1/* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * journal.h
5 *
6 * Defines journalling api and structures.
7 *
8 * Copyright (C) 2003, 2005 Oracle.  All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
24 */
25
26#ifndef OCFS2_JOURNAL_H
27#define OCFS2_JOURNAL_H
28
29#include <linux/fs.h>
30#include <linux/jbd.h>
31
32enum ocfs2_journal_state {
33	OCFS2_JOURNAL_FREE = 0,
34	OCFS2_JOURNAL_LOADED,
35	OCFS2_JOURNAL_IN_SHUTDOWN,
36};
37
38struct ocfs2_super;
39struct ocfs2_dinode;
40
41struct ocfs2_journal {
42	enum ocfs2_journal_state   j_state;    /* Journals current state   */
43
44	journal_t                 *j_journal; /* The kernels journal type */
45	struct inode              *j_inode;   /* Kernel inode pointing to
46					       * this journal             */
47	struct ocfs2_super        *j_osb;     /* pointer to the super
48					       * block for the node
49					       * we're currently
50					       * running on -- not
51					       * necessarily the super
52					       * block from the node
53					       * which we usually run
54					       * from (recovery,
55					       * etc)                     */
56	struct buffer_head        *j_bh;      /* Journal disk inode block */
57	atomic_t                  j_num_trans; /* Number of transactions
58					        * currently in the system. */
59	unsigned long             j_trans_id;
60	struct rw_semaphore       j_trans_barrier;
61	wait_queue_head_t         j_checkpointed;
62
63	spinlock_t                j_lock;
64	struct list_head          j_la_cleanups;
65	struct work_struct        j_recovery_work;
66};
67
68extern spinlock_t trans_inc_lock;
69
70/* wrap j_trans_id so we never have it equal to zero. */
71static inline unsigned long ocfs2_inc_trans_id(struct ocfs2_journal *j)
72{
73	unsigned long old_id;
74	spin_lock(&trans_inc_lock);
75	old_id = j->j_trans_id++;
76	if (unlikely(!j->j_trans_id))
77		j->j_trans_id = 1;
78	spin_unlock(&trans_inc_lock);
79	return old_id;
80}
81
82static inline void ocfs2_set_inode_lock_trans(struct ocfs2_journal *journal,
83					      struct inode *inode)
84{
85	spin_lock(&trans_inc_lock);
86	OCFS2_I(inode)->ip_last_trans = journal->j_trans_id;
87	spin_unlock(&trans_inc_lock);
88}
89
90/* Used to figure out whether it's safe to drop a metadata lock on an
91 * inode. Returns true if all the inodes changes have been
92 * checkpointed to disk. You should be holding the spinlock on the
93 * metadata lock while calling this to be sure that nobody can take
94 * the lock and put it on another transaction. */
95static inline int ocfs2_inode_fully_checkpointed(struct inode *inode)
96{
97	int ret;
98	struct ocfs2_journal *journal = OCFS2_SB(inode->i_sb)->journal;
99
100	spin_lock(&trans_inc_lock);
101	ret = time_after(journal->j_trans_id, OCFS2_I(inode)->ip_last_trans);
102	spin_unlock(&trans_inc_lock);
103	return ret;
104}
105
106/* convenience function to check if an inode is still new (has never
107 * hit disk) Will do you a favor and set created_trans = 0 when you've
108 * been checkpointed.  returns '1' if the inode is still new. */
109static inline int ocfs2_inode_is_new(struct inode *inode)
110{
111	int ret;
112
113	/* System files are never "new" as they're written out by
114	 * mkfs. This helps us early during mount, before we have the
115	 * journal open and j_trans_id could be junk. */
116	if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
117		return 0;
118	spin_lock(&trans_inc_lock);
119	ret = !(time_after(OCFS2_SB(inode->i_sb)->journal->j_trans_id,
120			   OCFS2_I(inode)->ip_created_trans));
121	if (!ret)
122		OCFS2_I(inode)->ip_created_trans = 0;
123	spin_unlock(&trans_inc_lock);
124	return ret;
125}
126
127static inline void ocfs2_inode_set_new(struct ocfs2_super *osb,
128				       struct inode *inode)
129{
130	spin_lock(&trans_inc_lock);
131	OCFS2_I(inode)->ip_created_trans = osb->journal->j_trans_id;
132	spin_unlock(&trans_inc_lock);
133}
134
135/* Exported only for the journal struct init code in super.c. Do not call. */
136void ocfs2_complete_recovery(struct work_struct *work);
137
138/*
139 *  Journal Control:
140 *  Initialize, Load, Shutdown, Wipe a journal.
141 *
142 *  ocfs2_journal_init     - Initialize journal structures in the OSB.
143 *  ocfs2_journal_load     - Load the given journal off disk. Replay it if
144 *                          there's transactions still in there.
145 *  ocfs2_journal_shutdown - Shutdown a journal, this will flush all
146 *                          uncommitted, uncheckpointed transactions.
147 *  ocfs2_journal_wipe     - Wipe transactions from a journal. Optionally
148 *                          zero out each block.
149 *  ocfs2_recovery_thread  - Perform recovery on a node. osb is our own osb.
150 *  ocfs2_mark_dead_nodes - Start recovery on nodes we won't get a heartbeat
151 *                          event on.
152 *  ocfs2_start_checkpoint - Kick the commit thread to do a checkpoint.
153 */
154void   ocfs2_set_journal_params(struct ocfs2_super *osb);
155int    ocfs2_journal_init(struct ocfs2_journal *journal,
156			  int *dirty);
157void   ocfs2_journal_shutdown(struct ocfs2_super *osb);
158int    ocfs2_journal_wipe(struct ocfs2_journal *journal,
159			  int full);
160int    ocfs2_journal_load(struct ocfs2_journal *journal, int local);
161int    ocfs2_check_journals_nolocks(struct ocfs2_super *osb);
162void   ocfs2_recovery_thread(struct ocfs2_super *osb,
163			     int node_num);
164int    ocfs2_mark_dead_nodes(struct ocfs2_super *osb);
165void   ocfs2_complete_mount_recovery(struct ocfs2_super *osb);
166
167static inline void ocfs2_start_checkpoint(struct ocfs2_super *osb)
168{
169	atomic_set(&osb->needs_checkpoint, 1);
170	wake_up(&osb->checkpoint_event);
171}
172
173static inline void ocfs2_checkpoint_inode(struct inode *inode)
174{
175	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
176
177	if (ocfs2_mount_local(osb))
178		return;
179
180	if (!ocfs2_inode_fully_checkpointed(inode)) {
181		/* WARNING: This only kicks off a single
182		 * checkpoint. If someone races you and adds more
183		 * metadata to the journal, you won't know, and will
184		 * wind up waiting *alot* longer than necessary. Right
185		 * now we only use this in clear_inode so that's
186		 * OK. */
187		ocfs2_start_checkpoint(osb);
188
189		wait_event(osb->journal->j_checkpointed,
190			   ocfs2_inode_fully_checkpointed(inode));
191	}
192}
193
194/*
195 *  Transaction Handling:
196 *  Manage the lifetime of a transaction handle.
197 *
198 *  ocfs2_start_trans      - Begin a transaction. Give it an upper estimate of
199 *                          the number of blocks that will be changed during
200 *                          this handle.
201 *  ocfs2_commit_trans - Complete a handle. It might return -EIO if
202 *                       the journal was aborted. The majority of paths don't
203 *                       check the return value as an error there comes too
204 *                       late to do anything (and will be picked up in a
205 *                       later transaction).
206 *  ocfs2_extend_trans     - Extend a handle by nblocks credits. This may
207 *                          commit the handle to disk in the process, but will
208 *                          not release any locks taken during the transaction.
209 *  ocfs2_journal_access   - Notify the handle that we want to journal this
210 *                          buffer. Will have to call ocfs2_journal_dirty once
211 *                          we've actually dirtied it. Type is one of . or .
212 *  ocfs2_journal_dirty    - Mark a journalled buffer as having dirty data.
213 *  ocfs2_journal_dirty_data - Indicate that a data buffer should go out before
214 *                             the current handle commits.
215 */
216
217/* You must always start_trans with a number of buffs > 0, but it's
218 * perfectly legal to go through an entire transaction without having
219 * dirtied any buffers. */
220handle_t		    *ocfs2_start_trans(struct ocfs2_super *osb,
221					       int max_buffs);
222int			     ocfs2_commit_trans(struct ocfs2_super *osb,
223						handle_t *handle);
224int			     ocfs2_extend_trans(handle_t *handle, int nblocks);
225
226/*
227 * Create access is for when we get a newly created buffer and we're
228 * not gonna read it off disk, but rather fill it ourselves.  Right
229 * now, we don't do anything special with this (it turns into a write
230 * request), but this is a good placeholder in case we do...
231 *
232 * Write access is for when we read a block off disk and are going to
233 * modify it. This way the journalling layer knows it may need to make
234 * a copy of that block (if it's part of another, uncommitted
235 * transaction) before we do so.
236 */
237#define OCFS2_JOURNAL_ACCESS_CREATE 0
238#define OCFS2_JOURNAL_ACCESS_WRITE  1
239#define OCFS2_JOURNAL_ACCESS_UNDO   2
240
241int                  ocfs2_journal_access(handle_t *handle,
242					  struct inode *inode,
243					  struct buffer_head *bh,
244					  int type);
245/*
246 * A word about the journal_access/journal_dirty "dance". It is
247 * entirely legal to journal_access a buffer more than once (as long
248 * as the access type is the same -- I'm not sure what will happen if
249 * access type is different but this should never happen anyway) It is
250 * also legal to journal_dirty a buffer more than once. In fact, you
251 * can even journal_access a buffer after you've done a
252 * journal_access/journal_dirty pair. The only thing you cannot do
253 * however, is journal_dirty a buffer which you haven't yet passed to
254 * journal_access at least once.
255 *
256 * That said, 99% of the time this doesn't matter and this is what the
257 * path looks like:
258 *
259 *	<read a bh>
260 *	ocfs2_journal_access(handle, bh,	OCFS2_JOURNAL_ACCESS_WRITE);
261 *	<modify the bh>
262 * 	ocfs2_journal_dirty(handle, bh);
263 */
264int                  ocfs2_journal_dirty(handle_t *handle,
265					 struct buffer_head *bh);
266int                  ocfs2_journal_dirty_data(handle_t *handle,
267					      struct buffer_head *bh);
268
269/*
270 *  Credit Macros:
271 *  Convenience macros to calculate number of credits needed.
272 *
273 *  For convenience sake, I have a set of macros here which calculate
274 *  the *maximum* number of sectors which will be changed for various
275 *  metadata updates.
276 */
277
278/* simple file updates like chmod, etc. */
279#define OCFS2_INODE_UPDATE_CREDITS 1
280
281/* get one bit out of a suballocator: dinode + group descriptor +
282 * prev. group desc. if we relink. */
283#define OCFS2_SUBALLOC_ALLOC (3)
284
285/* dinode + group descriptor update. We don't relink on free yet. */
286#define OCFS2_SUBALLOC_FREE  (2)
287
288#define OCFS2_TRUNCATE_LOG_UPDATE OCFS2_INODE_UPDATE_CREDITS
289#define OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC (OCFS2_SUBALLOC_FREE 		      \
290					 + OCFS2_TRUNCATE_LOG_UPDATE)
291
292/* data block for new dir/symlink, 2 for bitmap updates (bitmap fe +
293 * bitmap block for the new bit) */
294#define OCFS2_DIR_LINK_ADDITIONAL_CREDITS (1 + 2)
295
296/* parent fe, parent block, new file entry, inode alloc fe, inode alloc
297 * group descriptor + mkdir/symlink blocks */
298#define OCFS2_MKNOD_CREDITS (3 + OCFS2_SUBALLOC_ALLOC                         \
299			    + OCFS2_DIR_LINK_ADDITIONAL_CREDITS)
300
301/* local alloc metadata change + main bitmap updates */
302#define OCFS2_WINDOW_MOVE_CREDITS (OCFS2_INODE_UPDATE_CREDITS                 \
303				  + OCFS2_SUBALLOC_ALLOC + OCFS2_SUBALLOC_FREE)
304
305/* used when we don't need an allocation change for a dir extend. One
306 * for the dinode, one for the new block. */
307#define OCFS2_SIMPLE_DIR_EXTEND_CREDITS (2)
308
309/* file update (nlink, etc) + directory mtime/ctime + dir entry block */
310#define OCFS2_LINK_CREDITS  (2*OCFS2_INODE_UPDATE_CREDITS + 1)
311
312/* inode + dir inode (if we unlink a dir), + dir entry block + orphan
313 * dir inode link */
314#define OCFS2_UNLINK_CREDITS  (2 * OCFS2_INODE_UPDATE_CREDITS + 1             \
315			      + OCFS2_LINK_CREDITS)
316
317/* dinode + orphan dir dinode + inode alloc dinode + orphan dir entry +
318 * inode alloc group descriptor */
319#define OCFS2_DELETE_INODE_CREDITS (3 * OCFS2_INODE_UPDATE_CREDITS + 1 + 1)
320
321/* dinode update, old dir dinode update, new dir dinode update, old
322 * dir dir entry, new dir dir entry, dir entry update for renaming
323 * directory + target unlink */
324#define OCFS2_RENAME_CREDITS (3 * OCFS2_INODE_UPDATE_CREDITS + 3              \
325			     + OCFS2_UNLINK_CREDITS)
326
327static inline int ocfs2_calc_extend_credits(struct super_block *sb,
328					    struct ocfs2_dinode *fe,
329					    u32 bits_wanted)
330{
331	int bitmap_blocks, sysfile_bitmap_blocks, dinode_blocks;
332
333	/* bitmap dinode, group desc. + relinked group. */
334	bitmap_blocks = OCFS2_SUBALLOC_ALLOC;
335
336	/* we might need to shift tree depth so lets assume an
337	 * absolute worst case of complete fragmentation.  Even with
338	 * that, we only need one update for the dinode, and then
339	 * however many metadata chunks needed * a remaining suballoc
340	 * alloc. */
341	sysfile_bitmap_blocks = 1 +
342		(OCFS2_SUBALLOC_ALLOC - 1) * ocfs2_extend_meta_needed(fe);
343
344	/* this does not include *new* metadata blocks, which are
345	 * accounted for in sysfile_bitmap_blocks. fe +
346	 * prev. last_eb_blk + blocks along edge of tree.
347	 * calc_symlink_credits passes because we just need 1
348	 * credit for the dinode there. */
349	dinode_blocks = 1 + 1 + le16_to_cpu(fe->id2.i_list.l_tree_depth);
350
351	return bitmap_blocks + sysfile_bitmap_blocks + dinode_blocks;
352}
353
354static inline int ocfs2_calc_symlink_credits(struct super_block *sb)
355{
356	int blocks = OCFS2_MKNOD_CREDITS;
357
358	/* links can be longer than one block so we may update many
359	 * within our single allocated extent. */
360	blocks += ocfs2_clusters_to_blocks(sb, 1);
361
362	return blocks;
363}
364
365static inline int ocfs2_calc_group_alloc_credits(struct super_block *sb,
366						 unsigned int cpg)
367{
368	int blocks;
369	int bitmap_blocks = OCFS2_SUBALLOC_ALLOC + 1;
370	/* parent inode update + new block group header + bitmap inode update
371	   + bitmap blocks affected */
372	blocks = 1 + 1 + 1 + bitmap_blocks;
373	return blocks;
374}
375
376static inline int ocfs2_calc_tree_trunc_credits(struct super_block *sb,
377						unsigned int clusters_to_del,
378						struct ocfs2_dinode *fe,
379						struct ocfs2_extent_list *last_el)
380{
381 	/* for dinode + all headers in this pass + update to next leaf */
382	u16 next_free = le16_to_cpu(last_el->l_next_free_rec);
383	u16 tree_depth = le16_to_cpu(fe->id2.i_list.l_tree_depth);
384	int credits = 1 + tree_depth + 1;
385	int i;
386
387	i = next_free - 1;
388	BUG_ON(i < 0);
389
390	/* We may be deleting metadata blocks, so metadata alloc dinode +
391	   one desc. block for each possible delete. */
392	if (tree_depth && next_free == 1 &&
393	    ocfs2_rec_clusters(last_el, &last_el->l_recs[i]) == clusters_to_del)
394		credits += 1 + tree_depth;
395
396	/* update to the truncate log. */
397	credits += OCFS2_TRUNCATE_LOG_UPDATE;
398
399	return credits;
400}
401
402#endif /* OCFS2_JOURNAL_H */
403