1#ifndef __ASM_SH64_PGTABLE_H
2#define __ASM_SH64_PGTABLE_H
3
4#include <asm-generic/4level-fixup.h>
5
6/*
7 * This file is subject to the terms and conditions of the GNU General Public
8 * License.  See the file "COPYING" in the main directory of this archive
9 * for more details.
10 *
11 * include/asm-sh64/pgtable.h
12 *
13 * Copyright (C) 2000, 2001  Paolo Alberelli
14 * Copyright (C) 2003, 2004  Paul Mundt
15 * Copyright (C) 2003, 2004  Richard Curnow
16 *
17 * This file contains the functions and defines necessary to modify and use
18 * the SuperH page table tree.
19 */
20
21#ifndef __ASSEMBLY__
22#include <asm/processor.h>
23#include <asm/page.h>
24#include <linux/threads.h>
25
26struct vm_area_struct;
27
28extern void paging_init(void);
29
30/* We provide our own get_unmapped_area to avoid cache synonym issue */
31#define HAVE_ARCH_UNMAPPED_AREA
32
33/*
34 * Basically we have the same two-level (which is the logical three level
35 * Linux page table layout folded) page tables as the i386.
36 */
37
38/*
39 * ZERO_PAGE is a global shared page that is always zero: used
40 * for zero-mapped memory areas etc..
41 */
42extern unsigned char empty_zero_page[PAGE_SIZE];
43#define ZERO_PAGE(vaddr) (mem_map + MAP_NR(empty_zero_page))
44
45#endif /* !__ASSEMBLY__ */
46
47#define NEFF		32
48#define	NEFF_SIGN	(1LL << (NEFF - 1))
49#define	NEFF_MASK	(-1LL << NEFF)
50
51#define NPHYS		32
52#define	NPHYS_SIGN	(1LL << (NPHYS - 1))
53#define	NPHYS_MASK	(-1LL << NPHYS)
54
55/* Typically 2-level is sufficient up to 32 bits of virtual address space, beyond
56   that 3-level would be appropriate. */
57#if defined(CONFIG_SH64_PGTABLE_2_LEVEL)
58/* For 4k pages, this contains 512 entries, i.e. 9 bits worth of address. */
59#define PTRS_PER_PTE	((1<<PAGE_SHIFT)/sizeof(unsigned long long))
60#define PTE_MAGNITUDE	3	      /* sizeof(unsigned long long) magnit. */
61#define PTE_SHIFT	PAGE_SHIFT
62#define PTE_BITS	(PAGE_SHIFT - PTE_MAGNITUDE)
63
64/* top level: PMD. */
65#define PGDIR_SHIFT	(PTE_SHIFT + PTE_BITS)
66#define PGD_BITS	(NEFF - PGDIR_SHIFT)
67#define PTRS_PER_PGD	(1<<PGD_BITS)
68
69/* middle level: PMD. This doesn't do anything for the 2-level case. */
70#define PTRS_PER_PMD	(1)
71
72#define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
73#define PGDIR_MASK	(~(PGDIR_SIZE-1))
74#define PMD_SHIFT	PGDIR_SHIFT
75#define PMD_SIZE	PGDIR_SIZE
76#define PMD_MASK	PGDIR_MASK
77
78#elif defined(CONFIG_SH64_PGTABLE_3_LEVEL)
79/*
80 * three-level asymmetric paging structure: PGD is top level.
81 * The asymmetry comes from 32-bit pointers and 64-bit PTEs.
82 */
83/* bottom level: PTE. It's 9 bits = 512 pointers */
84#define PTRS_PER_PTE	((1<<PAGE_SHIFT)/sizeof(unsigned long long))
85#define PTE_MAGNITUDE	3	      /* sizeof(unsigned long long) magnit. */
86#define PTE_SHIFT	PAGE_SHIFT
87#define PTE_BITS	(PAGE_SHIFT - PTE_MAGNITUDE)
88
89/* middle level: PMD. It's 10 bits = 1024 pointers */
90#define PTRS_PER_PMD	((1<<PAGE_SHIFT)/sizeof(unsigned long long *))
91#define PMD_MAGNITUDE	2	      /* sizeof(unsigned long long *) magnit. */
92#define PMD_SHIFT	(PTE_SHIFT + PTE_BITS)
93#define PMD_BITS	(PAGE_SHIFT - PMD_MAGNITUDE)
94
95/* top level: PMD. It's 1 bit = 2 pointers */
96#define PGDIR_SHIFT	(PMD_SHIFT + PMD_BITS)
97#define PGD_BITS	(NEFF - PGDIR_SHIFT)
98#define PTRS_PER_PGD	(1<<PGD_BITS)
99
100#define PMD_SIZE	(1UL << PMD_SHIFT)
101#define PMD_MASK	(~(PMD_SIZE-1))
102#define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
103#define PGDIR_MASK	(~(PGDIR_SIZE-1))
104
105#else
106#error "No defined number of page table levels"
107#endif
108
109/*
110 * Error outputs.
111 */
112#define pte_ERROR(e) \
113	printk("%s:%d: bad pte %016Lx.\n", __FILE__, __LINE__, pte_val(e))
114#define pmd_ERROR(e) \
115	printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
116#define pgd_ERROR(e) \
117	printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
118
119/*
120 * Table setting routines. Used within arch/mm only.
121 */
122#define set_pgd(pgdptr, pgdval) (*(pgdptr) = pgdval)
123#define set_pmd(pmdptr, pmdval) (*(pmdptr) = pmdval)
124
125static __inline__ void set_pte(pte_t *pteptr, pte_t pteval)
126{
127	unsigned long long x = ((unsigned long long) pteval.pte);
128	unsigned long long *xp = (unsigned long long *) pteptr;
129	/*
130	 * Sign-extend based on NPHYS.
131	 */
132	*(xp) = (x & NPHYS_SIGN) ? (x | NPHYS_MASK) : x;
133}
134#define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)
135
136static __inline__ void pmd_set(pmd_t *pmdp,pte_t *ptep)
137{
138	pmd_val(*pmdp) = (unsigned long) ptep;
139}
140
141/*
142 * PGD defines. Top level.
143 */
144
145/* To find an entry in a generic PGD. */
146#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
147#define __pgd_offset(address) pgd_index(address)
148#define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))
149
150/* To find an entry in a kernel PGD. */
151#define pgd_offset_k(address) pgd_offset(&init_mm, address)
152
153/*
154 * PGD level access routines.
155 *
156 * Note1:
157 * There's no need to use physical addresses since the tree walk is all
158 * in performed in software, until the PTE translation.
159 *
160 * Note 2:
161 * A PGD entry can be uninitialized (_PGD_UNUSED), generically bad,
162 * clear (_PGD_EMPTY), present. When present, lower 3 nibbles contain
163 * _KERNPG_TABLE. Being a kernel virtual pointer also bit 31 must
164 * be 1. Assuming an arbitrary clear value of bit 31 set to 0 and
165 * lower 3 nibbles set to 0xFFF (_PGD_EMPTY) any other value is a
166 * bad pgd that must be notified via printk().
167 *
168 */
169#define _PGD_EMPTY		0x0
170
171#if defined(CONFIG_SH64_PGTABLE_2_LEVEL)
172static inline int pgd_none(pgd_t pgd)		{ return 0; }
173static inline int pgd_bad(pgd_t pgd)		{ return 0; }
174#define pgd_present(pgd) ((pgd_val(pgd) & _PAGE_PRESENT) ? 1 : 0)
175#define pgd_clear(xx)				do { } while(0)
176
177#elif defined(CONFIG_SH64_PGTABLE_3_LEVEL)
178#define pgd_present(pgd_entry)	(1)
179#define pgd_none(pgd_entry)	(pgd_val((pgd_entry)) == _PGD_EMPTY)
180/* TODO: Think later about what a useful definition of 'bad' would be now. */
181#define pgd_bad(pgd_entry)	(0)
182#define pgd_clear(pgd_entry_p)	(set_pgd((pgd_entry_p), __pgd(_PGD_EMPTY)))
183
184#endif
185
186
187#define pgd_page_vaddr(pgd_entry)	((unsigned long) (pgd_val(pgd_entry) & PAGE_MASK))
188#define pgd_page(pgd)	(virt_to_page(pgd_val(pgd)))
189
190
191/*
192 * PMD defines. Middle level.
193 */
194
195/* PGD to PMD dereferencing */
196#if defined(CONFIG_SH64_PGTABLE_2_LEVEL)
197static inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address)
198{
199	return (pmd_t *) dir;
200}
201#elif defined(CONFIG_SH64_PGTABLE_3_LEVEL)
202#define __pmd_offset(address) \
203		(((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
204#define pmd_offset(dir, addr) \
205		((pmd_t *) ((pgd_val(*(dir))) & PAGE_MASK) + __pmd_offset((addr)))
206#endif
207
208/*
209 * PMD level access routines. Same notes as above.
210 */
211#define _PMD_EMPTY		0x0
212/* Either the PMD is empty or present, it's not paged out */
213#define pmd_present(pmd_entry)	(pmd_val(pmd_entry) & _PAGE_PRESENT)
214#define pmd_clear(pmd_entry_p)	(set_pmd((pmd_entry_p), __pmd(_PMD_EMPTY)))
215#define pmd_none(pmd_entry)	(pmd_val((pmd_entry)) == _PMD_EMPTY)
216#define pmd_bad(pmd_entry)	((pmd_val(pmd_entry) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE)
217
218#define pmd_page_vaddr(pmd_entry) \
219	((unsigned long) __va(pmd_val(pmd_entry) & PAGE_MASK))
220
221#define pmd_page(pmd) \
222	(virt_to_page(pmd_val(pmd)))
223
224/* PMD to PTE dereferencing */
225#define pte_index(address) \
226		((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
227
228#define pte_offset_kernel(dir, addr) \
229		((pte_t *) ((pmd_val(*(dir))) & PAGE_MASK) + pte_index((addr)))
230
231#define pte_offset_map(dir,addr)	pte_offset_kernel(dir, addr)
232#define pte_offset_map_nested(dir,addr)	pte_offset_kernel(dir, addr)
233#define pte_unmap(pte)		do { } while (0)
234#define pte_unmap_nested(pte)	do { } while (0)
235
236/* Round it up ! */
237#define USER_PTRS_PER_PGD	((TASK_SIZE+PGDIR_SIZE-1)/PGDIR_SIZE)
238#define FIRST_USER_ADDRESS	0
239
240#ifndef __ASSEMBLY__
241#define VMALLOC_END	0xff000000
242#define VMALLOC_START	0xf0000000
243#define VMALLOC_VMADDR(x) ((unsigned long)(x))
244
245#define IOBASE_VADDR	0xff000000
246#define IOBASE_END	0xffffffff
247
248/*
249 * PTEL coherent flags.
250 * See Chapter 17 ST50 CPU Core Volume 1, Architecture.
251 */
252/* The bits that are required in the SH-5 TLB are placed in the h/w-defined
253   positions, to avoid expensive bit shuffling on every refill.  The remaining
254   bits are used for s/w purposes and masked out on each refill.
255
256   Note, the PTE slots are used to hold data of type swp_entry_t when a page is
257   swapped out.  Only the _PAGE_PRESENT flag is significant when the page is
258   swapped out, and it must be placed so that it doesn't overlap either the
259   type or offset fields of swp_entry_t.  For x86, offset is at [31:8] and type
260   at [6:1], with _PAGE_PRESENT at bit 0 for both pte_t and swp_entry_t.  This
261   scheme doesn't map to SH-5 because bit [0] controls cacheability.  So bit
262   [2] is used for _PAGE_PRESENT and the type field of swp_entry_t is split
263   into 2 pieces.  That is handled by SWP_ENTRY and SWP_TYPE below. */
264#define _PAGE_WT	0x001  /* CB0: if cacheable, 1->write-thru, 0->write-back */
265#define _PAGE_DEVICE	0x001  /* CB0: if uncacheable, 1->device (i.e. no write-combining or reordering at bus level) */
266#define _PAGE_CACHABLE	0x002  /* CB1: uncachable/cachable */
267#define _PAGE_PRESENT	0x004  /* software: page referenced */
268#define _PAGE_FILE	0x004  /* software: only when !present */
269#define _PAGE_SIZE0	0x008  /* SZ0-bit : size of page */
270#define _PAGE_SIZE1	0x010  /* SZ1-bit : size of page */
271#define _PAGE_SHARED	0x020  /* software: reflects PTEH's SH */
272#define _PAGE_READ	0x040
273#define _PAGE_EXECUTE	0x080
274#define _PAGE_WRITE	0x100
275#define _PAGE_USER	0x200
276#define _PAGE_DIRTY	0x400  /* software: page accessed in write */
277#define _PAGE_ACCESSED	0x800  /* software: page referenced */
278
279/* Mask which drops software flags */
280#define _PAGE_FLAGS_HARDWARE_MASK	0xfffffffffffff3dbLL
281
282/*
283 * HugeTLB support
284 */
285#if defined(CONFIG_HUGETLB_PAGE_SIZE_64K)
286#define _PAGE_SZHUGE	(_PAGE_SIZE0)
287#elif defined(CONFIG_HUGETLB_PAGE_SIZE_1MB)
288#define _PAGE_SZHUGE	(_PAGE_SIZE1)
289#elif defined(CONFIG_HUGETLB_PAGE_SIZE_512MB)
290#define _PAGE_SZHUGE	(_PAGE_SIZE0 | _PAGE_SIZE1)
291#endif
292
293/*
294 * Default flags for a Kernel page.
295 * This is fundametally also SHARED because the main use of this define
296 * (other than for PGD/PMD entries) is for the VMALLOC pool which is
297 * contextless.
298 *
299 * _PAGE_EXECUTE is required for modules
300 *
301 */
302#define _KERNPG_TABLE	(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
303			 _PAGE_EXECUTE | \
304			 _PAGE_CACHABLE | _PAGE_ACCESSED | _PAGE_DIRTY | \
305			 _PAGE_SHARED)
306
307/* Default flags for a User page */
308#define _PAGE_TABLE	(_KERNPG_TABLE | _PAGE_USER)
309
310#define _PAGE_CHG_MASK	(PTE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
311
312#define PAGE_NONE	__pgprot(_PAGE_CACHABLE | _PAGE_ACCESSED)
313#define PAGE_SHARED	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
314				 _PAGE_CACHABLE | _PAGE_ACCESSED | _PAGE_USER | \
315				 _PAGE_SHARED)
316/* We need to include PAGE_EXECUTE in PAGE_COPY because it is the default
317 * protection mode for the stack. */
318#define PAGE_COPY	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_CACHABLE | \
319				 _PAGE_ACCESSED | _PAGE_USER | _PAGE_EXECUTE)
320#define PAGE_READONLY	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_CACHABLE | \
321				 _PAGE_ACCESSED | _PAGE_USER)
322#define PAGE_KERNEL	__pgprot(_KERNPG_TABLE)
323
324
325/*
326 * In ST50 we have full permissions (Read/Write/Execute/Shared).
327 * Just match'em all. These are for mmap(), therefore all at least
328 * User/Cachable/Present/Accessed. No point in making Fault on Write.
329 */
330#define __MMAP_COMMON	(_PAGE_PRESENT | _PAGE_USER | _PAGE_CACHABLE | _PAGE_ACCESSED)
331       /* sxwr */
332#define __P000	__pgprot(__MMAP_COMMON)
333#define __P001	__pgprot(__MMAP_COMMON | _PAGE_READ)
334#define __P010	__pgprot(__MMAP_COMMON)
335#define __P011	__pgprot(__MMAP_COMMON | _PAGE_READ)
336#define __P100	__pgprot(__MMAP_COMMON | _PAGE_EXECUTE)
337#define __P101	__pgprot(__MMAP_COMMON | _PAGE_EXECUTE | _PAGE_READ)
338#define __P110	__pgprot(__MMAP_COMMON | _PAGE_EXECUTE)
339#define __P111	__pgprot(__MMAP_COMMON | _PAGE_EXECUTE | _PAGE_READ)
340
341#define __S000	__pgprot(__MMAP_COMMON | _PAGE_SHARED)
342#define __S001	__pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_READ)
343#define __S010	__pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_WRITE)
344#define __S011	__pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_READ | _PAGE_WRITE)
345#define __S100	__pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_EXECUTE)
346#define __S101	__pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_EXECUTE | _PAGE_READ)
347#define __S110	__pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_EXECUTE | _PAGE_WRITE)
348#define __S111	__pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_EXECUTE | _PAGE_READ | _PAGE_WRITE)
349
350/* Make it a device mapping for maximum safety (e.g. for mapping device
351   registers into user-space via /dev/map).  */
352#define pgprot_noncached(x) __pgprot(((x).pgprot & ~(_PAGE_CACHABLE)) | _PAGE_DEVICE)
353#define pgprot_writecombine(prot) __pgprot(pgprot_val(prot) & ~_PAGE_CACHABLE)
354
355/*
356 * Handling allocation failures during page table setup.
357 */
358extern void __handle_bad_pmd_kernel(pmd_t * pmd);
359#define __handle_bad_pmd(x)	__handle_bad_pmd_kernel(x)
360
361/*
362 * PTE level access routines.
363 *
364 * Note1:
365 * It's the tree walk leaf. This is physical address to be stored.
366 *
367 * Note 2:
368 * Regarding the choice of _PTE_EMPTY:
369
370   We must choose a bit pattern that cannot be valid, whether or not the page
371   is present.  bit[2]==1 => present, bit[2]==0 => swapped out.  If swapped
372   out, bits [31:8], [6:3], [1:0] are under swapper control, so only bit[7] is
373   left for us to select.  If we force bit[7]==0 when swapped out, we could use
374   the combination bit[7,2]=2'b10 to indicate an empty PTE.  Alternatively, if
375   we force bit[7]==1 when swapped out, we can use all zeroes to indicate
376   empty.  This is convenient, because the page tables get cleared to zero
377   when they are allocated.
378
379 */
380#define _PTE_EMPTY	0x0
381#define pte_present(x)	(pte_val(x) & _PAGE_PRESENT)
382#define pte_clear(mm,addr,xp)	(set_pte_at(mm, addr, xp, __pte(_PTE_EMPTY)))
383#define pte_none(x)	(pte_val(x) == _PTE_EMPTY)
384
385/*
386 * Some definitions to translate between mem_map, PTEs, and page
387 * addresses:
388 */
389
390/*
391 * Given a PTE, return the index of the mem_map[] entry corresponding
392 * to the page frame the PTE. Get the absolute physical address, make
393 * a relative physical address and translate it to an index.
394 */
395#define pte_pagenr(x)		(((unsigned long) (pte_val(x)) - \
396				 __MEMORY_START) >> PAGE_SHIFT)
397
398/*
399 * Given a PTE, return the "struct page *".
400 */
401#define pte_page(x)		(mem_map + pte_pagenr(x))
402
403/*
404 * Return number of (down rounded) MB corresponding to x pages.
405 */
406#define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT))
407
408
409/*
410 * The following have defined behavior only work if pte_present() is true.
411 */
412static inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_READ; }
413static inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXECUTE; }
414static inline int pte_dirty(pte_t pte){ return pte_val(pte) & _PAGE_DIRTY; }
415static inline int pte_young(pte_t pte){ return pte_val(pte) & _PAGE_ACCESSED; }
416static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE; }
417static inline int pte_write(pte_t pte){ return pte_val(pte) & _PAGE_WRITE; }
418
419static inline pte_t pte_rdprotect(pte_t pte)	{ set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_READ)); return pte; }
420static inline pte_t pte_wrprotect(pte_t pte)	{ set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_WRITE)); return pte; }
421static inline pte_t pte_exprotect(pte_t pte)	{ set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_EXECUTE)); return pte; }
422static inline pte_t pte_mkclean(pte_t pte)	{ set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_DIRTY)); return pte; }
423static inline pte_t pte_mkold(pte_t pte)	{ set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_ACCESSED)); return pte; }
424
425static inline pte_t pte_mkread(pte_t pte)	{ set_pte(&pte, __pte(pte_val(pte) | _PAGE_READ)); return pte; }
426static inline pte_t pte_mkwrite(pte_t pte)	{ set_pte(&pte, __pte(pte_val(pte) | _PAGE_WRITE)); return pte; }
427static inline pte_t pte_mkexec(pte_t pte)	{ set_pte(&pte, __pte(pte_val(pte) | _PAGE_EXECUTE)); return pte; }
428static inline pte_t pte_mkdirty(pte_t pte)	{ set_pte(&pte, __pte(pte_val(pte) | _PAGE_DIRTY)); return pte; }
429static inline pte_t pte_mkyoung(pte_t pte)	{ set_pte(&pte, __pte(pte_val(pte) | _PAGE_ACCESSED)); return pte; }
430static inline pte_t pte_mkhuge(pte_t pte)	{ set_pte(&pte, __pte(pte_val(pte) | _PAGE_SZHUGE)); return pte; }
431
432
433/*
434 * Conversion functions: convert a page and protection to a page entry.
435 *
436 * extern pte_t mk_pte(struct page *page, pgprot_t pgprot)
437 */
438#define mk_pte(page,pgprot)							\
439({										\
440	pte_t __pte;								\
441										\
442	set_pte(&__pte, __pte((((page)-mem_map) << PAGE_SHIFT) | 		\
443		__MEMORY_START | pgprot_val((pgprot))));			\
444	__pte;									\
445})
446
447/*
448 * This takes a (absolute) physical page address that is used
449 * by the remapping functions
450 */
451#define mk_pte_phys(physpage, pgprot) \
452({ pte_t __pte; set_pte(&__pte, __pte(physpage | pgprot_val(pgprot))); __pte; })
453
454static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
455{ set_pte(&pte, __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot))); return pte; }
456
457typedef pte_t *pte_addr_t;
458#define pgtable_cache_init()	do { } while (0)
459
460extern void update_mmu_cache(struct vm_area_struct * vma,
461			     unsigned long address, pte_t pte);
462
463/* Encode and decode a swap entry */
464#define __swp_type(x)			(((x).val & 3) + (((x).val >> 1) & 0x3c))
465#define __swp_offset(x)			((x).val >> 8)
466#define __swp_entry(type, offset)	((swp_entry_t) { ((offset << 8) + ((type & 0x3c) << 1) + (type & 3)) })
467#define __pte_to_swp_entry(pte)		((swp_entry_t) { pte_val(pte) })
468#define __swp_entry_to_pte(x)		((pte_t) { (x).val })
469
470/* Encode and decode a nonlinear file mapping entry */
471#define PTE_FILE_MAX_BITS		29
472#define pte_to_pgoff(pte)		(pte_val(pte))
473#define pgoff_to_pte(off)		((pte_t) { (off) | _PAGE_FILE })
474
475/* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
476#define PageSkip(page)		(0)
477#define kern_addr_valid(addr)	(1)
478
479#define io_remap_pfn_range(vma, vaddr, pfn, size, prot)		\
480		remap_pfn_range(vma, vaddr, pfn, size, prot)
481
482#endif /* !__ASSEMBLY__ */
483
484/*
485 * No page table caches to initialise
486 */
487#define pgtable_cache_init()    do { } while (0)
488
489#define pte_pfn(x)		(((unsigned long)((x).pte)) >> PAGE_SHIFT)
490#define pfn_pte(pfn, prot)	__pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot))
491#define pfn_pmd(pfn, prot)	__pmd(((pfn) << PAGE_SHIFT) | pgprot_val(prot))
492
493extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
494
495#include <asm-generic/pgtable.h>
496
497#endif /* __ASM_SH64_PGTABLE_H */
498