1#ifndef _SMU_H
2#define _SMU_H
3
4/*
5 * Definitions for talking to the SMU chip in newer G5 PowerMacs
6 */
7#ifdef __KERNEL__
8#include <linux/list.h>
9#endif
10#include <linux/types.h>
11
12/*
13 * Known SMU commands
14 *
15 * Most of what is below comes from looking at the Open Firmware driver,
16 * though this is still incomplete and could use better documentation here
17 * or there...
18 */
19
20
21/*
22 * Partition info commands
23 *
24 * These commands are used to retrieve the sdb-partition-XX datas from
25 * the SMU. The lenght is always 2. First byte is the subcommand code
26 * and second byte is the partition ID.
27 *
28 * The reply is 6 bytes:
29 *
30 *  - 0..1 : partition address
31 *  - 2    : a byte containing the partition ID
32 *  - 3    : length (maybe other bits are rest of header ?)
33 *
34 * The data must then be obtained with calls to another command:
35 * SMU_CMD_MISC_ee_GET_DATABLOCK_REC (described below).
36 */
37#define SMU_CMD_PARTITION_COMMAND		0x3e
38#define   SMU_CMD_PARTITION_LATEST		0x01
39#define   SMU_CMD_PARTITION_BASE		0x02
40#define   SMU_CMD_PARTITION_UPDATE		0x03
41
42
43/*
44 * Fan control
45 *
46 * This is a "mux" for fan control commands. The command seem to
47 * act differently based on the number of arguments. With 1 byte
48 * of argument, this seem to be queries for fans status, setpoint,
49 * etc..., while with 0xe arguments, we will set the fans speeds.
50 *
51 * Queries (1 byte arg):
52 * ---------------------
53 *
54 * arg=0x01: read RPM fans status
55 * arg=0x02: read RPM fans setpoint
56 * arg=0x11: read PWM fans status
57 * arg=0x12: read PWM fans setpoint
58 *
59 * the "status" queries return the current speed while the "setpoint" ones
60 * return the programmed/target speed. It _seems_ that the result is a bit
61 * mask in the first byte of active/available fans, followed by 6 words (16
62 * bits) containing the requested speed.
63 *
64 * Setpoint (14 bytes arg):
65 * ------------------------
66 *
67 * first arg byte is 0 for RPM fans and 0x10 for PWM. Second arg byte is the
68 * mask of fans affected by the command. Followed by 6 words containing the
69 * setpoint value for selected fans in the mask (or 0 if mask value is 0)
70 */
71#define SMU_CMD_FAN_COMMAND			0x4a
72
73
74/*
75 * Battery access
76 *
77 * Same command number as the PMU, could it be same syntax ?
78 */
79#define SMU_CMD_BATTERY_COMMAND			0x6f
80#define   SMU_CMD_GET_BATTERY_INFO		0x00
81
82/*
83 * Real time clock control
84 *
85 * This is a "mux", first data byte contains the "sub" command.
86 * The "RTC" part of the SMU controls the date, time, powerup
87 * timer, but also a PRAM
88 *
89 * Dates are in BCD format on 7 bytes:
90 * [sec] [min] [hour] [weekday] [month day] [month] [year]
91 * with month being 1 based and year minus 100
92 */
93#define SMU_CMD_RTC_COMMAND			0x8e
94#define   SMU_CMD_RTC_SET_PWRUP_TIMER		0x00 /* i: 7 bytes date */
95#define   SMU_CMD_RTC_GET_PWRUP_TIMER		0x01 /* o: 7 bytes date */
96#define   SMU_CMD_RTC_STOP_PWRUP_TIMER		0x02
97#define   SMU_CMD_RTC_SET_PRAM_BYTE_ACC		0x20 /* i: 1 byte (address?) */
98#define   SMU_CMD_RTC_SET_PRAM_AUTOINC		0x21 /* i: 1 byte (data?) */
99#define   SMU_CMD_RTC_SET_PRAM_LO_BYTES 	0x22 /* i: 10 bytes */
100#define   SMU_CMD_RTC_SET_PRAM_HI_BYTES 	0x23 /* i: 10 bytes */
101#define   SMU_CMD_RTC_GET_PRAM_BYTE		0x28 /* i: 1 bytes (address?) */
102#define   SMU_CMD_RTC_GET_PRAM_LO_BYTES 	0x29 /* o: 10 bytes */
103#define   SMU_CMD_RTC_GET_PRAM_HI_BYTES 	0x2a /* o: 10 bytes */
104#define	  SMU_CMD_RTC_SET_DATETIME		0x80 /* i: 7 bytes date */
105#define   SMU_CMD_RTC_GET_DATETIME		0x81 /* o: 7 bytes date */
106
107 /*
108  * i2c commands
109  *
110  * To issue an i2c command, first is to send a parameter block to the
111  * the SMU. This is a command of type 0x9a with 9 bytes of header
112  * eventually followed by data for a write:
113  *
114  * 0: bus number (from device-tree usually, SMU has lots of busses !)
115  * 1: transfer type/format (see below)
116  * 2: device address. For combined and combined4 type transfers, this
117  *    is the "write" version of the address (bit 0x01 cleared)
118  * 3: subaddress length (0..3)
119  * 4: subaddress byte 0 (or only byte for subaddress length 1)
120  * 5: subaddress byte 1
121  * 6: subaddress byte 2
122  * 7: combined address (device address for combined mode data phase)
123  * 8: data length
124  *
125  * The transfer types are the same good old Apple ones it seems,
126  * that is:
127  *   - 0x00: Simple transfer
128  *   - 0x01: Subaddress transfer (addr write + data tx, no restart)
129  *   - 0x02: Combined transfer (addr write + restart + data tx)
130  *
131  * This is then followed by actual data for a write.
132  *
133  * At this point, the OF driver seems to have a limitation on transfer
134  * sizes of 0xd bytes on reads and 0x5 bytes on writes. I do not know
135  * wether this is just an OF limit due to some temporary buffer size
136  * or if this is an SMU imposed limit. This driver has the same limitation
137  * for now as I use a 0x10 bytes temporary buffer as well
138  *
139  * Once that is completed, a response is expected from the SMU. This is
140  * obtained via a command of type 0x9a with a length of 1 byte containing
141  * 0 as the data byte. OF also fills the rest of the data buffer with 0xff's
142  * though I can't tell yet if this is actually necessary. Once this command
143  * is complete, at this point, all I can tell is what OF does. OF tests
144  * byte 0 of the reply:
145  *   - on read, 0xfe or 0xfc : bus is busy, wait (see below) or nak ?
146  *   - on read, 0x00 or 0x01 : reply is in buffer (after the byte 0)
147  *   - on write, < 0 -> failure (immediate exit)
148  *   - else, OF just exists (without error, weird)
149  *
150  * So on read, there is this wait-for-busy thing when getting a 0xfc or
151  * 0xfe result. OF does a loop of up to 64 retries, waiting 20ms and
152  * doing the above again until either the retries expire or the result
153  * is no longer 0xfe or 0xfc
154  *
155  * The Darwin I2C driver is less subtle though. On any non-success status
156  * from the response command, it waits 5ms and tries again up to 20 times,
157  * it doesn't differenciate between fatal errors or "busy" status.
158  *
159  * This driver provides an asynchronous paramblock based i2c command
160  * interface to be used either directly by low level code or by a higher
161  * level driver interfacing to the linux i2c layer. The current
162  * implementation of this relies on working timers & timer interrupts
163  * though, so be careful of calling context for now. This may be "fixed"
164  * in the future by adding a polling facility.
165  */
166#define SMU_CMD_I2C_COMMAND			0x9a
167          /* transfer types */
168#define   SMU_I2C_TRANSFER_SIMPLE	0x00
169#define   SMU_I2C_TRANSFER_STDSUB	0x01
170#define   SMU_I2C_TRANSFER_COMBINED	0x02
171
172/*
173 * Power supply control
174 *
175 * The "sub" command is an ASCII string in the data, the
176 * data lenght is that of the string.
177 *
178 * The VSLEW command can be used to get or set the voltage slewing.
179 *  - lenght 5 (only "VSLEW") : it returns "DONE" and 3 bytes of
180 *    reply at data offset 6, 7 and 8.
181 *  - lenght 8 ("VSLEWxyz") has 3 additional bytes appended, and is
182 *    used to set the voltage slewing point. The SMU replies with "DONE"
183 * I yet have to figure out their exact meaning of those 3 bytes in
184 * both cases. They seem to be:
185 *  x = processor mask
186 *  y = op. point index
187 *  z = processor freq. step index
188 * I haven't yet decyphered result codes
189 *
190 */
191#define SMU_CMD_POWER_COMMAND			0xaa
192#define   SMU_CMD_POWER_RESTART		       	"RESTART"
193#define   SMU_CMD_POWER_SHUTDOWN		"SHUTDOWN"
194#define   SMU_CMD_POWER_VOLTAGE_SLEW		"VSLEW"
195
196/*
197 * Read ADC sensors
198 *
199 * This command takes one byte of parameter: the sensor ID (or "reg"
200 * value in the device-tree) and returns a 16 bits value
201 */
202#define SMU_CMD_READ_ADC			0xd8
203
204/* Misc commands
205 *
206 * This command seem to be a grab bag of various things
207 */
208#define SMU_CMD_MISC_df_COMMAND			0xdf
209#define   SMU_CMD_MISC_df_SET_DISPLAY_LIT	0x02 /* i: 1 byte */
210#define   SMU_CMD_MISC_df_NMI_OPTION		0x04
211
212/*
213 * Version info commands
214 *
215 * I haven't quite tried to figure out how these work
216 */
217#define SMU_CMD_VERSION_COMMAND			0xea
218
219
220/*
221 * Misc commands
222 *
223 * This command seem to be a grab bag of various things
224 *
225 * SMU_CMD_MISC_ee_GET_DATABLOCK_REC is used, among others, to
226 * transfer blocks of data from the SMU. So far, I've decrypted it's
227 * usage to retrieve partition data. In order to do that, you have to
228 * break your transfer in "chunks" since that command cannot transfer
229 * more than a chunk at a time. The chunk size used by OF is 0xe bytes,
230 * but it seems that the darwin driver will let you do 0x1e bytes if
231 * your "PMU" version is >= 0x30. You can get the "PMU" version apparently
232 * either in the last 16 bits of property "smu-version-pmu" or as the 16
233 * bytes at offset 1 of "smu-version-info"
234 *
235 * For each chunk, the command takes 7 bytes of arguments:
236 *  byte 0: subcommand code (0x02)
237 *  byte 1: 0x04 (always, I don't know what it means, maybe the address
238 *                space to use or some other nicety. It's hard coded in OF)
239 *  byte 2..5: SMU address of the chunk (big endian 32 bits)
240 *  byte 6: size to transfer (up to max chunk size)
241 *
242 * The data is returned directly
243 */
244#define SMU_CMD_MISC_ee_COMMAND			0xee
245#define   SMU_CMD_MISC_ee_GET_DATABLOCK_REC	0x02
246#define	  SMU_CMD_MISC_ee_LEDS_CTRL		0x04 /* i: 00 (00,01) [00] */
247#define   SMU_CMD_MISC_ee_GET_DATA		0x05 /* i: 00 , o: ?? */
248
249
250
251/*
252 * - Kernel side interface -
253 */
254
255#ifdef __KERNEL__
256
257/*
258 * Asynchronous SMU commands
259 *
260 * Fill up this structure and submit it via smu_queue_command(),
261 * and get notified by the optional done() callback, or because
262 * status becomes != 1
263 */
264
265struct smu_cmd;
266
267struct smu_cmd
268{
269	/* public */
270	u8			cmd;		/* command */
271	int			data_len;	/* data len */
272	int			reply_len;	/* reply len */
273	void			*data_buf;	/* data buffer */
274	void			*reply_buf;	/* reply buffer */
275	int			status;		/* command status */
276	void			(*done)(struct smu_cmd *cmd, void *misc);
277	void			*misc;
278
279	/* private */
280	struct list_head	link;
281};
282
283/*
284 * Queues an SMU command, all fields have to be initialized
285 */
286extern int smu_queue_cmd(struct smu_cmd *cmd);
287
288/*
289 * Simple command wrapper. This structure embeds a small buffer
290 * to ease sending simple SMU commands from the stack
291 */
292struct smu_simple_cmd
293{
294	struct smu_cmd	cmd;
295	u8	       	buffer[16];
296};
297
298/*
299 * Queues a simple command. All fields will be initialized by that
300 * function
301 */
302extern int smu_queue_simple(struct smu_simple_cmd *scmd, u8 command,
303			    unsigned int data_len,
304			    void (*done)(struct smu_cmd *cmd, void *misc),
305			    void *misc,
306			    ...);
307
308/*
309 * Completion helper. Pass it to smu_queue_simple or as 'done'
310 * member to smu_queue_cmd, it will call complete() on the struct
311 * completion passed in the "misc" argument
312 */
313extern void smu_done_complete(struct smu_cmd *cmd, void *misc);
314
315/*
316 * Synchronous helpers. Will spin-wait for completion of a command
317 */
318extern void smu_spinwait_cmd(struct smu_cmd *cmd);
319
320static inline void smu_spinwait_simple(struct smu_simple_cmd *scmd)
321{
322	smu_spinwait_cmd(&scmd->cmd);
323}
324
325/*
326 * Poll routine to call if blocked with irqs off
327 */
328extern void smu_poll(void);
329
330
331/*
332 * Init routine, presence check....
333 */
334extern int smu_init(void);
335extern int smu_present(void);
336struct of_device;
337extern struct of_device *smu_get_ofdev(void);
338
339
340/*
341 * Common command wrappers
342 */
343extern void smu_shutdown(void);
344extern void smu_restart(void);
345struct rtc_time;
346extern int smu_get_rtc_time(struct rtc_time *time, int spinwait);
347extern int smu_set_rtc_time(struct rtc_time *time, int spinwait);
348
349/*
350 * SMU command buffer absolute address, exported by pmac_setup,
351 * this is allocated very early during boot.
352 */
353extern unsigned long smu_cmdbuf_abs;
354
355
356/*
357 * Kenrel asynchronous i2c interface
358 */
359
360#define SMU_I2C_READ_MAX	0x1d
361#define SMU_I2C_WRITE_MAX	0x15
362
363/* SMU i2c header, exactly matches i2c header on wire */
364struct smu_i2c_param
365{
366	u8	bus;		/* SMU bus ID (from device tree) */
367	u8	type;		/* i2c transfer type */
368	u8	devaddr;	/* device address (includes direction) */
369	u8	sublen;		/* subaddress length */
370	u8	subaddr[3];	/* subaddress */
371	u8	caddr;		/* combined address, filled by SMU driver */
372	u8	datalen;	/* length of transfer */
373	u8	data[SMU_I2C_READ_MAX];	/* data */
374};
375
376struct smu_i2c_cmd
377{
378	/* public */
379	struct smu_i2c_param	info;
380	void			(*done)(struct smu_i2c_cmd *cmd, void *misc);
381	void			*misc;
382	int			status; /* 1 = pending, 0 = ok, <0 = fail */
383
384	/* private */
385	struct smu_cmd		scmd;
386	int			read;
387	int			stage;
388	int			retries;
389	u8			pdata[32];
390	struct list_head	link;
391};
392
393/*
394 * Call this to queue an i2c command to the SMU. You must fill info,
395 * including info.data for a write, done and misc.
396 * For now, no polling interface is provided so you have to use completion
397 * callback.
398 */
399extern int smu_queue_i2c(struct smu_i2c_cmd *cmd);
400
401
402#endif /* __KERNEL__ */
403
404
405/*
406 * - SMU "sdb" partitions informations -
407 */
408
409
410/*
411 * Partition header format
412 */
413struct smu_sdbp_header {
414	__u8	id;
415	__u8	len;
416	__u8	version;
417	__u8	flags;
418};
419
420
421 /*
422 * demangle 16 and 32 bits integer in some SMU partitions
423 * (currently, afaik, this concerns only the FVT partition
424 * (0x12)
425 */
426#define SMU_U16_MIX(x)	le16_to_cpu(x);
427#define SMU_U32_MIX(x)  ((((x) & 0xff00ff00u) >> 8)|(((x) & 0x00ff00ffu) << 8))
428
429
430/* This is the definition of the SMU sdb-partition-0x12 table (called
431 * CPU F/V/T operating points in Darwin). The definition for all those
432 * SMU tables should be moved to some separate file
433 */
434#define SMU_SDB_FVT_ID			0x12
435
436struct smu_sdbp_fvt {
437	__u32	sysclk;			/* Base SysClk frequency in Hz for
438					 * this operating point. Value need to
439					 * be unmixed with SMU_U32_MIX()
440					 */
441	__u8	pad;
442	__u8	maxtemp;		/* Max temp. supported by this
443					 * operating point
444					 */
445
446	__u16	volts[3];		/* CPU core voltage for the 3
447					 * PowerTune modes, a mode with
448					 * 0V = not supported. Value need
449					 * to be unmixed with SMU_U16_MIX()
450					 */
451};
452
453/* This partition contains voltage & current sensor calibration
454 * informations
455 */
456#define SMU_SDB_CPUVCP_ID		0x21
457
458struct smu_sdbp_cpuvcp {
459	__u16	volt_scale;		/* u4.12 fixed point */
460	__s16	volt_offset;		/* s4.12 fixed point */
461	__u16	curr_scale;		/* u4.12 fixed point */
462	__s16	curr_offset;		/* s4.12 fixed point */
463	__s32	power_quads[3];		/* s4.28 fixed point */
464};
465
466/* This partition contains CPU thermal diode calibration
467 */
468#define SMU_SDB_CPUDIODE_ID		0x18
469
470struct smu_sdbp_cpudiode {
471	__u16	m_value;		/* u1.15 fixed point */
472	__s16	b_value;		/* s10.6 fixed point */
473
474};
475
476/* This partition contains Slots power calibration
477 */
478#define SMU_SDB_SLOTSPOW_ID		0x78
479
480struct smu_sdbp_slotspow {
481	__u16	pow_scale;		/* u4.12 fixed point */
482	__s16	pow_offset;		/* s4.12 fixed point */
483};
484
485/* This partition contains machine specific version information about
486 * the sensor/control layout
487 */
488#define SMU_SDB_SENSORTREE_ID		0x25
489
490struct smu_sdbp_sensortree {
491	__u8	model_id;
492	__u8	unknown[3];
493};
494
495/* This partition contains CPU thermal control PID informations. So far
496 * only single CPU machines have been seen with an SMU, so we assume this
497 * carries only informations for those
498 */
499#define SMU_SDB_CPUPIDDATA_ID		0x17
500
501struct smu_sdbp_cpupiddata {
502	__u8	unknown1;
503	__u8	target_temp_delta;
504	__u8	unknown2;
505	__u8	history_len;
506	__s16	power_adj;
507	__u16	max_power;
508	__s32	gp,gr,gd;
509};
510
511
512/* Other partitions without known structures */
513#define SMU_SDB_DEBUG_SWITCHES_ID	0x05
514
515#ifdef __KERNEL__
516/*
517 * This returns the pointer to an SMU "sdb" partition data or NULL
518 * if not found. The data format is described below
519 */
520extern const struct smu_sdbp_header *smu_get_sdb_partition(int id,
521					unsigned int *size);
522
523/* Get "sdb" partition data from an SMU satellite */
524extern struct smu_sdbp_header *smu_sat_get_sdb_partition(unsigned int sat_id,
525					int id, unsigned int *size);
526
527
528#endif /* __KERNEL__ */
529
530
531/*
532 * - Userland interface -
533 */
534
535/*
536 * A given instance of the device can be configured for 2 different
537 * things at the moment:
538 *
539 *  - sending SMU commands (default at open() time)
540 *  - receiving SMU events (not yet implemented)
541 *
542 * Commands are written with write() of a command block. They can be
543 * "driver" commands (for example to switch to event reception mode)
544 * or real SMU commands. They are made of a header followed by command
545 * data if any.
546 *
547 * For SMU commands (not for driver commands), you can then read() back
548 * a reply. The reader will be blocked or not depending on how the device
549 * file is opened. poll() isn't implemented yet. The reply will consist
550 * of a header as well, followed by the reply data if any. You should
551 * always provide a buffer large enough for the maximum reply data, I
552 * recommand one page.
553 *
554 * It is illegal to send SMU commands through a file descriptor configured
555 * for events reception
556 *
557 */
558struct smu_user_cmd_hdr
559{
560	__u32		cmdtype;
561#define SMU_CMDTYPE_SMU			0	/* SMU command */
562#define SMU_CMDTYPE_WANTS_EVENTS	1	/* switch fd to events mode */
563#define SMU_CMDTYPE_GET_PARTITION	2	/* retrieve an sdb partition */
564
565	__u8		cmd;			/* SMU command byte */
566	__u8		pad[3];			/* padding */
567	__u32		data_len;		/* Lenght of data following */
568};
569
570struct smu_user_reply_hdr
571{
572	__u32		status;			/* Command status */
573	__u32		reply_len;		/* Lenght of data follwing */
574};
575
576#endif /*  _SMU_H */
577