1/* handling of writes to regular files and writing back to the server
2 *
3 * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
4 * Written by David Howells (dhowells@redhat.com)
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11
12#include <linux/slab.h>
13#include <linux/fs.h>
14#include <linux/pagemap.h>
15#include <linux/writeback.h>
16#include <linux/pagevec.h>
17#include "internal.h"
18
19static int afs_write_back_from_locked_page(struct afs_writeback *wb,
20					   struct page *page);
21
22/*
23 * mark a page as having been made dirty and thus needing writeback
24 */
25int afs_set_page_dirty(struct page *page)
26{
27	_enter("");
28	return __set_page_dirty_nobuffers(page);
29}
30
31/*
32 * unlink a writeback record because its usage has reached zero
33 * - must be called with the wb->vnode->writeback_lock held
34 */
35static void afs_unlink_writeback(struct afs_writeback *wb)
36{
37	struct afs_writeback *front;
38	struct afs_vnode *vnode = wb->vnode;
39
40	list_del_init(&wb->link);
41	if (!list_empty(&vnode->writebacks)) {
42		/* if an fsync rises to the front of the queue then wake it
43		 * up */
44		front = list_entry(vnode->writebacks.next,
45				   struct afs_writeback, link);
46		if (front->state == AFS_WBACK_SYNCING) {
47			_debug("wake up sync");
48			front->state = AFS_WBACK_COMPLETE;
49			wake_up(&front->waitq);
50		}
51	}
52}
53
54/*
55 * free a writeback record
56 */
57static void afs_free_writeback(struct afs_writeback *wb)
58{
59	_enter("");
60	key_put(wb->key);
61	kfree(wb);
62}
63
64/*
65 * dispose of a reference to a writeback record
66 */
67void afs_put_writeback(struct afs_writeback *wb)
68{
69	struct afs_vnode *vnode = wb->vnode;
70
71	_enter("{%d}", wb->usage);
72
73	spin_lock(&vnode->writeback_lock);
74	if (--wb->usage == 0)
75		afs_unlink_writeback(wb);
76	else
77		wb = NULL;
78	spin_unlock(&vnode->writeback_lock);
79	if (wb)
80		afs_free_writeback(wb);
81}
82
83/*
84 * partly or wholly fill a page that's under preparation for writing
85 */
86static int afs_fill_page(struct afs_vnode *vnode, struct key *key,
87			 unsigned start, unsigned len, struct page *page)
88{
89	int ret;
90
91	_enter(",,%u,%u", start, len);
92
93	ASSERTCMP(start + len, <=, PAGE_SIZE);
94
95	ret = afs_vnode_fetch_data(vnode, key, start, len, page);
96	if (ret < 0) {
97		if (ret == -ENOENT) {
98			_debug("got NOENT from server"
99			       " - marking file deleted and stale");
100			set_bit(AFS_VNODE_DELETED, &vnode->flags);
101			ret = -ESTALE;
102		}
103	}
104
105	_leave(" = %d", ret);
106	return ret;
107}
108
109/*
110 * prepare a page for being written to
111 */
112static int afs_prepare_page(struct afs_vnode *vnode, struct page *page,
113			    struct key *key, unsigned offset, unsigned to)
114{
115	unsigned eof, tail, start, stop, len;
116	loff_t i_size, pos;
117	void *p;
118	int ret;
119
120	_enter("");
121
122	if (offset == 0 && to == PAGE_SIZE)
123		return 0;
124
125	p = kmap_atomic(page, KM_USER0);
126
127	i_size = i_size_read(&vnode->vfs_inode);
128	pos = (loff_t) page->index << PAGE_SHIFT;
129	if (pos >= i_size) {
130		/* partial write, page beyond EOF */
131		_debug("beyond");
132		if (offset > 0)
133			memset(p, 0, offset);
134		if (to < PAGE_SIZE)
135			memset(p + to, 0, PAGE_SIZE - to);
136		kunmap_atomic(p, KM_USER0);
137		return 0;
138	}
139
140	if (i_size - pos >= PAGE_SIZE) {
141		/* partial write, page entirely before EOF */
142		_debug("before");
143		tail = eof = PAGE_SIZE;
144	} else {
145		/* partial write, page overlaps EOF */
146		eof = i_size - pos;
147		_debug("overlap %u", eof);
148		tail = max(eof, to);
149		if (tail < PAGE_SIZE)
150			memset(p + tail, 0, PAGE_SIZE - tail);
151		if (offset > eof)
152			memset(p + eof, 0, PAGE_SIZE - eof);
153	}
154
155	kunmap_atomic(p, KM_USER0);
156
157	ret = 0;
158	if (offset > 0 || eof > to) {
159		/* need to fill one or two bits that aren't going to be written
160		 * (cover both fillers in one read if there are two) */
161		start = (offset > 0) ? 0 : to;
162		stop = (eof > to) ? eof : offset;
163		len = stop - start;
164		_debug("wr=%u-%u av=0-%u rd=%u@%u",
165		       offset, to, eof, start, len);
166		ret = afs_fill_page(vnode, key, start, len, page);
167	}
168
169	_leave(" = %d", ret);
170	return ret;
171}
172
173/*
174 * prepare to perform part of a write to a page
175 * - the caller holds the page locked, preventing it from being written out or
176 *   modified by anyone else
177 */
178int afs_prepare_write(struct file *file, struct page *page,
179		      unsigned offset, unsigned to)
180{
181	struct afs_writeback *candidate, *wb;
182	struct afs_vnode *vnode = AFS_FS_I(file->f_dentry->d_inode);
183	struct key *key = file->private_data;
184	pgoff_t index;
185	int ret;
186
187	_enter("{%x:%u},{%lx},%u,%u",
188	       vnode->fid.vid, vnode->fid.vnode, page->index, offset, to);
189
190	candidate = kzalloc(sizeof(*candidate), GFP_KERNEL);
191	if (!candidate)
192		return -ENOMEM;
193	candidate->vnode = vnode;
194	candidate->first = candidate->last = page->index;
195	candidate->offset_first = offset;
196	candidate->to_last = to;
197	candidate->usage = 1;
198	candidate->state = AFS_WBACK_PENDING;
199	init_waitqueue_head(&candidate->waitq);
200
201	if (!PageUptodate(page)) {
202		_debug("not up to date");
203		ret = afs_prepare_page(vnode, page, key, offset, to);
204		if (ret < 0) {
205			kfree(candidate);
206			_leave(" = %d [prep]", ret);
207			return ret;
208		}
209	}
210
211try_again:
212	index = page->index;
213	spin_lock(&vnode->writeback_lock);
214
215	/* see if this page is already pending a writeback under a suitable key
216	 * - if so we can just join onto that one */
217	wb = (struct afs_writeback *) page_private(page);
218	if (wb) {
219		if (wb->key == key && wb->state == AFS_WBACK_PENDING)
220			goto subsume_in_current_wb;
221		goto flush_conflicting_wb;
222	}
223
224	if (index > 0) {
225		/* see if we can find an already pending writeback that we can
226		 * append this page to */
227		list_for_each_entry(wb, &vnode->writebacks, link) {
228			if (wb->last == index - 1 && wb->key == key &&
229			    wb->state == AFS_WBACK_PENDING)
230				goto append_to_previous_wb;
231		}
232	}
233
234	list_add_tail(&candidate->link, &vnode->writebacks);
235	candidate->key = key_get(key);
236	spin_unlock(&vnode->writeback_lock);
237	SetPagePrivate(page);
238	set_page_private(page, (unsigned long) candidate);
239	_leave(" = 0 [new]");
240	return 0;
241
242subsume_in_current_wb:
243	_debug("subsume");
244	ASSERTRANGE(wb->first, <=, index, <=, wb->last);
245	if (index == wb->first && offset < wb->offset_first)
246		wb->offset_first = offset;
247	if (index == wb->last && to > wb->to_last)
248		wb->to_last = to;
249	spin_unlock(&vnode->writeback_lock);
250	kfree(candidate);
251	_leave(" = 0 [sub]");
252	return 0;
253
254append_to_previous_wb:
255	_debug("append into %lx-%lx", wb->first, wb->last);
256	wb->usage++;
257	wb->last++;
258	wb->to_last = to;
259	spin_unlock(&vnode->writeback_lock);
260	SetPagePrivate(page);
261	set_page_private(page, (unsigned long) wb);
262	kfree(candidate);
263	_leave(" = 0 [app]");
264	return 0;
265
266	/* the page is currently bound to another context, so if it's dirty we
267	 * need to flush it before we can use the new context */
268flush_conflicting_wb:
269	_debug("flush conflict");
270	if (wb->state == AFS_WBACK_PENDING)
271		wb->state = AFS_WBACK_CONFLICTING;
272	spin_unlock(&vnode->writeback_lock);
273	if (PageDirty(page)) {
274		ret = afs_write_back_from_locked_page(wb, page);
275		if (ret < 0) {
276			afs_put_writeback(candidate);
277			_leave(" = %d", ret);
278			return ret;
279		}
280	}
281
282	/* the page holds a ref on the writeback record */
283	afs_put_writeback(wb);
284	set_page_private(page, 0);
285	ClearPagePrivate(page);
286	goto try_again;
287}
288
289/*
290 * finalise part of a write to a page
291 */
292int afs_commit_write(struct file *file, struct page *page,
293		     unsigned offset, unsigned to)
294{
295	struct afs_vnode *vnode = AFS_FS_I(file->f_dentry->d_inode);
296	loff_t i_size, maybe_i_size;
297
298	_enter("{%x:%u},{%lx},%u,%u",
299	       vnode->fid.vid, vnode->fid.vnode, page->index, offset, to);
300
301	maybe_i_size = (loff_t) page->index << PAGE_SHIFT;
302	maybe_i_size += to;
303
304	i_size = i_size_read(&vnode->vfs_inode);
305	if (maybe_i_size > i_size) {
306		spin_lock(&vnode->writeback_lock);
307		i_size = i_size_read(&vnode->vfs_inode);
308		if (maybe_i_size > i_size)
309			i_size_write(&vnode->vfs_inode, maybe_i_size);
310		spin_unlock(&vnode->writeback_lock);
311	}
312
313	SetPageUptodate(page);
314	set_page_dirty(page);
315	if (PageDirty(page))
316		_debug("dirtied");
317
318	return 0;
319}
320
321/*
322 * kill all the pages in the given range
323 */
324static void afs_kill_pages(struct afs_vnode *vnode, bool error,
325			   pgoff_t first, pgoff_t last)
326{
327	struct pagevec pv;
328	unsigned count, loop;
329
330	_enter("{%x:%u},%lx-%lx",
331	       vnode->fid.vid, vnode->fid.vnode, first, last);
332
333	pagevec_init(&pv, 0);
334
335	do {
336		_debug("kill %lx-%lx", first, last);
337
338		count = last - first + 1;
339		if (count > PAGEVEC_SIZE)
340			count = PAGEVEC_SIZE;
341		pv.nr = find_get_pages_contig(vnode->vfs_inode.i_mapping,
342					      first, count, pv.pages);
343		ASSERTCMP(pv.nr, ==, count);
344
345		for (loop = 0; loop < count; loop++) {
346			ClearPageUptodate(pv.pages[loop]);
347			if (error)
348				SetPageError(pv.pages[loop]);
349			end_page_writeback(pv.pages[loop]);
350		}
351
352		__pagevec_release(&pv);
353	} while (first < last);
354
355	_leave("");
356}
357
358/*
359 * synchronously write back the locked page and any subsequent non-locked dirty
360 * pages also covered by the same writeback record
361 */
362static int afs_write_back_from_locked_page(struct afs_writeback *wb,
363					   struct page *primary_page)
364{
365	struct page *pages[8], *page;
366	unsigned long count;
367	unsigned n, offset, to;
368	pgoff_t start, first, last;
369	int loop, ret;
370
371	_enter(",%lx", primary_page->index);
372
373	count = 1;
374	if (!clear_page_dirty_for_io(primary_page))
375		BUG();
376	if (test_set_page_writeback(primary_page))
377		BUG();
378
379	/* find all consecutive lockable dirty pages, stopping when we find a
380	 * page that is not immediately lockable, is not dirty or is missing,
381	 * or we reach the end of the range */
382	start = primary_page->index;
383	if (start >= wb->last)
384		goto no_more;
385	start++;
386	do {
387		_debug("more %lx [%lx]", start, count);
388		n = wb->last - start + 1;
389		if (n > ARRAY_SIZE(pages))
390			n = ARRAY_SIZE(pages);
391		n = find_get_pages_contig(wb->vnode->vfs_inode.i_mapping,
392					  start, n, pages);
393		_debug("fgpc %u", n);
394		if (n == 0)
395			goto no_more;
396		if (pages[0]->index != start) {
397			do {
398				put_page(pages[--n]);
399			} while (n > 0);
400			goto no_more;
401		}
402
403		for (loop = 0; loop < n; loop++) {
404			page = pages[loop];
405			if (page->index > wb->last)
406				break;
407			if (TestSetPageLocked(page))
408				break;
409			if (!PageDirty(page) ||
410			    page_private(page) != (unsigned long) wb) {
411				unlock_page(page);
412				break;
413			}
414			if (!clear_page_dirty_for_io(page))
415				BUG();
416			if (test_set_page_writeback(page))
417				BUG();
418			unlock_page(page);
419			put_page(page);
420		}
421		count += loop;
422		if (loop < n) {
423			for (; loop < n; loop++)
424				put_page(pages[loop]);
425			goto no_more;
426		}
427
428		start += loop;
429	} while (start <= wb->last && count < 65536);
430
431no_more:
432	/* we now have a contiguous set of dirty pages, each with writeback set
433	 * and the dirty mark cleared; the first page is locked and must remain
434	 * so, all the rest are unlocked */
435	first = primary_page->index;
436	last = first + count - 1;
437
438	offset = (first == wb->first) ? wb->offset_first : 0;
439	to = (last == wb->last) ? wb->to_last : PAGE_SIZE;
440
441	_debug("write back %lx[%u..] to %lx[..%u]", first, offset, last, to);
442
443	ret = afs_vnode_store_data(wb, first, last, offset, to);
444	if (ret < 0) {
445		switch (ret) {
446		case -EDQUOT:
447		case -ENOSPC:
448			set_bit(AS_ENOSPC,
449				&wb->vnode->vfs_inode.i_mapping->flags);
450			break;
451		case -EROFS:
452		case -EIO:
453		case -EREMOTEIO:
454		case -EFBIG:
455		case -ENOENT:
456		case -ENOMEDIUM:
457		case -ENXIO:
458			afs_kill_pages(wb->vnode, true, first, last);
459			set_bit(AS_EIO, &wb->vnode->vfs_inode.i_mapping->flags);
460			break;
461		case -EACCES:
462		case -EPERM:
463		case -ENOKEY:
464		case -EKEYEXPIRED:
465		case -EKEYREJECTED:
466		case -EKEYREVOKED:
467			afs_kill_pages(wb->vnode, false, first, last);
468			break;
469		default:
470			break;
471		}
472	} else {
473		ret = count;
474	}
475
476	_leave(" = %d", ret);
477	return ret;
478}
479
480/*
481 * write a page back to the server
482 * - the caller locked the page for us
483 */
484int afs_writepage(struct page *page, struct writeback_control *wbc)
485{
486	struct backing_dev_info *bdi = page->mapping->backing_dev_info;
487	struct afs_writeback *wb;
488	int ret;
489
490	_enter("{%lx},", page->index);
491
492	wb = (struct afs_writeback *) page_private(page);
493	ASSERT(wb != NULL);
494
495	ret = afs_write_back_from_locked_page(wb, page);
496	unlock_page(page);
497	if (ret < 0) {
498		_leave(" = %d", ret);
499		return 0;
500	}
501
502	wbc->nr_to_write -= ret;
503	if (wbc->nonblocking && bdi_write_congested(bdi))
504		wbc->encountered_congestion = 1;
505
506	_leave(" = 0");
507	return 0;
508}
509
510/*
511 * write a region of pages back to the server
512 */
513int afs_writepages_region(struct address_space *mapping,
514			  struct writeback_control *wbc,
515			  pgoff_t index, pgoff_t end, pgoff_t *_next)
516{
517	struct backing_dev_info *bdi = mapping->backing_dev_info;
518	struct afs_writeback *wb;
519	struct page *page;
520	int ret, n;
521
522	_enter(",,%lx,%lx,", index, end);
523
524	do {
525		n = find_get_pages_tag(mapping, &index, PAGECACHE_TAG_DIRTY,
526				       1, &page);
527		if (!n)
528			break;
529
530		_debug("wback %lx", page->index);
531
532		if (page->index > end) {
533			*_next = index;
534			page_cache_release(page);
535			_leave(" = 0 [%lx]", *_next);
536			return 0;
537		}
538
539		/* at this point we hold neither mapping->tree_lock nor lock on
540		 * the page itself: the page may be truncated or invalidated
541		 * (changing page->mapping to NULL), or even swizzled back from
542		 * swapper_space to tmpfs file mapping
543		 */
544		lock_page(page);
545
546		if (page->mapping != mapping) {
547			unlock_page(page);
548			page_cache_release(page);
549			continue;
550		}
551
552		if (wbc->sync_mode != WB_SYNC_NONE)
553			wait_on_page_writeback(page);
554
555		if (PageWriteback(page) || !PageDirty(page)) {
556			unlock_page(page);
557			continue;
558		}
559
560		wb = (struct afs_writeback *) page_private(page);
561		ASSERT(wb != NULL);
562
563		spin_lock(&wb->vnode->writeback_lock);
564		wb->state = AFS_WBACK_WRITING;
565		spin_unlock(&wb->vnode->writeback_lock);
566
567		ret = afs_write_back_from_locked_page(wb, page);
568		unlock_page(page);
569		page_cache_release(page);
570		if (ret < 0) {
571			_leave(" = %d", ret);
572			return ret;
573		}
574
575		wbc->nr_to_write -= ret;
576
577		if (wbc->nonblocking && bdi_write_congested(bdi)) {
578			wbc->encountered_congestion = 1;
579			break;
580		}
581
582		cond_resched();
583	} while (index < end && wbc->nr_to_write > 0);
584
585	*_next = index;
586	_leave(" = 0 [%lx]", *_next);
587	return 0;
588}
589
590/*
591 * write some of the pending data back to the server
592 */
593int afs_writepages(struct address_space *mapping,
594		   struct writeback_control *wbc)
595{
596	struct backing_dev_info *bdi = mapping->backing_dev_info;
597	pgoff_t start, end, next;
598	int ret;
599
600	_enter("");
601
602	if (wbc->nonblocking && bdi_write_congested(bdi)) {
603		wbc->encountered_congestion = 1;
604		_leave(" = 0 [congest]");
605		return 0;
606	}
607
608	if (wbc->range_cyclic) {
609		start = mapping->writeback_index;
610		end = -1;
611		ret = afs_writepages_region(mapping, wbc, start, end, &next);
612		if (start > 0 && wbc->nr_to_write > 0 && ret == 0 &&
613		    !(wbc->nonblocking && wbc->encountered_congestion))
614			ret = afs_writepages_region(mapping, wbc, 0, start,
615						    &next);
616		mapping->writeback_index = next;
617	} else if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) {
618		end = (pgoff_t)(LLONG_MAX >> PAGE_CACHE_SHIFT);
619		ret = afs_writepages_region(mapping, wbc, 0, end, &next);
620		if (wbc->nr_to_write > 0)
621			mapping->writeback_index = next;
622	} else {
623		start = wbc->range_start >> PAGE_CACHE_SHIFT;
624		end = wbc->range_end >> PAGE_CACHE_SHIFT;
625		ret = afs_writepages_region(mapping, wbc, start, end, &next);
626	}
627
628	_leave(" = %d", ret);
629	return ret;
630}
631
632/*
633 * write an inode back
634 */
635int afs_write_inode(struct inode *inode, int sync)
636{
637	struct afs_vnode *vnode = AFS_FS_I(inode);
638	int ret;
639
640	_enter("{%x:%u},", vnode->fid.vid, vnode->fid.vnode);
641
642	ret = 0;
643	if (sync) {
644		ret = filemap_fdatawait(inode->i_mapping);
645		if (ret < 0)
646			__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
647	}
648
649	_leave(" = %d", ret);
650	return ret;
651}
652
653/*
654 * completion of write to server
655 */
656void afs_pages_written_back(struct afs_vnode *vnode, struct afs_call *call)
657{
658	struct afs_writeback *wb = call->wb;
659	struct pagevec pv;
660	unsigned count, loop;
661	pgoff_t first = call->first, last = call->last;
662	bool free_wb;
663
664	_enter("{%x:%u},{%lx-%lx}",
665	       vnode->fid.vid, vnode->fid.vnode, first, last);
666
667	ASSERT(wb != NULL);
668
669	pagevec_init(&pv, 0);
670
671	do {
672		_debug("done %lx-%lx", first, last);
673
674		count = last - first + 1;
675		if (count > PAGEVEC_SIZE)
676			count = PAGEVEC_SIZE;
677		pv.nr = find_get_pages_contig(call->mapping, first, count,
678					      pv.pages);
679		ASSERTCMP(pv.nr, ==, count);
680
681		spin_lock(&vnode->writeback_lock);
682		for (loop = 0; loop < count; loop++) {
683			struct page *page = pv.pages[loop];
684			end_page_writeback(page);
685			if (page_private(page) == (unsigned long) wb) {
686				set_page_private(page, 0);
687				ClearPagePrivate(page);
688				wb->usage--;
689			}
690		}
691		free_wb = false;
692		if (wb->usage == 0) {
693			afs_unlink_writeback(wb);
694			free_wb = true;
695		}
696		spin_unlock(&vnode->writeback_lock);
697		first += count;
698		if (free_wb) {
699			afs_free_writeback(wb);
700			wb = NULL;
701		}
702
703		__pagevec_release(&pv);
704	} while (first <= last);
705
706	_leave("");
707}
708
709/*
710 * write to an AFS file
711 */
712ssize_t afs_file_write(struct kiocb *iocb, const struct iovec *iov,
713		       unsigned long nr_segs, loff_t pos)
714{
715	struct dentry *dentry = iocb->ki_filp->f_path.dentry;
716	struct afs_vnode *vnode = AFS_FS_I(dentry->d_inode);
717	ssize_t result;
718	size_t count = iov_length(iov, nr_segs);
719	int ret;
720
721	_enter("{%x.%u},{%zu},%lu,",
722	       vnode->fid.vid, vnode->fid.vnode, count, nr_segs);
723
724	if (IS_SWAPFILE(&vnode->vfs_inode)) {
725		printk(KERN_INFO
726		       "AFS: Attempt to write to active swap file!\n");
727		return -EBUSY;
728	}
729
730	if (!count)
731		return 0;
732
733	result = generic_file_aio_write(iocb, iov, nr_segs, pos);
734	if (IS_ERR_VALUE(result)) {
735		_leave(" = %zd", result);
736		return result;
737	}
738
739	/* return error values for O_SYNC and IS_SYNC() */
740	if (IS_SYNC(&vnode->vfs_inode) || iocb->ki_filp->f_flags & O_SYNC) {
741		ret = afs_fsync(iocb->ki_filp, dentry, 1);
742		if (ret < 0)
743			result = ret;
744	}
745
746	_leave(" = %zd", result);
747	return result;
748}
749
750/*
751 * flush the vnode to the fileserver
752 */
753int afs_writeback_all(struct afs_vnode *vnode)
754{
755	struct address_space *mapping = vnode->vfs_inode.i_mapping;
756	struct writeback_control wbc = {
757		.bdi		= mapping->backing_dev_info,
758		.sync_mode	= WB_SYNC_ALL,
759		.nr_to_write	= LONG_MAX,
760		.for_writepages = 1,
761		.range_cyclic	= 1,
762	};
763	int ret;
764
765	_enter("");
766
767	ret = mapping->a_ops->writepages(mapping, &wbc);
768	__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
769
770	_leave(" = %d", ret);
771	return ret;
772}
773
774/*
775 * flush any dirty pages for this process, and check for write errors.
776 * - the return status from this call provides a reliable indication of
777 *   whether any write errors occurred for this process.
778 */
779int afs_fsync(struct file *file, struct dentry *dentry, int datasync)
780{
781	struct afs_writeback *wb, *xwb;
782	struct afs_vnode *vnode = AFS_FS_I(dentry->d_inode);
783	int ret;
784
785	_enter("{%x:%u},{n=%s},%d",
786	       vnode->fid.vid, vnode->fid.vnode, dentry->d_name.name,
787	       datasync);
788
789	/* use a writeback record as a marker in the queue - when this reaches
790	 * the front of the queue, all the outstanding writes are either
791	 * completed or rejected */
792	wb = kzalloc(sizeof(*wb), GFP_KERNEL);
793	if (!wb)
794		return -ENOMEM;
795	wb->vnode = vnode;
796	wb->first = 0;
797	wb->last = -1;
798	wb->offset_first = 0;
799	wb->to_last = PAGE_SIZE;
800	wb->usage = 1;
801	wb->state = AFS_WBACK_SYNCING;
802	init_waitqueue_head(&wb->waitq);
803
804	spin_lock(&vnode->writeback_lock);
805	list_for_each_entry(xwb, &vnode->writebacks, link) {
806		if (xwb->state == AFS_WBACK_PENDING)
807			xwb->state = AFS_WBACK_CONFLICTING;
808	}
809	list_add_tail(&wb->link, &vnode->writebacks);
810	spin_unlock(&vnode->writeback_lock);
811
812	/* push all the outstanding writebacks to the server */
813	ret = afs_writeback_all(vnode);
814	if (ret < 0) {
815		afs_put_writeback(wb);
816		_leave(" = %d [wb]", ret);
817		return ret;
818	}
819
820	/* wait for the preceding writes to actually complete */
821	ret = wait_event_interruptible(wb->waitq,
822				       wb->state == AFS_WBACK_COMPLETE ||
823				       vnode->writebacks.next == &wb->link);
824	afs_put_writeback(wb);
825	_leave(" = %d", ret);
826	return ret;
827}
828