return 0;
1644	return security_ops->inode_symlink (dir, dentry, old_name);
1645}
1646
1647static inline int security_inode_mkdir (struct inode *dir,
1648					struct dentry *dentry,
1649					int mode)
1650{
1651	if (unlikely (IS_PRIVATE (dir)))
1652		return 0;
1653	return security_ops->inode_mkdir (dir, dentry, mode);
1654}
1655
1656static inline int security_inode_rmdir (struct inode *dir,
1657					struct dentry *dentry)
1658{
1659	if (unlikely (IS_PRIVATE (dentry->d_inode)))
1660		return 0;
1661	return security_ops->inode_rmdir (dir, dentry);
1662}
1663
1664static inline int security_inode_mknod (struct inode *dir,
1665					struct dentry *dentry,
1666					int mode, dev_t dev)
1667{
1668	if (unlikely (IS_PRIVATE (dir)))
1669		return 0;
1670	return security_ops->inode_mknod (dir, dentry, mode, dev);
1671}
1672
1673static inline int security_inode_rename (struct inode *old_dir,
1674					 struct dentry *old_dentry,
1675					 struct inode *new_dir,
1676					 struct dentry *new_dentry)
1677{
1678        if (unlikely (IS_PRIVATE (old_dentry->d_inode) ||
1679            (new_dentry->d_inode && IS_PRIVATE (new_dentry->d_inode))))
1680		return 0;
1681	return security_ops->inode_rename (old_dir, old_dentry,
1682					   new_dir, new_dentry);
1683}
1684
1685static inline int security_inode_readlink (struct dentry *dentry)
1686{
1687	if (unlikely (IS_PRIVATE (dentry->d_inode)))
1688		return 0;
1689	return security_ops->inode_readlink (dentry);
1690}
1691
1692static inline int security_inode_follow_link (struct dentry *dentry,
1693					      struct nameidata *nd)
1694{
1695	if (unlikely (IS_PRIVATE (dentry->d_inode)))
1696		return 0;
1697	return security_ops->inode_follow_link (dentry, nd);
1698}
1699
1700static inline int security_inode_permission (struct inode *inode, int mask,
1701					     struct nameidata *nd)
1702{
1703	if (unlikely (IS_PRIVATE (inode)))
1704		return 0;
1705	return security_ops->inode_permission (inode, mask, nd);
1706}
1707
1708static inline int security_inode_setattr (struct dentry *dentry,
1709					  struct iattr *attr)
1710{
1711	if (unlikely (IS_PRIVATE (dentry->d_inode)))
1712		return 0;
1713	return security_ops->inode_setattr (dentry, attr);
1714}
1715
1716static inline int security_inode_getattr (struct vfsmount *mnt,
1717					  struct dentry *dentry)
1718{
1719	if (unlikely (IS_PRIVATE (dentry->d_inode)))
1720		return 0;
1721	return security_ops->inode_getattr (mnt, dentry);
1722}
1723
1724static inline void security_inode_delete (struct inode *inode)
1725{
1726	if (unlikely (IS_PRIVATE (inode)))
1727		return;
1728	security_ops->inode_delete (inode);
1729}
1730
1731static inline int security_inode_setxattr (struct dentry *dentry, char *name,
1732					   void *value, size_t size, int flags)
1733{
1734	if (unlikely (IS_PRIVATE (dentry->d_inode)))
1735		return 0;
1736	return security_ops->inode_setxattr (dentry, name, value, size, flags);
1737}
1738
1739static inline void security_inode_post_setxattr (struct dentry *dentry, char *name,
1740						void *value, size_t size, int flags)
1741{
1742	if (unlikely (IS_PRIVATE (dentry->d_inode)))
1743		return;
1744	security_ops->inode_post_setxattr (dentry, name, value, size, flags);
1745}
1746
1747static inline int security_inode_getxattr (struct dentry *dentry, char *name)
1748{
1749	if (unlikely (IS_PRIVATE (dentry->d_inode)))
1750		return 0;
1751	return security_ops->inode_getxattr (dentry, name);
1752}
1753
1754static inline int security_inode_listxattr (struct dentry *dentry)
1755{
1756	if (unlikely (IS_PRIVATE (dentry->d_inode)))
1757		return 0;
1758	return security_ops->inode_listxattr (dentry);
1759}
1760
1761static inline int security_inode_removexattr (struct dentry *dentry, char *name)
1762{
1763	if (unlikely (IS_PRIVATE (dentry->d_inode)))
1764		return 0;
1765	return security_ops->inode_removexattr (dentry, name);
1766}
1767
1768static inline const char *security_inode_xattr_getsuffix(void)
1769{
1770	return security_ops->inode_xattr_getsuffix();
1771}
1772
1773static inline int security_inode_getsecurity(const struct inode *inode, const char *name, void *buffer, size_t size, int err)
1774{
1775	if (unlikely (IS_PRIVATE (inode)))
1776		return 0;
1777	return security_ops->inode_getsecurity(inode, name, buffer, size, err);
1778}
1779
1780static inline int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
1781{
1782	if (unlikely (IS_PRIVATE (inode)))
1783		return 0;
1784	return security_ops->inode_setsecurity(inode, name, value, size, flags);
1785}
1786
1787static inline int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
1788{
1789	if (unlikely (IS_PRIVATE (inode)))
1790		return 0;
1791	return security_ops->inode_listsecurity(inode, buffer, buffer_size);
1792}
1793
1794static inline int security_file_permission (struct file *file, int mask)
1795{
1796	return security_ops->file_permission (file, mask);
1797}
1798
1799static inline int security_file_alloc (struct file *file)
1800{
1801	return security_ops->file_alloc_security (file);
1802}
1803
1804static inline void security_file_free (struct file *file)
1805{
1806	security_ops->file_free_security (file);
1807}
1808
1809static inline int security_file_ioctl (struct file *file, unsigned int cmd,
1810				       unsigned long arg)
1811{
1812	return security_ops->file_ioctl (file, cmd, arg);
1813}
1814
1815static inline int security_file_mmap (struct file *file, unsigned long reqprot,
1816				      unsigned long prot,
1817				      unsigned long flags)
1818{
1819	return security_ops->file_mmap (file, reqprot, prot, flags);
1820}
1821
1822static inline int security_file_mprotect (struct vm_area_struct *vma,
1823					  unsigned long reqprot,
1824					  unsigned long prot)
1825{
1826	return security_ops->file_mprotect (vma, reqprot, prot);
1827}
1828
1829static inline int security_file_lock (struct file *file, unsigned int cmd)
1830{
1831	return security_ops->file_lock (file, cmd);
1832}
1833
1834static inline int security_file_fcntl (struct file *file, unsigned int cmd,
1835				       unsigned long arg)
1836{
1837	return security_ops->file_fcntl (file, cmd, arg);
1838}
1839
1840static inline int security_file_set_fowner (struct file *file)
1841{
1842	return security_ops->file_set_fowner (file);
1843}
1844
1845static inline int security_file_send_sigiotask (struct task_struct *tsk,
1846						struct fown_struct *fown,
1847						int sig)
1848{
1849	return security_ops->file_send_sigiotask (tsk, fown, sig);
1850}
1851
1852static inline int security_file_receive (struct file *file)
1853{
1854	return security_ops->file_receive (file);
1855}
1856
1857static inline int security_task_create (unsigned long clone_flags)
1858{
1859	return security_ops->task_create (clone_flags);
1860}
1861
1862static inline int security_task_alloc (struct task_struct *p)
1863{
1864	return security_ops->task_alloc_security (p);
1865}
1866
1867static inline void security_task_free (struct task_struct *p)
1868{
1869	security_ops->task_free_security (p);
1870}
1871
1872static inline int security_task_setuid (uid_t id0, uid_t id1, uid_t id2,
1873					int flags)
1874{
1875	return security_ops->task_setuid (id0, id1, id2, flags);
1876}
1877
1878static inline int security_task_post_setuid (uid_t old_ruid, uid_t old_euid,
1879					     uid_t old_suid, int flags)
1880{
1881	return security_ops->task_post_setuid (old_ruid, old_euid, old_suid, flags);
1882}
1883
1884static inline int security_task_setgid (gid_t id0, gid_t id1, gid_t id2,
1885					int flags)
1886{
1887	return security_ops->task_setgid (id0, id1, id2, flags);
1888}
1889
1890static inline int security_task_setpgid (struct task_struct *p, pid_t pgid)
1891{
1892	return security_ops->task_setpgid (p, pgid);
1893}
1894
1895static inline int security_task_getpgid (struct task_struct *p)
1896{
1897	return security_ops->task_getpgid (p);
1898}
1899
1900static inline int security_task_getsid (struct task_struct *p)
1901{
1902	return security_ops->task_getsid (p);
1903}
1904
1905static inline void security_task_getsecid (struct task_struct *p, u32 *secid)
1906{
1907	security_ops->task_getsecid (p, secid);
1908}
1909
1910static inline int security_task_setgroups (struct group_info *group_info)
1911{
1912	return security_ops->task_setgroups (group_info);
1913}
1914
1915static inline int security_task_setnice (struct task_struct *p, int nice)
1916{
1917	return security_ops->task_setnice (p, nice);
1918}
1919
1920static inline int security_task_setioprio (struct task_struct *p, int ioprio)
1921{
1922	return security_ops->task_setioprio (p, ioprio);
1923}
1924
1925static inline int security_task_getioprio (struct task_struct *p)
1926{
1927	return security_ops->task_getioprio (p);
1928}
1929
1930static inline int security_task_setrlimit (unsigned int resource,
1931					   struct rlimit *new_rlim)
1932{
1933	return security_ops->task_setrlimit (resource, new_rlim);
1934}
1935
1936static inline int security_task_setscheduler (struct task_struct *p,
1937					      int policy,
1938					      struct sched_param *lp)
1939{
1940	return security_ops->task_setscheduler (p, policy, lp);
1941}
1942
1943static inline int security_task_getscheduler (struct task_struct *p)
1944{
1945	return security_ops->task_getscheduler (p);
1946}
1947
1948static inline int security_task_movememory (struct task_struct *p)
1949{
1950	return security_ops->task_movememory (p);
1951}
1952
1953static inline int security_task_kill (struct task_struct *p,
1954				      struct siginfo *info, int sig,
1955				      u32 secid)
1956{
1957	return security_ops->task_kill (p, info, sig, secid);
1958}
1959
1960static inline int security_task_wait (struct task_struct *p)
1961{
1962	return security_ops->task_wait (p);
1963}
1964
1965static inline int security_task_prctl (int option, unsigned long arg2,
1966				       unsigned long arg3,
1967				       unsigned long arg4,
1968				       unsigned long arg5)
1969{
1970	return security_ops->task_prctl (option, arg2, arg3, arg4, arg5);
1971}
1972
1973static inline void security_task_reparent_to_init (struct task_struct *p)
1974{
1975	security_ops->task_reparent_to_init (p);
1976}
1977
1978static inline void security_task_to_inode(struct task_struct *p, struct inode *inode)
1979{
1980	security_ops->task_to_inode(p, inode);
1981}
1982
1983static inline int security_ipc_permission (struct kern_ipc_perm *ipcp,
1984					   short flag)
1985{
1986	return security_ops->ipc_permission (ipcp, flag);
1987}
1988
1989static inline int security_msg_msg_alloc (struct msg_msg * msg)
1990{
1991	return security_ops->msg_msg_alloc_security (msg);
1992}
1993
1994static inline void security_msg_msg_free (struct msg_msg * msg)
1995{
1996	security_ops->msg_msg_free_security(msg);
1997}
1998
1999static inline int security_msg_queue_alloc (struct msg_queue *msq)
2000{
2001	return security_ops->msg_queue_alloc_security (msq);
2002}
2003
2004static inline void security_msg_queue_free (struct msg_queue *msq)
2005{
2006	security_ops->msg_queue_free_security (msq);
2007}
2008
2009static inline int security_msg_queue_associate (struct msg_queue * msq,
2010						int msqflg)
2011{
2012	return security_ops->msg_queue_associate (msq, msqflg);
2013}
2014
2015static inline int security_msg_queue_msgctl (struct msg_queue * msq, int cmd)
2016{
2017	return security_ops->msg_queue_msgctl (msq, cmd);
2018}
2019
2020static inline int security_msg_queue_msgsnd (struct msg_queue * msq,
2021					     struct msg_msg * msg, int msqflg)
2022{
2023	return security_ops->msg_queue_msgsnd (msq, msg, msqflg);
2024}
2025
2026static inline int security_msg_queue_msgrcv (struct msg_queue * msq,
2027					     struct msg_msg * msg,
2028					     struct task_struct * target,
2029					     long type, int mode)
2030{
2031	return security_ops->msg_queue_msgrcv (msq, msg, target, type, mode);
2032}
2033
2034static inline int security_shm_alloc (struct shmid_kernel *shp)
2035{
2036	return security_ops->shm_alloc_security (shp);
2037}
2038
2039static inline void security_shm_free (struct shmid_kernel *shp)
2040{
2041	security_ops->shm_free_security (shp);
2042}
2043
2044static inline int security_shm_associate (struct shmid_kernel * shp,
2045					  int shmflg)
2046{
2047	return security_ops->shm_associate(shp, shmflg);
2048}
2049
2050static inline int security_shm_shmctl (struct shmid_kernel * shp, int cmd)
2051{
2052	return security_ops->shm_shmctl (shp, cmd);
2053}
2054
2055static inline int security_shm_shmat (struct shmid_kernel * shp,
2056				      char __user *shmaddr, int shmflg)
2057{
2058	return security_ops->shm_shmat(shp, shmaddr, shmflg);
2059}
2060
2061static inline int security_sem_alloc (struct sem_array *sma)
2062{
2063	return security_ops->sem_alloc_security (sma);
2064}
2065
2066static inline void security_sem_free (struct sem_array *sma)
2067{
2068	security_ops->sem_free_security (sma);
2069}
2070
2071static inline int security_sem_associate (struct sem_array * sma, int semflg)
2072{
2073	return security_ops->sem_associate (sma, semflg);
2074}
2075
2076static inline int security_sem_semctl (struct sem_array * sma, int cmd)
2077{
2078	return security_ops->sem_semctl(sma, cmd);
2079}
2080
2081static inline int security_sem_semop (struct sem_array * sma,
2082				      struct sembuf * sops, unsigned nsops,
2083				      int alter)
2084{
2085	return security_ops->sem_semop(sma, sops, nsops, alter);
2086}
2087
2088static inline void security_d_instantiate (struct dentry *dentry, struct inode *inode)
2089{
2090	if (unlikely (inode && IS_PRIVATE (inode)))
2091		return;
2092	security_ops->d_instantiate (dentry, inode);
2093}
2094
2095static inline int security_getprocattr(struct task_struct *p, char *name, char **value)
2096{
2097	return security_ops->getprocattr(p, name, value);
2098}
2099
2100static inline int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
2101{
2102	return security_ops->setprocattr(p, name, value, size);
2103}
2104
2105static inline int security_netlink_send(struct sock *sk, struct sk_buff * skb)
2106{
2107	return security_ops->netlink_send(sk, skb);
2108}
2109
2110static inline int security_netlink_recv(struct sk_buff * skb, int cap)
2111{
2112	return security_ops->netlink_recv(skb, cap);
2113}
2114
2115static inline int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
2116{
2117	return security_ops->secid_to_secctx(secid, secdata, seclen);
2118}
2119
2120static inline void security_release_secctx(char *secdata, u32 seclen)
2121{
2122	return security_ops->release_secctx(secdata, seclen);
2123}
2124
2125/* prototypes */
2126extern int security_init	(void);
2127extern int register_security	(struct security_operations *ops);
2128extern int unregister_security	(struct security_operations *ops);
2129extern int mod_reg_security	(const char *name, struct security_operations *ops);
2130extern int mod_unreg_security	(const char *name, struct security_operations *ops);
2131extern struct dentry *securityfs_create_file(const char *name, mode_t mode,
2132					     struct dentry *parent, void *data,
2133					     const struct file_operations *fops);
2134extern struct dentry *securityfs_create_dir(const char *name, struct dentry *parent);
2135extern void securityfs_remove(struct dentry *dentry);
2136
2137
2138#else /* CONFIG_SECURITY */
2139
2140/*
2141 * This is the default capabilities functionality.  Most of these functions
2142 * are just stubbed out, but a few must call the proper capable code.
2143 */
2144
2145static inline int security_init(void)
2146{
2147	return 0;
2148}
2149
2150static inline int security_ptrace (struct task_struct *parent, struct task_struct * child)
2151{
2152	return cap_ptrace (parent, child);
2153}
2154
2155static inline int security_capget (struct task_struct *target,
2156				   kernel_cap_t *effective,
2157				   kernel_cap_t *inheritable,
2158				   kernel_cap_t *permitted)
2159{
2160	return cap_capget (target, effective, inheritable, permitted);
2161}
2162
2163static inline int security_capset_check (struct task_struct *target,
2164					 kernel_cap_t *effective,
2165					 kernel_cap_t *inheritable,
2166					 kernel_cap_t *permitted)
2167{
2168	return cap_capset_check (target, effective, inheritable, permitted);
2169}
2170
2171static inline void security_capset_set (struct task_struct *target,
2172					kernel_cap_t *effective,
2173					kernel_cap_t *inheritable,
2174					kernel_cap_t *permitted)
2175{
2176	cap_capset_set (target, effective, inheritable, permitted);
2177}
2178
2179static inline int security_capable(struct task_struct *tsk, int cap)
2180{
2181	return cap_capable(tsk, cap);
2182}
2183
2184static inline int security_acct (struct file *file)
2185{
2186	return 0;
2187}
2188
2189static inline int security_sysctl(struct ctl_table *table, int op)
2190{
2191	return 0;
2192}
2193
2194static inline int security_quotactl (int cmds, int type, int id,
2195				     struct super_block * sb)
2196{
2197	return 0;
2198}
2199
2200static inline int security_quota_on (struct dentry * dentry)
2201{
2202	return 0;
2203}
2204
2205static inline int security_syslog(int type)
2206{
2207	return cap_syslog(type);
2208}
2209
2210static inline int security_settime(struct timespec *ts, struct timezone *tz)
2211{
2212	return cap_settime(ts, tz);
2213}
2214
2215static inline int security_vm_enough_memory(long pages)
2216{
2217	return cap_vm_enough_memory(pages);
2218}
2219
2220static inline int security_bprm_alloc (struct linux_binprm *bprm)
2221{
2222	return 0;
2223}
2224
2225static inline void security_bprm_free (struct linux_binprm *bprm)
2226{ }
2227
2228static inline void security_bprm_apply_creds (struct linux_binprm *bprm, int unsafe)
2229{
2230	cap_bprm_apply_creds (bprm, unsafe);
2231}
2232
2233static inline void security_bprm_post_apply_creds (struct linux_binprm *bprm)
2234{
2235	return;
2236}
2237
2238static inline int security_bprm_set (struct linux_binprm *bprm)
2239{
2240	return cap_bprm_set_security (bprm);
2241}
2242
2243static inline int security_bprm_check (struct linux_binprm *bprm)
2244{
2245	return 0;
2246}
2247
2248static inline int security_bprm_secureexec (struct linux_binprm *bprm)
2249{
2250	return cap_bprm_secureexec(bprm);
2251}
2252
2253static inline int security_sb_alloc (struct super_block *sb)
2254{
2255	return 0;
2256}
2257
2258static inline void security_sb_free (struct super_block *sb)
2259{ }
2260
2261static inline int security_sb_copy_data (struct file_system_type *type,
2262					 void *orig, void *copy)
2263{
2264	return 0;
2265}
2266
2267static inline int security_sb_kern_mount (struct super_block *sb, void *data)
2268{
2269	return 0;
2270}
2271
2272static inline int security_sb_statfs (struct dentry *dentry)
2273{
2274	return 0;
2275}
2276
2277static inline int security_sb_mount (char *dev_name, struct nameidata *nd,
2278				    char *type, unsigned long flags,
2279				    void *data)
2280{
2281	return 0;
2282}
2283
2284static inline int security_sb_check_sb (struct vfsmount *mnt,
2285					struct nameidata *nd)
2286{
2287	return 0;
2288}
2289
2290static inline int security_sb_umount (struct vfsmount *mnt, int flags)
2291{
2292	return 0;
2293}
2294
2295static inline void security_sb_umount_close (struct vfsmount *mnt)
2296{ }
2297
2298static inline void security_sb_umount_busy (struct vfsmount *mnt)
2299{ }
2300
2301static inline void security_sb_post_remount (struct vfsmount *mnt,
2302					     unsigned long flags, void *data)
2303{ }
2304
2305static inline void security_sb_post_mountroot (void)
2306{ }
2307
2308static inline void security_sb_post_addmount (struct vfsmount *mnt,
2309					      struct nameidata *mountpoint_nd)
2310{ }
2311
2312static inline int security_sb_pivotroot (struct nameidata *old_nd,
2313					 struct nameidata *new_nd)
2314{
2315	return 0;
2316}
2317
2318static inline void security_sb_post_pivotroot (struct nameidata *old_nd,
2319					       struct nameidata *new_nd)
2320{ }
2321
2322static inline int security_inode_alloc (struct inode *inode)
2323{
2324	return 0;
2325}
2326
2327static inline void security_inode_free (struct inode *inode)
2328{ }
2329
2330static inline int security_inode_init_security (struct inode *inode,
2331						struct inode *dir,
2332						char **name,
2333						void **value,
2334						size_t *len)
2335{
2336	return -EOPNOTSUPP;
2337}
2338
2339static inline int security_inode_create (struct inode *dir,
2340					 struct dentry *dentry,
2341					 int mode)
2342{
2343	return 0;
2344}
2345
2346static inline int security_inode_link (struct dentry *old_dentry,
2347				       struct inode *dir,
2348				       struct dentry *new_dentry)
2349{
2350	return 0;
2351}
2352
2353static inline int security_inode_unlink (struct inode *dir,
2354					 struct dentry *dentry)
2355{
2356	return 0;
2357}
2358
2359static inline int security_inode_symlink (struct inode *dir,
2360					  struct dentry *dentry,
2361					  const char *old_name)
2362{
2363	return 0;
2364}
2365
2366static inline int security_inode_mkdir (struct inode *dir,
2367					struct dentry *dentry,
2368					int mode)
2369{
2370	return 0;
2371}
2372
2373static inline int security_inode_rmdir (struct inode *dir,
2374					struct dentry *dentry)
2375{
2376	return 0;
2377}
2378
2379static inline int security_inode_mknod (struct inode *dir,
2380					struct dentry *dentry,
2381					int mode, dev_t dev)
2382{
2383	return 0;
2384}
2385
2386static inline int security_inode_rename (struct inode *old_dir,
2387					 struct dentry *old_dentry,
2388					 struct inode *new_dir,
2389					 struct dentry *new_dentry)
2390{
2391	return 0;
2392}
2393
2394static inline int security_inode_readlink (struct dentry *dentry)
2395{
2396	return 0;
2397}
2398
2399static inline int security_inode_follow_link (struct dentry *dentry,
2400					      struct nameidata *nd)
2401{
2402	return 0;
2403}
2404
2405static inline int security_inode_permission (struct inode *inode, int mask,
2406					     struct nameidata *nd)
2407{
2408	return 0;
2409}
2410
2411static inline int security_inode_setattr (struct dentry *dentry,
2412					  struct iattr *attr)
2413{
2414	return 0;
2415}
2416
2417static inline int security_inode_getattr (struct vfsmount *mnt,
2418					  struct dentry *dentry)
2419{
2420	return 0;
2421}
2422
2423static inline void security_inode_delete (struct inode *inode)
2424{ }
2425
2426static inline int security_inode_setxattr (struct dentry *dentry, char *name,
2427					   void *value, size_t size, int flags)
2428{
2429	return cap_inode_setxattr(dentry, name, value, size, flags);
2430}
2431
2432static inline void security_inode_post_setxattr (struct dentry *dentry, char *name,
2433						 void *value, size_t size, int flags)
2434{ }
2435
2436static inline int security_inode_getxattr (struct dentry *dentry, char *name)
2437{
2438	return 0;
2439}
2440
2441static inline int security_inode_listxattr (struct dentry *dentry)
2442{
2443	return 0;
2444}
2445
2446static inline int security_inode_removexattr (struct dentry *dentry, char *name)
2447{
2448	return cap_inode_removexattr(dentry, name);
2449}
2450
2451static inline const char *security_inode_xattr_getsuffix (void)
2452{
2453	return NULL ;
2454}
2455
2456static inline int security_inode_getsecurity(const struct inode *inode, const char *name, void *buffer, size_t size, int err)
2457{
2458	return -EOPNOTSUPP;
2459}
2460
2461static inline int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
2462{
2463	return -EOPNOTSUPP;
2464}
2465
2466static inline int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2467{
2468	return 0;
2469}
2470
2471static inline int security_file_permission (struct file *file, int mask)
2472{
2473	return 0;
2474}
2475
2476static inline int security_file_alloc (struct file *file)
2477{
2478	return 0;
2479}
2480
2481static inline void security_file_free (struct file *file)
2482{ }
2483
2484static inline int security_file_ioctl (struct file *file, unsigned int cmd,
2485				       unsigned long arg)
2486{
2487	return 0;
2488}
2489
2490static inline int security_file_mmap (struct file *file, unsigned long reqprot,
2491				      unsigned long prot,
2492				      unsigned long flags)
2493{
2494	return 0;
2495}
2496
2497static inline int security_file_mprotect (struct vm_area_struct *vma,
2498					  unsigned long reqprot,
2499					  unsigned long prot)
2500{
2501	return 0;
2502}
2503
2504static inline int security_file_lock (struct file *file, unsigned int cmd)
2505{
2506	return 0;
2507}
2508
2509static inline int security_file_fcntl (struct file *file, unsigned int cmd,
2510				       unsigned long arg)
2511{
2512	return 0;
2513}
2514
2515static inline int security_file_set_fowner (struct file *file)
2516{
2517	return 0;
2518}
2519
2520static inline int security_file_send_sigiotask (struct task_struct *tsk,
2521						struct fown_struct *fown,
2522						int sig)
2523{
2524	return 0;
2525}
2526
2527static inline int security_file_receive (struct file *file)
2528{
2529	return 0;
2530}
2531
2532static inline int security_task_create (unsigned long clone_flags)
2533{
2534	return 0;
2535}
2536
2537static inline int security_task_alloc (struct task_struct *p)
2538{
2539	return 0;
2540}
2541
2542static inline void security_task_free (struct task_struct *p)
2543{ }
2544
2545static inline int security_task_setuid (uid_t id0, uid_t id1, uid_t id2,
2546					int flags)
2547{
2548	return 0;
2549}
2550
2551static inline int security_task_post_setuid (uid_t old_ruid, uid_t old_euid,
2552					     uid_t old_suid, int flags)
2553{
2554	return cap_task_post_setuid (old_ruid, old_euid, old_suid, flags);
2555}
2556
2557static inline int security_task_setgid (gid_t id0, gid_t id1, gid_t id2,
2558					int flags)
2559{
2560	return 0;
2561}
2562
2563static inline int security_task_setpgid (struct task_struct *p, pid_t pgid)
2564{
2565	return 0;
2566}
2567
2568static inline int security_task_getpgid (struct task_struct *p)
2569{
2570	return 0;
2571}
2572
2573static inline int security_task_getsid (struct task_struct *p)
2574{
2575	return 0;
2576}
2577
2578static inline void security_task_getsecid (struct task_struct *p, u32 *secid)
2579{ }
2580
2581static inline int security_task_setgroups (struct group_info *group_info)
2582{
2583	return 0;
2584}
2585
2586static inline int security_task_setnice (struct task_struct *p, int nice)
2587{
2588	return 0;
2589}
2590
2591static inline int security_task_setioprio (struct task_struct *p, int ioprio)
2592{
2593	return 0;
2594}
2595
2596static inline int security_task_getioprio (struct task_struct *p)
2597{
2598	return 0;
2599}
2600
2601static inline int security_task_setrlimit (unsigned int resource,
2602					   struct rlimit *new_rlim)
2603{
2604	return 0;
2605}
2606
2607static inline int security_task_setscheduler (struct task_struct *p,
2608					      int policy,
2609					      struct sched_param *lp)
2610{
2611	return 0;
2612}
2613
2614static inline int security_task_getscheduler (struct task_struct *p)
2615{
2616	return 0;
2617}
2618
2619static inline int security_task_movememory (struct task_struct *p)
2620{
2621	return 0;
2622}
2623
2624static inline int security_task_kill (struct task_struct *p,
2625				      struct siginfo *info, int sig,
2626				      u32 secid)
2627{
2628	return 0;
2629}
2630
2631static inline int security_task_wait (struct task_struct *p)
2632{
2633	return 0;
2634}
2635
2636static inline int security_task_prctl (int option, unsigned long arg2,
2637				       unsigned long arg3,
2638				       unsigned long arg4,
2639				       unsigned long arg5)
2640{
2641	return 0;
2642}
2643
2644static inline void security_task_reparent_to_init (struct task_struct *p)
2645{
2646	cap_task_reparent_to_init (p);
2647}
2648
2649static inline void security_task_to_inode(struct task_struct *p, struct inode *inode)
2650{ }
2651
2652static inline int security_ipc_permission (struct kern_ipc_perm *ipcp,
2653					   short flag)
2654{
2655	return 0;
2656}
2657
2658static inline int security_msg_msg_alloc (struct msg_msg * msg)
2659{
2660	return 0;
2661}
2662
2663static inline void security_msg_msg_free (struct msg_msg * msg)
2664{ }
2665
2666static inline int security_msg_queue_alloc (struct msg_queue *msq)
2667{
2668	return 0;
2669}
2670
2671static inline void security_msg_queue_free (struct msg_queue *msq)
2672{ }
2673
2674static inline int security_msg_queue_associate (struct msg_queue * msq,
2675						int msqflg)
2676{
2677	return 0;
2678}
2679
2680static inline int security_msg_queue_msgctl (struct msg_queue * msq, int cmd)
2681{
2682	return 0;
2683}
2684
2685static inline int security_msg_queue_msgsnd (struct msg_queue * msq,
2686					     struct msg_msg * msg, int msqflg)
2687{
2688	return 0;
2689}
2690
2691static inline int security_msg_queue_msgrcv (struct msg_queue * msq,
2692					     struct msg_msg * msg,
2693					     struct task_struct * target,
2694					     long type, int mode)
2695{
2696	return 0;
2697}
2698
2699static inline int security_shm_alloc (struct shmid_kernel *shp)
2700{
2701	return 0;
2702}
2703
2704static inline void security_shm_free (struct shmid_kernel *shp)
2705{ }
2706
2707static inline int security_shm_associate (struct shmid_kernel * shp,
2708					  int shmflg)
2709{
2710	return 0;
2711}
2712
2713static inline int security_shm_shmctl (struct shmid_kernel * shp, int cmd)
2714{
2715	return 0;
2716}
2717
2718static inline int security_shm_shmat (struct shmid_kernel * shp,
2719				      char __user *shmaddr, int shmflg)
2720{
2721	return 0;
2722}
2723
2724static inline int security_sem_alloc (struct sem_array *sma)
2725{
2726	return 0;
2727}
2728
2729static inline void security_sem_free (struct sem_array *sma)
2730{ }
2731
2732static inline int security_sem_associate (struct sem_array * sma, int semflg)
2733{
2734	return 0;
2735}
2736
2737static inline int security_sem_semctl (struct sem_array * sma, int cmd)
2738{
2739	return 0;
2740}
2741
2742static inline int security_sem_semop (struct sem_array * sma,
2743				      struct sembuf * sops, unsigned nsops,
2744				      int alter)
2745{
2746	return 0;
2747}
2748
2749static inline void security_d_instantiate (struct dentry *dentry, struct inode *inode)
2750{ }
2751
2752static inline int security_getprocattr(struct task_struct *p, char *name, char **value)
2753{
2754	return -EINVAL;
2755}
2756
2757static inline int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
2758{
2759	return -EINVAL;
2760}
2761
2762static inline int security_netlink_send (struct sock *sk, struct sk_buff *skb)
2763{
2764	return cap_netlink_send (sk, skb);
2765}
2766
2767static inline int security_netlink_recv (struct sk_buff *skb, int cap)
2768{
2769	return cap_netlink_recv (skb, cap);
2770}
2771
2772static inline struct dentry *securityfs_create_dir(const char *name,
2773					struct dentry *parent)
2774{
2775	return ERR_PTR(-ENODEV);
2776}
2777
2778static inline struct dentry *securityfs_create_file(const char *name,
2779						mode_t mode,
2780						struct dentry *parent,
2781						void *data,
2782						struct file_operations *fops)
2783{
2784	return ERR_PTR(-ENODEV);
2785}
2786
2787static inline void securityfs_remove(struct dentry *dentry)
2788{
2789}
2790
2791static inline int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
2792{
2793	return -EOPNOTSUPP;
2794}
2795
2796static inline void security_release_secctx(char *secdata, u32 seclen)
2797{
2798}
2799#endif	/* CONFIG_SECURITY */
2800
2801#ifdef CONFIG_SECURITY_NETWORK
2802static inline int security_unix_stream_connect(struct socket * sock,
2803					       struct socket * other,
2804					       struct sock * newsk)
2805{
2806	return security_ops->unix_stream_connect(sock, other, newsk);
2807}
2808
2809
2810static inline int security_unix_may_send(struct socket * sock,
2811					 struct socket * other)
2812{
2813	return security_ops->unix_may_send(sock, other);
2814}
2815
2816static inline int security_socket_create (int family, int type,
2817					  int protocol, int kern)
2818{
2819	return security_ops->socket_create(family, type, protocol, kern);
2820}
2821
2822static inline int security_socket_post_create(struct socket * sock,
2823					      int family,
2824					      int type,
2825					      int protocol, int kern)
2826{
2827	return security_ops->socket_post_create(sock, family, type,
2828						protocol, kern);
2829}
2830
2831static inline int security_socket_bind(struct socket * sock,
2832				       struct sockaddr * address,
2833				       int addrlen)
2834{
2835	return security_ops->socket_bind(sock, address, addrlen);
2836}
2837
2838static inline int security_socket_connect(struct socket * sock,
2839					  struct sockaddr * address,
2840					  int addrlen)
2841{
2842	return security_ops->socket_connect(sock, address, addrlen);
2843}
2844
2845static inline int security_socket_listen(struct socket * sock, int backlog)
2846{
2847	return security_ops->socket_listen(sock, backlog);
2848}
2849
2850static inline int security_socket_accept(struct socket * sock,
2851					 struct socket * newsock)
2852{
2853	return security_ops->socket_accept(sock, newsock);
2854}
2855
2856static inline void security_socket_post_accept(struct socket * sock,
2857					       struct socket * newsock)
2858{
2859	security_ops->socket_post_accept(sock, newsock);
2860}
2861
2862static inline int security_socket_sendmsg(struct socket * sock,
2863					  struct msghdr * msg, int size)
2864{
2865	return security_ops->socket_sendmsg(sock, msg, size);
2866}
2867
2868static inline int security_socket_recvmsg(struct socket * sock,
2869					  struct msghdr * msg, int size,
2870					  int flags)
2871{
2872	return security_ops->socket_recvmsg(sock, msg, size, flags);
2873}
2874
2875static inline int security_socket_getsockname(struct socket * sock)
2876{
2877	return security_ops->socket_getsockname(sock);
2878}
2879
2880static inline int security_socket_getpeername(struct socket * sock)
2881{
2882	return security_ops->socket_getpeername(sock);
2883}
2884
2885static inline int security_socket_getsockopt(struct socket * sock,
2886					     int level, int optname)
2887{
2888	return security_ops->socket_getsockopt(sock, level, optname);
2889}
2890
2891static inline int security_socket_setsockopt(struct socket * sock,
2892					     int level, int optname)
2893{
2894	return security_ops->socket_setsockopt(sock, level, optname);
2895}
2896
2897static inline int security_socket_shutdown(struct socket * sock, int how)
2898{
2899	return security_ops->socket_shutdown(sock, how);
2900}
2901
2902static inline int security_sock_rcv_skb (struct sock * sk,
2903					 struct sk_buff * skb)
2904{
2905	return security_ops->socket_sock_rcv_skb (sk, skb);
2906}
2907
2908static inline int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
2909						    int __user *optlen, unsigned len)
2910{
2911	return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
2912}
2913
2914static inline int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
2915{
2916	return security_ops->socket_getpeersec_dgram(sock, skb, secid);
2917}
2918
2919static inline int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2920{
2921	return security_ops->sk_alloc_security(sk, family, priority);
2922}
2923
2924static inline void security_sk_free(struct sock *sk)
2925{
2926	return security_ops->sk_free_security(sk);
2927}
2928
2929static inline void security_sk_clone(const struct sock *sk, struct sock *newsk)
2930{
2931	return security_ops->sk_clone_security(sk, newsk);
2932}
2933
2934static inline void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
2935{
2936	security_ops->sk_getsecid(sk, &fl->secid);
2937}
2938
2939static inline void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
2940{
2941	security_ops->req_classify_flow(req, fl);
2942}
2943
2944static inline void security_sock_graft(struct sock* sk, struct socket *parent)
2945{
2946	security_ops->sock_graft(sk, parent);
2947}
2948
2949static inline int security_inet_conn_request(struct sock *sk,
2950			struct sk_buff *skb, struct request_sock *req)
2951{
2952	return security_ops->inet_conn_request(sk, skb, req);
2953}
2954
2955static inline void security_inet_csk_clone(struct sock *newsk,
2956			const struct request_sock *req)
2957{
2958	security_ops->inet_csk_clone(newsk, req);
2959}
2960
2961static inline void security_inet_conn_established(struct sock *sk,
2962			struct sk_buff *skb)
2963{
2964	security_ops->inet_conn_established(sk, skb);
2965}
2966#else	/* CONFIG_SECURITY_NETWORK */
2967static inline int security_unix_stream_connect(struct socket * sock,
2968					       struct socket * other,
2969					       struct sock * newsk)
2970{
2971	return 0;
2972}
2973
2974static inline int security_unix_may_send(struct socket * sock,
2975					 struct socket * other)
2976{
2977	return 0;
2978}
2979
2980static inline int security_socket_create (int family, int type,
2981					  int protocol, int kern)
2982{
2983	return 0;
2984}
2985
2986static inline int security_socket_post_create(struct socket * sock,
2987					      int family,
2988					      int type,
2989					      int protocol, int kern)
2990{
2991	return 0;
2992}
2993
2994static inline int security_socket_bind(struct socket * sock,
2995				       struct sockaddr * address,
2996				       int addrlen)
2997{
2998	return 0;
2999}
3000
3001static inline int security_socket_connect(struct socket * sock,
3002					  struct sockaddr * address,
3003					  int addrlen)
3004{
3005	return 0;
3006}
3007
3008static inline int security_socket_listen(struct socket * sock, int backlog)
3009{
3010	return 0;
3011}
3012
3013static inline int security_socket_accept(struct socket * sock,
3014					 struct socket * newsock)
3015{
3016	return 0;
3017}
3018
3019static inline void security_socket_post_accept(struct socket * sock,
3020					       struct socket * newsock)
3021{
3022}
3023
3024static inline int security_socket_sendmsg(struct socket * sock,
3025					  struct msghdr * msg, int size)
3026{
3027	return 0;
3028}
3029
3030static inline int security_socket_recvmsg(struct socket * sock,
3031					  struct msghdr * msg, int size,
3032					  int flags)
3033{
3034	return 0;
3035}
3036
3037static inline int security_socket_getsockname(struct socket * sock)
3038{
3039	return 0;
3040}
3041
3042static inline int security_socket_getpeername(struct socket * sock)
3043{
3044	return 0;
3045}
3046
3047static inline int security_socket_getsockopt(struct socket * sock,
3048					     int level, int optname)
3049{
3050	return 0;
3051}
3052
3053static inline int security_socket_setsockopt(struct socket * sock,
3054					     int level, int optname)
3055{
3056	return 0;
3057}
3058
3059static inline int security_socket_shutdown(struct socket * sock, int how)
3060{
3061	return 0;
3062}
3063static inline int security_sock_rcv_skb (struct sock * sk,
3064					 struct sk_buff * skb)
3065{
3066	return 0;
3067}
3068
3069static inline int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
3070						    int __user *optlen, unsigned len)
3071{
3072	return -ENOPROTOOPT;
3073}
3074
3075static inline int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
3076{
3077	return -ENOPROTOOPT;
3078}
3079
3080static inline int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
3081{
3082	return 0;
3083}
3084
3085static inline void security_sk_free(struct sock *sk)
3086{
3087}
3088
3089static inline void security_sk_clone(const struct sock *sk, struct sock *newsk)
3090{
3091}
3092
3093static inline void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
3094{
3095}
3096
3097static inline void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
3098{
3099}
3100
3101static inline void security_sock_graft(struct sock* sk, struct socket *parent)
3102{
3103}
3104
3105static inline int security_inet_conn_request(struct sock *sk,
3106			struct sk_buff *skb, struct request_sock *req)
3107{
3108	return 0;
3109}
3110
3111static inline void security_inet_csk_clone(struct sock *newsk,
3112			const struct request_sock *req)
3113{
3114}
3115
3116static inline void security_inet_conn_established(struct sock *sk,
3117			struct sk_buff *skb)
3118{
3119}
3120#endif	/* CONFIG_SECURITY_NETWORK */
3121
3122#ifdef CONFIG_SECURITY_NETWORK_XFRM
3123static inline int security_xfrm_policy_alloc(struct xfrm_policy *xp, struct xfrm_user_sec_ctx *sec_ctx)
3124{
3125	return security_ops->xfrm_policy_alloc_security(xp, sec_ctx);
3126}
3127
3128static inline int security_xfrm_policy_clone(struct xfrm_policy *old, struct xfrm_policy *new)
3129{
3130	return security_ops->xfrm_policy_clone_security(old, new);
3131}
3132
3133static inline void security_xfrm_policy_free(struct xfrm_policy *xp)
3134{
3135	security_ops->xfrm_policy_free_security(xp);
3136}
3137
3138static inline int security_xfrm_policy_delete(struct xfrm_policy *xp)
3139{
3140	return security_ops->xfrm_policy_delete_security(xp);
3141}
3142
3143static inline int security_xfrm_state_alloc(struct xfrm_state *x,
3144			struct xfrm_user_sec_ctx *sec_ctx)
3145{
3146	return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
3147}
3148
3149static inline int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
3150				struct xfrm_sec_ctx *polsec, u32 secid)
3151{
3152	if (!polsec)
3153		return 0;
3154	/*
3155	 * We want the context to be taken from secid which is usually
3156	 * from the sock.
3157	 */
3158	return security_ops->xfrm_state_alloc_security(x, NULL, secid);
3159}
3160
3161static inline int security_xfrm_state_delete(struct xfrm_state *x)
3162{
3163	return security_ops->xfrm_state_delete_security(x);
3164}
3165
3166static inline void security_xfrm_state_free(struct xfrm_state *x)
3167{
3168	security_ops->xfrm_state_free_security(x);
3169}
3170
3171static inline int security_xfrm_policy_lookup(struct xfrm_policy *xp, u32 fl_secid, u8 dir)
3172{
3173	return security_ops->xfrm_policy_lookup(xp, fl_secid, dir);
3174}
3175
3176static inline int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
3177			struct xfrm_policy *xp, struct flowi *fl)
3178{
3179	return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
3180}
3181
3182static inline int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
3183{
3184	return security_ops->xfrm_decode_session(skb, secid, 1);
3185}
3186
3187static inline void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
3188{
3189	int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0);
3190
3191	BUG_ON(rc);
3192}
3193#else	/* CONFIG_SECURITY_NETWORK_XFRM */
3194static inline int security_xfrm_policy_alloc(struct xfrm_policy *xp, struct xfrm_user_sec_ctx *sec_ctx)
3195{
3196	return 0;
3197}
3198
3199static inline int security_xfrm_policy_clone(struct xfrm_policy *old, struct xfrm_policy *new)
3200{
3201	return 0;
3202}
3203
3204static inline void security_xfrm_policy_free(struct xfrm_policy *xp)
3205{
3206}
3207
3208static inline int security_xfrm_policy_delete(struct xfrm_policy *xp)
3209{
3210	return 0;
3211}
3212
3213static inline int security_xfrm_state_alloc(struct xfrm_state *x,
3214					struct xfrm_user_sec_ctx *sec_ctx)
3215{
3216	return 0;
3217}
3218
3219static inline int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
3220					struct xfrm_sec_ctx *polsec, u32 secid)
3221{
3222	return 0;
3223}
3224
3225static inline void security_xfrm_state_free(struct xfrm_state *x)
3226{
3227}
3228
3229static inline int security_xfrm_state_delete(struct xfrm_state *x)
3230{
3231	return 0;
3232}
3233
3234static inline int security_xfrm_policy_lookup(struct xfrm_policy *xp, u32 fl_secid, u8 dir)
3235{
3236	return 0;
3237}
3238
3239static inline int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
3240			struct xfrm_policy *xp, struct flowi *fl)
3241{
3242	return 1;
3243}
3244
3245static inline int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
3246{
3247	return 0;
3248}
3249
3250static inline void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
3251{
3252}
3253
3254#endif	/* CONFIG_SECURITY_NETWORK_XFRM */
3255
3256#ifdef CONFIG_KEYS
3257#ifdef CONFIG_SECURITY
3258static inline int security_key_alloc(struct key *key,
3259				     struct task_struct *tsk,
3260				     unsigned long flags)
3261{
3262	return security_ops->key_alloc(key, tsk, flags);
3263}
3264
3265static inline void security_key_free(struct key *key)
3266{
3267	security_ops->key_free(key);
3268}
3269
3270static inline int security_key_permission(key_ref_t key_ref,
3271					  struct task_struct *context,
3272					  key_perm_t perm)
3273{
3274	return security_ops->key_permission(key_ref, context, perm);
3275}
3276
3277#else
3278
3279static inline int security_key_alloc(struct key *key,
3280				     struct task_struct *tsk,
3281				     unsigned long flags)
3282{
3283	return 0;
3284}
3285
3286static inline void security_key_free(struct key *key)
3287{
3288}
3289
3290static inline int security_key_permission(key_ref_t key_ref,
3291					  struct task_struct *context,
3292					  key_perm_t perm)
3293{
3294	return 0;
3295}
3296
3297#endif
3298#endif /* CONFIG_KEYS */
3299
3300#endif /* ! __LINUX_SECURITY_H */
3301