1/*
2 * include/asm-alpha/dma.h
3 *
4 * This is essentially the same as the i386 DMA stuff, as the AlphaPCs
5 * use ISA-compatible dma.  The only extension is support for high-page
6 * registers that allow to set the top 8 bits of a 32-bit DMA address.
7 * This register should be written last when setting up a DMA address
8 * as this will also enable DMA across 64 KB boundaries.
9 */
10
11/* $Id: dma.h,v 1.1.1.1 2007/08/03 18:53:13 Exp $
12 * linux/include/asm/dma.h: Defines for using and allocating dma channels.
13 * Written by Hennus Bergman, 1992.
14 * High DMA channel support & info by Hannu Savolainen
15 * and John Boyd, Nov. 1992.
16 */
17
18#ifndef _ASM_DMA_H
19#define _ASM_DMA_H
20
21#include <linux/spinlock.h>
22#include <asm/io.h>
23
24#define dma_outb	outb
25#define dma_inb		inb
26
27/*
28 * NOTES about DMA transfers:
29 *
30 *  controller 1: channels 0-3, byte operations, ports 00-1F
31 *  controller 2: channels 4-7, word operations, ports C0-DF
32 *
33 *  - ALL registers are 8 bits only, regardless of transfer size
34 *  - channel 4 is not used - cascades 1 into 2.
35 *  - channels 0-3 are byte - addresses/counts are for physical bytes
36 *  - channels 5-7 are word - addresses/counts are for physical words
37 *  - transfers must not cross physical 64K (0-3) or 128K (5-7) boundaries
38 *  - transfer count loaded to registers is 1 less than actual count
39 *  - controller 2 offsets are all even (2x offsets for controller 1)
40 *  - page registers for 5-7 don't use data bit 0, represent 128K pages
41 *  - page registers for 0-3 use bit 0, represent 64K pages
42 *
43 * DMA transfers are limited to the lower 16MB of _physical_ memory.
44 * Note that addresses loaded into registers must be _physical_ addresses,
45 * not logical addresses (which may differ if paging is active).
46 *
47 *  Address mapping for channels 0-3:
48 *
49 *   A23 ... A16 A15 ... A8  A7 ... A0    (Physical addresses)
50 *    |  ...  |   |  ... |   |  ... |
51 *    |  ...  |   |  ... |   |  ... |
52 *    |  ...  |   |  ... |   |  ... |
53 *   P7  ...  P0  A7 ... A0  A7 ... A0
54 * |    Page    | Addr MSB | Addr LSB |   (DMA registers)
55 *
56 *  Address mapping for channels 5-7:
57 *
58 *   A23 ... A17 A16 A15 ... A9 A8 A7 ... A1 A0    (Physical addresses)
59 *    |  ...  |   \   \   ... \  \  \  ... \  \
60 *    |  ...  |    \   \   ... \  \  \  ... \  (not used)
61 *    |  ...  |     \   \   ... \  \  \  ... \
62 *   P7  ...  P1 (0) A7 A6  ... A0 A7 A6 ... A0
63 * |      Page      |  Addr MSB   |  Addr LSB  |   (DMA registers)
64 *
65 * Again, channels 5-7 transfer _physical_ words (16 bits), so addresses
66 * and counts _must_ be word-aligned (the lowest address bit is _ignored_ at
67 * the hardware level, so odd-byte transfers aren't possible).
68 *
69 * Transfer count (_not # bytes_) is limited to 64K, represented as actual
70 * count - 1 : 64K => 0xFFFF, 1 => 0x0000.  Thus, count is always 1 or more,
71 * and up to 128K bytes may be transferred on channels 5-7 in one operation.
72 *
73 */
74
75#define MAX_DMA_CHANNELS	8
76
77/*
78  ISA DMA limitations on Alpha platforms,
79
80  These may be due to SIO (PCI<->ISA bridge) chipset limitation, or
81  just a wiring limit.
82*/
83
84/* The maximum address for ISA DMA transfer on Alpha XL, due to an
85   hardware SIO limitation, is 64MB.
86*/
87#define ALPHA_XL_MAX_ISA_DMA_ADDRESS		0x04000000UL
88
89/* The maximum address for ISA DMA transfer on RUFFIAN,
90   due to an hardware SIO limitation, is 16MB.
91*/
92#define ALPHA_RUFFIAN_MAX_ISA_DMA_ADDRESS	0x01000000UL
93
94/* The maximum address for ISA DMA transfer on SABLE, and some ALCORs,
95   due to an hardware SIO chip limitation, is 2GB.
96*/
97#define ALPHA_SABLE_MAX_ISA_DMA_ADDRESS		0x80000000UL
98#define ALPHA_ALCOR_MAX_ISA_DMA_ADDRESS		0x80000000UL
99
100/*
101  Maximum address for all the others is the complete 32-bit bus
102  address space.
103*/
104#define ALPHA_MAX_ISA_DMA_ADDRESS		0x100000000UL
105
106#ifdef CONFIG_ALPHA_GENERIC
107# define MAX_ISA_DMA_ADDRESS		(alpha_mv.max_isa_dma_address)
108#else
109# if defined(CONFIG_ALPHA_XL)
110#  define MAX_ISA_DMA_ADDRESS		ALPHA_XL_MAX_ISA_DMA_ADDRESS
111# elif defined(CONFIG_ALPHA_RUFFIAN)
112#  define MAX_ISA_DMA_ADDRESS		ALPHA_RUFFIAN_MAX_ISA_DMA_ADDRESS
113# elif defined(CONFIG_ALPHA_SABLE)
114#  define MAX_ISA_DMA_ADDRESS		ALPHA_SABLE_MAX_ISA_DMA_ADDRESS
115# elif defined(CONFIG_ALPHA_ALCOR)
116#  define MAX_ISA_DMA_ADDRESS		ALPHA_ALCOR_MAX_ISA_DMA_ADDRESS
117# else
118#  define MAX_ISA_DMA_ADDRESS		ALPHA_MAX_ISA_DMA_ADDRESS
119# endif
120#endif
121
122/* If we have the iommu, we don't have any address limitations on DMA.
123   Otherwise (Nautilus, RX164), we have to have 0-16 Mb DMA zone
124   like i386. */
125#define MAX_DMA_ADDRESS		(alpha_mv.mv_pci_tbi ?	\
126				 ~0UL : IDENT_ADDR + 0x01000000)
127
128/* 8237 DMA controllers */
129#define IO_DMA1_BASE	0x00	/* 8 bit slave DMA, channels 0..3 */
130#define IO_DMA2_BASE	0xC0	/* 16 bit master DMA, ch 4(=slave input)..7 */
131
132/* DMA controller registers */
133#define DMA1_CMD_REG		0x08	/* command register (w) */
134#define DMA1_STAT_REG		0x08	/* status register (r) */
135#define DMA1_REQ_REG            0x09    /* request register (w) */
136#define DMA1_MASK_REG		0x0A	/* single-channel mask (w) */
137#define DMA1_MODE_REG		0x0B	/* mode register (w) */
138#define DMA1_CLEAR_FF_REG	0x0C	/* clear pointer flip-flop (w) */
139#define DMA1_TEMP_REG           0x0D    /* Temporary Register (r) */
140#define DMA1_RESET_REG		0x0D	/* Master Clear (w) */
141#define DMA1_CLR_MASK_REG       0x0E    /* Clear Mask */
142#define DMA1_MASK_ALL_REG       0x0F    /* all-channels mask (w) */
143#define DMA1_EXT_MODE_REG	(0x400 | DMA1_MODE_REG)
144
145#define DMA2_CMD_REG		0xD0	/* command register (w) */
146#define DMA2_STAT_REG		0xD0	/* status register (r) */
147#define DMA2_REQ_REG            0xD2    /* request register (w) */
148#define DMA2_MASK_REG		0xD4	/* single-channel mask (w) */
149#define DMA2_MODE_REG		0xD6	/* mode register (w) */
150#define DMA2_CLEAR_FF_REG	0xD8	/* clear pointer flip-flop (w) */
151#define DMA2_TEMP_REG           0xDA    /* Temporary Register (r) */
152#define DMA2_RESET_REG		0xDA	/* Master Clear (w) */
153#define DMA2_CLR_MASK_REG       0xDC    /* Clear Mask */
154#define DMA2_MASK_ALL_REG       0xDE    /* all-channels mask (w) */
155#define DMA2_EXT_MODE_REG	(0x400 | DMA2_MODE_REG)
156
157#define DMA_ADDR_0              0x00    /* DMA address registers */
158#define DMA_ADDR_1              0x02
159#define DMA_ADDR_2              0x04
160#define DMA_ADDR_3              0x06
161#define DMA_ADDR_4              0xC0
162#define DMA_ADDR_5              0xC4
163#define DMA_ADDR_6              0xC8
164#define DMA_ADDR_7              0xCC
165
166#define DMA_CNT_0               0x01    /* DMA count registers */
167#define DMA_CNT_1               0x03
168#define DMA_CNT_2               0x05
169#define DMA_CNT_3               0x07
170#define DMA_CNT_4               0xC2
171#define DMA_CNT_5               0xC6
172#define DMA_CNT_6               0xCA
173#define DMA_CNT_7               0xCE
174
175#define DMA_PAGE_0              0x87    /* DMA page registers */
176#define DMA_PAGE_1              0x83
177#define DMA_PAGE_2              0x81
178#define DMA_PAGE_3              0x82
179#define DMA_PAGE_5              0x8B
180#define DMA_PAGE_6              0x89
181#define DMA_PAGE_7              0x8A
182
183#define DMA_HIPAGE_0		(0x400 | DMA_PAGE_0)
184#define DMA_HIPAGE_1		(0x400 | DMA_PAGE_1)
185#define DMA_HIPAGE_2		(0x400 | DMA_PAGE_2)
186#define DMA_HIPAGE_3		(0x400 | DMA_PAGE_3)
187#define DMA_HIPAGE_4		(0x400 | DMA_PAGE_4)
188#define DMA_HIPAGE_5		(0x400 | DMA_PAGE_5)
189#define DMA_HIPAGE_6		(0x400 | DMA_PAGE_6)
190#define DMA_HIPAGE_7		(0x400 | DMA_PAGE_7)
191
192#define DMA_MODE_READ	0x44	/* I/O to memory, no autoinit, increment, single mode */
193#define DMA_MODE_WRITE	0x48	/* memory to I/O, no autoinit, increment, single mode */
194#define DMA_MODE_CASCADE 0xC0   /* pass thru DREQ->HRQ, DACK<-HLDA only */
195
196#define DMA_AUTOINIT	0x10
197
198extern spinlock_t  dma_spin_lock;
199
200static __inline__ unsigned long claim_dma_lock(void)
201{
202	unsigned long flags;
203	spin_lock_irqsave(&dma_spin_lock, flags);
204	return flags;
205}
206
207static __inline__ void release_dma_lock(unsigned long flags)
208{
209	spin_unlock_irqrestore(&dma_spin_lock, flags);
210}
211
212/* enable/disable a specific DMA channel */
213static __inline__ void enable_dma(unsigned int dmanr)
214{
215	if (dmanr<=3)
216		dma_outb(dmanr,  DMA1_MASK_REG);
217	else
218		dma_outb(dmanr & 3,  DMA2_MASK_REG);
219}
220
221static __inline__ void disable_dma(unsigned int dmanr)
222{
223	if (dmanr<=3)
224		dma_outb(dmanr | 4,  DMA1_MASK_REG);
225	else
226		dma_outb((dmanr & 3) | 4,  DMA2_MASK_REG);
227}
228
229/* Clear the 'DMA Pointer Flip Flop'.
230 * Write 0 for LSB/MSB, 1 for MSB/LSB access.
231 * Use this once to initialize the FF to a known state.
232 * After that, keep track of it. :-)
233 * --- In order to do that, the DMA routines below should ---
234 * --- only be used while interrupts are disabled! ---
235 */
236static __inline__ void clear_dma_ff(unsigned int dmanr)
237{
238	if (dmanr<=3)
239		dma_outb(0,  DMA1_CLEAR_FF_REG);
240	else
241		dma_outb(0,  DMA2_CLEAR_FF_REG);
242}
243
244/* set mode (above) for a specific DMA channel */
245static __inline__ void set_dma_mode(unsigned int dmanr, char mode)
246{
247	if (dmanr<=3)
248		dma_outb(mode | dmanr,  DMA1_MODE_REG);
249	else
250		dma_outb(mode | (dmanr&3),  DMA2_MODE_REG);
251}
252
253/* set extended mode for a specific DMA channel */
254static __inline__ void set_dma_ext_mode(unsigned int dmanr, char ext_mode)
255{
256	if (dmanr<=3)
257		dma_outb(ext_mode | dmanr,  DMA1_EXT_MODE_REG);
258	else
259		dma_outb(ext_mode | (dmanr&3),  DMA2_EXT_MODE_REG);
260}
261
262/* Set only the page register bits of the transfer address.
263 * This is used for successive transfers when we know the contents of
264 * the lower 16 bits of the DMA current address register.
265 */
266static __inline__ void set_dma_page(unsigned int dmanr, unsigned int pagenr)
267{
268	switch(dmanr) {
269		case 0:
270			dma_outb(pagenr, DMA_PAGE_0);
271			dma_outb((pagenr >> 8), DMA_HIPAGE_0);
272			break;
273		case 1:
274			dma_outb(pagenr, DMA_PAGE_1);
275			dma_outb((pagenr >> 8), DMA_HIPAGE_1);
276			break;
277		case 2:
278			dma_outb(pagenr, DMA_PAGE_2);
279			dma_outb((pagenr >> 8), DMA_HIPAGE_2);
280			break;
281		case 3:
282			dma_outb(pagenr, DMA_PAGE_3);
283			dma_outb((pagenr >> 8), DMA_HIPAGE_3);
284			break;
285		case 5:
286			dma_outb(pagenr & 0xfe, DMA_PAGE_5);
287			dma_outb((pagenr >> 8), DMA_HIPAGE_5);
288			break;
289		case 6:
290			dma_outb(pagenr & 0xfe, DMA_PAGE_6);
291			dma_outb((pagenr >> 8), DMA_HIPAGE_6);
292			break;
293		case 7:
294			dma_outb(pagenr & 0xfe, DMA_PAGE_7);
295			dma_outb((pagenr >> 8), DMA_HIPAGE_7);
296			break;
297	}
298}
299
300
301/* Set transfer address & page bits for specific DMA channel.
302 * Assumes dma flipflop is clear.
303 */
304static __inline__ void set_dma_addr(unsigned int dmanr, unsigned int a)
305{
306	if (dmanr <= 3)  {
307	    dma_outb( a & 0xff, ((dmanr&3)<<1) + IO_DMA1_BASE );
308            dma_outb( (a>>8) & 0xff, ((dmanr&3)<<1) + IO_DMA1_BASE );
309	}  else  {
310	    dma_outb( (a>>1) & 0xff, ((dmanr&3)<<2) + IO_DMA2_BASE );
311	    dma_outb( (a>>9) & 0xff, ((dmanr&3)<<2) + IO_DMA2_BASE );
312	}
313	set_dma_page(dmanr, a>>16);	/* set hipage last to enable 32-bit mode */
314}
315
316
317/* Set transfer size (max 64k for DMA1..3, 128k for DMA5..7) for
318 * a specific DMA channel.
319 * You must ensure the parameters are valid.
320 * NOTE: from a manual: "the number of transfers is one more
321 * than the initial word count"! This is taken into account.
322 * Assumes dma flip-flop is clear.
323 * NOTE 2: "count" represents _bytes_ and must be even for channels 5-7.
324 */
325static __inline__ void set_dma_count(unsigned int dmanr, unsigned int count)
326{
327        count--;
328	if (dmanr <= 3)  {
329	    dma_outb( count & 0xff, ((dmanr&3)<<1) + 1 + IO_DMA1_BASE );
330	    dma_outb( (count>>8) & 0xff, ((dmanr&3)<<1) + 1 + IO_DMA1_BASE );
331        } else {
332	    dma_outb( (count>>1) & 0xff, ((dmanr&3)<<2) + 2 + IO_DMA2_BASE );
333	    dma_outb( (count>>9) & 0xff, ((dmanr&3)<<2) + 2 + IO_DMA2_BASE );
334        }
335}
336
337
338/* Get DMA residue count. After a DMA transfer, this
339 * should return zero. Reading this while a DMA transfer is
340 * still in progress will return unpredictable results.
341 * If called before the channel has been used, it may return 1.
342 * Otherwise, it returns the number of _bytes_ left to transfer.
343 *
344 * Assumes DMA flip-flop is clear.
345 */
346static __inline__ int get_dma_residue(unsigned int dmanr)
347{
348	unsigned int io_port = (dmanr<=3)? ((dmanr&3)<<1) + 1 + IO_DMA1_BASE
349					 : ((dmanr&3)<<2) + 2 + IO_DMA2_BASE;
350
351	/* using short to get 16-bit wrap around */
352	unsigned short count;
353
354	count = 1 + dma_inb(io_port);
355	count += dma_inb(io_port) << 8;
356
357	return (dmanr<=3)? count : (count<<1);
358}
359
360
361/* These are in kernel/dma.c: */
362extern int request_dma(unsigned int dmanr, const char * device_id);	/* reserve a DMA channel */
363extern void free_dma(unsigned int dmanr);	/* release it again */
364#define KERNEL_HAVE_CHECK_DMA
365extern int check_dma(unsigned int dmanr);
366
367/* From PCI */
368
369#ifdef CONFIG_PCI
370extern int isa_dma_bridge_buggy;
371#else
372#define isa_dma_bridge_buggy 	(0)
373#endif
374
375
376#endif /* _ASM_DMA_H */
377