1/************************************************************************
2 * Copyright 2003 Digi International (www.digi.com)
3 *
4 * Copyright (C) 2004 IBM Corporation. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2, or (at your option)
9 * any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY, EXPRESS OR IMPLIED; without even the
13 * implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
14 * PURPOSE.  See the GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 * Temple Place - Suite 330, Boston,
19 * MA  02111-1307, USA.
20 *
21 * Contact Information:
22 * Scott H Kilau <Scott_Kilau@digi.com>
23 * Ananda Venkatarman <mansarov@us.ibm.com>
24 * Modifications:
25 * 01/19/06:	changed jsm_input routine to use the dynamically allocated
26 *		tty_buffer changes. Contributors: Scott Kilau and Ananda V.
27 ***********************************************************************/
28#include <linux/tty.h>
29#include <linux/tty_flip.h>
30#include <linux/serial_reg.h>
31#include <linux/delay.h>	/* For udelay */
32#include <linux/pci.h>
33
34#include "jsm.h"
35
36static void jsm_carrier(struct jsm_channel *ch);
37
38static inline int jsm_get_mstat(struct jsm_channel *ch)
39{
40	unsigned char mstat;
41	unsigned result;
42
43	jsm_printk(IOCTL, INFO, &ch->ch_bd->pci_dev, "start\n");
44
45	mstat = (ch->ch_mostat | ch->ch_mistat);
46
47	result = 0;
48
49	if (mstat & UART_MCR_DTR)
50		result |= TIOCM_DTR;
51	if (mstat & UART_MCR_RTS)
52		result |= TIOCM_RTS;
53	if (mstat & UART_MSR_CTS)
54		result |= TIOCM_CTS;
55	if (mstat & UART_MSR_DSR)
56		result |= TIOCM_DSR;
57	if (mstat & UART_MSR_RI)
58		result |= TIOCM_RI;
59	if (mstat & UART_MSR_DCD)
60		result |= TIOCM_CD;
61
62	jsm_printk(IOCTL, INFO, &ch->ch_bd->pci_dev, "finish\n");
63	return result;
64}
65
66static unsigned int jsm_tty_tx_empty(struct uart_port *port)
67{
68	return TIOCSER_TEMT;
69}
70
71/*
72 * Return modem signals to ld.
73 */
74static unsigned int jsm_tty_get_mctrl(struct uart_port *port)
75{
76	int result;
77	struct jsm_channel *channel = (struct jsm_channel *)port;
78
79	jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "start\n");
80
81	result = jsm_get_mstat(channel);
82
83	if (result < 0)
84		return -ENXIO;
85
86	jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "finish\n");
87
88	return result;
89}
90
91/*
92 * jsm_set_modem_info()
93 *
94 * Set modem signals, called by ld.
95 */
96static void jsm_tty_set_mctrl(struct uart_port *port, unsigned int mctrl)
97{
98	struct jsm_channel *channel = (struct jsm_channel *)port;
99
100	jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "start\n");
101
102	if (mctrl & TIOCM_RTS)
103		channel->ch_mostat |= UART_MCR_RTS;
104	else
105		channel->ch_mostat &= ~UART_MCR_RTS;
106
107	if (mctrl & TIOCM_DTR)
108		channel->ch_mostat |= UART_MCR_DTR;
109	else
110		channel->ch_mostat &= ~UART_MCR_DTR;
111
112	channel->ch_bd->bd_ops->assert_modem_signals(channel);
113
114	jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "finish\n");
115	udelay(10);
116}
117
118static void jsm_tty_start_tx(struct uart_port *port)
119{
120	struct jsm_channel *channel = (struct jsm_channel *)port;
121
122	jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "start\n");
123
124	channel->ch_flags &= ~(CH_STOP);
125	jsm_tty_write(port);
126
127	jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "finish\n");
128}
129
130static void jsm_tty_stop_tx(struct uart_port *port)
131{
132	struct jsm_channel *channel = (struct jsm_channel *)port;
133
134	jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "start\n");
135
136	channel->ch_flags |= (CH_STOP);
137
138	jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "finish\n");
139}
140
141static void jsm_tty_send_xchar(struct uart_port *port, char ch)
142{
143	unsigned long lock_flags;
144	struct jsm_channel *channel = (struct jsm_channel *)port;
145	struct ktermios *termios;
146
147	spin_lock_irqsave(&port->lock, lock_flags);
148	termios = port->info->tty->termios;
149	if (ch == termios->c_cc[VSTART])
150		channel->ch_bd->bd_ops->send_start_character(channel);
151
152	if (ch == termios->c_cc[VSTOP])
153		channel->ch_bd->bd_ops->send_stop_character(channel);
154	spin_unlock_irqrestore(&port->lock, lock_flags);
155}
156
157static void jsm_tty_stop_rx(struct uart_port *port)
158{
159	struct jsm_channel *channel = (struct jsm_channel *)port;
160
161	channel->ch_bd->bd_ops->disable_receiver(channel);
162}
163
164static void jsm_tty_break(struct uart_port *port, int break_state)
165{
166	unsigned long lock_flags;
167	struct jsm_channel *channel = (struct jsm_channel *)port;
168
169	spin_lock_irqsave(&port->lock, lock_flags);
170	if (break_state == -1)
171		channel->ch_bd->bd_ops->send_break(channel);
172	else
173		channel->ch_bd->bd_ops->clear_break(channel, 0);
174
175	spin_unlock_irqrestore(&port->lock, lock_flags);
176}
177
178static int jsm_tty_open(struct uart_port *port)
179{
180	struct jsm_board *brd;
181	int rc = 0;
182	struct jsm_channel *channel = (struct jsm_channel *)port;
183	struct ktermios *termios;
184
185	/* Get board pointer from our array of majors we have allocated */
186	brd = channel->ch_bd;
187
188	/*
189	 * Allocate channel buffers for read/write/error.
190	 * Set flag, so we don't get trounced on.
191	 */
192	channel->ch_flags |= (CH_OPENING);
193
194	/* Drop locks, as malloc with GFP_KERNEL can sleep */
195
196	if (!channel->ch_rqueue) {
197		channel->ch_rqueue = kzalloc(RQUEUESIZE, GFP_KERNEL);
198		if (!channel->ch_rqueue) {
199			jsm_printk(INIT, ERR, &channel->ch_bd->pci_dev,
200				"unable to allocate read queue buf");
201			return -ENOMEM;
202		}
203	}
204	if (!channel->ch_equeue) {
205		channel->ch_equeue = kzalloc(EQUEUESIZE, GFP_KERNEL);
206		if (!channel->ch_equeue) {
207			jsm_printk(INIT, ERR, &channel->ch_bd->pci_dev,
208				"unable to allocate error queue buf");
209			return -ENOMEM;
210		}
211	}
212	if (!channel->ch_wqueue) {
213		channel->ch_wqueue = kzalloc(WQUEUESIZE, GFP_KERNEL);
214		if (!channel->ch_wqueue) {
215			jsm_printk(INIT, ERR, &channel->ch_bd->pci_dev,
216				"unable to allocate write queue buf");
217			return -ENOMEM;
218		}
219	}
220
221	channel->ch_flags &= ~(CH_OPENING);
222	/*
223	 * Initialize if neither terminal is open.
224	 */
225	jsm_printk(OPEN, INFO, &channel->ch_bd->pci_dev,
226		"jsm_open: initializing channel in open...\n");
227
228	/*
229	 * Flush input queues.
230	 */
231	channel->ch_r_head = channel->ch_r_tail = 0;
232	channel->ch_e_head = channel->ch_e_tail = 0;
233	channel->ch_w_head = channel->ch_w_tail = 0;
234
235	brd->bd_ops->flush_uart_write(channel);
236	brd->bd_ops->flush_uart_read(channel);
237
238	channel->ch_flags = 0;
239	channel->ch_cached_lsr = 0;
240	channel->ch_stops_sent = 0;
241
242	termios = port->info->tty->termios;
243	channel->ch_c_cflag	= termios->c_cflag;
244	channel->ch_c_iflag	= termios->c_iflag;
245	channel->ch_c_oflag	= termios->c_oflag;
246	channel->ch_c_lflag	= termios->c_lflag;
247	channel->ch_startc	= termios->c_cc[VSTART];
248	channel->ch_stopc	= termios->c_cc[VSTOP];
249
250	/* Tell UART to init itself */
251	brd->bd_ops->uart_init(channel);
252
253	/*
254	 * Run param in case we changed anything
255	 */
256	brd->bd_ops->param(channel);
257
258	jsm_carrier(channel);
259
260	channel->ch_open_count++;
261
262	jsm_printk(OPEN, INFO, &channel->ch_bd->pci_dev, "finish\n");
263	return rc;
264}
265
266static void jsm_tty_close(struct uart_port *port)
267{
268	struct jsm_board *bd;
269	struct ktermios *ts;
270	struct jsm_channel *channel = (struct jsm_channel *)port;
271
272	jsm_printk(CLOSE, INFO, &channel->ch_bd->pci_dev, "start\n");
273
274	bd = channel->ch_bd;
275	ts = channel->uart_port.info->tty->termios;
276
277	channel->ch_flags &= ~(CH_STOPI);
278
279	channel->ch_open_count--;
280
281	/*
282	 * If we have HUPCL set, lower DTR and RTS
283	 */
284	if (channel->ch_c_cflag & HUPCL) {
285		jsm_printk(CLOSE, INFO, &channel->ch_bd->pci_dev,
286			"Close. HUPCL set, dropping DTR/RTS\n");
287
288		/* Drop RTS/DTR */
289		channel->ch_mostat &= ~(UART_MCR_DTR | UART_MCR_RTS);
290		bd->bd_ops->assert_modem_signals(channel);
291	}
292
293	channel->ch_old_baud = 0;
294
295	/* Turn off UART interrupts for this port */
296	channel->ch_bd->bd_ops->uart_off(channel);
297
298	jsm_printk(CLOSE, INFO, &channel->ch_bd->pci_dev, "finish\n");
299}
300
301static void jsm_tty_set_termios(struct uart_port *port,
302				 struct ktermios *termios,
303				 struct ktermios *old_termios)
304{
305	unsigned long lock_flags;
306	struct jsm_channel *channel = (struct jsm_channel *)port;
307
308	spin_lock_irqsave(&port->lock, lock_flags);
309	channel->ch_c_cflag	= termios->c_cflag;
310	channel->ch_c_iflag	= termios->c_iflag;
311	channel->ch_c_oflag	= termios->c_oflag;
312	channel->ch_c_lflag	= termios->c_lflag;
313	channel->ch_startc	= termios->c_cc[VSTART];
314	channel->ch_stopc	= termios->c_cc[VSTOP];
315
316	channel->ch_bd->bd_ops->param(channel);
317	jsm_carrier(channel);
318	spin_unlock_irqrestore(&port->lock, lock_flags);
319}
320
321static const char *jsm_tty_type(struct uart_port *port)
322{
323	return "jsm";
324}
325
326static void jsm_tty_release_port(struct uart_port *port)
327{
328}
329
330static int jsm_tty_request_port(struct uart_port *port)
331{
332	return 0;
333}
334
335static void jsm_config_port(struct uart_port *port, int flags)
336{
337	port->type = PORT_JSM;
338}
339
340static struct uart_ops jsm_ops = {
341	.tx_empty	= jsm_tty_tx_empty,
342	.set_mctrl	= jsm_tty_set_mctrl,
343	.get_mctrl	= jsm_tty_get_mctrl,
344	.stop_tx	= jsm_tty_stop_tx,
345	.start_tx	= jsm_tty_start_tx,
346	.send_xchar	= jsm_tty_send_xchar,
347	.stop_rx	= jsm_tty_stop_rx,
348	.break_ctl	= jsm_tty_break,
349	.startup	= jsm_tty_open,
350	.shutdown	= jsm_tty_close,
351	.set_termios	= jsm_tty_set_termios,
352	.type		= jsm_tty_type,
353	.release_port	= jsm_tty_release_port,
354	.request_port	= jsm_tty_request_port,
355	.config_port	= jsm_config_port,
356};
357
358/*
359 * jsm_tty_init()
360 *
361 * Init the tty subsystem.  Called once per board after board has been
362 * downloaded and init'ed.
363 */
364int jsm_tty_init(struct jsm_board *brd)
365{
366	int i;
367	void __iomem *vaddr;
368	struct jsm_channel *ch;
369
370	if (!brd)
371		return -ENXIO;
372
373	jsm_printk(INIT, INFO, &brd->pci_dev, "start\n");
374
375	/*
376	 * Initialize board structure elements.
377	 */
378
379	brd->nasync = brd->maxports;
380
381	/*
382	 * Allocate channel memory that might not have been allocated
383	 * when the driver was first loaded.
384	 */
385	for (i = 0; i < brd->nasync; i++) {
386		if (!brd->channels[i]) {
387
388			/*
389			 * Okay to malloc with GFP_KERNEL, we are not at
390			 * interrupt context, and there are no locks held.
391			 */
392			brd->channels[i] = kzalloc(sizeof(struct jsm_channel), GFP_KERNEL);
393			if (!brd->channels[i]) {
394				jsm_printk(CORE, ERR, &brd->pci_dev,
395					"%s:%d Unable to allocate memory for channel struct\n",
396							 __FILE__, __LINE__);
397			}
398		}
399	}
400
401	ch = brd->channels[0];
402	vaddr = brd->re_map_membase;
403
404	/* Set up channel variables */
405	for (i = 0; i < brd->nasync; i++, ch = brd->channels[i]) {
406
407		if (!brd->channels[i])
408			continue;
409
410		spin_lock_init(&ch->ch_lock);
411
412		if (brd->bd_uart_offset == 0x200)
413			ch->ch_neo_uart =  vaddr + (brd->bd_uart_offset * i);
414
415		ch->ch_bd = brd;
416		ch->ch_portnum = i;
417
418		/* .25 second delay */
419		ch->ch_close_delay = 250;
420
421		init_waitqueue_head(&ch->ch_flags_wait);
422	}
423
424	jsm_printk(INIT, INFO, &brd->pci_dev, "finish\n");
425	return 0;
426}
427
428int jsm_uart_port_init(struct jsm_board *brd)
429{
430	int i;
431	struct jsm_channel *ch;
432
433	if (!brd)
434		return -ENXIO;
435
436	jsm_printk(INIT, INFO, &brd->pci_dev, "start\n");
437
438	/*
439	 * Initialize board structure elements.
440	 */
441
442	brd->nasync = brd->maxports;
443
444	/* Set up channel variables */
445	for (i = 0; i < brd->nasync; i++, ch = brd->channels[i]) {
446
447		if (!brd->channels[i])
448			continue;
449
450		brd->channels[i]->uart_port.irq = brd->irq;
451		brd->channels[i]->uart_port.uartclk = 14745600;
452		brd->channels[i]->uart_port.type = PORT_JSM;
453		brd->channels[i]->uart_port.iotype = UPIO_MEM;
454		brd->channels[i]->uart_port.membase = brd->re_map_membase;
455		brd->channels[i]->uart_port.fifosize = 16;
456		brd->channels[i]->uart_port.ops = &jsm_ops;
457		brd->channels[i]->uart_port.line = brd->channels[i]->ch_portnum + brd->boardnum * 2;
458		if (uart_add_one_port (&jsm_uart_driver, &brd->channels[i]->uart_port))
459			printk(KERN_INFO "Added device failed\n");
460		else
461			printk(KERN_INFO "Added device \n");
462	}
463
464	jsm_printk(INIT, INFO, &brd->pci_dev, "finish\n");
465	return 0;
466}
467
468int jsm_remove_uart_port(struct jsm_board *brd)
469{
470	int i;
471	struct jsm_channel *ch;
472
473	if (!brd)
474		return -ENXIO;
475
476	jsm_printk(INIT, INFO, &brd->pci_dev, "start\n");
477
478	/*
479	 * Initialize board structure elements.
480	 */
481
482	brd->nasync = brd->maxports;
483
484	/* Set up channel variables */
485	for (i = 0; i < brd->nasync; i++) {
486
487		if (!brd->channels[i])
488			continue;
489
490		ch = brd->channels[i];
491
492		uart_remove_one_port(&jsm_uart_driver, &brd->channels[i]->uart_port);
493	}
494
495	jsm_printk(INIT, INFO, &brd->pci_dev, "finish\n");
496	return 0;
497}
498
499void jsm_input(struct jsm_channel *ch)
500{
501	struct jsm_board *bd;
502	struct tty_struct *tp;
503	struct tty_ldisc *ld;
504	u32 rmask;
505	u16 head;
506	u16 tail;
507	int data_len;
508	unsigned long lock_flags;
509	int flip_len = 0;
510	int len = 0;
511	int n = 0;
512	int s = 0;
513	int i = 0;
514
515	jsm_printk(READ, INFO, &ch->ch_bd->pci_dev, "start\n");
516
517	if (!ch)
518		return;
519
520	tp = ch->uart_port.info->tty;
521
522	bd = ch->ch_bd;
523	if(!bd)
524		return;
525
526	spin_lock_irqsave(&ch->ch_lock, lock_flags);
527
528	/*
529	 *Figure the number of characters in the buffer.
530	 *Exit immediately if none.
531	 */
532
533	rmask = RQUEUEMASK;
534
535	head = ch->ch_r_head & rmask;
536	tail = ch->ch_r_tail & rmask;
537
538	data_len = (head - tail) & rmask;
539	if (data_len == 0) {
540		spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
541		return;
542	}
543
544	jsm_printk(READ, INFO, &ch->ch_bd->pci_dev, "start\n");
545
546	/*
547	 *If the device is not open, or CREAD is off, flush
548	 *input data and return immediately.
549	 */
550	if (!tp ||
551		!(tp->termios->c_cflag & CREAD) ) {
552
553		jsm_printk(READ, INFO, &ch->ch_bd->pci_dev,
554			"input. dropping %d bytes on port %d...\n", data_len, ch->ch_portnum);
555		ch->ch_r_head = tail;
556
557		/* Force queue flow control to be released, if needed */
558		jsm_check_queue_flow_control(ch);
559
560		spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
561		return;
562	}
563
564	/*
565	 * If we are throttled, simply don't read any data.
566	 */
567	if (ch->ch_flags & CH_STOPI) {
568		spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
569		jsm_printk(READ, INFO, &ch->ch_bd->pci_dev,
570			"Port %d throttled, not reading any data. head: %x tail: %x\n",
571			ch->ch_portnum, head, tail);
572		return;
573	}
574
575	jsm_printk(READ, INFO, &ch->ch_bd->pci_dev, "start 2\n");
576
577	/*
578	 * If the rxbuf is empty and we are not throttled, put as much
579	 * as we can directly into the linux TTY buffer.
580	 *
581	 */
582	flip_len = TTY_FLIPBUF_SIZE;
583
584	len = min(data_len, flip_len);
585	len = min(len, (N_TTY_BUF_SIZE - 1) - tp->read_cnt);
586	ld = tty_ldisc_ref(tp);
587
588	/*
589	 * If we were unable to get a reference to the ld,
590	 * don't flush our buffer, and act like the ld doesn't
591	 * have any space to put the data right now.
592	 */
593	if (!ld) {
594		len = 0;
595	} else {
596		/*
597		 * If ld doesn't have a pointer to a receive_buf function,
598		 * flush the data, then act like the ld doesn't have any
599		 * space to put the data right now.
600		 */
601		if (!ld->receive_buf) {
602				ch->ch_r_head = ch->ch_r_tail;
603				len = 0;
604		}
605	}
606
607	if (len <= 0) {
608		spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
609		jsm_printk(READ, INFO, &ch->ch_bd->pci_dev, "jsm_input 1\n");
610		if (ld)
611			tty_ldisc_deref(ld);
612		return;
613	}
614
615	len = tty_buffer_request_room(tp, len);
616	n = len;
617
618	/*
619	 * n now contains the most amount of data we can copy,
620	 * bounded either by the flip buffer size or the amount
621	 * of data the card actually has pending...
622	 */
623	while (n) {
624		s = ((head >= tail) ? head : RQUEUESIZE) - tail;
625		s = min(s, n);
626
627		if (s <= 0)
628			break;
629
630			/*
631			 * If conditions are such that ld needs to see all
632			 * UART errors, we will have to walk each character
633			 * and error byte and send them to the buffer one at
634			 * a time.
635			 */
636
637		if (I_PARMRK(tp) || I_BRKINT(tp) || I_INPCK(tp)) {
638			for (i = 0; i < s; i++) {
639				/*
640				 * Give the Linux ld the flags in the
641				 * format it likes.
642				 */
643				if (*(ch->ch_equeue +tail +i) & UART_LSR_BI)
644					tty_insert_flip_char(tp, *(ch->ch_rqueue +tail +i),  TTY_BREAK);
645				else if (*(ch->ch_equeue +tail +i) & UART_LSR_PE)
646					tty_insert_flip_char(tp, *(ch->ch_rqueue +tail +i), TTY_PARITY);
647				else if (*(ch->ch_equeue +tail +i) & UART_LSR_FE)
648					tty_insert_flip_char(tp, *(ch->ch_rqueue +tail +i), TTY_FRAME);
649				else
650				tty_insert_flip_char(tp, *(ch->ch_rqueue +tail +i), TTY_NORMAL);
651			}
652		} else {
653			tty_insert_flip_string(tp, ch->ch_rqueue + tail, s) ;
654		}
655		tail += s;
656		n -= s;
657		/* Flip queue if needed */
658		tail &= rmask;
659	}
660
661	ch->ch_r_tail = tail & rmask;
662	ch->ch_e_tail = tail & rmask;
663	jsm_check_queue_flow_control(ch);
664	spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
665
666	/* Tell the tty layer its okay to "eat" the data now */
667	tty_flip_buffer_push(tp);
668
669	if (ld)
670		tty_ldisc_deref(ld);
671
672	jsm_printk(IOCTL, INFO, &ch->ch_bd->pci_dev, "finish\n");
673}
674
675static void jsm_carrier(struct jsm_channel *ch)
676{
677	struct jsm_board *bd;
678
679	int virt_carrier = 0;
680	int phys_carrier = 0;
681
682	jsm_printk(CARR, INFO, &ch->ch_bd->pci_dev, "start\n");
683	if (!ch)
684		return;
685
686	bd = ch->ch_bd;
687
688	if (!bd)
689		return;
690
691	if (ch->ch_mistat & UART_MSR_DCD) {
692		jsm_printk(CARR, INFO, &ch->ch_bd->pci_dev,
693			"mistat: %x D_CD: %x\n", ch->ch_mistat, ch->ch_mistat & UART_MSR_DCD);
694		phys_carrier = 1;
695	}
696
697	if (ch->ch_c_cflag & CLOCAL)
698		virt_carrier = 1;
699
700	jsm_printk(CARR, INFO, &ch->ch_bd->pci_dev,
701		"DCD: physical: %d virt: %d\n", phys_carrier, virt_carrier);
702
703	/*
704	 * Test for a VIRTUAL carrier transition to HIGH.
705	 */
706	if (((ch->ch_flags & CH_FCAR) == 0) && (virt_carrier == 1)) {
707
708		/*
709		 * When carrier rises, wake any threads waiting
710		 * for carrier in the open routine.
711		 */
712
713		jsm_printk(CARR, INFO, &ch->ch_bd->pci_dev,
714			"carrier: virt DCD rose\n");
715
716		if (waitqueue_active(&(ch->ch_flags_wait)))
717			wake_up_interruptible(&ch->ch_flags_wait);
718	}
719
720	/*
721	 * Test for a PHYSICAL carrier transition to HIGH.
722	 */
723	if (((ch->ch_flags & CH_CD) == 0) && (phys_carrier == 1)) {
724
725		/*
726		 * When carrier rises, wake any threads waiting
727		 * for carrier in the open routine.
728		 */
729
730		jsm_printk(CARR, INFO, &ch->ch_bd->pci_dev,
731			"carrier: physical DCD rose\n");
732
733		if (waitqueue_active(&(ch->ch_flags_wait)))
734			wake_up_interruptible(&ch->ch_flags_wait);
735	}
736
737	/*
738	 *  Test for a PHYSICAL transition to low, so long as we aren't
739	 *  currently ignoring physical transitions (which is what "virtual
740	 *  carrier" indicates).
741	 *
742	 *  The transition of the virtual carrier to low really doesn't
743	 *  matter... it really only means "ignore carrier state", not
744	 *  "make pretend that carrier is there".
745	 */
746	if ((virt_carrier == 0) && ((ch->ch_flags & CH_CD) != 0)
747			&& (phys_carrier == 0)) {
748		/*
749		 *	When carrier drops:
750		 *
751		 *	Drop carrier on all open units.
752		 *
753		 *	Flush queues, waking up any task waiting in the
754		 *	line discipline.
755		 *
756		 *	Send a hangup to the control terminal.
757		 *
758		 *	Enable all select calls.
759		 */
760		if (waitqueue_active(&(ch->ch_flags_wait)))
761			wake_up_interruptible(&ch->ch_flags_wait);
762	}
763
764	/*
765	 *  Make sure that our cached values reflect the current reality.
766	 */
767	if (virt_carrier == 1)
768		ch->ch_flags |= CH_FCAR;
769	else
770		ch->ch_flags &= ~CH_FCAR;
771
772	if (phys_carrier == 1)
773		ch->ch_flags |= CH_CD;
774	else
775		ch->ch_flags &= ~CH_CD;
776}
777
778
779void jsm_check_queue_flow_control(struct jsm_channel *ch)
780{
781	struct board_ops *bd_ops = ch->ch_bd->bd_ops;
782	int qleft = 0;
783
784	/* Store how much space we have left in the queue */
785	if ((qleft = ch->ch_r_tail - ch->ch_r_head - 1) < 0)
786		qleft += RQUEUEMASK + 1;
787
788	/*
789	 * Check to see if we should enforce flow control on our queue because
790	 * the ld (or user) isn't reading data out of our queue fast enuf.
791	 *
792	 * NOTE: This is done based on what the current flow control of the
793	 * port is set for.
794	 *
795	 * 1) HWFLOW (RTS) - Turn off the UART's Receive interrupt.
796	 *	This will cause the UART's FIFO to back up, and force
797	 *	the RTS signal to be dropped.
798	 * 2) SWFLOW (IXOFF) - Keep trying to send a stop character to
799	 *	the other side, in hopes it will stop sending data to us.
800	 * 3) NONE - Nothing we can do.  We will simply drop any extra data
801	 *	that gets sent into us when the queue fills up.
802	 */
803	if (qleft < 256) {
804		/* HWFLOW */
805		if (ch->ch_c_cflag & CRTSCTS) {
806			if(!(ch->ch_flags & CH_RECEIVER_OFF)) {
807				bd_ops->disable_receiver(ch);
808				ch->ch_flags |= (CH_RECEIVER_OFF);
809				jsm_printk(READ, INFO, &ch->ch_bd->pci_dev,
810					"Internal queue hit hilevel mark (%d)! Turning off interrupts.\n",
811					qleft);
812			}
813		}
814		/* SWFLOW */
815		else if (ch->ch_c_iflag & IXOFF) {
816			if (ch->ch_stops_sent <= MAX_STOPS_SENT) {
817				bd_ops->send_stop_character(ch);
818				ch->ch_stops_sent++;
819				jsm_printk(READ, INFO, &ch->ch_bd->pci_dev,
820					"Sending stop char! Times sent: %x\n", ch->ch_stops_sent);
821			}
822		}
823	}
824
825	/*
826	 * Check to see if we should unenforce flow control because
827	 * ld (or user) finally read enuf data out of our queue.
828	 *
829	 * NOTE: This is done based on what the current flow control of the
830	 * port is set for.
831	 *
832	 * 1) HWFLOW (RTS) - Turn back on the UART's Receive interrupt.
833	 *	This will cause the UART's FIFO to raise RTS back up,
834	 *	which will allow the other side to start sending data again.
835	 * 2) SWFLOW (IXOFF) - Send a start character to
836	 *	the other side, so it will start sending data to us again.
837	 * 3) NONE - Do nothing. Since we didn't do anything to turn off the
838	 *	other side, we don't need to do anything now.
839	 */
840	if (qleft > (RQUEUESIZE / 2)) {
841		/* HWFLOW */
842		if (ch->ch_c_cflag & CRTSCTS) {
843			if (ch->ch_flags & CH_RECEIVER_OFF) {
844				bd_ops->enable_receiver(ch);
845				ch->ch_flags &= ~(CH_RECEIVER_OFF);
846				jsm_printk(READ, INFO, &ch->ch_bd->pci_dev,
847					"Internal queue hit lowlevel mark (%d)! Turning on interrupts.\n",
848					qleft);
849			}
850		}
851		/* SWFLOW */
852		else if (ch->ch_c_iflag & IXOFF && ch->ch_stops_sent) {
853			ch->ch_stops_sent = 0;
854			bd_ops->send_start_character(ch);
855			jsm_printk(READ, INFO, &ch->ch_bd->pci_dev, "Sending start char!\n");
856		}
857	}
858}
859
860/*
861 * jsm_tty_write()
862 *
863 * Take data from the user or kernel and send it out to the FEP.
864 * In here exists all the Transparent Print magic as well.
865 */
866int jsm_tty_write(struct uart_port *port)
867{
868	int bufcount = 0, n = 0;
869	int data_count = 0,data_count1 =0;
870	u16 head;
871	u16 tail;
872	u16 tmask;
873	u32 remain;
874	int temp_tail = port->info->xmit.tail;
875	struct jsm_channel *channel = (struct jsm_channel *)port;
876
877	tmask = WQUEUEMASK;
878	head = (channel->ch_w_head) & tmask;
879	tail = (channel->ch_w_tail) & tmask;
880
881	if ((bufcount = tail - head - 1) < 0)
882		bufcount += WQUEUESIZE;
883
884	n = bufcount;
885
886	n = min(n, 56);
887	remain = WQUEUESIZE - head;
888
889	data_count = 0;
890	if (n >= remain) {
891		n -= remain;
892		while ((port->info->xmit.head != temp_tail) &&
893		(data_count < remain)) {
894			channel->ch_wqueue[head++] =
895			port->info->xmit.buf[temp_tail];
896
897			temp_tail++;
898			temp_tail &= (UART_XMIT_SIZE - 1);
899			data_count++;
900		}
901		if (data_count == remain) head = 0;
902	}
903
904	data_count1 = 0;
905	if (n > 0) {
906		remain = n;
907		while ((port->info->xmit.head != temp_tail) &&
908			(data_count1 < remain)) {
909			channel->ch_wqueue[head++] =
910				port->info->xmit.buf[temp_tail];
911
912			temp_tail++;
913			temp_tail &= (UART_XMIT_SIZE - 1);
914			data_count1++;
915
916		}
917	}
918
919	port->info->xmit.tail = temp_tail;
920
921	data_count += data_count1;
922	if (data_count) {
923		head &= tmask;
924		channel->ch_w_head = head;
925	}
926
927	if (data_count) {
928		channel->ch_bd->bd_ops->copy_data_from_queue_to_uart(channel);
929	}
930
931	return data_count;
932}
933