1/*
2 * Copyright 1996, 1997, 1998 Hans Reiser, see reiserfs/README for licensing and copyright details
3 */
4
5				/* this file has an amazingly stupid
6				   name, yura please fix it to be
7				   reiserfs.h, and merge all the rest
8				   of our .h files that are in this
9				   directory into it.  */
10
11#ifndef _LINUX_REISER_FS_H
12#define _LINUX_REISER_FS_H
13
14#include <linux/types.h>
15#include <linux/magic.h>
16
17#ifdef __KERNEL__
18#include <linux/slab.h>
19#include <linux/interrupt.h>
20#include <linux/sched.h>
21#include <linux/workqueue.h>
22#include <asm/unaligned.h>
23#include <linux/bitops.h>
24#include <linux/proc_fs.h>
25#include <linux/smp_lock.h>
26#include <linux/buffer_head.h>
27#include <linux/reiserfs_fs_i.h>
28#include <linux/reiserfs_fs_sb.h>
29#endif
30
31/*
32 *  include/linux/reiser_fs.h
33 *
34 *  Reiser File System constants and structures
35 *
36 */
37
38/* in reading the #defines, it may help to understand that they employ
39   the following abbreviations:
40
41   B = Buffer
42   I = Item header
43   H = Height within the tree (should be changed to LEV)
44   N = Number of the item in the node
45   STAT = stat data
46   DEH = Directory Entry Header
47   EC = Entry Count
48   E = Entry number
49   UL = Unsigned Long
50   BLKH = BLocK Header
51   UNFM = UNForMatted node
52   DC = Disk Child
53   P = Path
54
55   These #defines are named by concatenating these abbreviations,
56   where first comes the arguments, and last comes the return value,
57   of the macro.
58
59*/
60
61#define USE_INODE_GENERATION_COUNTER
62
63#define REISERFS_PREALLOCATE
64#define DISPLACE_NEW_PACKING_LOCALITIES
65#define PREALLOCATION_SIZE 9
66
67/* n must be power of 2 */
68#define _ROUND_UP(x,n) (((x)+(n)-1u) & ~((n)-1u))
69
70// to be ok for alpha and others we have to align structures to 8 byte
71// boundary.
72#define ROUND_UP(x) _ROUND_UP(x,8LL)
73
74/* debug levels.  Right now, CONFIG_REISERFS_CHECK means print all debug
75** messages.
76*/
77#define REISERFS_DEBUG_CODE 5	/* extra messages to help find/debug errors */
78
79void reiserfs_warning(struct super_block *s, const char *fmt, ...);
80/* assertions handling */
81
82/** always check a condition and panic if it's false. */
83#define RASSERT( cond, format, args... )					\
84if( !( cond ) ) 								\
85  reiserfs_panic( NULL, "reiserfs[%i]: assertion " #cond " failed at "	\
86		  __FILE__ ":%i:%s: " format "\n",		\
87		  in_interrupt() ? -1 : current -> pid, __LINE__ , __FUNCTION__ , ##args )
88
89#if defined(CONFIG_REISERFS_CHECK)
90#define RFALSE( cond, format, args... ) RASSERT( !( cond ), format, ##args )
91#else
92#define RFALSE( cond, format, args... ) do {;} while( 0 )
93#endif
94
95#define CONSTF __attribute_const__
96/*
97 * Disk Data Structures
98 */
99
100/***************************************************************************/
101/*                             SUPER BLOCK                                 */
102/***************************************************************************/
103
104/*
105 * Structure of super block on disk, a version of which in RAM is often accessed as REISERFS_SB(s)->s_rs
106 * the version in RAM is part of a larger structure containing fields never written to disk.
107 */
108#define UNSET_HASH 0		// read_super will guess about, what hash names
109		     // in directories were sorted with
110#define TEA_HASH  1
111#define YURA_HASH 2
112#define R5_HASH   3
113#define DEFAULT_HASH R5_HASH
114
115struct journal_params {
116	__le32 jp_journal_1st_block;	/* where does journal start from on its
117					 * device */
118	__le32 jp_journal_dev;	/* journal device st_rdev */
119	__le32 jp_journal_size;	/* size of the journal */
120	__le32 jp_journal_trans_max;	/* max number of blocks in a transaction. */
121	__le32 jp_journal_magic;	/* random value made on fs creation (this
122					 * was sb_journal_block_count) */
123	__le32 jp_journal_max_batch;	/* max number of blocks to batch into a
124					 * trans */
125	__le32 jp_journal_max_commit_age;	/* in seconds, how old can an async
126						 * commit be */
127	__le32 jp_journal_max_trans_age;	/* in seconds, how old can a transaction
128						 * be */
129};
130
131/* this is the super from 3.5.X, where X >= 10 */
132struct reiserfs_super_block_v1 {
133	__le32 s_block_count;	/* blocks count         */
134	__le32 s_free_blocks;	/* free blocks count    */
135	__le32 s_root_block;	/* root block number    */
136	struct journal_params s_journal;
137	__le16 s_blocksize;	/* block size */
138	__le16 s_oid_maxsize;	/* max size of object id array, see
139				 * get_objectid() commentary  */
140	__le16 s_oid_cursize;	/* current size of object id array */
141	__le16 s_umount_state;	/* this is set to 1 when filesystem was
142				 * umounted, to 2 - when not */
143	char s_magic[10];	/* reiserfs magic string indicates that
144				 * file system is reiserfs:
145				 * "ReIsErFs" or "ReIsEr2Fs" or "ReIsEr3Fs" */
146	__le16 s_fs_state;	/* it is set to used by fsck to mark which
147				 * phase of rebuilding is done */
148	__le32 s_hash_function_code;	/* indicate, what hash function is being use
149					 * to sort names in a directory*/
150	__le16 s_tree_height;	/* height of disk tree */
151	__le16 s_bmap_nr;	/* amount of bitmap blocks needed to address
152				 * each block of file system */
153	__le16 s_version;	/* this field is only reliable on filesystem
154				 * with non-standard journal */
155	__le16 s_reserved_for_journal;	/* size in blocks of journal area on main
156					 * device, we need to keep after
157					 * making fs with non-standard journal */
158} __attribute__ ((__packed__));
159
160#define SB_SIZE_V1 (sizeof(struct reiserfs_super_block_v1))
161
162/* this is the on disk super block */
163struct reiserfs_super_block {
164	struct reiserfs_super_block_v1 s_v1;
165	__le32 s_inode_generation;
166	__le32 s_flags;		/* Right now used only by inode-attributes, if enabled */
167	unsigned char s_uuid[16];	/* filesystem unique identifier */
168	unsigned char s_label[16];	/* filesystem volume label */
169	char s_unused[88];	/* zero filled by mkreiserfs and
170				 * reiserfs_convert_objectid_map_v1()
171				 * so any additions must be updated
172				 * there as well. */
173} __attribute__ ((__packed__));
174
175#define SB_SIZE (sizeof(struct reiserfs_super_block))
176
177#define REISERFS_VERSION_1 0
178#define REISERFS_VERSION_2 2
179
180// on-disk super block fields converted to cpu form
181#define SB_DISK_SUPER_BLOCK(s) (REISERFS_SB(s)->s_rs)
182#define SB_V1_DISK_SUPER_BLOCK(s) (&(SB_DISK_SUPER_BLOCK(s)->s_v1))
183#define SB_BLOCKSIZE(s) \
184        le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_blocksize))
185#define SB_BLOCK_COUNT(s) \
186        le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_block_count))
187#define SB_FREE_BLOCKS(s) \
188        le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks))
189#define SB_REISERFS_MAGIC(s) \
190        (SB_V1_DISK_SUPER_BLOCK(s)->s_magic)
191#define SB_ROOT_BLOCK(s) \
192        le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_root_block))
193#define SB_TREE_HEIGHT(s) \
194        le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height))
195#define SB_REISERFS_STATE(s) \
196        le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state))
197#define SB_VERSION(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_version))
198#define SB_BMAP_NR(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr))
199
200#define PUT_SB_BLOCK_COUNT(s, val) \
201   do { SB_V1_DISK_SUPER_BLOCK(s)->s_block_count = cpu_to_le32(val); } while (0)
202#define PUT_SB_FREE_BLOCKS(s, val) \
203   do { SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks = cpu_to_le32(val); } while (0)
204#define PUT_SB_ROOT_BLOCK(s, val) \
205   do { SB_V1_DISK_SUPER_BLOCK(s)->s_root_block = cpu_to_le32(val); } while (0)
206#define PUT_SB_TREE_HEIGHT(s, val) \
207   do { SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height = cpu_to_le16(val); } while (0)
208#define PUT_SB_REISERFS_STATE(s, val) \
209   do { SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state = cpu_to_le16(val); } while (0)
210#define PUT_SB_VERSION(s, val) \
211   do { SB_V1_DISK_SUPER_BLOCK(s)->s_version = cpu_to_le16(val); } while (0)
212#define PUT_SB_BMAP_NR(s, val) \
213   do { SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr = cpu_to_le16 (val); } while (0)
214
215#define SB_ONDISK_JP(s) (&SB_V1_DISK_SUPER_BLOCK(s)->s_journal)
216#define SB_ONDISK_JOURNAL_SIZE(s) \
217         le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_size))
218#define SB_ONDISK_JOURNAL_1st_BLOCK(s) \
219         le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_1st_block))
220#define SB_ONDISK_JOURNAL_DEVICE(s) \
221         le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_dev))
222#define SB_ONDISK_RESERVED_FOR_JOURNAL(s) \
223         le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_reserved_for_journal))
224
225#define is_block_in_log_or_reserved_area(s, block) \
226         block >= SB_JOURNAL_1st_RESERVED_BLOCK(s) \
227         && block < SB_JOURNAL_1st_RESERVED_BLOCK(s) +  \
228         ((!is_reiserfs_jr(SB_DISK_SUPER_BLOCK(s)) ? \
229         SB_ONDISK_JOURNAL_SIZE(s) + 1 : SB_ONDISK_RESERVED_FOR_JOURNAL(s)))
230
231int is_reiserfs_3_5(struct reiserfs_super_block *rs);
232int is_reiserfs_3_6(struct reiserfs_super_block *rs);
233int is_reiserfs_jr(struct reiserfs_super_block *rs);
234
235/* ReiserFS leaves the first 64k unused, so that partition labels have
236   enough space.  If someone wants to write a fancy bootloader that
237   needs more than 64k, let us know, and this will be increased in size.
238   This number must be larger than than the largest block size on any
239   platform, or code will break.  -Hans */
240#define REISERFS_DISK_OFFSET_IN_BYTES (64 * 1024)
241#define REISERFS_FIRST_BLOCK unused_define
242#define REISERFS_JOURNAL_OFFSET_IN_BYTES REISERFS_DISK_OFFSET_IN_BYTES
243
244/* the spot for the super in versions 3.5 - 3.5.10 (inclusive) */
245#define REISERFS_OLD_DISK_OFFSET_IN_BYTES (8 * 1024)
246
247// reiserfs internal error code (used by search_by_key adn fix_nodes))
248#define CARRY_ON      0
249#define REPEAT_SEARCH -1
250#define IO_ERROR      -2
251#define NO_DISK_SPACE -3
252#define NO_BALANCING_NEEDED  (-4)
253#define NO_MORE_UNUSED_CONTIGUOUS_BLOCKS (-5)
254#define QUOTA_EXCEEDED -6
255
256typedef __u32 b_blocknr_t;
257typedef __le32 unp_t;
258
259struct unfm_nodeinfo {
260	unp_t unfm_nodenum;
261	unsigned short unfm_freespace;
262};
263
264/* there are two formats of keys: 3.5 and 3.6
265 */
266#define KEY_FORMAT_3_5 0
267#define KEY_FORMAT_3_6 1
268
269/* there are two stat datas */
270#define STAT_DATA_V1 0
271#define STAT_DATA_V2 1
272
273static inline struct reiserfs_inode_info *REISERFS_I(const struct inode *inode)
274{
275	return container_of(inode, struct reiserfs_inode_info, vfs_inode);
276}
277
278static inline struct reiserfs_sb_info *REISERFS_SB(const struct super_block *sb)
279{
280	return sb->s_fs_info;
281}
282
283/** this says about version of key of all items (but stat data) the
284    object consists of */
285#define get_inode_item_key_version( inode )                                    \
286    ((REISERFS_I(inode)->i_flags & i_item_key_version_mask) ? KEY_FORMAT_3_6 : KEY_FORMAT_3_5)
287
288#define set_inode_item_key_version( inode, version )                           \
289         ({ if((version)==KEY_FORMAT_3_6)                                      \
290                REISERFS_I(inode)->i_flags |= i_item_key_version_mask;      \
291            else                                                               \
292                REISERFS_I(inode)->i_flags &= ~i_item_key_version_mask; })
293
294#define get_inode_sd_version(inode)                                            \
295    ((REISERFS_I(inode)->i_flags & i_stat_data_version_mask) ? STAT_DATA_V2 : STAT_DATA_V1)
296
297#define set_inode_sd_version(inode, version)                                   \
298         ({ if((version)==STAT_DATA_V2)                                        \
299                REISERFS_I(inode)->i_flags |= i_stat_data_version_mask;     \
300            else                                                               \
301                REISERFS_I(inode)->i_flags &= ~i_stat_data_version_mask; })
302
303/* This is an aggressive tail suppression policy, I am hoping it
304   improves our benchmarks. The principle behind it is that percentage
305   space saving is what matters, not absolute space saving.  This is
306   non-intuitive, but it helps to understand it if you consider that the
307   cost to access 4 blocks is not much more than the cost to access 1
308   block, if you have to do a seek and rotate.  A tail risks a
309   non-linear disk access that is significant as a percentage of total
310   time cost for a 4 block file and saves an amount of space that is
311   less significant as a percentage of space, or so goes the hypothesis.
312   -Hans */
313#define STORE_TAIL_IN_UNFM_S1(n_file_size,n_tail_size,n_block_size) \
314(\
315  (!(n_tail_size)) || \
316  (((n_tail_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) || \
317   ( (n_file_size) >= (n_block_size) * 4 ) || \
318   ( ( (n_file_size) >= (n_block_size) * 3 ) && \
319     ( (n_tail_size) >=   (MAX_DIRECT_ITEM_LEN(n_block_size))/4) ) || \
320   ( ( (n_file_size) >= (n_block_size) * 2 ) && \
321     ( (n_tail_size) >=   (MAX_DIRECT_ITEM_LEN(n_block_size))/2) ) || \
322   ( ( (n_file_size) >= (n_block_size) ) && \
323     ( (n_tail_size) >=   (MAX_DIRECT_ITEM_LEN(n_block_size) * 3)/4) ) ) \
324)
325
326/* Another strategy for tails, this one means only create a tail if all the
327   file would fit into one DIRECT item.
328   Primary intention for this one is to increase performance by decreasing
329   seeking.
330*/
331#define STORE_TAIL_IN_UNFM_S2(n_file_size,n_tail_size,n_block_size) \
332(\
333  (!(n_tail_size)) || \
334  (((n_file_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) ) \
335)
336
337/*
338 * values for s_umount_state field
339 */
340#define REISERFS_VALID_FS    1
341#define REISERFS_ERROR_FS    2
342
343//
344// there are 5 item types currently
345//
346#define TYPE_STAT_DATA 0
347#define TYPE_INDIRECT 1
348#define TYPE_DIRECT 2
349#define TYPE_DIRENTRY 3
350#define TYPE_MAXTYPE 3
351#define TYPE_ANY 15
352
353/***************************************************************************/
354/*                       KEY & ITEM HEAD                                   */
355/***************************************************************************/
356
357//
358// directories use this key as well as old files
359//
360struct offset_v1 {
361	__le32 k_offset;
362	__le32 k_uniqueness;
363} __attribute__ ((__packed__));
364
365struct offset_v2 {
366	__le64 v;
367} __attribute__ ((__packed__));
368
369static inline __u16 offset_v2_k_type(const struct offset_v2 *v2)
370{
371	__u8 type = le64_to_cpu(v2->v) >> 60;
372	return (type <= TYPE_MAXTYPE) ? type : TYPE_ANY;
373}
374
375static inline void set_offset_v2_k_type(struct offset_v2 *v2, int type)
376{
377	v2->v =
378	    (v2->v & cpu_to_le64(~0ULL >> 4)) | cpu_to_le64((__u64) type << 60);
379}
380
381static inline loff_t offset_v2_k_offset(const struct offset_v2 *v2)
382{
383	return le64_to_cpu(v2->v) & (~0ULL >> 4);
384}
385
386static inline void set_offset_v2_k_offset(struct offset_v2 *v2, loff_t offset)
387{
388	offset &= (~0ULL >> 4);
389	v2->v = (v2->v & cpu_to_le64(15ULL << 60)) | cpu_to_le64(offset);
390}
391
392/* Key of an item determines its location in the S+tree, and
393   is composed of 4 components */
394struct reiserfs_key {
395	__le32 k_dir_id;	/* packing locality: by default parent
396				   directory object id */
397	__le32 k_objectid;	/* object identifier */
398	union {
399		struct offset_v1 k_offset_v1;
400		struct offset_v2 k_offset_v2;
401	} __attribute__ ((__packed__)) u;
402} __attribute__ ((__packed__));
403
404struct in_core_key {
405	__u32 k_dir_id;		/* packing locality: by default parent
406				   directory object id */
407	__u32 k_objectid;	/* object identifier */
408	__u64 k_offset;
409	__u8 k_type;
410};
411
412struct cpu_key {
413	struct in_core_key on_disk_key;
414	int version;
415	int key_length;		/* 3 in all cases but direct2indirect and
416				   indirect2direct conversion */
417};
418
419/* Our function for comparing keys can compare keys of different
420   lengths.  It takes as a parameter the length of the keys it is to
421   compare.  These defines are used in determining what is to be passed
422   to it as that parameter. */
423#define REISERFS_FULL_KEY_LEN     4
424#define REISERFS_SHORT_KEY_LEN    2
425
426/* The result of the key compare */
427#define FIRST_GREATER 1
428#define SECOND_GREATER -1
429#define KEYS_IDENTICAL 0
430#define KEY_FOUND 1
431#define KEY_NOT_FOUND 0
432
433#define KEY_SIZE (sizeof(struct reiserfs_key))
434#define SHORT_KEY_SIZE (sizeof (__u32) + sizeof (__u32))
435
436/* return values for search_by_key and clones */
437#define ITEM_FOUND 1
438#define ITEM_NOT_FOUND 0
439#define ENTRY_FOUND 1
440#define ENTRY_NOT_FOUND 0
441#define DIRECTORY_NOT_FOUND -1
442#define REGULAR_FILE_FOUND -2
443#define DIRECTORY_FOUND -3
444#define BYTE_FOUND 1
445#define BYTE_NOT_FOUND 0
446#define FILE_NOT_FOUND -1
447
448#define POSITION_FOUND 1
449#define POSITION_NOT_FOUND 0
450
451// return values for reiserfs_find_entry and search_by_entry_key
452#define NAME_FOUND 1
453#define NAME_NOT_FOUND 0
454#define GOTO_PREVIOUS_ITEM 2
455#define NAME_FOUND_INVISIBLE 3
456
457/*  Everything in the filesystem is stored as a set of items.  The
458    item head contains the key of the item, its free space (for
459    indirect items) and specifies the location of the item itself
460    within the block.  */
461
462struct item_head {
463	/* Everything in the tree is found by searching for it based on
464	 * its key.*/
465	struct reiserfs_key ih_key;
466	union {
467		/* The free space in the last unformatted node of an
468		   indirect item if this is an indirect item.  This
469		   equals 0xFFFF iff this is a direct item or stat data
470		   item. Note that the key, not this field, is used to
471		   determine the item type, and thus which field this
472		   union contains. */
473		__le16 ih_free_space_reserved;
474		/* Iff this is a directory item, this field equals the
475		   number of directory entries in the directory item. */
476		__le16 ih_entry_count;
477	} __attribute__ ((__packed__)) u;
478	__le16 ih_item_len;	/* total size of the item body */
479	__le16 ih_item_location;	/* an offset to the item body
480					 * within the block */
481	__le16 ih_version;	/* 0 for all old items, 2 for new
482				   ones. Highest bit is set by fsck
483				   temporary, cleaned after all
484				   done */
485} __attribute__ ((__packed__));
486/* size of item header     */
487#define IH_SIZE (sizeof(struct item_head))
488
489#define ih_free_space(ih)            le16_to_cpu((ih)->u.ih_free_space_reserved)
490#define ih_version(ih)               le16_to_cpu((ih)->ih_version)
491#define ih_entry_count(ih)           le16_to_cpu((ih)->u.ih_entry_count)
492#define ih_location(ih)              le16_to_cpu((ih)->ih_item_location)
493#define ih_item_len(ih)              le16_to_cpu((ih)->ih_item_len)
494
495#define put_ih_free_space(ih, val)   do { (ih)->u.ih_free_space_reserved = cpu_to_le16(val); } while(0)
496#define put_ih_version(ih, val)      do { (ih)->ih_version = cpu_to_le16(val); } while (0)
497#define put_ih_entry_count(ih, val)  do { (ih)->u.ih_entry_count = cpu_to_le16(val); } while (0)
498#define put_ih_location(ih, val)     do { (ih)->ih_item_location = cpu_to_le16(val); } while (0)
499#define put_ih_item_len(ih, val)     do { (ih)->ih_item_len = cpu_to_le16(val); } while (0)
500
501#define unreachable_item(ih) (ih_version(ih) & (1 << 15))
502
503#define get_ih_free_space(ih) (ih_version (ih) == KEY_FORMAT_3_6 ? 0 : ih_free_space (ih))
504#define set_ih_free_space(ih,val) put_ih_free_space((ih), ((ih_version(ih) == KEY_FORMAT_3_6) ? 0 : (val)))
505
506/* these operate on indirect items, where you've got an array of ints
507** at a possibly unaligned location.  These are a noop on ia32
508**
509** p is the array of __u32, i is the index into the array, v is the value
510** to store there.
511*/
512#define get_block_num(p, i) le32_to_cpu(get_unaligned((p) + (i)))
513#define put_block_num(p, i, v) put_unaligned(cpu_to_le32(v), (p) + (i))
514
515//
516// in old version uniqueness field shows key type
517//
518#define V1_SD_UNIQUENESS 0
519#define V1_INDIRECT_UNIQUENESS 0xfffffffe
520#define V1_DIRECT_UNIQUENESS 0xffffffff
521#define V1_DIRENTRY_UNIQUENESS 500
522#define V1_ANY_UNIQUENESS 555
523
524//
525// here are conversion routines
526//
527static inline int uniqueness2type(__u32 uniqueness) CONSTF;
528static inline int uniqueness2type(__u32 uniqueness)
529{
530	switch ((int)uniqueness) {
531	case V1_SD_UNIQUENESS:
532		return TYPE_STAT_DATA;
533	case V1_INDIRECT_UNIQUENESS:
534		return TYPE_INDIRECT;
535	case V1_DIRECT_UNIQUENESS:
536		return TYPE_DIRECT;
537	case V1_DIRENTRY_UNIQUENESS:
538		return TYPE_DIRENTRY;
539	default:
540		reiserfs_warning(NULL, "vs-500: unknown uniqueness %d",
541				 uniqueness);
542	case V1_ANY_UNIQUENESS:
543		return TYPE_ANY;
544	}
545}
546
547static inline __u32 type2uniqueness(int type) CONSTF;
548static inline __u32 type2uniqueness(int type)
549{
550	switch (type) {
551	case TYPE_STAT_DATA:
552		return V1_SD_UNIQUENESS;
553	case TYPE_INDIRECT:
554		return V1_INDIRECT_UNIQUENESS;
555	case TYPE_DIRECT:
556		return V1_DIRECT_UNIQUENESS;
557	case TYPE_DIRENTRY:
558		return V1_DIRENTRY_UNIQUENESS;
559	default:
560		reiserfs_warning(NULL, "vs-501: unknown type %d", type);
561	case TYPE_ANY:
562		return V1_ANY_UNIQUENESS;
563	}
564}
565
566//
567// key is pointer to on disk key which is stored in le, result is cpu,
568// there is no way to get version of object from key, so, provide
569// version to these defines
570//
571static inline loff_t le_key_k_offset(int version,
572				     const struct reiserfs_key *key)
573{
574	return (version == KEY_FORMAT_3_5) ?
575	    le32_to_cpu(key->u.k_offset_v1.k_offset) :
576	    offset_v2_k_offset(&(key->u.k_offset_v2));
577}
578
579static inline loff_t le_ih_k_offset(const struct item_head *ih)
580{
581	return le_key_k_offset(ih_version(ih), &(ih->ih_key));
582}
583
584static inline loff_t le_key_k_type(int version, const struct reiserfs_key *key)
585{
586	return (version == KEY_FORMAT_3_5) ?
587	    uniqueness2type(le32_to_cpu(key->u.k_offset_v1.k_uniqueness)) :
588	    offset_v2_k_type(&(key->u.k_offset_v2));
589}
590
591static inline loff_t le_ih_k_type(const struct item_head *ih)
592{
593	return le_key_k_type(ih_version(ih), &(ih->ih_key));
594}
595
596static inline void set_le_key_k_offset(int version, struct reiserfs_key *key,
597				       loff_t offset)
598{
599	(version == KEY_FORMAT_3_5) ? (void)(key->u.k_offset_v1.k_offset = cpu_to_le32(offset)) :	/* jdm check */
600	    (void)(set_offset_v2_k_offset(&(key->u.k_offset_v2), offset));
601}
602
603static inline void set_le_ih_k_offset(struct item_head *ih, loff_t offset)
604{
605	set_le_key_k_offset(ih_version(ih), &(ih->ih_key), offset);
606}
607
608static inline void set_le_key_k_type(int version, struct reiserfs_key *key,
609				     int type)
610{
611	(version == KEY_FORMAT_3_5) ?
612	    (void)(key->u.k_offset_v1.k_uniqueness =
613		   cpu_to_le32(type2uniqueness(type)))
614	    : (void)(set_offset_v2_k_type(&(key->u.k_offset_v2), type));
615}
616static inline void set_le_ih_k_type(struct item_head *ih, int type)
617{
618	set_le_key_k_type(ih_version(ih), &(ih->ih_key), type);
619}
620
621#define is_direntry_le_key(version,key) (le_key_k_type (version, key) == TYPE_DIRENTRY)
622#define is_direct_le_key(version,key) (le_key_k_type (version, key) == TYPE_DIRECT)
623#define is_indirect_le_key(version,key) (le_key_k_type (version, key) == TYPE_INDIRECT)
624#define is_statdata_le_key(version,key) (le_key_k_type (version, key) == TYPE_STAT_DATA)
625
626//
627// item header has version.
628//
629#define is_direntry_le_ih(ih) is_direntry_le_key (ih_version (ih), &((ih)->ih_key))
630#define is_direct_le_ih(ih) is_direct_le_key (ih_version (ih), &((ih)->ih_key))
631#define is_indirect_le_ih(ih) is_indirect_le_key (ih_version(ih), &((ih)->ih_key))
632#define is_statdata_le_ih(ih) is_statdata_le_key (ih_version (ih), &((ih)->ih_key))
633
634//
635// key is pointer to cpu key, result is cpu
636//
637static inline loff_t cpu_key_k_offset(const struct cpu_key *key)
638{
639	return key->on_disk_key.k_offset;
640}
641
642static inline loff_t cpu_key_k_type(const struct cpu_key *key)
643{
644	return key->on_disk_key.k_type;
645}
646
647static inline void set_cpu_key_k_offset(struct cpu_key *key, loff_t offset)
648{
649	key->on_disk_key.k_offset = offset;
650}
651
652static inline void set_cpu_key_k_type(struct cpu_key *key, int type)
653{
654	key->on_disk_key.k_type = type;
655}
656
657static inline void cpu_key_k_offset_dec(struct cpu_key *key)
658{
659	key->on_disk_key.k_offset--;
660}
661
662#define is_direntry_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRENTRY)
663#define is_direct_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRECT)
664#define is_indirect_cpu_key(key) (cpu_key_k_type (key) == TYPE_INDIRECT)
665#define is_statdata_cpu_key(key) (cpu_key_k_type (key) == TYPE_STAT_DATA)
666
667/* are these used ? */
668#define is_direntry_cpu_ih(ih) (is_direntry_cpu_key (&((ih)->ih_key)))
669#define is_direct_cpu_ih(ih) (is_direct_cpu_key (&((ih)->ih_key)))
670#define is_indirect_cpu_ih(ih) (is_indirect_cpu_key (&((ih)->ih_key)))
671#define is_statdata_cpu_ih(ih) (is_statdata_cpu_key (&((ih)->ih_key)))
672
673#define I_K_KEY_IN_ITEM(p_s_ih, p_s_key, n_blocksize) \
674    ( ! COMP_SHORT_KEYS(p_s_ih, p_s_key) && \
675          I_OFF_BYTE_IN_ITEM(p_s_ih, k_offset (p_s_key), n_blocksize) )
676
677/* maximal length of item */
678#define MAX_ITEM_LEN(block_size) (block_size - BLKH_SIZE - IH_SIZE)
679#define MIN_ITEM_LEN 1
680
681/* object identifier for root dir */
682#define REISERFS_ROOT_OBJECTID 2
683#define REISERFS_ROOT_PARENT_OBJECTID 1
684extern struct reiserfs_key root_key;
685
686/*
687 * Picture represents a leaf of the S+tree
688 *  ______________________________________________________
689 * |      |  Array of     |                   |           |
690 * |Block |  Object-Item  |      F r e e      |  Objects- |
691 * | head |  Headers      |     S p a c e     |   Items   |
692 * |______|_______________|___________________|___________|
693 */
694
695/* Header of a disk block.  More precisely, header of a formatted leaf
696   or internal node, and not the header of an unformatted node. */
697struct block_head {
698	__le16 blk_level;	/* Level of a block in the tree. */
699	__le16 blk_nr_item;	/* Number of keys/items in a block. */
700	__le16 blk_free_space;	/* Block free space in bytes. */
701	__le16 blk_reserved;
702	/* dump this in v4/planA */
703	struct reiserfs_key blk_right_delim_key;	/* kept only for compatibility */
704};
705
706#define BLKH_SIZE                     (sizeof(struct block_head))
707#define blkh_level(p_blkh)            (le16_to_cpu((p_blkh)->blk_level))
708#define blkh_nr_item(p_blkh)          (le16_to_cpu((p_blkh)->blk_nr_item))
709#define blkh_free_space(p_blkh)       (le16_to_cpu((p_blkh)->blk_free_space))
710#define blkh_reserved(p_blkh)         (le16_to_cpu((p_blkh)->blk_reserved))
711#define set_blkh_level(p_blkh,val)    ((p_blkh)->blk_level = cpu_to_le16(val))
712#define set_blkh_nr_item(p_blkh,val)  ((p_blkh)->blk_nr_item = cpu_to_le16(val))
713#define set_blkh_free_space(p_blkh,val) ((p_blkh)->blk_free_space = cpu_to_le16(val))
714#define set_blkh_reserved(p_blkh,val) ((p_blkh)->blk_reserved = cpu_to_le16(val))
715#define blkh_right_delim_key(p_blkh)  ((p_blkh)->blk_right_delim_key)
716#define set_blkh_right_delim_key(p_blkh,val)  ((p_blkh)->blk_right_delim_key = val)
717
718/*
719 * values for blk_level field of the struct block_head
720 */
721
722#define FREE_LEVEL 0		/* when node gets removed from the tree its
723				   blk_level is set to FREE_LEVEL. It is then
724				   used to see whether the node is still in the
725				   tree */
726
727#define DISK_LEAF_NODE_LEVEL  1	/* Leaf node level. */
728
729/* Given the buffer head of a formatted node, resolve to the block head of that node. */
730#define B_BLK_HEAD(p_s_bh)            ((struct block_head *)((p_s_bh)->b_data))
731/* Number of items that are in buffer. */
732#define B_NR_ITEMS(p_s_bh)            (blkh_nr_item(B_BLK_HEAD(p_s_bh)))
733#define B_LEVEL(p_s_bh)               (blkh_level(B_BLK_HEAD(p_s_bh)))
734#define B_FREE_SPACE(p_s_bh)          (blkh_free_space(B_BLK_HEAD(p_s_bh)))
735
736#define PUT_B_NR_ITEMS(p_s_bh,val)    do { set_blkh_nr_item(B_BLK_HEAD(p_s_bh),val); } while (0)
737#define PUT_B_LEVEL(p_s_bh,val)       do { set_blkh_level(B_BLK_HEAD(p_s_bh),val); } while (0)
738#define PUT_B_FREE_SPACE(p_s_bh,val)  do { set_blkh_free_space(B_BLK_HEAD(p_s_bh),val); } while (0)
739
740/* Get right delimiting key. -- little endian */
741#define B_PRIGHT_DELIM_KEY(p_s_bh)   (&(blk_right_delim_key(B_BLK_HEAD(p_s_bh))))
742
743/* Does the buffer contain a disk leaf. */
744#define B_IS_ITEMS_LEVEL(p_s_bh)     (B_LEVEL(p_s_bh) == DISK_LEAF_NODE_LEVEL)
745
746/* Does the buffer contain a disk internal node */
747#define B_IS_KEYS_LEVEL(p_s_bh)      (B_LEVEL(p_s_bh) > DISK_LEAF_NODE_LEVEL \
748                                            && B_LEVEL(p_s_bh) <= MAX_HEIGHT)
749
750/***************************************************************************/
751/*                             STAT DATA                                   */
752/***************************************************************************/
753
754//
755// old stat data is 32 bytes long. We are going to distinguish new one by
756// different size
757//
758struct stat_data_v1 {
759	__le16 sd_mode;		/* file type, permissions */
760	__le16 sd_nlink;	/* number of hard links */
761	__le16 sd_uid;		/* owner */
762	__le16 sd_gid;		/* group */
763	__le32 sd_size;		/* file size */
764	__le32 sd_atime;	/* time of last access */
765	__le32 sd_mtime;	/* time file was last modified  */
766	__le32 sd_ctime;	/* time inode (stat data) was last changed (except changes to sd_atime and sd_mtime) */
767	union {
768		__le32 sd_rdev;
769		__le32 sd_blocks;	/* number of blocks file uses */
770	} __attribute__ ((__packed__)) u;
771	__le32 sd_first_direct_byte;	/* first byte of file which is stored
772					   in a direct item: except that if it
773					   equals 1 it is a symlink and if it
774					   equals ~(__u32)0 there is no
775					   direct item.  The existence of this
776					   field really grates on me. Let's
777					   replace it with a macro based on
778					   sd_size and our tail suppression
779					   policy.  Someday.  -Hans */
780} __attribute__ ((__packed__));
781
782#define SD_V1_SIZE              (sizeof(struct stat_data_v1))
783#define stat_data_v1(ih)        (ih_version (ih) == KEY_FORMAT_3_5)
784#define sd_v1_mode(sdp)         (le16_to_cpu((sdp)->sd_mode))
785#define set_sd_v1_mode(sdp,v)   ((sdp)->sd_mode = cpu_to_le16(v))
786#define sd_v1_nlink(sdp)        (le16_to_cpu((sdp)->sd_nlink))
787#define set_sd_v1_nlink(sdp,v)  ((sdp)->sd_nlink = cpu_to_le16(v))
788#define sd_v1_uid(sdp)          (le16_to_cpu((sdp)->sd_uid))
789#define set_sd_v1_uid(sdp,v)    ((sdp)->sd_uid = cpu_to_le16(v))
790#define sd_v1_gid(sdp)          (le16_to_cpu((sdp)->sd_gid))
791#define set_sd_v1_gid(sdp,v)    ((sdp)->sd_gid = cpu_to_le16(v))
792#define sd_v1_size(sdp)         (le32_to_cpu((sdp)->sd_size))
793#define set_sd_v1_size(sdp,v)   ((sdp)->sd_size = cpu_to_le32(v))
794#define sd_v1_atime(sdp)        (le32_to_cpu((sdp)->sd_atime))
795#define set_sd_v1_atime(sdp,v)  ((sdp)->sd_atime = cpu_to_le32(v))
796#define sd_v1_mtime(sdp)        (le32_to_cpu((sdp)->sd_mtime))
797#define set_sd_v1_mtime(sdp,v)  ((sdp)->sd_mtime = cpu_to_le32(v))
798#define sd_v1_ctime(sdp)        (le32_to_cpu((sdp)->sd_ctime))
799#define set_sd_v1_ctime(sdp,v)  ((sdp)->sd_ctime = cpu_to_le32(v))
800#define sd_v1_rdev(sdp)         (le32_to_cpu((sdp)->u.sd_rdev))
801#define set_sd_v1_rdev(sdp,v)   ((sdp)->u.sd_rdev = cpu_to_le32(v))
802#define sd_v1_blocks(sdp)       (le32_to_cpu((sdp)->u.sd_blocks))
803#define set_sd_v1_blocks(sdp,v) ((sdp)->u.sd_blocks = cpu_to_le32(v))
804#define sd_v1_first_direct_byte(sdp) \
805                                (le32_to_cpu((sdp)->sd_first_direct_byte))
806#define set_sd_v1_first_direct_byte(sdp,v) \
807                                ((sdp)->sd_first_direct_byte = cpu_to_le32(v))
808
809/* inode flags stored in sd_attrs (nee sd_reserved) */
810
811/* we want common flags to have the same values as in ext2,
812   so chattr(1) will work without problems */
813#define REISERFS_IMMUTABLE_FL FS_IMMUTABLE_FL
814#define REISERFS_APPEND_FL    FS_APPEND_FL
815#define REISERFS_SYNC_FL      FS_SYNC_FL
816#define REISERFS_NOATIME_FL   FS_NOATIME_FL
817#define REISERFS_NODUMP_FL    FS_NODUMP_FL
818#define REISERFS_SECRM_FL     FS_SECRM_FL
819#define REISERFS_UNRM_FL      FS_UNRM_FL
820#define REISERFS_COMPR_FL     FS_COMPR_FL
821#define REISERFS_NOTAIL_FL    FS_NOTAIL_FL
822
823/* persistent flags that file inherits from the parent directory */
824#define REISERFS_INHERIT_MASK ( REISERFS_IMMUTABLE_FL |	\
825				REISERFS_SYNC_FL |	\
826				REISERFS_NOATIME_FL |	\
827				REISERFS_NODUMP_FL |	\
828				REISERFS_SECRM_FL |	\
829				REISERFS_COMPR_FL |	\
830				REISERFS_NOTAIL_FL )
831
832/* Stat Data on disk (reiserfs version of UFS disk inode minus the
833   address blocks) */
834struct stat_data {
835	__le16 sd_mode;		/* file type, permissions */
836	__le16 sd_attrs;	/* persistent inode flags */
837	__le32 sd_nlink;	/* number of hard links */
838	__le64 sd_size;		/* file size */
839	__le32 sd_uid;		/* owner */
840	__le32 sd_gid;		/* group */
841	__le32 sd_atime;	/* time of last access */
842	__le32 sd_mtime;	/* time file was last modified  */
843	__le32 sd_ctime;	/* time inode (stat data) was last changed (except changes to sd_atime and sd_mtime) */
844	__le32 sd_blocks;
845	union {
846		__le32 sd_rdev;
847		__le32 sd_generation;
848		//__le32 sd_first_direct_byte;
849		/* first byte of file which is stored in a
850		   direct item: except that if it equals 1
851		   it is a symlink and if it equals
852		   ~(__u32)0 there is no direct item.  The
853		   existence of this field really grates
854		   on me. Let's replace it with a macro
855		   based on sd_size and our tail
856		   suppression policy? */
857	} __attribute__ ((__packed__)) u;
858} __attribute__ ((__packed__));
859//
860// this is 44 bytes long
861//
862#define SD_SIZE (sizeof(struct stat_data))
863#define SD_V2_SIZE              SD_SIZE
864#define stat_data_v2(ih)        (ih_version (ih) == KEY_FORMAT_3_6)
865#define sd_v2_mode(sdp)         (le16_to_cpu((sdp)->sd_mode))
866#define set_sd_v2_mode(sdp,v)   ((sdp)->sd_mode = cpu_to_le16(v))
867/* sd_reserved */
868/* set_sd_reserved */
869#define sd_v2_nlink(sdp)        (le32_to_cpu((sdp)->sd_nlink))
870#define set_sd_v2_nlink(sdp,v)  ((sdp)->sd_nlink = cpu_to_le32(v))
871#define sd_v2_size(sdp)         (le64_to_cpu((sdp)->sd_size))
872#define set_sd_v2_size(sdp,v)   ((sdp)->sd_size = cpu_to_le64(v))
873#define sd_v2_uid(sdp)          (le32_to_cpu((sdp)->sd_uid))
874#define set_sd_v2_uid(sdp,v)    ((sdp)->sd_uid = cpu_to_le32(v))
875#define sd_v2_gid(sdp)          (le32_to_cpu((sdp)->sd_gid))
876#define set_sd_v2_gid(sdp,v)    ((sdp)->sd_gid = cpu_to_le32(v))
877#define sd_v2_atime(sdp)        (le32_to_cpu((sdp)->sd_atime))
878#define set_sd_v2_atime(sdp,v)  ((sdp)->sd_atime = cpu_to_le32(v))
879#define sd_v2_mtime(sdp)        (le32_to_cpu((sdp)->sd_mtime))
880#define set_sd_v2_mtime(sdp,v)  ((sdp)->sd_mtime = cpu_to_le32(v))
881#define sd_v2_ctime(sdp)        (le32_to_cpu((sdp)->sd_ctime))
882#define set_sd_v2_ctime(sdp,v)  ((sdp)->sd_ctime = cpu_to_le32(v))
883#define sd_v2_blocks(sdp)       (le32_to_cpu((sdp)->sd_blocks))
884#define set_sd_v2_blocks(sdp,v) ((sdp)->sd_blocks = cpu_to_le32(v))
885#define sd_v2_rdev(sdp)         (le32_to_cpu((sdp)->u.sd_rdev))
886#define set_sd_v2_rdev(sdp,v)   ((sdp)->u.sd_rdev = cpu_to_le32(v))
887#define sd_v2_generation(sdp)   (le32_to_cpu((sdp)->u.sd_generation))
888#define set_sd_v2_generation(sdp,v) ((sdp)->u.sd_generation = cpu_to_le32(v))
889#define sd_v2_attrs(sdp)         (le16_to_cpu((sdp)->sd_attrs))
890#define set_sd_v2_attrs(sdp,v)   ((sdp)->sd_attrs = cpu_to_le16(v))
891
892/***************************************************************************/
893/*                      DIRECTORY STRUCTURE                                */
894/***************************************************************************/
895/*
896   Picture represents the structure of directory items
897   ________________________________________________
898   |  Array of     |   |     |        |       |   |
899   | directory     |N-1| N-2 | ....   |   1st |0th|
900   | entry headers |   |     |        |       |   |
901   |_______________|___|_____|________|_______|___|
902                    <----   directory entries         ------>
903
904 First directory item has k_offset component 1. We store "." and ".."
905 in one item, always, we never split "." and ".." into differing
906 items.  This makes, among other things, the code for removing
907 directories simpler. */
908#define SD_OFFSET  0
909#define SD_UNIQUENESS 0
910#define DOT_OFFSET 1
911#define DOT_DOT_OFFSET 2
912#define DIRENTRY_UNIQUENESS 500
913
914/* */
915#define FIRST_ITEM_OFFSET 1
916
917/*
918   Q: How to get key of object pointed to by entry from entry?
919
920   A: Each directory entry has its header. This header has deh_dir_id and deh_objectid fields, those are key
921      of object, entry points to */
922
923/* NOT IMPLEMENTED:
924   Directory will someday contain stat data of object */
925
926struct reiserfs_de_head {
927	__le32 deh_offset;	/* third component of the directory entry key */
928	__le32 deh_dir_id;	/* objectid of the parent directory of the object, that is referenced
929				   by directory entry */
930	__le32 deh_objectid;	/* objectid of the object, that is referenced by directory entry */
931	__le16 deh_location;	/* offset of name in the whole item */
932	__le16 deh_state;	/* whether 1) entry contains stat data (for future), and 2) whether
933				   entry is hidden (unlinked) */
934} __attribute__ ((__packed__));
935#define DEH_SIZE                  sizeof(struct reiserfs_de_head)
936#define deh_offset(p_deh)         (le32_to_cpu((p_deh)->deh_offset))
937#define deh_dir_id(p_deh)         (le32_to_cpu((p_deh)->deh_dir_id))
938#define deh_objectid(p_deh)       (le32_to_cpu((p_deh)->deh_objectid))
939#define deh_location(p_deh)       (le16_to_cpu((p_deh)->deh_location))
940#define deh_state(p_deh)          (le16_to_cpu((p_deh)->deh_state))
941
942#define put_deh_offset(p_deh,v)   ((p_deh)->deh_offset = cpu_to_le32((v)))
943#define put_deh_dir_id(p_deh,v)   ((p_deh)->deh_dir_id = cpu_to_le32((v)))
944#define put_deh_objectid(p_deh,v) ((p_deh)->deh_objectid = cpu_to_le32((v)))
945#define put_deh_location(p_deh,v) ((p_deh)->deh_location = cpu_to_le16((v)))
946#define put_deh_state(p_deh,v)    ((p_deh)->deh_state = cpu_to_le16((v)))
947
948/* empty directory contains two entries "." and ".." and their headers */
949#define EMPTY_DIR_SIZE \
950(DEH_SIZE * 2 + ROUND_UP (strlen (".")) + ROUND_UP (strlen ("..")))
951
952/* old format directories have this size when empty */
953#define EMPTY_DIR_SIZE_V1 (DEH_SIZE * 2 + 3)
954
955#define DEH_Statdata 0		/* not used now */
956#define DEH_Visible 2
957
958/* 64 bit systems (and the S/390) need to be aligned explicitly -jdm */
959#if BITS_PER_LONG == 64 || defined(__s390__) || defined(__hppa__)
960#   define ADDR_UNALIGNED_BITS  (3)
961#endif
962
963/* These are only used to manipulate deh_state.
964 * Because of this, we'll use the ext2_ bit routines,
965 * since they are little endian */
966#ifdef ADDR_UNALIGNED_BITS
967
968#   define aligned_address(addr)           ((void *)((long)(addr) & ~((1UL << ADDR_UNALIGNED_BITS) - 1)))
969#   define unaligned_offset(addr)          (((int)((long)(addr) & ((1 << ADDR_UNALIGNED_BITS) - 1))) << 3)
970
971#   define set_bit_unaligned(nr, addr)     ext2_set_bit((nr) + unaligned_offset(addr), aligned_address(addr))
972#   define clear_bit_unaligned(nr, addr)   ext2_clear_bit((nr) + unaligned_offset(addr), aligned_address(addr))
973#   define test_bit_unaligned(nr, addr)    ext2_test_bit((nr) + unaligned_offset(addr), aligned_address(addr))
974
975#else
976
977#   define set_bit_unaligned(nr, addr)     ext2_set_bit(nr, addr)
978#   define clear_bit_unaligned(nr, addr)   ext2_clear_bit(nr, addr)
979#   define test_bit_unaligned(nr, addr)    ext2_test_bit(nr, addr)
980
981#endif
982
983#define mark_de_with_sd(deh)        set_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
984#define mark_de_without_sd(deh)     clear_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
985#define mark_de_visible(deh)	    set_bit_unaligned (DEH_Visible, &((deh)->deh_state))
986#define mark_de_hidden(deh)	    clear_bit_unaligned (DEH_Visible, &((deh)->deh_state))
987
988#define de_with_sd(deh)		    test_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
989#define de_visible(deh)	    	    test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
990#define de_hidden(deh)	    	    !test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
991
992extern void make_empty_dir_item_v1(char *body, __le32 dirid, __le32 objid,
993				   __le32 par_dirid, __le32 par_objid);
994extern void make_empty_dir_item(char *body, __le32 dirid, __le32 objid,
995				__le32 par_dirid, __le32 par_objid);
996
997/* array of the entry headers */
998 /* get item body */
999#define B_I_PITEM(bh,ih) ( (bh)->b_data + ih_location(ih) )
1000#define B_I_DEH(bh,ih) ((struct reiserfs_de_head *)(B_I_PITEM(bh,ih)))
1001
1002/* length of the directory entry in directory item. This define
1003   calculates length of i-th directory entry using directory entry
1004   locations from dir entry head. When it calculates length of 0-th
1005   directory entry, it uses length of whole item in place of entry
1006   location of the non-existent following entry in the calculation.
1007   See picture above.*/
1008/*
1009#define I_DEH_N_ENTRY_LENGTH(ih,deh,i) \
1010((i) ? (deh_location((deh)-1) - deh_location((deh))) : (ih_item_len((ih)) - deh_location((deh))))
1011*/
1012static inline int entry_length(const struct buffer_head *bh,
1013			       const struct item_head *ih, int pos_in_item)
1014{
1015	struct reiserfs_de_head *deh;
1016
1017	deh = B_I_DEH(bh, ih) + pos_in_item;
1018	if (pos_in_item)
1019		return deh_location(deh - 1) - deh_location(deh);
1020
1021	return ih_item_len(ih) - deh_location(deh);
1022}
1023
1024/* number of entries in the directory item, depends on ENTRY_COUNT being at the start of directory dynamic data. */
1025#define I_ENTRY_COUNT(ih) (ih_entry_count((ih)))
1026
1027/* name by bh, ih and entry_num */
1028#define B_I_E_NAME(bh,ih,entry_num) ((char *)(bh->b_data + ih_location(ih) + deh_location(B_I_DEH(bh,ih)+(entry_num))))
1029
1030// two entries per block (at least)
1031#define REISERFS_MAX_NAME(block_size) 255
1032
1033/* this structure is used for operations on directory entries. It is
1034   not a disk structure. */
1035/* When reiserfs_find_entry or search_by_entry_key find directory
1036   entry, they return filled reiserfs_dir_entry structure */
1037struct reiserfs_dir_entry {
1038	struct buffer_head *de_bh;
1039	int de_item_num;
1040	struct item_head *de_ih;
1041	int de_entry_num;
1042	struct reiserfs_de_head *de_deh;
1043	int de_entrylen;
1044	int de_namelen;
1045	char *de_name;
1046	unsigned long *de_gen_number_bit_string;
1047
1048	__u32 de_dir_id;
1049	__u32 de_objectid;
1050
1051	struct cpu_key de_entry_key;
1052};
1053
1054/* these defines are useful when a particular member of a reiserfs_dir_entry is needed */
1055
1056/* pointer to file name, stored in entry */
1057#define B_I_DEH_ENTRY_FILE_NAME(bh,ih,deh) (B_I_PITEM (bh, ih) + deh_location(deh))
1058
1059/* length of name */
1060#define I_DEH_N_ENTRY_FILE_NAME_LENGTH(ih,deh,entry_num) \
1061(I_DEH_N_ENTRY_LENGTH (ih, deh, entry_num) - (de_with_sd (deh) ? SD_SIZE : 0))
1062
1063/* hash value occupies bits from 7 up to 30 */
1064#define GET_HASH_VALUE(offset) ((offset) & 0x7fffff80LL)
1065/* generation number occupies 7 bits starting from 0 up to 6 */
1066#define GET_GENERATION_NUMBER(offset) ((offset) & 0x7fLL)
1067#define MAX_GENERATION_NUMBER  127
1068
1069#define SET_GENERATION_NUMBER(offset,gen_number) (GET_HASH_VALUE(offset)|(gen_number))
1070
1071/*
1072 * Picture represents an internal node of the reiserfs tree
1073 *  ______________________________________________________
1074 * |      |  Array of     |  Array of         |  Free     |
1075 * |block |    keys       |  pointers         | space     |
1076 * | head |      N        |      N+1          |           |
1077 * |______|_______________|___________________|___________|
1078 */
1079
1080/***************************************************************************/
1081/*                      DISK CHILD                                         */
1082/***************************************************************************/
1083/* Disk child pointer: The pointer from an internal node of the tree
1084   to a node that is on disk. */
1085struct disk_child {
1086	__le32 dc_block_number;	/* Disk child's block number. */
1087	__le16 dc_size;		/* Disk child's used space.   */
1088	__le16 dc_reserved;
1089};
1090
1091#define DC_SIZE (sizeof(struct disk_child))
1092#define dc_block_number(dc_p)	(le32_to_cpu((dc_p)->dc_block_number))
1093#define dc_size(dc_p)		(le16_to_cpu((dc_p)->dc_size))
1094#define put_dc_block_number(dc_p, val)   do { (dc_p)->dc_block_number = cpu_to_le32(val); } while(0)
1095#define put_dc_size(dc_p, val)   do { (dc_p)->dc_size = cpu_to_le16(val); } while(0)
1096
1097/* Get disk child by buffer header and position in the tree node. */
1098#define B_N_CHILD(p_s_bh,n_pos)  ((struct disk_child *)\
1099((p_s_bh)->b_data+BLKH_SIZE+B_NR_ITEMS(p_s_bh)*KEY_SIZE+DC_SIZE*(n_pos)))
1100
1101/* Get disk child number by buffer header and position in the tree node. */
1102#define B_N_CHILD_NUM(p_s_bh,n_pos) (dc_block_number(B_N_CHILD(p_s_bh,n_pos)))
1103#define PUT_B_N_CHILD_NUM(p_s_bh,n_pos, val) (put_dc_block_number(B_N_CHILD(p_s_bh,n_pos), val ))
1104
1105 /* maximal value of field child_size in structure disk_child */
1106 /* child size is the combined size of all items and their headers */
1107#define MAX_CHILD_SIZE(bh) ((int)( (bh)->b_size - BLKH_SIZE ))
1108
1109/* amount of used space in buffer (not including block head) */
1110#define B_CHILD_SIZE(cur) (MAX_CHILD_SIZE(cur)-(B_FREE_SPACE(cur)))
1111
1112/* max and min number of keys in internal node */
1113#define MAX_NR_KEY(bh) ( (MAX_CHILD_SIZE(bh)-DC_SIZE)/(KEY_SIZE+DC_SIZE) )
1114#define MIN_NR_KEY(bh)    (MAX_NR_KEY(bh)/2)
1115
1116/***************************************************************************/
1117/*                      PATH STRUCTURES AND DEFINES                        */
1118/***************************************************************************/
1119
1120/* Search_by_key fills up the path from the root to the leaf as it descends the tree looking for the
1121   key.  It uses reiserfs_bread to try to find buffers in the cache given their block number.  If it
1122   does not find them in the cache it reads them from disk.  For each node search_by_key finds using
1123   reiserfs_bread it then uses bin_search to look through that node.  bin_search will find the
1124   position of the block_number of the next node if it is looking through an internal node.  If it
1125   is looking through a leaf node bin_search will find the position of the item which has key either
1126   equal to given key, or which is the maximal key less than the given key. */
1127
1128struct path_element {
1129	struct buffer_head *pe_buffer;	/* Pointer to the buffer at the path in the tree. */
1130	int pe_position;	/* Position in the tree node which is placed in the */
1131	/* buffer above.                                  */
1132};
1133
1134#define MAX_HEIGHT 5		/* maximal height of a tree. don't change this without changing JOURNAL_PER_BALANCE_CNT */
1135#define EXTENDED_MAX_HEIGHT         7	/* Must be equals MAX_HEIGHT + FIRST_PATH_ELEMENT_OFFSET */
1136#define FIRST_PATH_ELEMENT_OFFSET   2	/* Must be equal to at least 2. */
1137
1138#define ILLEGAL_PATH_ELEMENT_OFFSET 1	/* Must be equal to FIRST_PATH_ELEMENT_OFFSET - 1 */
1139#define MAX_FEB_SIZE 6		/* this MUST be MAX_HEIGHT + 1. See about FEB below */
1140
1141/* We need to keep track of who the ancestors of nodes are.  When we
1142   perform a search we record which nodes were visited while
1143   descending the tree looking for the node we searched for. This list
1144   of nodes is called the path.  This information is used while
1145   performing balancing.  Note that this path information may become
1146   invalid, and this means we must check it when using it to see if it
1147   is still valid. You'll need to read search_by_key and the comments
1148   in it, especially about decrement_counters_in_path(), to understand
1149   this structure.
1150
1151Paths make the code so much harder to work with and debug.... An
1152enormous number of bugs are due to them, and trying to write or modify
1153code that uses them just makes my head hurt.  They are based on an
1154excessive effort to avoid disturbing the precious VFS code.:-( The
1155gods only know how we are going to SMP the code that uses them.
1156znodes are the way! */
1157
1158#define PATH_READA	0x1	/* do read ahead */
1159#define PATH_READA_BACK 0x2	/* read backwards */
1160
1161struct treepath {
1162	int path_length;	/* Length of the array above.   */
1163	int reada;
1164	struct path_element path_elements[EXTENDED_MAX_HEIGHT];	/* Array of the path elements.  */
1165	int pos_in_item;
1166};
1167
1168#define pos_in_item(path) ((path)->pos_in_item)
1169
1170#define INITIALIZE_PATH(var) \
1171struct treepath var = {.path_length = ILLEGAL_PATH_ELEMENT_OFFSET, .reada = 0,}
1172
1173/* Get path element by path and path position. */
1174#define PATH_OFFSET_PELEMENT(p_s_path,n_offset)  ((p_s_path)->path_elements +(n_offset))
1175
1176/* Get buffer header at the path by path and path position. */
1177#define PATH_OFFSET_PBUFFER(p_s_path,n_offset)   (PATH_OFFSET_PELEMENT(p_s_path,n_offset)->pe_buffer)
1178
1179/* Get position in the element at the path by path and path position. */
1180#define PATH_OFFSET_POSITION(p_s_path,n_offset) (PATH_OFFSET_PELEMENT(p_s_path,n_offset)->pe_position)
1181
1182#define PATH_PLAST_BUFFER(p_s_path) (PATH_OFFSET_PBUFFER((p_s_path), (p_s_path)->path_length))
1183				/* you know, to the person who didn't
1184				   write this the macro name does not
1185				   at first suggest what it does.
1186				   Maybe POSITION_FROM_PATH_END? Or
1187				   maybe we should just focus on
1188				   dumping paths... -Hans */
1189#define PATH_LAST_POSITION(p_s_path) (PATH_OFFSET_POSITION((p_s_path), (p_s_path)->path_length))
1190
1191#define PATH_PITEM_HEAD(p_s_path)    B_N_PITEM_HEAD(PATH_PLAST_BUFFER(p_s_path),PATH_LAST_POSITION(p_s_path))
1192
1193/* in do_balance leaf has h == 0 in contrast with path structure,
1194   where root has level == 0. That is why we need these defines */
1195#define PATH_H_PBUFFER(p_s_path, h) PATH_OFFSET_PBUFFER (p_s_path, p_s_path->path_length - (h))	/* tb->S[h] */
1196#define PATH_H_PPARENT(path, h) PATH_H_PBUFFER (path, (h) + 1)	/* tb->F[h] or tb->S[0]->b_parent */
1197#define PATH_H_POSITION(path, h) PATH_OFFSET_POSITION (path, path->path_length - (h))
1198#define PATH_H_B_ITEM_ORDER(path, h) PATH_H_POSITION(path, h + 1)	/* tb->S[h]->b_item_order */
1199
1200#define PATH_H_PATH_OFFSET(p_s_path, n_h) ((p_s_path)->path_length - (n_h))
1201
1202#define get_last_bh(path) PATH_PLAST_BUFFER(path)
1203#define get_ih(path) PATH_PITEM_HEAD(path)
1204#define get_item_pos(path) PATH_LAST_POSITION(path)
1205#define get_item(path) ((void *)B_N_PITEM(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION (path)))
1206#define item_moved(ih,path) comp_items(ih, path)
1207#define path_changed(ih,path) comp_items (ih, path)
1208
1209/***************************************************************************/
1210/*                       MISC                                              */
1211/***************************************************************************/
1212
1213/* Size of pointer to the unformatted node. */
1214#define UNFM_P_SIZE (sizeof(unp_t))
1215#define UNFM_P_SHIFT 2
1216
1217// in in-core inode key is stored on le form
1218#define INODE_PKEY(inode) ((struct reiserfs_key *)(REISERFS_I(inode)->i_key))
1219
1220#define MAX_UL_INT 0xffffffff
1221#define MAX_INT    0x7ffffff
1222#define MAX_US_INT 0xffff
1223
1224// reiserfs version 2 has max offset 60 bits. Version 1 - 32 bit offset
1225#define U32_MAX (~(__u32)0)
1226
1227static inline loff_t max_reiserfs_offset(struct inode *inode)
1228{
1229	if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5)
1230		return (loff_t) U32_MAX;
1231
1232	return (loff_t) ((~(__u64) 0) >> 4);
1233}
1234
1235/*#define MAX_KEY_UNIQUENESS	MAX_UL_INT*/
1236#define MAX_KEY_OBJECTID	MAX_UL_INT
1237
1238#define MAX_B_NUM  MAX_UL_INT
1239#define MAX_FC_NUM MAX_US_INT
1240
1241/* the purpose is to detect overflow of an unsigned short */
1242#define REISERFS_LINK_MAX (MAX_US_INT - 1000)
1243
1244/* The following defines are used in reiserfs_insert_item and reiserfs_append_item  */
1245#define REISERFS_KERNEL_MEM		0	/* reiserfs kernel memory mode  */
1246#define REISERFS_USER_MEM		1	/* reiserfs user memory mode            */
1247
1248#define fs_generation(s) (REISERFS_SB(s)->s_generation_counter)
1249#define get_generation(s) atomic_read (&fs_generation(s))
1250#define FILESYSTEM_CHANGED_TB(tb)  (get_generation((tb)->tb_sb) != (tb)->fs_gen)
1251#define __fs_changed(gen,s) (gen != get_generation (s))
1252#define fs_changed(gen,s) ({cond_resched(); __fs_changed(gen, s);})
1253
1254/***************************************************************************/
1255/*                  FIXATE NODES                                           */
1256/***************************************************************************/
1257
1258#define VI_TYPE_LEFT_MERGEABLE 1
1259#define VI_TYPE_RIGHT_MERGEABLE 2
1260
1261/* To make any changes in the tree we always first find node, that
1262   contains item to be changed/deleted or place to insert a new
1263   item. We call this node S. To do balancing we need to decide what
1264   we will shift to left/right neighbor, or to a new node, where new
1265   item will be etc. To make this analysis simpler we build virtual
1266   node. Virtual node is an array of items, that will replace items of
1267   node S. (For instance if we are going to delete an item, virtual
1268   node does not contain it). Virtual node keeps information about
1269   item sizes and types, mergeability of first and last items, sizes
1270   of all entries in directory item. We use this array of items when
1271   calculating what we can shift to neighbors and how many nodes we
1272   have to have if we do not any shiftings, if we shift to left/right
1273   neighbor or to both. */
1274struct virtual_item {
1275	int vi_index;		// index in the array of item operations
1276	unsigned short vi_type;	// left/right mergeability
1277	unsigned short vi_item_len;	/* length of item that it will have after balancing */
1278	struct item_head *vi_ih;
1279	const char *vi_item;	// body of item (old or new)
1280	const void *vi_new_data;	// 0 always but paste mode
1281	void *vi_uarea;		// item specific area
1282};
1283
1284struct virtual_node {
1285	char *vn_free_ptr;	/* this is a pointer to the free space in the buffer */
1286	unsigned short vn_nr_item;	/* number of items in virtual node */
1287	short vn_size;		/* size of node , that node would have if it has unlimited size and no balancing is performed */
1288	short vn_mode;		/* mode of balancing (paste, insert, delete, cut) */
1289	short vn_affected_item_num;
1290	short vn_pos_in_item;
1291	struct item_head *vn_ins_ih;	/* item header of inserted item, 0 for other modes */
1292	const void *vn_data;
1293	struct virtual_item *vn_vi;	/* array of items (including a new one, excluding item to be deleted) */
1294};
1295
1296/* used by directory items when creating virtual nodes */
1297struct direntry_uarea {
1298	int flags;
1299	__u16 entry_count;
1300	__u16 entry_sizes[1];
1301} __attribute__ ((__packed__));
1302
1303/***************************************************************************/
1304/*                  TREE BALANCE                                           */
1305/***************************************************************************/
1306
1307/* This temporary structure is used in tree balance algorithms, and
1308   constructed as we go to the extent that its various parts are
1309   needed.  It contains arrays of nodes that can potentially be
1310   involved in the balancing of node S, and parameters that define how
1311   each of the nodes must be balanced.  Note that in these algorithms
1312   for balancing the worst case is to need to balance the current node
1313   S and the left and right neighbors and all of their parents plus
1314   create a new node.  We implement S1 balancing for the leaf nodes
1315   and S0 balancing for the internal nodes (S1 and S0 are defined in
1316   our papers.)*/
1317
1318#define MAX_FREE_BLOCK 7	/* size of the array of buffers to free at end of do_balance */
1319
1320/* maximum number of FEB blocknrs on a single level */
1321#define MAX_AMOUNT_NEEDED 2
1322
1323/* someday somebody will prefix every field in this struct with tb_ */
1324struct tree_balance {
1325	int tb_mode;
1326	int need_balance_dirty;
1327	struct super_block *tb_sb;
1328	struct reiserfs_transaction_handle *transaction_handle;
1329	struct treepath *tb_path;
1330	struct buffer_head *L[MAX_HEIGHT];	/* array of left neighbors of nodes in the path */
1331	struct buffer_head *R[MAX_HEIGHT];	/* array of right neighbors of nodes in the path */
1332	struct buffer_head *FL[MAX_HEIGHT];	/* array of fathers of the left  neighbors      */
1333	struct buffer_head *FR[MAX_HEIGHT];	/* array of fathers of the right neighbors      */
1334	struct buffer_head *CFL[MAX_HEIGHT];	/* array of common parents of center node and its left neighbor  */
1335	struct buffer_head *CFR[MAX_HEIGHT];	/* array of common parents of center node and its right neighbor */
1336
1337	struct buffer_head *FEB[MAX_FEB_SIZE];	/* array of empty buffers. Number of buffers in array equals
1338						   cur_blknum. */
1339	struct buffer_head *used[MAX_FEB_SIZE];
1340	struct buffer_head *thrown[MAX_FEB_SIZE];
1341	int lnum[MAX_HEIGHT];	/* array of number of items which must be
1342				   shifted to the left in order to balance the
1343				   current node; for leaves includes item that
1344				   will be partially shifted; for internal
1345				   nodes, it is the number of child pointers
1346				   rather than items. It includes the new item
1347				   being created. The code sometimes subtracts
1348				   one to get the number of wholly shifted
1349				   items for other purposes. */
1350	int rnum[MAX_HEIGHT];	/* substitute right for left in comment above */
1351	int lkey[MAX_HEIGHT];	/* array indexed by height h mapping the key delimiting L[h] and
1352				   S[h] to its item number within the node CFL[h] */
1353	int rkey[MAX_HEIGHT];	/* substitute r for l in comment above */
1354	int insert_size[MAX_HEIGHT];	/* the number of bytes by we are trying to add or remove from
1355					   S[h]. A negative value means removing.  */
1356	int blknum[MAX_HEIGHT];	/* number of nodes that will replace node S[h] after
1357				   balancing on the level h of the tree.  If 0 then S is
1358				   being deleted, if 1 then S is remaining and no new nodes
1359				   are being created, if 2 or 3 then 1 or 2 new nodes is
1360				   being created */
1361
1362	/* fields that are used only for balancing leaves of the tree */
1363	int cur_blknum;		/* number of empty blocks having been already allocated                 */
1364	int s0num;		/* number of items that fall into left most  node when S[0] splits     */
1365	int s1num;		/* number of items that fall into first  new node when S[0] splits     */
1366	int s2num;		/* number of items that fall into second new node when S[0] splits     */
1367	int lbytes;		/* number of bytes which can flow to the left neighbor from the        left    */
1368	/* most liquid item that cannot be shifted from S[0] entirely         */
1369	/* if -1 then nothing will be partially shifted */
1370	int rbytes;		/* number of bytes which will flow to the right neighbor from the right        */
1371	/* most liquid item that cannot be shifted from S[0] entirely         */
1372	/* if -1 then nothing will be partially shifted                           */
1373	int s1bytes;		/* number of bytes which flow to the first  new node when S[0] splits   */
1374	/* note: if S[0] splits into 3 nodes, then items do not need to be cut  */
1375	int s2bytes;
1376	struct buffer_head *buf_to_free[MAX_FREE_BLOCK];	/* buffers which are to be freed after do_balance finishes by unfix_nodes */
1377	char *vn_buf;		/* kmalloced memory. Used to create
1378				   virtual node and keep map of
1379				   dirtied bitmap blocks */
1380	int vn_buf_size;	/* size of the vn_buf */
1381	struct virtual_node *tb_vn;	/* VN starts after bitmap of bitmap blocks */
1382
1383	int fs_gen;		/* saved value of `reiserfs_generation' counter
1384				   see FILESYSTEM_CHANGED() macro in reiserfs_fs.h */
1385#ifdef DISPLACE_NEW_PACKING_LOCALITIES
1386	struct in_core_key key;	/* key pointer, to pass to block allocator or
1387				   another low-level subsystem */
1388#endif
1389};
1390
1391/* These are modes of balancing */
1392
1393/* When inserting an item. */
1394#define M_INSERT	'i'
1395/* When inserting into (directories only) or appending onto an already
1396   existant item. */
1397#define M_PASTE		'p'
1398/* When deleting an item. */
1399#define M_DELETE	'd'
1400/* When truncating an item or removing an entry from a (directory) item. */
1401#define M_CUT 		'c'
1402
1403/* used when balancing on leaf level skipped (in reiserfsck) */
1404#define M_INTERNAL	'n'
1405
1406/* When further balancing is not needed, then do_balance does not need
1407   to be called. */
1408#define M_SKIP_BALANCING 		's'
1409#define M_CONVERT	'v'
1410
1411/* modes of leaf_move_items */
1412#define LEAF_FROM_S_TO_L 0
1413#define LEAF_FROM_S_TO_R 1
1414#define LEAF_FROM_R_TO_L 2
1415#define LEAF_FROM_L_TO_R 3
1416#define LEAF_FROM_S_TO_SNEW 4
1417
1418#define FIRST_TO_LAST 0
1419#define LAST_TO_FIRST 1
1420
1421/* used in do_balance for passing parent of node information that has
1422   been gotten from tb struct */
1423struct buffer_info {
1424	struct tree_balance *tb;
1425	struct buffer_head *bi_bh;
1426	struct buffer_head *bi_parent;
1427	int bi_position;
1428};
1429
1430/* there are 4 types of items: stat data, directory item, indirect, direct.
1431+-------------------+------------+--------------+------------+
1432|	            |  k_offset  | k_uniqueness | mergeable? |
1433+-------------------+------------+--------------+------------+
1434|     stat data     |	0        |      0       |   no       |
1435+-------------------+------------+--------------+------------+
1436| 1st directory item| DOT_OFFSET |DIRENTRY_UNIQUENESS|   no       |
1437| non 1st directory | hash value |              |   yes      |
1438|     item          |            |              |            |
1439+-------------------+------------+--------------+------------+
1440| indirect item     | offset + 1 |TYPE_INDIRECT |   if this is not the first indirect item of the object
1441+-------------------+------------+--------------+------------+
1442| direct item       | offset + 1 |TYPE_DIRECT   | if not this is not the first direct item of the object
1443+-------------------+------------+--------------+------------+
1444*/
1445
1446struct item_operations {
1447	int (*bytes_number) (struct item_head * ih, int block_size);
1448	void (*decrement_key) (struct cpu_key *);
1449	int (*is_left_mergeable) (struct reiserfs_key * ih,
1450				  unsigned long bsize);
1451	void (*print_item) (struct item_head *, char *item);
1452	void (*check_item) (struct item_head *, char *item);
1453
1454	int (*create_vi) (struct virtual_node * vn, struct virtual_item * vi,
1455			  int is_affected, int insert_size);
1456	int (*check_left) (struct virtual_item * vi, int free,
1457			   int start_skip, int end_skip);
1458	int (*check_right) (struct virtual_item * vi, int free);
1459	int (*part_size) (struct virtual_item * vi, int from, int to);
1460	int (*unit_num) (struct virtual_item * vi);
1461	void (*print_vi) (struct virtual_item * vi);
1462};
1463
1464extern struct item_operations *item_ops[TYPE_ANY + 1];
1465
1466#define op_bytes_number(ih,bsize)                    item_ops[le_ih_k_type (ih)]->bytes_number (ih, bsize)
1467#define op_is_left_mergeable(key,bsize)              item_ops[le_key_k_type (le_key_version (key), key)]->is_left_mergeable (key, bsize)
1468#define op_print_item(ih,item)                       item_ops[le_ih_k_type (ih)]->print_item (ih, item)
1469#define op_check_item(ih,item)                       item_ops[le_ih_k_type (ih)]->check_item (ih, item)
1470#define op_create_vi(vn,vi,is_affected,insert_size)  item_ops[le_ih_k_type ((vi)->vi_ih)]->create_vi (vn,vi,is_affected,insert_size)
1471#define op_check_left(vi,free,start_skip,end_skip) item_ops[(vi)->vi_index]->check_left (vi, free, start_skip, end_skip)
1472#define op_check_right(vi,free)                      item_ops[(vi)->vi_index]->check_right (vi, free)
1473#define op_part_size(vi,from,to)                     item_ops[(vi)->vi_index]->part_size (vi, from, to)
1474#define op_unit_num(vi)				     item_ops[(vi)->vi_index]->unit_num (vi)
1475#define op_print_vi(vi)                              item_ops[(vi)->vi_index]->print_vi (vi)
1476
1477#define COMP_SHORT_KEYS comp_short_keys
1478
1479/* number of blocks pointed to by the indirect item */
1480#define I_UNFM_NUM(p_s_ih)	( ih_item_len(p_s_ih) / UNFM_P_SIZE )
1481
1482/* the used space within the unformatted node corresponding to pos within the item pointed to by ih */
1483#define I_POS_UNFM_SIZE(ih,pos,size) (((pos) == I_UNFM_NUM(ih) - 1 ) ? (size) - ih_free_space(ih) : (size))
1484
1485/* number of bytes contained by the direct item or the unformatted nodes the indirect item points to */
1486
1487/* get the item header */
1488#define B_N_PITEM_HEAD(bh,item_num) ( (struct item_head * )((bh)->b_data + BLKH_SIZE) + (item_num) )
1489
1490/* get key */
1491#define B_N_PDELIM_KEY(bh,item_num) ( (struct reiserfs_key * )((bh)->b_data + BLKH_SIZE) + (item_num) )
1492
1493/* get the key */
1494#define B_N_PKEY(bh,item_num) ( &(B_N_PITEM_HEAD(bh,item_num)->ih_key) )
1495
1496/* get item body */
1497#define B_N_PITEM(bh,item_num) ( (bh)->b_data + ih_location(B_N_PITEM_HEAD((bh),(item_num))))
1498
1499/* get the stat data by the buffer header and the item order */
1500#define B_N_STAT_DATA(bh,nr) \
1501( (struct stat_data *)((bh)->b_data + ih_location(B_N_PITEM_HEAD((bh),(nr))) ) )
1502
1503    /* following defines use reiserfs buffer header and item header */
1504
1505/* get stat-data */
1506#define B_I_STAT_DATA(bh, ih) ( (struct stat_data * )((bh)->b_data + ih_location(ih)) )
1507
1508// this is 3976 for size==4096
1509#define MAX_DIRECT_ITEM_LEN(size) ((size) - BLKH_SIZE - 2*IH_SIZE - SD_SIZE - UNFM_P_SIZE)
1510
1511/* indirect items consist of entries which contain blocknrs, pos
1512   indicates which entry, and B_I_POS_UNFM_POINTER resolves to the
1513   blocknr contained by the entry pos points to */
1514#define B_I_POS_UNFM_POINTER(bh,ih,pos) le32_to_cpu(*(((unp_t *)B_I_PITEM(bh,ih)) + (pos)))
1515#define PUT_B_I_POS_UNFM_POINTER(bh,ih,pos, val) do {*(((unp_t *)B_I_PITEM(bh,ih)) + (pos)) = cpu_to_le32(val); } while (0)
1516
1517struct reiserfs_iget_args {
1518	__u32 objectid;
1519	__u32 dirid;
1520};
1521
1522/***************************************************************************/
1523/*                    FUNCTION DECLARATIONS                                */
1524/***************************************************************************/
1525
1526/*#ifdef __KERNEL__*/
1527#define get_journal_desc_magic(bh) (bh->b_data + bh->b_size - 12)
1528
1529#define journal_trans_half(blocksize) \
1530	((blocksize - sizeof (struct reiserfs_journal_desc) + sizeof (__u32) - 12) / sizeof (__u32))
1531
1532/* journal.c see journal.c for all the comments here */
1533
1534/* first block written in a commit.  */
1535struct reiserfs_journal_desc {
1536	__le32 j_trans_id;	/* id of commit */
1537	__le32 j_len;		/* length of commit. len +1 is the commit block */
1538	__le32 j_mount_id;	/* mount id of this trans */
1539	__le32 j_realblock[1];	/* real locations for each block */
1540};
1541
1542#define get_desc_trans_id(d)   le32_to_cpu((d)->j_trans_id)
1543#define get_desc_trans_len(d)  le32_to_cpu((d)->j_len)
1544#define get_desc_mount_id(d)   le32_to_cpu((d)->j_mount_id)
1545
1546#define set_desc_trans_id(d,val)       do { (d)->j_trans_id = cpu_to_le32 (val); } while (0)
1547#define set_desc_trans_len(d,val)      do { (d)->j_len = cpu_to_le32 (val); } while (0)
1548#define set_desc_mount_id(d,val)       do { (d)->j_mount_id = cpu_to_le32 (val); } while (0)
1549
1550/* last block written in a commit */
1551struct reiserfs_journal_commit {
1552	__le32 j_trans_id;	/* must match j_trans_id from the desc block */
1553	__le32 j_len;		/* ditto */
1554	__le32 j_realblock[1];	/* real locations for each block */
1555};
1556
1557#define get_commit_trans_id(c) le32_to_cpu((c)->j_trans_id)
1558#define get_commit_trans_len(c)        le32_to_cpu((c)->j_len)
1559#define get_commit_mount_id(c) le32_to_cpu((c)->j_mount_id)
1560
1561#define set_commit_trans_id(c,val)     do { (c)->j_trans_id = cpu_to_le32 (val); } while (0)
1562#define set_commit_trans_len(c,val)    do { (c)->j_len = cpu_to_le32 (val); } while (0)
1563
1564/* this header block gets written whenever a transaction is considered fully flushed, and is more recent than the
1565** last fully flushed transaction.  fully flushed means all the log blocks and all the real blocks are on disk,
1566** and this transaction does not need to be replayed.
1567*/
1568struct reiserfs_journal_header {
1569	__le32 j_last_flush_trans_id;	/* id of last fully flushed transaction */
1570	__le32 j_first_unflushed_offset;	/* offset in the log of where to start replay after a crash */
1571	__le32 j_mount_id;
1572	/* 12 */ struct journal_params jh_journal;
1573};
1574
1575/* biggest tunable defines are right here */
1576#define JOURNAL_BLOCK_COUNT 8192	/* number of blocks in the journal */
1577#define JOURNAL_TRANS_MAX_DEFAULT 1024	/* biggest possible single transaction, don't change for now (8/3/99) */
1578#define JOURNAL_TRANS_MIN_DEFAULT 256
1579#define JOURNAL_MAX_BATCH_DEFAULT   900	/* max blocks to batch into one transaction, don't make this any bigger than 900 */
1580#define JOURNAL_MIN_RATIO 2
1581#define JOURNAL_MAX_COMMIT_AGE 30
1582#define JOURNAL_MAX_TRANS_AGE 30
1583#define JOURNAL_PER_BALANCE_CNT (3 * (MAX_HEIGHT-2) + 9)
1584#ifdef CONFIG_QUOTA
1585/* We need to update data and inode (atime) */
1586#define REISERFS_QUOTA_TRANS_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & (1<<REISERFS_QUOTA) ? 2 : 0)
1587/* 1 balancing, 1 bitmap, 1 data per write + stat data update */
1588#define REISERFS_QUOTA_INIT_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & (1<<REISERFS_QUOTA) ? \
1589(DQUOT_INIT_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_INIT_REWRITE+1) : 0)
1590/* same as with INIT */
1591#define REISERFS_QUOTA_DEL_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & (1<<REISERFS_QUOTA) ? \
1592(DQUOT_DEL_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_DEL_REWRITE+1) : 0)
1593#else
1594#define REISERFS_QUOTA_TRANS_BLOCKS(s) 0
1595#define REISERFS_QUOTA_INIT_BLOCKS(s) 0
1596#define REISERFS_QUOTA_DEL_BLOCKS(s) 0
1597#endif
1598
1599/* both of these can be as low as 1, or as high as you want.  The min is the
1600** number of 4k bitmap nodes preallocated on mount. New nodes are allocated
1601** as needed, and released when transactions are committed.  On release, if
1602** the current number of nodes is > max, the node is freed, otherwise,
1603** it is put on a free list for faster use later.
1604*/
1605#define REISERFS_MIN_BITMAP_NODES 10
1606#define REISERFS_MAX_BITMAP_NODES 100
1607
1608#define JBH_HASH_SHIFT 13	/* these are based on journal hash size of 8192 */
1609#define JBH_HASH_MASK 8191
1610
1611#define _jhashfn(sb,block)	\
1612	(((unsigned long)sb>>L1_CACHE_SHIFT) ^ \
1613	 (((block)<<(JBH_HASH_SHIFT - 6)) ^ ((block) >> 13) ^ ((block) << (JBH_HASH_SHIFT - 12))))
1614#define journal_hash(t,sb,block) ((t)[_jhashfn((sb),(block)) & JBH_HASH_MASK])
1615
1616// We need these to make journal.c code more readable
1617#define journal_find_get_block(s, block) __find_get_block(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
1618#define journal_getblk(s, block) __getblk(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
1619#define journal_bread(s, block) __bread(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
1620
1621enum reiserfs_bh_state_bits {
1622	BH_JDirty = BH_PrivateStart,	/* buffer is in current transaction */
1623	BH_JDirty_wait,
1624	BH_JNew,		/* disk block was taken off free list before
1625				 * being in a finished transaction, or
1626				 * written to disk. Can be reused immed. */
1627	BH_JPrepared,
1628	BH_JRestore_dirty,
1629	BH_JTest,		// debugging only will go away
1630};
1631
1632BUFFER_FNS(JDirty, journaled);
1633TAS_BUFFER_FNS(JDirty, journaled);
1634BUFFER_FNS(JDirty_wait, journal_dirty);
1635TAS_BUFFER_FNS(JDirty_wait, journal_dirty);
1636BUFFER_FNS(JNew, journal_new);
1637TAS_BUFFER_FNS(JNew, journal_new);
1638BUFFER_FNS(JPrepared, journal_prepared);
1639TAS_BUFFER_FNS(JPrepared, journal_prepared);
1640BUFFER_FNS(JRestore_dirty, journal_restore_dirty);
1641TAS_BUFFER_FNS(JRestore_dirty, journal_restore_dirty);
1642BUFFER_FNS(JTest, journal_test);
1643TAS_BUFFER_FNS(JTest, journal_test);
1644
1645/*
1646** transaction handle which is passed around for all journal calls
1647*/
1648struct reiserfs_transaction_handle {
1649	struct super_block *t_super;	/* super for this FS when journal_begin was
1650					   called. saves calls to reiserfs_get_super
1651					   also used by nested transactions to make
1652					   sure they are nesting on the right FS
1653					   _must_ be first in the handle
1654					 */
1655	int t_refcount;
1656	int t_blocks_logged;	/* number of blocks this writer has logged */
1657	int t_blocks_allocated;	/* number of blocks this writer allocated */
1658	unsigned long t_trans_id;	/* sanity check, equals the current trans id */
1659	void *t_handle_save;	/* save existing current->journal_info */
1660	unsigned displace_new_blocks:1;	/* if new block allocation occurres, that block
1661					   should be displaced from others */
1662	struct list_head t_list;
1663};
1664
1665/* used to keep track of ordered and tail writes, attached to the buffer
1666 * head through b_journal_head.
1667 */
1668struct reiserfs_jh {
1669	struct reiserfs_journal_list *jl;
1670	struct buffer_head *bh;
1671	struct list_head list;
1672};
1673
1674void reiserfs_free_jh(struct buffer_head *bh);
1675int reiserfs_add_tail_list(struct inode *inode, struct buffer_head *bh);
1676int reiserfs_add_ordered_list(struct inode *inode, struct buffer_head *bh);
1677int journal_mark_dirty(struct reiserfs_transaction_handle *,
1678		       struct super_block *, struct buffer_head *bh);
1679
1680static inline int reiserfs_file_data_log(struct inode *inode)
1681{
1682	if (reiserfs_data_log(inode->i_sb) ||
1683	    (REISERFS_I(inode)->i_flags & i_data_log))
1684		return 1;
1685	return 0;
1686}
1687
1688static inline int reiserfs_transaction_running(struct super_block *s)
1689{
1690	struct reiserfs_transaction_handle *th = current->journal_info;
1691	if (th && th->t_super == s)
1692		return 1;
1693	if (th && th->t_super == NULL)
1694		BUG();
1695	return 0;
1696}
1697
1698static inline int reiserfs_transaction_free_space(struct reiserfs_transaction_handle *th)
1699{
1700	return th->t_blocks_allocated - th->t_blocks_logged;
1701}
1702
1703int reiserfs_async_progress_wait(struct super_block *s);
1704
1705struct reiserfs_transaction_handle *reiserfs_persistent_transaction(struct
1706								    super_block
1707								    *,
1708								    int count);
1709int reiserfs_end_persistent_transaction(struct reiserfs_transaction_handle *);
1710int reiserfs_commit_page(struct inode *inode, struct page *page,
1711			 unsigned from, unsigned to);
1712int reiserfs_flush_old_commits(struct super_block *);
1713int reiserfs_commit_for_inode(struct inode *);
1714int reiserfs_inode_needs_commit(struct inode *);
1715void reiserfs_update_inode_transaction(struct inode *);
1716void reiserfs_wait_on_write_block(struct super_block *s);
1717void reiserfs_block_writes(struct reiserfs_transaction_handle *th);
1718void reiserfs_allow_writes(struct super_block *s);
1719void reiserfs_check_lock_depth(struct super_block *s, char *caller);
1720int reiserfs_prepare_for_journal(struct super_block *, struct buffer_head *bh,
1721				 int wait);
1722void reiserfs_restore_prepared_buffer(struct super_block *,
1723				      struct buffer_head *bh);
1724int journal_init(struct super_block *, const char *j_dev_name, int old_format,
1725		 unsigned int);
1726int journal_release(struct reiserfs_transaction_handle *, struct super_block *);
1727int journal_release_error(struct reiserfs_transaction_handle *,
1728			  struct super_block *);
1729int journal_end(struct reiserfs_transaction_handle *, struct super_block *,
1730		unsigned long);
1731int journal_end_sync(struct reiserfs_transaction_handle *, struct super_block *,
1732		     unsigned long);
1733int journal_mark_freed(struct reiserfs_transaction_handle *,
1734		       struct super_block *, b_blocknr_t blocknr);
1735int journal_transaction_should_end(struct reiserfs_transaction_handle *, int);
1736int reiserfs_in_journal(struct super_block *p_s_sb, int bmap_nr, int bit_nr,
1737			int searchall, b_blocknr_t * next);
1738int journal_begin(struct reiserfs_transaction_handle *,
1739		  struct super_block *p_s_sb, unsigned long);
1740int journal_join_abort(struct reiserfs_transaction_handle *,
1741		       struct super_block *p_s_sb, unsigned long);
1742void reiserfs_journal_abort(struct super_block *sb, int errno);
1743void reiserfs_abort(struct super_block *sb, int errno, const char *fmt, ...);
1744int reiserfs_allocate_list_bitmaps(struct super_block *s,
1745				   struct reiserfs_list_bitmap *, int);
1746
1747void add_save_link(struct reiserfs_transaction_handle *th,
1748		   struct inode *inode, int truncate);
1749int remove_save_link(struct inode *inode, int truncate);
1750
1751/* objectid.c */
1752__u32 reiserfs_get_unused_objectid(struct reiserfs_transaction_handle *th);
1753void reiserfs_release_objectid(struct reiserfs_transaction_handle *th,
1754			       __u32 objectid_to_release);
1755int reiserfs_convert_objectid_map_v1(struct super_block *);
1756
1757/* stree.c */
1758int B_IS_IN_TREE(const struct buffer_head *);
1759extern void copy_item_head(struct item_head *p_v_to,
1760			   const struct item_head *p_v_from);
1761
1762// first key is in cpu form, second - le
1763extern int comp_short_keys(const struct reiserfs_key *le_key,
1764			   const struct cpu_key *cpu_key);
1765extern void le_key2cpu_key(struct cpu_key *to, const struct reiserfs_key *from);
1766
1767// both are in le form
1768extern int comp_le_keys(const struct reiserfs_key *,
1769			const struct reiserfs_key *);
1770extern int comp_short_le_keys(const struct reiserfs_key *,
1771			      const struct reiserfs_key *);
1772
1773//
1774// get key version from on disk key - kludge
1775//
1776static inline int le_key_version(const struct reiserfs_key *key)
1777{
1778	int type;
1779
1780	type = offset_v2_k_type(&(key->u.k_offset_v2));
1781	if (type != TYPE_DIRECT && type != TYPE_INDIRECT
1782	    && type != TYPE_DIRENTRY)
1783		return KEY_FORMAT_3_5;
1784
1785	return KEY_FORMAT_3_6;
1786
1787}
1788
1789static inline void copy_key(struct reiserfs_key *to,
1790			    const struct reiserfs_key *from)
1791{
1792	memcpy(to, from, KEY_SIZE);
1793}
1794
1795int comp_items(const struct item_head *stored_ih, const struct treepath *p_s_path);
1796const struct reiserfs_key *get_rkey(const struct treepath *p_s_chk_path,
1797				    const struct super_block *p_s_sb);
1798int search_by_key(struct super_block *, const struct cpu_key *,
1799		  struct treepath *, int);
1800#define search_item(s,key,path) search_by_key (s, key, path, DISK_LEAF_NODE_LEVEL)
1801int search_for_position_by_key(struct super_block *p_s_sb,
1802			       const struct cpu_key *p_s_cpu_key,
1803			       struct treepath *p_s_search_path);
1804extern void decrement_bcount(struct buffer_head *p_s_bh);
1805void decrement_counters_in_path(struct treepath *p_s_search_path);
1806void pathrelse(struct treepath *p_s_search_path);
1807int reiserfs_check_path(struct treepath *p);
1808void pathrelse_and_restore(struct super_block *s, struct treepath *p_s_search_path);
1809
1810int reiserfs_insert_item(struct reiserfs_transaction_handle *th,
1811			 struct treepath *path,
1812			 const struct cpu_key *key,
1813			 struct item_head *ih,
1814			 struct inode *inode, const char *body);
1815
1816int reiserfs_paste_into_item(struct reiserfs_transaction_handle *th,
1817			     struct treepath *path,
1818			     const struct cpu_key *key,
1819			     struct inode *inode,
1820			     const char *body, int paste_size);
1821
1822int reiserfs_cut_from_item(struct reiserfs_transaction_handle *th,
1823			   struct treepath *path,
1824			   struct cpu_key *key,
1825			   struct inode *inode,
1826			   struct page *page, loff_t new_file_size);
1827
1828int reiserfs_delete_item(struct reiserfs_transaction_handle *th,
1829			 struct treepath *path,
1830			 const struct cpu_key *key,
1831			 struct inode *inode, struct buffer_head *p_s_un_bh);
1832
1833void reiserfs_delete_solid_item(struct reiserfs_transaction_handle *th,
1834				struct inode *inode, struct reiserfs_key *key);
1835int reiserfs_delete_object(struct reiserfs_transaction_handle *th,
1836			   struct inode *p_s_inode);
1837int reiserfs_do_truncate(struct reiserfs_transaction_handle *th,
1838			 struct inode *p_s_inode, struct page *,
1839			 int update_timestamps);
1840
1841#define i_block_size(inode) ((inode)->i_sb->s_blocksize)
1842#define file_size(inode) ((inode)->i_size)
1843#define tail_size(inode) (file_size (inode) & (i_block_size (inode) - 1))
1844
1845#define tail_has_to_be_packed(inode) (have_large_tails ((inode)->i_sb)?\
1846!STORE_TAIL_IN_UNFM_S1(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):have_small_tails ((inode)->i_sb)?!STORE_TAIL_IN_UNFM_S2(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):0 )
1847
1848void padd_item(char *item, int total_length, int length);
1849
1850/* inode.c */
1851/* args for the create parameter of reiserfs_get_block */
1852#define GET_BLOCK_NO_CREATE 0	/* don't create new blocks or convert tails */
1853#define GET_BLOCK_CREATE 1	/* add anything you need to find block */
1854#define GET_BLOCK_NO_HOLE 2	/* return -ENOENT for file holes */
1855#define GET_BLOCK_READ_DIRECT 4	/* read the tail if indirect item not found */
1856#define GET_BLOCK_NO_IMUX     8	/* i_mutex is not held, don't preallocate */
1857#define GET_BLOCK_NO_DANGLE   16	/* don't leave any transactions running */
1858
1859int restart_transaction(struct reiserfs_transaction_handle *th,
1860			struct inode *inode, struct treepath *path);
1861void reiserfs_read_locked_inode(struct inode *inode,
1862				struct reiserfs_iget_args *args);
1863int reiserfs_find_actor(struct inode *inode, void *p);
1864int reiserfs_init_locked_inode(struct inode *inode, void *p);
1865void reiserfs_delete_inode(struct inode *inode);
1866int reiserfs_write_inode(struct inode *inode, int);
1867int reiserfs_get_block(struct inode *inode, sector_t block,
1868		       struct buffer_head *bh_result, int create);
1869struct dentry *reiserfs_get_dentry(struct super_block *, void *);
1870struct dentry *reiserfs_decode_fh(struct super_block *sb, __u32 * data,
1871				  int len, int fhtype,
1872				  int (*acceptable) (void *contect,
1873						     struct dentry * de),
1874				  void *context);
1875int reiserfs_encode_fh(struct dentry *dentry, __u32 * data, int *lenp,
1876		       int connectable);
1877
1878int reiserfs_truncate_file(struct inode *, int update_timestamps);
1879void make_cpu_key(struct cpu_key *cpu_key, struct inode *inode, loff_t offset,
1880		  int type, int key_length);
1881void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
1882		       int version,
1883		       loff_t offset, int type, int length, int entry_count);
1884struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key);
1885
1886int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
1887		       struct inode *dir, int mode,
1888		       const char *symname, loff_t i_size,
1889		       struct dentry *dentry, struct inode *inode);
1890
1891void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
1892			     struct inode *inode, loff_t size);
1893
1894static inline void reiserfs_update_sd(struct reiserfs_transaction_handle *th,
1895				      struct inode *inode)
1896{
1897	reiserfs_update_sd_size(th, inode, inode->i_size);
1898}
1899
1900void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode);
1901void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs);
1902int reiserfs_setattr(struct dentry *dentry, struct iattr *attr);
1903
1904/* namei.c */
1905void set_de_name_and_namelen(struct reiserfs_dir_entry *de);
1906int search_by_entry_key(struct super_block *sb, const struct cpu_key *key,
1907			struct treepath *path, struct reiserfs_dir_entry *de);
1908struct dentry *reiserfs_get_parent(struct dentry *);
1909/* procfs.c */
1910
1911#if defined(CONFIG_PROC_FS) && defined(CONFIG_REISERFS_PROC_INFO)
1912#define REISERFS_PROC_INFO
1913#else
1914#undef REISERFS_PROC_INFO
1915#endif
1916
1917int reiserfs_proc_info_init(struct super_block *sb);
1918int reiserfs_proc_info_done(struct super_block *sb);
1919struct proc_dir_entry *reiserfs_proc_register_global(char *name,
1920						     read_proc_t * func);
1921void reiserfs_proc_unregister_global(const char *name);
1922int reiserfs_proc_info_global_init(void);
1923int reiserfs_proc_info_global_done(void);
1924int reiserfs_global_version_in_proc(char *buffer, char **start, off_t offset,
1925				    int count, int *eof, void *data);
1926
1927#if defined(REISERFS_PROC_INFO)
1928
1929#define PROC_EXP( e )   e
1930
1931#define __PINFO( sb ) REISERFS_SB(sb) -> s_proc_info_data
1932#define PROC_INFO_MAX( sb, field, value )								\
1933    __PINFO( sb ).field =												\
1934        max( REISERFS_SB( sb ) -> s_proc_info_data.field, value )
1935#define PROC_INFO_INC( sb, field ) ( ++ ( __PINFO( sb ).field ) )
1936#define PROC_INFO_ADD( sb, field, val ) ( __PINFO( sb ).field += ( val ) )
1937#define PROC_INFO_BH_STAT( sb, bh, level )							\
1938    PROC_INFO_INC( sb, sbk_read_at[ ( level ) ] );						\
1939    PROC_INFO_ADD( sb, free_at[ ( level ) ], B_FREE_SPACE( bh ) );	\
1940    PROC_INFO_ADD( sb, items_at[ ( level ) ], B_NR_ITEMS( bh ) )
1941#else
1942#define PROC_EXP( e )
1943#define VOID_V ( ( void ) 0 )
1944#define PROC_INFO_MAX( sb, field, value ) VOID_V
1945#define PROC_INFO_INC( sb, field ) VOID_V
1946#define PROC_INFO_ADD( sb, field, val ) VOID_V
1947#define PROC_INFO_BH_STAT( p_s_sb, p_s_bh, n_node_level ) VOID_V
1948#endif
1949
1950/* dir.c */
1951extern const struct inode_operations reiserfs_dir_inode_operations;
1952extern const struct inode_operations reiserfs_symlink_inode_operations;
1953extern const struct inode_operations reiserfs_special_inode_operations;
1954extern const struct file_operations reiserfs_dir_operations;
1955
1956/* tail_conversion.c */
1957int direct2indirect(struct reiserfs_transaction_handle *, struct inode *,
1958		    struct treepath *, struct buffer_head *, loff_t);
1959int indirect2direct(struct reiserfs_transaction_handle *, struct inode *,
1960		    struct page *, struct treepath *, const struct cpu_key *,
1961		    loff_t, char *);
1962void reiserfs_unmap_buffer(struct buffer_head *);
1963
1964/* file.c */
1965extern const struct inode_operations reiserfs_file_inode_operations;
1966extern const struct file_operations reiserfs_file_operations;
1967extern const struct address_space_operations reiserfs_address_space_operations;
1968
1969/* fix_nodes.c */
1970
1971int fix_nodes(int n_op_mode, struct tree_balance *p_s_tb,
1972	      struct item_head *p_s_ins_ih, const void *);
1973void unfix_nodes(struct tree_balance *);
1974
1975/* prints.c */
1976void reiserfs_panic(struct super_block *s, const char *fmt, ...)
1977    __attribute__ ((noreturn));
1978void reiserfs_info(struct super_block *s, const char *fmt, ...);
1979void reiserfs_debug(struct super_block *s, int level, const char *fmt, ...);
1980void print_indirect_item(struct buffer_head *bh, int item_num);
1981void store_print_tb(struct tree_balance *tb);
1982void print_cur_tb(char *mes);
1983void print_de(struct reiserfs_dir_entry *de);
1984void print_bi(struct buffer_info *bi, char *mes);
1985#define PRINT_LEAF_ITEMS 1	/* print all items */
1986#define PRINT_DIRECTORY_ITEMS 2	/* print directory items */
1987#define PRINT_DIRECT_ITEMS 4	/* print contents of direct items */
1988void print_block(struct buffer_head *bh, ...);
1989void print_bmap(struct super_block *s, int silent);
1990void print_bmap_block(int i, char *data, int size, int silent);
1991/*void print_super_block (struct super_block * s, char * mes);*/
1992void print_objectid_map(struct super_block *s);
1993void print_block_head(struct buffer_head *bh, char *mes);
1994void check_leaf(struct buffer_head *bh);
1995void check_internal(struct buffer_head *bh);
1996void print_statistics(struct super_block *s);
1997char *reiserfs_hashname(int code);
1998
1999/* lbalance.c */
2000int leaf_move_items(int shift_mode, struct tree_balance *tb, int mov_num,
2001		    int mov_bytes, struct buffer_head *Snew);
2002int leaf_shift_left(struct tree_balance *tb, int shift_num, int shift_bytes);
2003int leaf_shift_right(struct tree_balance *tb, int shift_num, int shift_bytes);
2004void leaf_delete_items(struct buffer_info *cur_bi, int last_first, int first,
2005		       int del_num, int del_bytes);
2006void leaf_insert_into_buf(struct buffer_info *bi, int before,
2007			  struct item_head *inserted_item_ih,
2008			  const char *inserted_item_body, int zeros_number);
2009void leaf_paste_in_buffer(struct buffer_info *bi, int pasted_item_num,
2010			  int pos_in_item, int paste_size, const char *body,
2011			  int zeros_number);
2012void leaf_cut_from_buffer(struct buffer_info *bi, int cut_item_num,
2013			  int pos_in_item, int cut_size);
2014void leaf_paste_entries(struct buffer_head *bh, int item_num, int before,
2015			int new_entry_count, struct reiserfs_de_head *new_dehs,
2016			const char *records, int paste_size);
2017/* ibalance.c */
2018int balance_internal(struct tree_balance *, int, int, struct item_head *,
2019		     struct buffer_head **);
2020
2021/* do_balance.c */
2022void do_balance_mark_leaf_dirty(struct tree_balance *tb,
2023				struct buffer_head *bh, int flag);
2024#define do_balance_mark_internal_dirty do_balance_mark_leaf_dirty
2025#define do_balance_mark_sb_dirty do_balance_mark_leaf_dirty
2026
2027void do_balance(struct tree_balance *tb, struct item_head *ih,
2028		const char *body, int flag);
2029void reiserfs_invalidate_buffer(struct tree_balance *tb,
2030				struct buffer_head *bh);
2031
2032int get_left_neighbor_position(struct tree_balance *tb, int h);
2033int get_right_neighbor_position(struct tree_balance *tb, int h);
2034void replace_key(struct tree_balance *tb, struct buffer_head *, int,
2035		 struct buffer_head *, int);
2036void make_empty_node(struct buffer_info *);
2037struct buffer_head *get_FEB(struct tree_balance *);
2038
2039/* bitmap.c */
2040
2041/* structure contains hints for block allocator, and it is a container for
2042 * arguments, such as node, search path, transaction_handle, etc. */
2043struct __reiserfs_blocknr_hint {
2044	struct inode *inode;	/* inode passed to allocator, if we allocate unf. nodes */
2045	long block;		/* file offset, in blocks */
2046	struct in_core_key key;
2047	struct treepath *path;	/* search path, used by allocator to deternine search_start by
2048				 * various ways */
2049	struct reiserfs_transaction_handle *th;	/* transaction handle is needed to log super blocks and
2050						 * bitmap blocks changes  */
2051	b_blocknr_t beg, end;
2052	b_blocknr_t search_start;	/* a field used to transfer search start value (block number)
2053					 * between different block allocator procedures
2054					 * (determine_search_start() and others) */
2055	int prealloc_size;	/* is set in determine_prealloc_size() function, used by underlayed
2056				 * function that do actual allocation */
2057
2058	unsigned formatted_node:1;	/* the allocator uses different polices for getting disk space for
2059					 * formatted/unformatted blocks with/without preallocation */
2060	unsigned preallocate:1;
2061};
2062
2063typedef struct __reiserfs_blocknr_hint reiserfs_blocknr_hint_t;
2064
2065int reiserfs_parse_alloc_options(struct super_block *, char *);
2066void reiserfs_init_alloc_options(struct super_block *s);
2067
2068/*
2069 * given a directory, this will tell you what packing locality
2070 * to use for a new object underneat it.  The locality is returned
2071 * in disk byte order (le).
2072 */
2073__le32 reiserfs_choose_packing(struct inode *dir);
2074
2075int reiserfs_init_bitmap_cache(struct super_block *sb);
2076void reiserfs_free_bitmap_cache(struct super_block *sb);
2077void reiserfs_cache_bitmap_metadata(struct super_block *sb, struct buffer_head *bh, struct reiserfs_bitmap_info *info);
2078struct buffer_head *reiserfs_read_bitmap_block(struct super_block *sb, unsigned int bitmap);
2079int is_reusable(struct super_block *s, b_blocknr_t block, int bit_value);
2080void reiserfs_free_block(struct reiserfs_transaction_handle *th, struct inode *,
2081			 b_blocknr_t, int for_unformatted);
2082int reiserfs_allocate_blocknrs(reiserfs_blocknr_hint_t *, b_blocknr_t *, int,
2083			       int);
2084static inline int reiserfs_new_form_blocknrs(struct tree_balance *tb,
2085					     b_blocknr_t * new_blocknrs,
2086					     int amount_needed)
2087{
2088	reiserfs_blocknr_hint_t hint = {
2089		.th = tb->transaction_handle,
2090		.path = tb->tb_path,
2091		.inode = NULL,
2092		.key = tb->key,
2093		.block = 0,
2094		.formatted_node = 1
2095	};
2096	return reiserfs_allocate_blocknrs(&hint, new_blocknrs, amount_needed,
2097					  0);
2098}
2099
2100static inline int reiserfs_new_unf_blocknrs(struct reiserfs_transaction_handle
2101					    *th, struct inode *inode,
2102					    b_blocknr_t * new_blocknrs,
2103					    struct treepath *path, long block)
2104{
2105	reiserfs_blocknr_hint_t hint = {
2106		.th = th,
2107		.path = path,
2108		.inode = inode,
2109		.block = block,
2110		.formatted_node = 0,
2111		.preallocate = 0
2112	};
2113	return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0);
2114}
2115
2116#ifdef REISERFS_PREALLOCATE
2117static inline int reiserfs_new_unf_blocknrs2(struct reiserfs_transaction_handle
2118					     *th, struct inode *inode,
2119					     b_blocknr_t * new_blocknrs,
2120					     struct treepath *path, long block)
2121{
2122	reiserfs_blocknr_hint_t hint = {
2123		.th = th,
2124		.path = path,
2125		.inode = inode,
2126		.block = block,
2127		.formatted_node = 0,
2128		.preallocate = 1
2129	};
2130	return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0);
2131}
2132
2133void reiserfs_discard_prealloc(struct reiserfs_transaction_handle *th,
2134			       struct inode *inode);
2135void reiserfs_discard_all_prealloc(struct reiserfs_transaction_handle *th);
2136#endif
2137void reiserfs_claim_blocks_to_be_allocated(struct super_block *sb, int blocks);
2138void reiserfs_release_claimed_blocks(struct super_block *sb, int blocks);
2139int reiserfs_can_fit_pages(struct super_block *sb);
2140
2141/* hashes.c */
2142__u32 keyed_hash(const signed char *msg, int len);
2143__u32 yura_hash(const signed char *msg, int len);
2144__u32 r5_hash(const signed char *msg, int len);
2145
2146/* the ext2 bit routines adjust for big or little endian as
2147** appropriate for the arch, so in our laziness we use them rather
2148** than using the bit routines they call more directly.  These
2149** routines must be used when changing on disk bitmaps.  */
2150#define reiserfs_test_and_set_le_bit   ext2_set_bit
2151#define reiserfs_test_and_clear_le_bit ext2_clear_bit
2152#define reiserfs_test_le_bit           ext2_test_bit
2153#define reiserfs_find_next_zero_le_bit ext2_find_next_zero_bit
2154
2155/* sometimes reiserfs_truncate may require to allocate few new blocks
2156   to perform indirect2direct conversion. People probably used to
2157   think, that truncate should work without problems on a filesystem
2158   without free disk space. They may complain that they can not
2159   truncate due to lack of free disk space. This spare space allows us
2160   to not worry about it. 500 is probably too much, but it should be
2161   absolutely safe */
2162#define SPARE_SPACE 500
2163
2164/* prototypes from ioctl.c */
2165int reiserfs_ioctl(struct inode *inode, struct file *filp,
2166		   unsigned int cmd, unsigned long arg);
2167long reiserfs_compat_ioctl(struct file *filp,
2168		   unsigned int cmd, unsigned long arg);
2169
2170/* ioctl's command */
2171#define REISERFS_IOC_UNPACK		_IOW(0xCD,1,long)
2172/* define following flags to be the same as in ext2, so that chattr(1),
2173   lsattr(1) will work with us. */
2174#define REISERFS_IOC_GETFLAGS		FS_IOC_GETFLAGS
2175#define REISERFS_IOC_SETFLAGS		FS_IOC_SETFLAGS
2176#define REISERFS_IOC_GETVERSION		FS_IOC_GETVERSION
2177#define REISERFS_IOC_SETVERSION		FS_IOC_SETVERSION
2178
2179/* the 32 bit compat definitions with int argument */
2180#define REISERFS_IOC32_UNPACK		_IOW(0xCD, 1, int)
2181#define REISERFS_IOC32_GETFLAGS		FS_IOC32_GETFLAGS
2182#define REISERFS_IOC32_SETFLAGS		FS_IOC32_SETFLAGS
2183#define REISERFS_IOC32_GETVERSION	FS_IOC32_GETVERSION
2184#define REISERFS_IOC32_SETVERSION	FS_IOC32_SETVERSION
2185
2186/* Locking primitives */
2187/* Right now we are still falling back to (un)lock_kernel, but eventually that
2188   would evolve into real per-fs locks */
2189#define reiserfs_write_lock( sb ) lock_kernel()
2190#define reiserfs_write_unlock( sb ) unlock_kernel()
2191
2192/* xattr stuff */
2193#define REISERFS_XATTR_DIR_SEM(s) (REISERFS_SB(s)->xattr_dir_sem)
2194
2195#endif				/* _LINUX_REISER_FS_H */
2196