1/*
2 * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family
3 * of PCI-SCSI IO processors.
4 *
5 * Copyright (C) 1999-2001  Gerard Roudier <groudier@free.fr>
6 *
7 * This driver is derived from the Linux sym53c8xx driver.
8 * Copyright (C) 1998-2000  Gerard Roudier
9 *
10 * The sym53c8xx driver is derived from the ncr53c8xx driver that had been
11 * a port of the FreeBSD ncr driver to Linux-1.2.13.
12 *
13 * The original ncr driver has been written for 386bsd and FreeBSD by
14 *         Wolfgang Stanglmeier        <wolf@cologne.de>
15 *         Stefan Esser                <se@mi.Uni-Koeln.de>
16 * Copyright (C) 1994  Wolfgang Stanglmeier
17 *
18 * Other major contributions:
19 *
20 * NVRAM detection and reading.
21 * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
22 *
23 *-----------------------------------------------------------------------------
24 *
25 * This program is free software; you can redistribute it and/or modify
26 * it under the terms of the GNU General Public License as published by
27 * the Free Software Foundation; either version 2 of the License, or
28 * (at your option) any later version.
29 *
30 * This program is distributed in the hope that it will be useful,
31 * but WITHOUT ANY WARRANTY; without even the implied warranty of
32 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
33 * GNU General Public License for more details.
34 *
35 * You should have received a copy of the GNU General Public License
36 * along with this program; if not, write to the Free Software
37 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
38 */
39
40#include "sym_glue.h"
41
42/*
43 *  Simple power of two buddy-like generic allocator.
44 *  Provides naturally aligned memory chunks.
45 *
46 *  This simple code is not intended to be fast, but to
47 *  provide power of 2 aligned memory allocations.
48 *  Since the SCRIPTS processor only supplies 8 bit arithmetic,
49 *  this allocator allows simple and fast address calculations
50 *  from the SCRIPTS code. In addition, cache line alignment
51 *  is guaranteed for power of 2 cache line size.
52 *
53 *  This allocator has been developped for the Linux sym53c8xx
54 *  driver, since this O/S does not provide naturally aligned
55 *  allocations.
56 *  It has the advantage of allowing the driver to use private
57 *  pages of memory that will be useful if we ever need to deal
58 *  with IO MMUs for PCI.
59 */
60static void *___sym_malloc(m_pool_p mp, int size)
61{
62	int i = 0;
63	int s = (1 << SYM_MEM_SHIFT);
64	int j;
65	void *a;
66	m_link_p h = mp->h;
67
68	if (size > SYM_MEM_CLUSTER_SIZE)
69		return NULL;
70
71	while (size > s) {
72		s <<= 1;
73		++i;
74	}
75
76	j = i;
77	while (!h[j].next) {
78		if (s == SYM_MEM_CLUSTER_SIZE) {
79			h[j].next = (m_link_p) M_GET_MEM_CLUSTER();
80			if (h[j].next)
81				h[j].next->next = NULL;
82			break;
83		}
84		++j;
85		s <<= 1;
86	}
87	a = h[j].next;
88	if (a) {
89		h[j].next = h[j].next->next;
90		while (j > i) {
91			j -= 1;
92			s >>= 1;
93			h[j].next = (m_link_p) (a+s);
94			h[j].next->next = NULL;
95		}
96	}
97#ifdef DEBUG
98	printf("___sym_malloc(%d) = %p\n", size, (void *) a);
99#endif
100	return a;
101}
102
103/*
104 *  Counter-part of the generic allocator.
105 */
106static void ___sym_mfree(m_pool_p mp, void *ptr, int size)
107{
108	int i = 0;
109	int s = (1 << SYM_MEM_SHIFT);
110	m_link_p q;
111	unsigned long a, b;
112	m_link_p h = mp->h;
113
114#ifdef DEBUG
115	printf("___sym_mfree(%p, %d)\n", ptr, size);
116#endif
117
118	if (size > SYM_MEM_CLUSTER_SIZE)
119		return;
120
121	while (size > s) {
122		s <<= 1;
123		++i;
124	}
125
126	a = (unsigned long)ptr;
127
128	while (1) {
129		if (s == SYM_MEM_CLUSTER_SIZE) {
130#ifdef SYM_MEM_FREE_UNUSED
131			M_FREE_MEM_CLUSTER((void *)a);
132#else
133			((m_link_p) a)->next = h[i].next;
134			h[i].next = (m_link_p) a;
135#endif
136			break;
137		}
138		b = a ^ s;
139		q = &h[i];
140		while (q->next && q->next != (m_link_p) b) {
141			q = q->next;
142		}
143		if (!q->next) {
144			((m_link_p) a)->next = h[i].next;
145			h[i].next = (m_link_p) a;
146			break;
147		}
148		q->next = q->next->next;
149		a = a & b;
150		s <<= 1;
151		++i;
152	}
153}
154
155/*
156 *  Verbose and zeroing allocator that wrapps to the generic allocator.
157 */
158static void *__sym_calloc2(m_pool_p mp, int size, char *name, int uflags)
159{
160	void *p;
161
162	p = ___sym_malloc(mp, size);
163
164	if (DEBUG_FLAGS & DEBUG_ALLOC) {
165		printf ("new %-10s[%4d] @%p.\n", name, size, p);
166	}
167
168	if (p)
169		memset(p, 0, size);
170	else if (uflags & SYM_MEM_WARN)
171		printf ("__sym_calloc2: failed to allocate %s[%d]\n", name, size);
172	return p;
173}
174#define __sym_calloc(mp, s, n)	__sym_calloc2(mp, s, n, SYM_MEM_WARN)
175
176/*
177 *  Its counter-part.
178 */
179static void __sym_mfree(m_pool_p mp, void *ptr, int size, char *name)
180{
181	if (DEBUG_FLAGS & DEBUG_ALLOC)
182		printf ("freeing %-10s[%4d] @%p.\n", name, size, ptr);
183
184	___sym_mfree(mp, ptr, size);
185}
186
187/*
188 *  Default memory pool we donnot need to involve in DMA.
189 *
190 *  With DMA abstraction, we use functions (methods), to
191 *  distinguish between non DMAable memory and DMAable memory.
192 */
193static void *___mp0_get_mem_cluster(m_pool_p mp)
194{
195	void *m = sym_get_mem_cluster();
196	if (m)
197		++mp->nump;
198	return m;
199}
200
201#ifdef	SYM_MEM_FREE_UNUSED
202static void ___mp0_free_mem_cluster(m_pool_p mp, void *m)
203{
204	sym_free_mem_cluster(m);
205	--mp->nump;
206}
207#else
208#define ___mp0_free_mem_cluster NULL
209#endif
210
211static struct sym_m_pool mp0 = {
212	NULL,
213	___mp0_get_mem_cluster,
214	___mp0_free_mem_cluster
215};
216
217/*
218 *  Methods that maintains DMAable pools according to user allocations.
219 *  New pools are created on the fly when a new pool id is provided.
220 *  They are deleted on the fly when they get emptied.
221 */
222/* Get a memory cluster that matches the DMA constraints of a given pool */
223static void * ___get_dma_mem_cluster(m_pool_p mp)
224{
225	m_vtob_p vbp;
226	void *vaddr;
227
228	vbp = __sym_calloc(&mp0, sizeof(*vbp), "VTOB");
229	if (!vbp)
230		goto out_err;
231
232	vaddr = sym_m_get_dma_mem_cluster(mp, vbp);
233	if (vaddr) {
234		int hc = VTOB_HASH_CODE(vaddr);
235		vbp->next = mp->vtob[hc];
236		mp->vtob[hc] = vbp;
237		++mp->nump;
238	}
239	return vaddr;
240out_err:
241	return NULL;
242}
243
244#ifdef	SYM_MEM_FREE_UNUSED
245/* Free a memory cluster and associated resources for DMA */
246static void ___free_dma_mem_cluster(m_pool_p mp, void *m)
247{
248	m_vtob_p *vbpp, vbp;
249	int hc = VTOB_HASH_CODE(m);
250
251	vbpp = &mp->vtob[hc];
252	while (*vbpp && (*vbpp)->vaddr != m)
253		vbpp = &(*vbpp)->next;
254	if (*vbpp) {
255		vbp = *vbpp;
256		*vbpp = (*vbpp)->next;
257		sym_m_free_dma_mem_cluster(mp, vbp);
258		__sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB");
259		--mp->nump;
260	}
261}
262#endif
263
264/* Fetch the memory pool for a given pool id (i.e. DMA constraints) */
265static __inline m_pool_p ___get_dma_pool(m_pool_ident_t dev_dmat)
266{
267	m_pool_p mp;
268	for (mp = mp0.next;
269		mp && !sym_m_pool_match(mp->dev_dmat, dev_dmat);
270			mp = mp->next);
271	return mp;
272}
273
274/* Create a new memory DMAable pool (when fetch failed) */
275static m_pool_p ___cre_dma_pool(m_pool_ident_t dev_dmat)
276{
277	m_pool_p mp = __sym_calloc(&mp0, sizeof(*mp), "MPOOL");
278	if (mp) {
279		mp->dev_dmat = dev_dmat;
280		mp->get_mem_cluster = ___get_dma_mem_cluster;
281#ifdef	SYM_MEM_FREE_UNUSED
282		mp->free_mem_cluster = ___free_dma_mem_cluster;
283#endif
284		mp->next = mp0.next;
285		mp0.next = mp;
286		return mp;
287	}
288	return NULL;
289}
290
291#ifdef	SYM_MEM_FREE_UNUSED
292/* Destroy a DMAable memory pool (when got emptied) */
293static void ___del_dma_pool(m_pool_p p)
294{
295	m_pool_p *pp = &mp0.next;
296
297	while (*pp && *pp != p)
298		pp = &(*pp)->next;
299	if (*pp) {
300		*pp = (*pp)->next;
301		__sym_mfree(&mp0, p, sizeof(*p), "MPOOL");
302	}
303}
304#endif
305
306/* This lock protects only the memory allocation/free.  */
307static DEFINE_SPINLOCK(sym53c8xx_lock);
308
309/*
310 *  Actual allocator for DMAable memory.
311 */
312void *__sym_calloc_dma(m_pool_ident_t dev_dmat, int size, char *name)
313{
314	unsigned long flags;
315	m_pool_p mp;
316	void *m = NULL;
317
318	spin_lock_irqsave(&sym53c8xx_lock, flags);
319	mp = ___get_dma_pool(dev_dmat);
320	if (!mp)
321		mp = ___cre_dma_pool(dev_dmat);
322	if (!mp)
323		goto out;
324	m = __sym_calloc(mp, size, name);
325#ifdef	SYM_MEM_FREE_UNUSED
326	if (!mp->nump)
327		___del_dma_pool(mp);
328#endif
329
330 out:
331	spin_unlock_irqrestore(&sym53c8xx_lock, flags);
332	return m;
333}
334
335void __sym_mfree_dma(m_pool_ident_t dev_dmat, void *m, int size, char *name)
336{
337	unsigned long flags;
338	m_pool_p mp;
339
340	spin_lock_irqsave(&sym53c8xx_lock, flags);
341	mp = ___get_dma_pool(dev_dmat);
342	if (!mp)
343		goto out;
344	__sym_mfree(mp, m, size, name);
345#ifdef	SYM_MEM_FREE_UNUSED
346	if (!mp->nump)
347		___del_dma_pool(mp);
348#endif
349 out:
350	spin_unlock_irqrestore(&sym53c8xx_lock, flags);
351}
352
353/*
354 *  Actual virtual to bus physical address translator
355 *  for 32 bit addressable DMAable memory.
356 */
357dma_addr_t __vtobus(m_pool_ident_t dev_dmat, void *m)
358{
359	unsigned long flags;
360	m_pool_p mp;
361	int hc = VTOB_HASH_CODE(m);
362	m_vtob_p vp = NULL;
363	void *a = (void *)((unsigned long)m & ~SYM_MEM_CLUSTER_MASK);
364	dma_addr_t b;
365
366	spin_lock_irqsave(&sym53c8xx_lock, flags);
367	mp = ___get_dma_pool(dev_dmat);
368	if (mp) {
369		vp = mp->vtob[hc];
370		while (vp && vp->vaddr != a)
371			vp = vp->next;
372	}
373	if (!vp)
374		panic("sym: VTOBUS FAILED!\n");
375	b = vp->baddr + (m - a);
376	spin_unlock_irqrestore(&sym53c8xx_lock, flags);
377	return b;
378}
379