1/*
2 * drivers/net/mv643xx_eth.c - Driver for MV643XX ethernet ports
3 * Copyright (C) 2002 Matthew Dharm <mdharm@momenco.com>
4 *
5 * Based on the 64360 driver from:
6 * Copyright (C) 2002 rabeeh@galileo.co.il
7 *
8 * Copyright (C) 2003 PMC-Sierra, Inc.,
9 *	written by Manish Lachwani
10 *
11 * Copyright (C) 2003 Ralf Baechle <ralf@linux-mips.org>
12 *
13 * Copyright (C) 2004-2006 MontaVista Software, Inc.
14 *			   Dale Farnsworth <dale@farnsworth.org>
15 *
16 * Copyright (C) 2004 Steven J. Hill <sjhill1@rockwellcollins.com>
17 *				     <sjhill@realitydiluted.com>
18 *
19 * This program is free software; you can redistribute it and/or
20 * modify it under the terms of the GNU General Public License
21 * as published by the Free Software Foundation; either version 2
22 * of the License, or (at your option) any later version.
23 *
24 * This program is distributed in the hope that it will be useful,
25 * but WITHOUT ANY WARRANTY; without even the implied warranty of
26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
27 * GNU General Public License for more details.
28 *
29 * You should have received a copy of the GNU General Public License
30 * along with this program; if not, write to the Free Software
31 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
32 */
33#include <linux/init.h>
34#include <linux/dma-mapping.h>
35#include <linux/in.h>
36#include <linux/ip.h>
37#include <linux/tcp.h>
38#include <linux/udp.h>
39#include <linux/etherdevice.h>
40
41#include <linux/bitops.h>
42#include <linux/delay.h>
43#include <linux/ethtool.h>
44#include <linux/platform_device.h>
45
46#include <asm/io.h>
47#include <asm/types.h>
48#include <asm/pgtable.h>
49#include <asm/system.h>
50#include <asm/delay.h>
51#include "mv643xx_eth.h"
52
53/* Static function declarations */
54static void eth_port_uc_addr_get(unsigned int port_num, unsigned char *p_addr);
55static void eth_port_uc_addr_set(unsigned int port_num, unsigned char *p_addr);
56static void eth_port_set_multicast_list(struct net_device *);
57static void mv643xx_eth_port_enable_tx(unsigned int port_num,
58						unsigned int queues);
59static void mv643xx_eth_port_enable_rx(unsigned int port_num,
60						unsigned int queues);
61static unsigned int mv643xx_eth_port_disable_tx(unsigned int port_num);
62static unsigned int mv643xx_eth_port_disable_rx(unsigned int port_num);
63static int mv643xx_eth_open(struct net_device *);
64static int mv643xx_eth_stop(struct net_device *);
65static int mv643xx_eth_change_mtu(struct net_device *, int);
66static struct net_device_stats *mv643xx_eth_get_stats(struct net_device *);
67static void eth_port_init_mac_tables(unsigned int eth_port_num);
68#ifdef MV643XX_NAPI
69static int mv643xx_poll(struct net_device *dev, int *budget);
70#endif
71static int ethernet_phy_get(unsigned int eth_port_num);
72static void ethernet_phy_set(unsigned int eth_port_num, int phy_addr);
73static int ethernet_phy_detect(unsigned int eth_port_num);
74static int mv643xx_mdio_read(struct net_device *dev, int phy_id, int location);
75static void mv643xx_mdio_write(struct net_device *dev, int phy_id, int location, int val);
76static int mv643xx_eth_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd);
77static const struct ethtool_ops mv643xx_ethtool_ops;
78
79static char mv643xx_driver_name[] = "mv643xx_eth";
80static char mv643xx_driver_version[] = "1.0";
81
82static void __iomem *mv643xx_eth_shared_base;
83
84/* used to protect MV643XX_ETH_SMI_REG, which is shared across ports */
85static DEFINE_SPINLOCK(mv643xx_eth_phy_lock);
86
87static inline u32 mv_read(int offset)
88{
89	void __iomem *reg_base;
90
91	reg_base = mv643xx_eth_shared_base - MV643XX_ETH_SHARED_REGS;
92
93	return readl(reg_base + offset);
94}
95
96static inline void mv_write(int offset, u32 data)
97{
98	void __iomem *reg_base;
99
100	reg_base = mv643xx_eth_shared_base - MV643XX_ETH_SHARED_REGS;
101	writel(data, reg_base + offset);
102}
103
104/*
105 * Changes MTU (maximum transfer unit) of the gigabit ethenret port
106 *
107 * Input :	pointer to ethernet interface network device structure
108 *		new mtu size
109 * Output :	0 upon success, -EINVAL upon failure
110 */
111static int mv643xx_eth_change_mtu(struct net_device *dev, int new_mtu)
112{
113	if ((new_mtu > 9500) || (new_mtu < 64))
114		return -EINVAL;
115
116	dev->mtu = new_mtu;
117	/*
118	 * Stop then re-open the interface. This will allocate RX skb's with
119	 * the new MTU.
120	 * There is a possible danger that the open will not successed, due
121	 * to memory is full, which might fail the open function.
122	 */
123	if (netif_running(dev)) {
124		mv643xx_eth_stop(dev);
125		if (mv643xx_eth_open(dev))
126			printk(KERN_ERR
127				"%s: Fatal error on opening device\n",
128				dev->name);
129	}
130
131	return 0;
132}
133
134/*
135 * mv643xx_eth_rx_refill_descs
136 *
137 * Fills / refills RX queue on a certain gigabit ethernet port
138 *
139 * Input :	pointer to ethernet interface network device structure
140 * Output :	N/A
141 */
142static void mv643xx_eth_rx_refill_descs(struct net_device *dev)
143{
144	struct mv643xx_private *mp = netdev_priv(dev);
145	struct pkt_info pkt_info;
146	struct sk_buff *skb;
147	int unaligned;
148
149	while (mp->rx_desc_count < mp->rx_ring_size) {
150		skb = dev_alloc_skb(ETH_RX_SKB_SIZE + dma_get_cache_alignment());
151		if (!skb)
152			break;
153		mp->rx_desc_count++;
154		unaligned = (u32)skb->data & (dma_get_cache_alignment() - 1);
155		if (unaligned)
156			skb_reserve(skb, dma_get_cache_alignment() - unaligned);
157		pkt_info.cmd_sts = ETH_RX_ENABLE_INTERRUPT;
158		pkt_info.byte_cnt = ETH_RX_SKB_SIZE;
159		pkt_info.buf_ptr = dma_map_single(NULL, skb->data,
160					ETH_RX_SKB_SIZE, DMA_FROM_DEVICE);
161		pkt_info.return_info = skb;
162		if (eth_rx_return_buff(mp, &pkt_info) != ETH_OK) {
163			printk(KERN_ERR
164				"%s: Error allocating RX Ring\n", dev->name);
165			break;
166		}
167		skb_reserve(skb, ETH_HW_IP_ALIGN);
168	}
169	/*
170	 * If RX ring is empty of SKB, set a timer to try allocating
171	 * again at a later time.
172	 */
173	if (mp->rx_desc_count == 0) {
174		printk(KERN_INFO "%s: Rx ring is empty\n", dev->name);
175		mp->timeout.expires = jiffies + (HZ / 10);	/* 100 mSec */
176		add_timer(&mp->timeout);
177	}
178}
179
180/*
181 * mv643xx_eth_rx_refill_descs_timer_wrapper
182 *
183 * Timer routine to wake up RX queue filling task. This function is
184 * used only in case the RX queue is empty, and all alloc_skb has
185 * failed (due to out of memory event).
186 *
187 * Input :	pointer to ethernet interface network device structure
188 * Output :	N/A
189 */
190static inline void mv643xx_eth_rx_refill_descs_timer_wrapper(unsigned long data)
191{
192	mv643xx_eth_rx_refill_descs((struct net_device *)data);
193}
194
195/*
196 * mv643xx_eth_update_mac_address
197 *
198 * Update the MAC address of the port in the address table
199 *
200 * Input :	pointer to ethernet interface network device structure
201 * Output :	N/A
202 */
203static void mv643xx_eth_update_mac_address(struct net_device *dev)
204{
205	struct mv643xx_private *mp = netdev_priv(dev);
206	unsigned int port_num = mp->port_num;
207
208	eth_port_init_mac_tables(port_num);
209	eth_port_uc_addr_set(port_num, dev->dev_addr);
210}
211
212/*
213 * mv643xx_eth_set_rx_mode
214 *
215 * Change from promiscuos to regular rx mode
216 *
217 * Input :	pointer to ethernet interface network device structure
218 * Output :	N/A
219 */
220static void mv643xx_eth_set_rx_mode(struct net_device *dev)
221{
222	struct mv643xx_private *mp = netdev_priv(dev);
223	u32 config_reg;
224
225	config_reg = mv_read(MV643XX_ETH_PORT_CONFIG_REG(mp->port_num));
226	if (dev->flags & IFF_PROMISC)
227		config_reg |= (u32) MV643XX_ETH_UNICAST_PROMISCUOUS_MODE;
228	else
229		config_reg &= ~(u32) MV643XX_ETH_UNICAST_PROMISCUOUS_MODE;
230	mv_write(MV643XX_ETH_PORT_CONFIG_REG(mp->port_num), config_reg);
231
232	eth_port_set_multicast_list(dev);
233}
234
235/*
236 * mv643xx_eth_set_mac_address
237 *
238 * Change the interface's mac address.
239 * No special hardware thing should be done because interface is always
240 * put in promiscuous mode.
241 *
242 * Input :	pointer to ethernet interface network device structure and
243 *		a pointer to the designated entry to be added to the cache.
244 * Output :	zero upon success, negative upon failure
245 */
246static int mv643xx_eth_set_mac_address(struct net_device *dev, void *addr)
247{
248	int i;
249
250	for (i = 0; i < 6; i++)
251		/* +2 is for the offset of the HW addr type */
252		dev->dev_addr[i] = ((unsigned char *)addr)[i + 2];
253	mv643xx_eth_update_mac_address(dev);
254	return 0;
255}
256
257/*
258 * mv643xx_eth_tx_timeout
259 *
260 * Called upon a timeout on transmitting a packet
261 *
262 * Input :	pointer to ethernet interface network device structure.
263 * Output :	N/A
264 */
265static void mv643xx_eth_tx_timeout(struct net_device *dev)
266{
267	struct mv643xx_private *mp = netdev_priv(dev);
268
269	printk(KERN_INFO "%s: TX timeout  ", dev->name);
270
271	/* Do the reset outside of interrupt context */
272	schedule_work(&mp->tx_timeout_task);
273}
274
275/*
276 * mv643xx_eth_tx_timeout_task
277 *
278 * Actual routine to reset the adapter when a timeout on Tx has occurred
279 */
280static void mv643xx_eth_tx_timeout_task(struct work_struct *ugly)
281{
282	struct mv643xx_private *mp = container_of(ugly, struct mv643xx_private,
283						  tx_timeout_task);
284	struct net_device *dev = mp->mii.dev; /* yuck */
285
286	if (!netif_running(dev))
287		return;
288
289	netif_stop_queue(dev);
290
291	eth_port_reset(mp->port_num);
292	eth_port_start(dev);
293
294	if (mp->tx_ring_size - mp->tx_desc_count >= MAX_DESCS_PER_SKB)
295		netif_wake_queue(dev);
296}
297
298/**
299 * mv643xx_eth_free_tx_descs - Free the tx desc data for completed descriptors
300 *
301 * If force is non-zero, frees uncompleted descriptors as well
302 */
303int mv643xx_eth_free_tx_descs(struct net_device *dev, int force)
304{
305	struct mv643xx_private *mp = netdev_priv(dev);
306	struct eth_tx_desc *desc;
307	u32 cmd_sts;
308	struct sk_buff *skb;
309	unsigned long flags;
310	int tx_index;
311	dma_addr_t addr;
312	int count;
313	int released = 0;
314
315	while (mp->tx_desc_count > 0) {
316		spin_lock_irqsave(&mp->lock, flags);
317
318		/* tx_desc_count might have changed before acquiring the lock */
319		if (mp->tx_desc_count <= 0) {
320			spin_unlock_irqrestore(&mp->lock, flags);
321			return released;
322		}
323
324		tx_index = mp->tx_used_desc_q;
325		desc = &mp->p_tx_desc_area[tx_index];
326		cmd_sts = desc->cmd_sts;
327
328		if (!force && (cmd_sts & ETH_BUFFER_OWNED_BY_DMA)) {
329			spin_unlock_irqrestore(&mp->lock, flags);
330			return released;
331		}
332
333		mp->tx_used_desc_q = (tx_index + 1) % mp->tx_ring_size;
334		mp->tx_desc_count--;
335
336		addr = desc->buf_ptr;
337		count = desc->byte_cnt;
338		skb = mp->tx_skb[tx_index];
339		if (skb)
340			mp->tx_skb[tx_index] = NULL;
341
342		if (cmd_sts & ETH_ERROR_SUMMARY) {
343			printk("%s: Error in TX\n", dev->name);
344			mp->stats.tx_errors++;
345		}
346
347		spin_unlock_irqrestore(&mp->lock, flags);
348
349		if (cmd_sts & ETH_TX_FIRST_DESC)
350			dma_unmap_single(NULL, addr, count, DMA_TO_DEVICE);
351		else
352			dma_unmap_page(NULL, addr, count, DMA_TO_DEVICE);
353
354		if (skb)
355			dev_kfree_skb_irq(skb);
356
357		released = 1;
358	}
359
360	return released;
361}
362
363static void mv643xx_eth_free_completed_tx_descs(struct net_device *dev)
364{
365	struct mv643xx_private *mp = netdev_priv(dev);
366
367	if (mv643xx_eth_free_tx_descs(dev, 0) &&
368	    mp->tx_ring_size - mp->tx_desc_count >= MAX_DESCS_PER_SKB)
369		netif_wake_queue(dev);
370}
371
372static void mv643xx_eth_free_all_tx_descs(struct net_device *dev)
373{
374	mv643xx_eth_free_tx_descs(dev, 1);
375}
376
377/*
378 * mv643xx_eth_receive
379 *
380 * This function is forward packets that are received from the port's
381 * queues toward kernel core or FastRoute them to another interface.
382 *
383 * Input :	dev - a pointer to the required interface
384 *		max - maximum number to receive (0 means unlimted)
385 *
386 * Output :	number of served packets
387 */
388static int mv643xx_eth_receive_queue(struct net_device *dev, int budget)
389{
390	struct mv643xx_private *mp = netdev_priv(dev);
391	struct net_device_stats *stats = &mp->stats;
392	unsigned int received_packets = 0;
393	struct sk_buff *skb;
394	struct pkt_info pkt_info;
395
396	while (budget-- > 0 && eth_port_receive(mp, &pkt_info) == ETH_OK) {
397		dma_unmap_single(NULL, pkt_info.buf_ptr, ETH_RX_SKB_SIZE,
398							DMA_FROM_DEVICE);
399		mp->rx_desc_count--;
400		received_packets++;
401
402		/*
403		 * Update statistics.
404		 * Note byte count includes 4 byte CRC count
405		 */
406		stats->rx_packets++;
407		stats->rx_bytes += pkt_info.byte_cnt;
408		skb = pkt_info.return_info;
409		/*
410		 * In case received a packet without first / last bits on OR
411		 * the error summary bit is on, the packets needs to be dropeed.
412		 */
413		if (((pkt_info.cmd_sts
414				& (ETH_RX_FIRST_DESC | ETH_RX_LAST_DESC)) !=
415					(ETH_RX_FIRST_DESC | ETH_RX_LAST_DESC))
416				|| (pkt_info.cmd_sts & ETH_ERROR_SUMMARY)) {
417			stats->rx_dropped++;
418			if ((pkt_info.cmd_sts & (ETH_RX_FIRST_DESC |
419							ETH_RX_LAST_DESC)) !=
420				(ETH_RX_FIRST_DESC | ETH_RX_LAST_DESC)) {
421				if (net_ratelimit())
422					printk(KERN_ERR
423						"%s: Received packet spread "
424						"on multiple descriptors\n",
425						dev->name);
426			}
427			if (pkt_info.cmd_sts & ETH_ERROR_SUMMARY)
428				stats->rx_errors++;
429
430			dev_kfree_skb_irq(skb);
431		} else {
432			/*
433			 * The -4 is for the CRC in the trailer of the
434			 * received packet
435			 */
436			skb_put(skb, pkt_info.byte_cnt - 4);
437
438			if (pkt_info.cmd_sts & ETH_LAYER_4_CHECKSUM_OK) {
439				skb->ip_summed = CHECKSUM_UNNECESSARY;
440				skb->csum = htons(
441					(pkt_info.cmd_sts & 0x0007fff8) >> 3);
442			}
443			skb->protocol = eth_type_trans(skb, dev);
444#ifdef MV643XX_NAPI
445			netif_receive_skb(skb);
446#else
447			netif_rx(skb);
448#endif
449		}
450		dev->last_rx = jiffies;
451	}
452	mv643xx_eth_rx_refill_descs(dev);	/* Fill RX ring with skb's */
453
454	return received_packets;
455}
456
457/* Set the mv643xx port configuration register for the speed/duplex mode. */
458static void mv643xx_eth_update_pscr(struct net_device *dev,
459				    struct ethtool_cmd *ecmd)
460{
461	struct mv643xx_private *mp = netdev_priv(dev);
462	int port_num = mp->port_num;
463	u32 o_pscr, n_pscr;
464	unsigned int queues;
465
466	o_pscr = mv_read(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num));
467	n_pscr = o_pscr;
468
469	/* clear speed, duplex and rx buffer size fields */
470	n_pscr &= ~(MV643XX_ETH_SET_MII_SPEED_TO_100  |
471		   MV643XX_ETH_SET_GMII_SPEED_TO_1000 |
472		   MV643XX_ETH_SET_FULL_DUPLEX_MODE   |
473		   MV643XX_ETH_MAX_RX_PACKET_MASK);
474
475	if (ecmd->duplex == DUPLEX_FULL)
476		n_pscr |= MV643XX_ETH_SET_FULL_DUPLEX_MODE;
477
478	if (ecmd->speed == SPEED_1000)
479		n_pscr |= MV643XX_ETH_SET_GMII_SPEED_TO_1000 |
480			  MV643XX_ETH_MAX_RX_PACKET_9700BYTE;
481	else {
482		if (ecmd->speed == SPEED_100)
483			n_pscr |= MV643XX_ETH_SET_MII_SPEED_TO_100;
484		n_pscr |= MV643XX_ETH_MAX_RX_PACKET_1522BYTE;
485	}
486
487	if (n_pscr != o_pscr) {
488		if ((o_pscr & MV643XX_ETH_SERIAL_PORT_ENABLE) == 0)
489			mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num),
490								n_pscr);
491		else {
492			queues = mv643xx_eth_port_disable_tx(port_num);
493
494			o_pscr &= ~MV643XX_ETH_SERIAL_PORT_ENABLE;
495			mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num),
496								o_pscr);
497			mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num),
498								n_pscr);
499			mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num),
500								n_pscr);
501			if (queues)
502				mv643xx_eth_port_enable_tx(port_num, queues);
503		}
504	}
505}
506
507/*
508 * mv643xx_eth_int_handler
509 *
510 * Main interrupt handler for the gigbit ethernet ports
511 *
512 * Input :	irq	- irq number (not used)
513 *		dev_id	- a pointer to the required interface's data structure
514 *		regs	- not used
515 * Output :	N/A
516 */
517
518static irqreturn_t mv643xx_eth_int_handler(int irq, void *dev_id)
519{
520	struct net_device *dev = (struct net_device *)dev_id;
521	struct mv643xx_private *mp = netdev_priv(dev);
522	u32 eth_int_cause, eth_int_cause_ext = 0;
523	unsigned int port_num = mp->port_num;
524
525	/* Read interrupt cause registers */
526	eth_int_cause = mv_read(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num)) &
527						ETH_INT_UNMASK_ALL;
528	if (eth_int_cause & ETH_INT_CAUSE_EXT) {
529		eth_int_cause_ext = mv_read(
530			MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num)) &
531						ETH_INT_UNMASK_ALL_EXT;
532		mv_write(MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num),
533							~eth_int_cause_ext);
534	}
535
536	/* PHY status changed */
537	if (eth_int_cause_ext & ETH_INT_CAUSE_PHY) {
538		struct ethtool_cmd cmd;
539
540		if (mii_link_ok(&mp->mii)) {
541			mii_ethtool_gset(&mp->mii, &cmd);
542			mv643xx_eth_update_pscr(dev, &cmd);
543			mv643xx_eth_port_enable_tx(port_num,
544						   ETH_TX_QUEUES_ENABLED);
545			if (!netif_carrier_ok(dev)) {
546				netif_carrier_on(dev);
547				if (mp->tx_ring_size - mp->tx_desc_count >=
548							MAX_DESCS_PER_SKB)
549					netif_wake_queue(dev);
550			}
551		} else if (netif_carrier_ok(dev)) {
552			netif_stop_queue(dev);
553			netif_carrier_off(dev);
554		}
555	}
556
557#ifdef MV643XX_NAPI
558	if (eth_int_cause & ETH_INT_CAUSE_RX) {
559		/* schedule the NAPI poll routine to maintain port */
560		mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num),
561							ETH_INT_MASK_ALL);
562		/* wait for previous write to complete */
563		mv_read(MV643XX_ETH_INTERRUPT_MASK_REG(port_num));
564
565		netif_rx_schedule(dev);
566	}
567#else
568	if (eth_int_cause & ETH_INT_CAUSE_RX)
569		mv643xx_eth_receive_queue(dev, INT_MAX);
570#endif
571	if (eth_int_cause_ext & ETH_INT_CAUSE_TX)
572		mv643xx_eth_free_completed_tx_descs(dev);
573
574	/*
575	 * If no real interrupt occured, exit.
576	 * This can happen when using gigE interrupt coalescing mechanism.
577	 */
578	if ((eth_int_cause == 0x0) && (eth_int_cause_ext == 0x0))
579		return IRQ_NONE;
580
581	return IRQ_HANDLED;
582}
583
584#ifdef MV643XX_COAL
585
586/*
587 * eth_port_set_rx_coal - Sets coalescing interrupt mechanism on RX path
588 *
589 * DESCRIPTION:
590 *	This routine sets the RX coalescing interrupt mechanism parameter.
591 *	This parameter is a timeout counter, that counts in 64 t_clk
592 *	chunks ; that when timeout event occurs a maskable interrupt
593 *	occurs.
594 *	The parameter is calculated using the tClk of the MV-643xx chip
595 *	, and the required delay of the interrupt in usec.
596 *
597 * INPUT:
598 *	unsigned int eth_port_num	Ethernet port number
599 *	unsigned int t_clk		t_clk of the MV-643xx chip in HZ units
600 *	unsigned int delay		Delay in usec
601 *
602 * OUTPUT:
603 *	Interrupt coalescing mechanism value is set in MV-643xx chip.
604 *
605 * RETURN:
606 *	The interrupt coalescing value set in the gigE port.
607 *
608 */
609static unsigned int eth_port_set_rx_coal(unsigned int eth_port_num,
610					unsigned int t_clk, unsigned int delay)
611{
612	unsigned int coal = ((t_clk / 1000000) * delay) / 64;
613
614	/* Set RX Coalescing mechanism */
615	mv_write(MV643XX_ETH_SDMA_CONFIG_REG(eth_port_num),
616		((coal & 0x3fff) << 8) |
617		(mv_read(MV643XX_ETH_SDMA_CONFIG_REG(eth_port_num))
618			& 0xffc000ff));
619
620	return coal;
621}
622#endif
623
624/*
625 * eth_port_set_tx_coal - Sets coalescing interrupt mechanism on TX path
626 *
627 * DESCRIPTION:
628 *	This routine sets the TX coalescing interrupt mechanism parameter.
629 *	This parameter is a timeout counter, that counts in 64 t_clk
630 *	chunks ; that when timeout event occurs a maskable interrupt
631 *	occurs.
632 *	The parameter is calculated using the t_cLK frequency of the
633 *	MV-643xx chip and the required delay in the interrupt in uSec
634 *
635 * INPUT:
636 *	unsigned int eth_port_num	Ethernet port number
637 *	unsigned int t_clk		t_clk of the MV-643xx chip in HZ units
638 *	unsigned int delay		Delay in uSeconds
639 *
640 * OUTPUT:
641 *	Interrupt coalescing mechanism value is set in MV-643xx chip.
642 *
643 * RETURN:
644 *	The interrupt coalescing value set in the gigE port.
645 *
646 */
647static unsigned int eth_port_set_tx_coal(unsigned int eth_port_num,
648					unsigned int t_clk, unsigned int delay)
649{
650	unsigned int coal;
651	coal = ((t_clk / 1000000) * delay) / 64;
652	/* Set TX Coalescing mechanism */
653	mv_write(MV643XX_ETH_TX_FIFO_URGENT_THRESHOLD_REG(eth_port_num),
654								coal << 4);
655	return coal;
656}
657
658/*
659 * ether_init_rx_desc_ring - Curve a Rx chain desc list and buffer in memory.
660 *
661 * DESCRIPTION:
662 *	This function prepares a Rx chained list of descriptors and packet
663 *	buffers in a form of a ring. The routine must be called after port
664 *	initialization routine and before port start routine.
665 *	The Ethernet SDMA engine uses CPU bus addresses to access the various
666 *	devices in the system (i.e. DRAM). This function uses the ethernet
667 *	struct 'virtual to physical' routine (set by the user) to set the ring
668 *	with physical addresses.
669 *
670 * INPUT:
671 *	struct mv643xx_private *mp	Ethernet Port Control srtuct.
672 *
673 * OUTPUT:
674 *	The routine updates the Ethernet port control struct with information
675 *	regarding the Rx descriptors and buffers.
676 *
677 * RETURN:
678 *	None.
679 */
680static void ether_init_rx_desc_ring(struct mv643xx_private *mp)
681{
682	volatile struct eth_rx_desc *p_rx_desc;
683	int rx_desc_num = mp->rx_ring_size;
684	int i;
685
686	/* initialize the next_desc_ptr links in the Rx descriptors ring */
687	p_rx_desc = (struct eth_rx_desc *)mp->p_rx_desc_area;
688	for (i = 0; i < rx_desc_num; i++) {
689		p_rx_desc[i].next_desc_ptr = mp->rx_desc_dma +
690			((i + 1) % rx_desc_num) * sizeof(struct eth_rx_desc);
691	}
692
693	/* Save Rx desc pointer to driver struct. */
694	mp->rx_curr_desc_q = 0;
695	mp->rx_used_desc_q = 0;
696
697	mp->rx_desc_area_size = rx_desc_num * sizeof(struct eth_rx_desc);
698}
699
700/*
701 * ether_init_tx_desc_ring - Curve a Tx chain desc list and buffer in memory.
702 *
703 * DESCRIPTION:
704 *	This function prepares a Tx chained list of descriptors and packet
705 *	buffers in a form of a ring. The routine must be called after port
706 *	initialization routine and before port start routine.
707 *	The Ethernet SDMA engine uses CPU bus addresses to access the various
708 *	devices in the system (i.e. DRAM). This function uses the ethernet
709 *	struct 'virtual to physical' routine (set by the user) to set the ring
710 *	with physical addresses.
711 *
712 * INPUT:
713 *	struct mv643xx_private *mp	Ethernet Port Control srtuct.
714 *
715 * OUTPUT:
716 *	The routine updates the Ethernet port control struct with information
717 *	regarding the Tx descriptors and buffers.
718 *
719 * RETURN:
720 *	None.
721 */
722static void ether_init_tx_desc_ring(struct mv643xx_private *mp)
723{
724	int tx_desc_num = mp->tx_ring_size;
725	struct eth_tx_desc *p_tx_desc;
726	int i;
727
728	/* Initialize the next_desc_ptr links in the Tx descriptors ring */
729	p_tx_desc = (struct eth_tx_desc *)mp->p_tx_desc_area;
730	for (i = 0; i < tx_desc_num; i++) {
731		p_tx_desc[i].next_desc_ptr = mp->tx_desc_dma +
732			((i + 1) % tx_desc_num) * sizeof(struct eth_tx_desc);
733	}
734
735	mp->tx_curr_desc_q = 0;
736	mp->tx_used_desc_q = 0;
737
738	mp->tx_desc_area_size = tx_desc_num * sizeof(struct eth_tx_desc);
739}
740
741static int mv643xx_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
742{
743	struct mv643xx_private *mp = netdev_priv(dev);
744	int err;
745
746	spin_lock_irq(&mp->lock);
747	err = mii_ethtool_sset(&mp->mii, cmd);
748	spin_unlock_irq(&mp->lock);
749
750	return err;
751}
752
753static int mv643xx_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
754{
755	struct mv643xx_private *mp = netdev_priv(dev);
756	int err;
757
758	spin_lock_irq(&mp->lock);
759	err = mii_ethtool_gset(&mp->mii, cmd);
760	spin_unlock_irq(&mp->lock);
761
762	/* The PHY may support 1000baseT_Half, but the mv643xx does not */
763	cmd->supported &= ~SUPPORTED_1000baseT_Half;
764	cmd->advertising &= ~ADVERTISED_1000baseT_Half;
765
766	return err;
767}
768
769/*
770 * mv643xx_eth_open
771 *
772 * This function is called when openning the network device. The function
773 * should initialize all the hardware, initialize cyclic Rx/Tx
774 * descriptors chain and buffers and allocate an IRQ to the network
775 * device.
776 *
777 * Input :	a pointer to the network device structure
778 *
779 * Output :	zero of success , nonzero if fails.
780 */
781
782static int mv643xx_eth_open(struct net_device *dev)
783{
784	struct mv643xx_private *mp = netdev_priv(dev);
785	unsigned int port_num = mp->port_num;
786	unsigned int size;
787	int err;
788
789	/* Clear any pending ethernet port interrupts */
790	mv_write(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num), 0);
791	mv_write(MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num), 0);
792	/* wait for previous write to complete */
793	mv_read (MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num));
794
795	err = request_irq(dev->irq, mv643xx_eth_int_handler,
796			IRQF_SHARED | IRQF_SAMPLE_RANDOM, dev->name, dev);
797	if (err) {
798		printk(KERN_ERR "Can not assign IRQ number to MV643XX_eth%d\n",
799								port_num);
800		return -EAGAIN;
801	}
802
803	eth_port_init(mp);
804
805	memset(&mp->timeout, 0, sizeof(struct timer_list));
806	mp->timeout.function = mv643xx_eth_rx_refill_descs_timer_wrapper;
807	mp->timeout.data = (unsigned long)dev;
808
809	/* Allocate RX and TX skb rings */
810	mp->rx_skb = kmalloc(sizeof(*mp->rx_skb) * mp->rx_ring_size,
811								GFP_KERNEL);
812	if (!mp->rx_skb) {
813		printk(KERN_ERR "%s: Cannot allocate Rx skb ring\n", dev->name);
814		err = -ENOMEM;
815		goto out_free_irq;
816	}
817	mp->tx_skb = kmalloc(sizeof(*mp->tx_skb) * mp->tx_ring_size,
818								GFP_KERNEL);
819	if (!mp->tx_skb) {
820		printk(KERN_ERR "%s: Cannot allocate Tx skb ring\n", dev->name);
821		err = -ENOMEM;
822		goto out_free_rx_skb;
823	}
824
825	/* Allocate TX ring */
826	mp->tx_desc_count = 0;
827	size = mp->tx_ring_size * sizeof(struct eth_tx_desc);
828	mp->tx_desc_area_size = size;
829
830	if (mp->tx_sram_size) {
831		mp->p_tx_desc_area = ioremap(mp->tx_sram_addr,
832							mp->tx_sram_size);
833		mp->tx_desc_dma = mp->tx_sram_addr;
834	} else
835		mp->p_tx_desc_area = dma_alloc_coherent(NULL, size,
836							&mp->tx_desc_dma,
837							GFP_KERNEL);
838
839	if (!mp->p_tx_desc_area) {
840		printk(KERN_ERR "%s: Cannot allocate Tx Ring (size %d bytes)\n",
841							dev->name, size);
842		err = -ENOMEM;
843		goto out_free_tx_skb;
844	}
845	BUG_ON((u32) mp->p_tx_desc_area & 0xf);	/* check 16-byte alignment */
846	memset((void *)mp->p_tx_desc_area, 0, mp->tx_desc_area_size);
847
848	ether_init_tx_desc_ring(mp);
849
850	/* Allocate RX ring */
851	mp->rx_desc_count = 0;
852	size = mp->rx_ring_size * sizeof(struct eth_rx_desc);
853	mp->rx_desc_area_size = size;
854
855	if (mp->rx_sram_size) {
856		mp->p_rx_desc_area = ioremap(mp->rx_sram_addr,
857							mp->rx_sram_size);
858		mp->rx_desc_dma = mp->rx_sram_addr;
859	} else
860		mp->p_rx_desc_area = dma_alloc_coherent(NULL, size,
861							&mp->rx_desc_dma,
862							GFP_KERNEL);
863
864	if (!mp->p_rx_desc_area) {
865		printk(KERN_ERR "%s: Cannot allocate Rx ring (size %d bytes)\n",
866							dev->name, size);
867		printk(KERN_ERR "%s: Freeing previously allocated TX queues...",
868							dev->name);
869		if (mp->rx_sram_size)
870			iounmap(mp->p_tx_desc_area);
871		else
872			dma_free_coherent(NULL, mp->tx_desc_area_size,
873					mp->p_tx_desc_area, mp->tx_desc_dma);
874		err = -ENOMEM;
875		goto out_free_tx_skb;
876	}
877	memset((void *)mp->p_rx_desc_area, 0, size);
878
879	ether_init_rx_desc_ring(mp);
880
881	mv643xx_eth_rx_refill_descs(dev);	/* Fill RX ring with skb's */
882
883	eth_port_start(dev);
884
885	/* Interrupt Coalescing */
886
887#ifdef MV643XX_COAL
888	mp->rx_int_coal =
889		eth_port_set_rx_coal(port_num, 133000000, MV643XX_RX_COAL);
890#endif
891
892	mp->tx_int_coal =
893		eth_port_set_tx_coal(port_num, 133000000, MV643XX_TX_COAL);
894
895	/* Unmask phy and link status changes interrupts */
896	mv_write(MV643XX_ETH_INTERRUPT_EXTEND_MASK_REG(port_num),
897						ETH_INT_UNMASK_ALL_EXT);
898
899	/* Unmask RX buffer and TX end interrupt */
900	mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num), ETH_INT_UNMASK_ALL);
901
902	return 0;
903
904out_free_tx_skb:
905	kfree(mp->tx_skb);
906out_free_rx_skb:
907	kfree(mp->rx_skb);
908out_free_irq:
909	free_irq(dev->irq, dev);
910
911	return err;
912}
913
914static void mv643xx_eth_free_tx_rings(struct net_device *dev)
915{
916	struct mv643xx_private *mp = netdev_priv(dev);
917
918	/* Stop Tx Queues */
919	mv643xx_eth_port_disable_tx(mp->port_num);
920
921	/* Free outstanding skb's on TX ring */
922	mv643xx_eth_free_all_tx_descs(dev);
923
924	BUG_ON(mp->tx_used_desc_q != mp->tx_curr_desc_q);
925
926	/* Free TX ring */
927	if (mp->tx_sram_size)
928		iounmap(mp->p_tx_desc_area);
929	else
930		dma_free_coherent(NULL, mp->tx_desc_area_size,
931				mp->p_tx_desc_area, mp->tx_desc_dma);
932}
933
934static void mv643xx_eth_free_rx_rings(struct net_device *dev)
935{
936	struct mv643xx_private *mp = netdev_priv(dev);
937	unsigned int port_num = mp->port_num;
938	int curr;
939
940	/* Stop RX Queues */
941	mv643xx_eth_port_disable_rx(port_num);
942
943	/* Free preallocated skb's on RX rings */
944	for (curr = 0; mp->rx_desc_count && curr < mp->rx_ring_size; curr++) {
945		if (mp->rx_skb[curr]) {
946			dev_kfree_skb(mp->rx_skb[curr]);
947			mp->rx_desc_count--;
948		}
949	}
950
951	if (mp->rx_desc_count)
952		printk(KERN_ERR
953			"%s: Error in freeing Rx Ring. %d skb's still"
954			" stuck in RX Ring - ignoring them\n", dev->name,
955			mp->rx_desc_count);
956	/* Free RX ring */
957	if (mp->rx_sram_size)
958		iounmap(mp->p_rx_desc_area);
959	else
960		dma_free_coherent(NULL, mp->rx_desc_area_size,
961				mp->p_rx_desc_area, mp->rx_desc_dma);
962}
963
964/*
965 * mv643xx_eth_stop
966 *
967 * This function is used when closing the network device.
968 * It updates the hardware,
969 * release all memory that holds buffers and descriptors and release the IRQ.
970 * Input :	a pointer to the device structure
971 * Output :	zero if success , nonzero if fails
972 */
973
974static int mv643xx_eth_stop(struct net_device *dev)
975{
976	struct mv643xx_private *mp = netdev_priv(dev);
977	unsigned int port_num = mp->port_num;
978
979	/* Mask all interrupts on ethernet port */
980	mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num), ETH_INT_MASK_ALL);
981	/* wait for previous write to complete */
982	mv_read(MV643XX_ETH_INTERRUPT_MASK_REG(port_num));
983
984#ifdef MV643XX_NAPI
985	netif_poll_disable(dev);
986#endif
987	netif_carrier_off(dev);
988	netif_stop_queue(dev);
989
990	eth_port_reset(mp->port_num);
991
992	mv643xx_eth_free_tx_rings(dev);
993	mv643xx_eth_free_rx_rings(dev);
994
995#ifdef MV643XX_NAPI
996	netif_poll_enable(dev);
997#endif
998
999	free_irq(dev->irq, dev);
1000
1001	return 0;
1002}
1003
1004#ifdef MV643XX_NAPI
1005/*
1006 * mv643xx_poll
1007 *
1008 * This function is used in case of NAPI
1009 */
1010static int mv643xx_poll(struct net_device *dev, int *budget)
1011{
1012	struct mv643xx_private *mp = netdev_priv(dev);
1013	int done = 1, orig_budget, work_done;
1014	unsigned int port_num = mp->port_num;
1015
1016#ifdef MV643XX_TX_FAST_REFILL
1017	if (++mp->tx_clean_threshold > 5) {
1018		mv643xx_eth_free_completed_tx_descs(dev);
1019		mp->tx_clean_threshold = 0;
1020	}
1021#endif
1022
1023	if ((mv_read(MV643XX_ETH_RX_CURRENT_QUEUE_DESC_PTR_0(port_num)))
1024						!= (u32) mp->rx_used_desc_q) {
1025		orig_budget = *budget;
1026		if (orig_budget > dev->quota)
1027			orig_budget = dev->quota;
1028		work_done = mv643xx_eth_receive_queue(dev, orig_budget);
1029		*budget -= work_done;
1030		dev->quota -= work_done;
1031		if (work_done >= orig_budget)
1032			done = 0;
1033	}
1034
1035	if (done) {
1036		netif_rx_complete(dev);
1037		mv_write(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num), 0);
1038		mv_write(MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num), 0);
1039		mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num),
1040						ETH_INT_UNMASK_ALL);
1041	}
1042
1043	return done ? 0 : 1;
1044}
1045#endif
1046
1047/**
1048 * has_tiny_unaligned_frags - check if skb has any small, unaligned fragments
1049 *
1050 * Hardware can't handle unaligned fragments smaller than 9 bytes.
1051 * This helper function detects that case.
1052 */
1053
1054static inline unsigned int has_tiny_unaligned_frags(struct sk_buff *skb)
1055{
1056	unsigned int frag;
1057	skb_frag_t *fragp;
1058
1059	for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1060		fragp = &skb_shinfo(skb)->frags[frag];
1061		if (fragp->size <= 8 && fragp->page_offset & 0x7)
1062			return 1;
1063	}
1064	return 0;
1065}
1066
1067/**
1068 * eth_alloc_tx_desc_index - return the index of the next available tx desc
1069 */
1070static int eth_alloc_tx_desc_index(struct mv643xx_private *mp)
1071{
1072	int tx_desc_curr;
1073
1074	BUG_ON(mp->tx_desc_count >= mp->tx_ring_size);
1075
1076	tx_desc_curr = mp->tx_curr_desc_q;
1077	mp->tx_curr_desc_q = (tx_desc_curr + 1) % mp->tx_ring_size;
1078
1079	BUG_ON(mp->tx_curr_desc_q == mp->tx_used_desc_q);
1080
1081	return tx_desc_curr;
1082}
1083
1084/**
1085 * eth_tx_fill_frag_descs - fill tx hw descriptors for an skb's fragments.
1086 *
1087 * Ensure the data for each fragment to be transmitted is mapped properly,
1088 * then fill in descriptors in the tx hw queue.
1089 */
1090static void eth_tx_fill_frag_descs(struct mv643xx_private *mp,
1091				   struct sk_buff *skb)
1092{
1093	int frag;
1094	int tx_index;
1095	struct eth_tx_desc *desc;
1096
1097	for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1098		skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
1099
1100		tx_index = eth_alloc_tx_desc_index(mp);
1101		desc = &mp->p_tx_desc_area[tx_index];
1102
1103		desc->cmd_sts = ETH_BUFFER_OWNED_BY_DMA;
1104		/* Last Frag enables interrupt and frees the skb */
1105		if (frag == (skb_shinfo(skb)->nr_frags - 1)) {
1106			desc->cmd_sts |= ETH_ZERO_PADDING |
1107					 ETH_TX_LAST_DESC |
1108					 ETH_TX_ENABLE_INTERRUPT;
1109			mp->tx_skb[tx_index] = skb;
1110		} else
1111			mp->tx_skb[tx_index] = NULL;
1112
1113		desc = &mp->p_tx_desc_area[tx_index];
1114		desc->l4i_chk = 0;
1115		desc->byte_cnt = this_frag->size;
1116		desc->buf_ptr = dma_map_page(NULL, this_frag->page,
1117						this_frag->page_offset,
1118						this_frag->size,
1119						DMA_TO_DEVICE);
1120	}
1121}
1122
1123/**
1124 * eth_tx_submit_descs_for_skb - submit data from an skb to the tx hw
1125 *
1126 * Ensure the data for an skb to be transmitted is mapped properly,
1127 * then fill in descriptors in the tx hw queue and start the hardware.
1128 */
1129static void eth_tx_submit_descs_for_skb(struct mv643xx_private *mp,
1130					struct sk_buff *skb)
1131{
1132	int tx_index;
1133	struct eth_tx_desc *desc;
1134	u32 cmd_sts;
1135	int length;
1136	int nr_frags = skb_shinfo(skb)->nr_frags;
1137
1138	cmd_sts = ETH_TX_FIRST_DESC | ETH_GEN_CRC | ETH_BUFFER_OWNED_BY_DMA;
1139
1140	tx_index = eth_alloc_tx_desc_index(mp);
1141	desc = &mp->p_tx_desc_area[tx_index];
1142
1143	if (nr_frags) {
1144		eth_tx_fill_frag_descs(mp, skb);
1145
1146		length = skb_headlen(skb);
1147		mp->tx_skb[tx_index] = NULL;
1148	} else {
1149		cmd_sts |= ETH_ZERO_PADDING |
1150			   ETH_TX_LAST_DESC |
1151			   ETH_TX_ENABLE_INTERRUPT;
1152		length = skb->len;
1153		mp->tx_skb[tx_index] = skb;
1154	}
1155
1156	desc->byte_cnt = length;
1157	desc->buf_ptr = dma_map_single(NULL, skb->data, length, DMA_TO_DEVICE);
1158
1159	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1160		BUG_ON(skb->protocol != ETH_P_IP);
1161
1162		cmd_sts |= ETH_GEN_TCP_UDP_CHECKSUM |
1163			   ETH_GEN_IP_V_4_CHECKSUM  |
1164			   ip_hdr(skb)->ihl << ETH_TX_IHL_SHIFT;
1165
1166		switch (ip_hdr(skb)->protocol) {
1167		case IPPROTO_UDP:
1168			cmd_sts |= ETH_UDP_FRAME;
1169			desc->l4i_chk = udp_hdr(skb)->check;
1170			break;
1171		case IPPROTO_TCP:
1172			desc->l4i_chk = tcp_hdr(skb)->check;
1173			break;
1174		default:
1175			BUG();
1176		}
1177	} else {
1178		/* Errata BTS #50, IHL must be 5 if no HW checksum */
1179		cmd_sts |= 5 << ETH_TX_IHL_SHIFT;
1180		desc->l4i_chk = 0;
1181	}
1182
1183	/* ensure all other descriptors are written before first cmd_sts */
1184	wmb();
1185	desc->cmd_sts = cmd_sts;
1186
1187	/* ensure all descriptors are written before poking hardware */
1188	wmb();
1189	mv643xx_eth_port_enable_tx(mp->port_num, ETH_TX_QUEUES_ENABLED);
1190
1191	mp->tx_desc_count += nr_frags + 1;
1192}
1193
1194/**
1195 * mv643xx_eth_start_xmit - queue an skb to the hardware for transmission
1196 *
1197 */
1198static int mv643xx_eth_start_xmit(struct sk_buff *skb, struct net_device *dev)
1199{
1200	struct mv643xx_private *mp = netdev_priv(dev);
1201	struct net_device_stats *stats = &mp->stats;
1202	unsigned long flags;
1203
1204	BUG_ON(netif_queue_stopped(dev));
1205	BUG_ON(skb == NULL);
1206
1207	if (mp->tx_ring_size - mp->tx_desc_count < MAX_DESCS_PER_SKB) {
1208		printk(KERN_ERR "%s: transmit with queue full\n", dev->name);
1209		netif_stop_queue(dev);
1210		return 1;
1211	}
1212
1213	if (has_tiny_unaligned_frags(skb)) {
1214		if (__skb_linearize(skb)) {
1215			stats->tx_dropped++;
1216			printk(KERN_DEBUG "%s: failed to linearize tiny "
1217					"unaligned fragment\n", dev->name);
1218			return 1;
1219		}
1220	}
1221
1222	spin_lock_irqsave(&mp->lock, flags);
1223
1224	eth_tx_submit_descs_for_skb(mp, skb);
1225	stats->tx_bytes = skb->len;
1226	stats->tx_packets++;
1227	dev->trans_start = jiffies;
1228
1229	if (mp->tx_ring_size - mp->tx_desc_count < MAX_DESCS_PER_SKB)
1230		netif_stop_queue(dev);
1231
1232	spin_unlock_irqrestore(&mp->lock, flags);
1233
1234	return 0;		/* success */
1235}
1236
1237/*
1238 * mv643xx_eth_get_stats
1239 *
1240 * Returns a pointer to the interface statistics.
1241 *
1242 * Input :	dev - a pointer to the required interface
1243 *
1244 * Output :	a pointer to the interface's statistics
1245 */
1246
1247static struct net_device_stats *mv643xx_eth_get_stats(struct net_device *dev)
1248{
1249	struct mv643xx_private *mp = netdev_priv(dev);
1250
1251	return &mp->stats;
1252}
1253
1254#ifdef CONFIG_NET_POLL_CONTROLLER
1255static void mv643xx_netpoll(struct net_device *netdev)
1256{
1257	struct mv643xx_private *mp = netdev_priv(netdev);
1258	int port_num = mp->port_num;
1259
1260	mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num), ETH_INT_MASK_ALL);
1261	/* wait for previous write to complete */
1262	mv_read(MV643XX_ETH_INTERRUPT_MASK_REG(port_num));
1263
1264	mv643xx_eth_int_handler(netdev->irq, netdev);
1265
1266	mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num), ETH_INT_UNMASK_ALL);
1267}
1268#endif
1269
1270static void mv643xx_init_ethtool_cmd(struct net_device *dev, int phy_address,
1271				     int speed, int duplex,
1272				     struct ethtool_cmd *cmd)
1273{
1274	struct mv643xx_private *mp = netdev_priv(dev);
1275
1276	memset(cmd, 0, sizeof(*cmd));
1277
1278	cmd->port = PORT_MII;
1279	cmd->transceiver = XCVR_INTERNAL;
1280	cmd->phy_address = phy_address;
1281
1282	if (speed == 0) {
1283		cmd->autoneg = AUTONEG_ENABLE;
1284		/* mii lib checks, but doesn't use speed on AUTONEG_ENABLE */
1285		cmd->speed = SPEED_100;
1286		cmd->advertising = ADVERTISED_10baseT_Half  |
1287				   ADVERTISED_10baseT_Full  |
1288				   ADVERTISED_100baseT_Half |
1289				   ADVERTISED_100baseT_Full;
1290		if (mp->mii.supports_gmii)
1291			cmd->advertising |= ADVERTISED_1000baseT_Full;
1292	} else {
1293		cmd->autoneg = AUTONEG_DISABLE;
1294		cmd->speed = speed;
1295		cmd->duplex = duplex;
1296	}
1297}
1298
1299/*/
1300 * mv643xx_eth_probe
1301 *
1302 * First function called after registering the network device.
1303 * It's purpose is to initialize the device as an ethernet device,
1304 * fill the ethernet device structure with pointers * to functions,
1305 * and set the MAC address of the interface
1306 *
1307 * Input :	struct device *
1308 * Output :	-ENOMEM if failed , 0 if success
1309 */
1310static int mv643xx_eth_probe(struct platform_device *pdev)
1311{
1312	struct mv643xx_eth_platform_data *pd;
1313	int port_num;
1314	struct mv643xx_private *mp;
1315	struct net_device *dev;
1316	u8 *p;
1317	struct resource *res;
1318	int err;
1319	struct ethtool_cmd cmd;
1320	int duplex = DUPLEX_HALF;
1321	int speed = 0;			/* default to auto-negotiation */
1322
1323	pd = pdev->dev.platform_data;
1324	if (pd == NULL) {
1325		printk(KERN_ERR "No mv643xx_eth_platform_data\n");
1326		return -ENODEV;
1327	}
1328
1329	dev = alloc_etherdev(sizeof(struct mv643xx_private));
1330	if (!dev)
1331		return -ENOMEM;
1332
1333	platform_set_drvdata(pdev, dev);
1334
1335	mp = netdev_priv(dev);
1336
1337	res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1338	BUG_ON(!res);
1339	dev->irq = res->start;
1340
1341	dev->open = mv643xx_eth_open;
1342	dev->stop = mv643xx_eth_stop;
1343	dev->hard_start_xmit = mv643xx_eth_start_xmit;
1344	dev->get_stats = mv643xx_eth_get_stats;
1345	dev->set_mac_address = mv643xx_eth_set_mac_address;
1346	dev->set_multicast_list = mv643xx_eth_set_rx_mode;
1347
1348	/* No need to Tx Timeout */
1349	dev->tx_timeout = mv643xx_eth_tx_timeout;
1350#ifdef MV643XX_NAPI
1351	dev->poll = mv643xx_poll;
1352	dev->weight = 64;
1353#endif
1354
1355#ifdef CONFIG_NET_POLL_CONTROLLER
1356	dev->poll_controller = mv643xx_netpoll;
1357#endif
1358
1359	dev->watchdog_timeo = 2 * HZ;
1360	dev->tx_queue_len = mp->tx_ring_size;
1361	dev->base_addr = 0;
1362	dev->change_mtu = mv643xx_eth_change_mtu;
1363	dev->do_ioctl = mv643xx_eth_do_ioctl;
1364	SET_ETHTOOL_OPS(dev, &mv643xx_ethtool_ops);
1365
1366#ifdef MV643XX_CHECKSUM_OFFLOAD_TX
1367#ifdef MAX_SKB_FRAGS
1368	/*
1369	 * Zero copy can only work if we use Discovery II memory. Else, we will
1370	 * have to map the buffers to ISA memory which is only 16 MB
1371	 */
1372	dev->features = NETIF_F_SG | NETIF_F_IP_CSUM;
1373#endif
1374#endif
1375
1376	/* Configure the timeout task */
1377	INIT_WORK(&mp->tx_timeout_task, mv643xx_eth_tx_timeout_task);
1378
1379	spin_lock_init(&mp->lock);
1380
1381	port_num = mp->port_num = pd->port_number;
1382
1383	/* set default config values */
1384	eth_port_uc_addr_get(port_num, dev->dev_addr);
1385	mp->rx_ring_size = MV643XX_ETH_PORT_DEFAULT_RECEIVE_QUEUE_SIZE;
1386	mp->tx_ring_size = MV643XX_ETH_PORT_DEFAULT_TRANSMIT_QUEUE_SIZE;
1387
1388	if (is_valid_ether_addr(pd->mac_addr))
1389		memcpy(dev->dev_addr, pd->mac_addr, 6);
1390
1391	if (pd->phy_addr || pd->force_phy_addr)
1392		ethernet_phy_set(port_num, pd->phy_addr);
1393
1394	if (pd->rx_queue_size)
1395		mp->rx_ring_size = pd->rx_queue_size;
1396
1397	if (pd->tx_queue_size)
1398		mp->tx_ring_size = pd->tx_queue_size;
1399
1400	if (pd->tx_sram_size) {
1401		mp->tx_sram_size = pd->tx_sram_size;
1402		mp->tx_sram_addr = pd->tx_sram_addr;
1403	}
1404
1405	if (pd->rx_sram_size) {
1406		mp->rx_sram_size = pd->rx_sram_size;
1407		mp->rx_sram_addr = pd->rx_sram_addr;
1408	}
1409
1410	duplex = pd->duplex;
1411	speed = pd->speed;
1412
1413	/* Hook up MII support for ethtool */
1414	mp->mii.dev = dev;
1415	mp->mii.mdio_read = mv643xx_mdio_read;
1416	mp->mii.mdio_write = mv643xx_mdio_write;
1417	mp->mii.phy_id = ethernet_phy_get(port_num);
1418	mp->mii.phy_id_mask = 0x3f;
1419	mp->mii.reg_num_mask = 0x1f;
1420
1421	err = ethernet_phy_detect(port_num);
1422	if (err) {
1423		pr_debug("MV643xx ethernet port %d: "
1424					"No PHY detected at addr %d\n",
1425					port_num, ethernet_phy_get(port_num));
1426		goto out;
1427	}
1428
1429	ethernet_phy_reset(port_num);
1430	mp->mii.supports_gmii = mii_check_gmii_support(&mp->mii);
1431	mv643xx_init_ethtool_cmd(dev, mp->mii.phy_id, speed, duplex, &cmd);
1432	mv643xx_eth_update_pscr(dev, &cmd);
1433	mv643xx_set_settings(dev, &cmd);
1434
1435	SET_MODULE_OWNER(dev);
1436	SET_NETDEV_DEV(dev, &pdev->dev);
1437	err = register_netdev(dev);
1438	if (err)
1439		goto out;
1440
1441	p = dev->dev_addr;
1442	printk(KERN_NOTICE
1443		"%s: port %d with MAC address %02x:%02x:%02x:%02x:%02x:%02x\n",
1444		dev->name, port_num, p[0], p[1], p[2], p[3], p[4], p[5]);
1445
1446	if (dev->features & NETIF_F_SG)
1447		printk(KERN_NOTICE "%s: Scatter Gather Enabled\n", dev->name);
1448
1449	if (dev->features & NETIF_F_IP_CSUM)
1450		printk(KERN_NOTICE "%s: TX TCP/IP Checksumming Supported\n",
1451								dev->name);
1452
1453#ifdef MV643XX_CHECKSUM_OFFLOAD_TX
1454	printk(KERN_NOTICE "%s: RX TCP/UDP Checksum Offload ON \n", dev->name);
1455#endif
1456
1457#ifdef MV643XX_COAL
1458	printk(KERN_NOTICE "%s: TX and RX Interrupt Coalescing ON \n",
1459								dev->name);
1460#endif
1461
1462#ifdef MV643XX_NAPI
1463	printk(KERN_NOTICE "%s: RX NAPI Enabled \n", dev->name);
1464#endif
1465
1466	if (mp->tx_sram_size > 0)
1467		printk(KERN_NOTICE "%s: Using SRAM\n", dev->name);
1468
1469	return 0;
1470
1471out:
1472	free_netdev(dev);
1473
1474	return err;
1475}
1476
1477static int mv643xx_eth_remove(struct platform_device *pdev)
1478{
1479	struct net_device *dev = platform_get_drvdata(pdev);
1480
1481	unregister_netdev(dev);
1482	flush_scheduled_work();
1483
1484	free_netdev(dev);
1485	platform_set_drvdata(pdev, NULL);
1486	return 0;
1487}
1488
1489static int mv643xx_eth_shared_probe(struct platform_device *pdev)
1490{
1491	struct resource *res;
1492
1493	printk(KERN_NOTICE "MV-643xx 10/100/1000 Ethernet Driver\n");
1494
1495	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1496	if (res == NULL)
1497		return -ENODEV;
1498
1499	mv643xx_eth_shared_base = ioremap(res->start,
1500						MV643XX_ETH_SHARED_REGS_SIZE);
1501	if (mv643xx_eth_shared_base == NULL)
1502		return -ENOMEM;
1503
1504	return 0;
1505
1506}
1507
1508static int mv643xx_eth_shared_remove(struct platform_device *pdev)
1509{
1510	iounmap(mv643xx_eth_shared_base);
1511	mv643xx_eth_shared_base = NULL;
1512
1513	return 0;
1514}
1515
1516static void mv643xx_eth_shutdown(struct platform_device *pdev)
1517{
1518	struct net_device *dev = platform_get_drvdata(pdev);
1519	struct mv643xx_private *mp = netdev_priv(dev);
1520	unsigned int port_num = mp->port_num;
1521
1522	/* Mask all interrupts on ethernet port */
1523	mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num), 0);
1524	mv_read (MV643XX_ETH_INTERRUPT_MASK_REG(port_num));
1525
1526	eth_port_reset(port_num);
1527}
1528
1529static struct platform_driver mv643xx_eth_driver = {
1530	.probe = mv643xx_eth_probe,
1531	.remove = mv643xx_eth_remove,
1532	.shutdown = mv643xx_eth_shutdown,
1533	.driver = {
1534		.name = MV643XX_ETH_NAME,
1535	},
1536};
1537
1538static struct platform_driver mv643xx_eth_shared_driver = {
1539	.probe = mv643xx_eth_shared_probe,
1540	.remove = mv643xx_eth_shared_remove,
1541	.driver = {
1542		.name = MV643XX_ETH_SHARED_NAME,
1543	},
1544};
1545
1546/*
1547 * mv643xx_init_module
1548 *
1549 * Registers the network drivers into the Linux kernel
1550 *
1551 * Input :	N/A
1552 *
1553 * Output :	N/A
1554 */
1555static int __init mv643xx_init_module(void)
1556{
1557	int rc;
1558
1559	rc = platform_driver_register(&mv643xx_eth_shared_driver);
1560	if (!rc) {
1561		rc = platform_driver_register(&mv643xx_eth_driver);
1562		if (rc)
1563			platform_driver_unregister(&mv643xx_eth_shared_driver);
1564	}
1565	return rc;
1566}
1567
1568/*
1569 * mv643xx_cleanup_module
1570 *
1571 * Registers the network drivers into the Linux kernel
1572 *
1573 * Input :	N/A
1574 *
1575 * Output :	N/A
1576 */
1577static void __exit mv643xx_cleanup_module(void)
1578{
1579	platform_driver_unregister(&mv643xx_eth_driver);
1580	platform_driver_unregister(&mv643xx_eth_shared_driver);
1581}
1582
1583module_init(mv643xx_init_module);
1584module_exit(mv643xx_cleanup_module);
1585
1586MODULE_LICENSE("GPL");
1587MODULE_AUTHOR(	"Rabeeh Khoury, Assaf Hoffman, Matthew Dharm, Manish Lachwani"
1588		" and Dale Farnsworth");
1589MODULE_DESCRIPTION("Ethernet driver for Marvell MV643XX");
1590
1591/*
1592 * The second part is the low level driver of the gigE ethernet ports.
1593 */
1594
1595/*
1596 * Marvell's Gigabit Ethernet controller low level driver
1597 *
1598 * DESCRIPTION:
1599 *	This file introduce low level API to Marvell's Gigabit Ethernet
1600 *		controller. This Gigabit Ethernet Controller driver API controls
1601 *		1) Operations (i.e. port init, start, reset etc').
1602 *		2) Data flow (i.e. port send, receive etc').
1603 *		Each Gigabit Ethernet port is controlled via
1604 *		struct mv643xx_private.
1605 *		This struct includes user configuration information as well as
1606 *		driver internal data needed for its operations.
1607 *
1608 *		Supported Features:
1609 *		- This low level driver is OS independent. Allocating memory for
1610 *		  the descriptor rings and buffers are not within the scope of
1611 *		  this driver.
1612 *		- The user is free from Rx/Tx queue managing.
1613 *		- This low level driver introduce functionality API that enable
1614 *		  the to operate Marvell's Gigabit Ethernet Controller in a
1615 *		  convenient way.
1616 *		- Simple Gigabit Ethernet port operation API.
1617 *		- Simple Gigabit Ethernet port data flow API.
1618 *		- Data flow and operation API support per queue functionality.
1619 *		- Support cached descriptors for better performance.
1620 *		- Enable access to all four DRAM banks and internal SRAM memory
1621 *		  spaces.
1622 *		- PHY access and control API.
1623 *		- Port control register configuration API.
1624 *		- Full control over Unicast and Multicast MAC configurations.
1625 *
1626 *		Operation flow:
1627 *
1628 *		Initialization phase
1629 *		This phase complete the initialization of the the
1630 *		mv643xx_private struct.
1631 *		User information regarding port configuration has to be set
1632 *		prior to calling the port initialization routine.
1633 *
1634 *		In this phase any port Tx/Rx activity is halted, MIB counters
1635 *		are cleared, PHY address is set according to user parameter and
1636 *		access to DRAM and internal SRAM memory spaces.
1637 *
1638 *		Driver ring initialization
1639 *		Allocating memory for the descriptor rings and buffers is not
1640 *		within the scope of this driver. Thus, the user is required to
1641 *		allocate memory for the descriptors ring and buffers. Those
1642 *		memory parameters are used by the Rx and Tx ring initialization
1643 *		routines in order to curve the descriptor linked list in a form
1644 *		of a ring.
1645 *		Note: Pay special attention to alignment issues when using
1646 *		cached descriptors/buffers. In this phase the driver store
1647 *		information in the mv643xx_private struct regarding each queue
1648 *		ring.
1649 *
1650 *		Driver start
1651 *		This phase prepares the Ethernet port for Rx and Tx activity.
1652 *		It uses the information stored in the mv643xx_private struct to
1653 *		initialize the various port registers.
1654 *
1655 *		Data flow:
1656 *		All packet references to/from the driver are done using
1657 *		struct pkt_info.
1658 *		This struct is a unified struct used with Rx and Tx operations.
1659 *		This way the user is not required to be familiar with neither
1660 *		Tx nor Rx descriptors structures.
1661 *		The driver's descriptors rings are management by indexes.
1662 *		Those indexes controls the ring resources and used to indicate
1663 *		a SW resource error:
1664 *		'current'
1665 *		This index points to the current available resource for use. For
1666 *		example in Rx process this index will point to the descriptor
1667 *		that will be passed to the user upon calling the receive
1668 *		routine.  In Tx process, this index will point to the descriptor
1669 *		that will be assigned with the user packet info and transmitted.
1670 *		'used'
1671 *		This index points to the descriptor that need to restore its
1672 *		resources. For example in Rx process, using the Rx buffer return
1673 *		API will attach the buffer returned in packet info to the
1674 *		descriptor pointed by 'used'. In Tx process, using the Tx
1675 *		descriptor return will merely return the user packet info with
1676 *		the command status of the transmitted buffer pointed by the
1677 *		'used' index. Nevertheless, it is essential to use this routine
1678 *		to update the 'used' index.
1679 *		'first'
1680 *		This index supports Tx Scatter-Gather. It points to the first
1681 *		descriptor of a packet assembled of multiple buffers. For
1682 *		example when in middle of Such packet we have a Tx resource
1683 *		error the 'curr' index get the value of 'first' to indicate
1684 *		that the ring returned to its state before trying to transmit
1685 *		this packet.
1686 *
1687 *		Receive operation:
1688 *		The eth_port_receive API set the packet information struct,
1689 *		passed by the caller, with received information from the
1690 *		'current' SDMA descriptor.
1691 *		It is the user responsibility to return this resource back
1692 *		to the Rx descriptor ring to enable the reuse of this source.
1693 *		Return Rx resource is done using the eth_rx_return_buff API.
1694 *
1695 *	Prior to calling the initialization routine eth_port_init() the user
1696 *	must set the following fields under mv643xx_private struct:
1697 *	port_num		User Ethernet port number.
1698 *	port_config		User port configuration value.
1699 *	port_config_extend	User port config extend value.
1700 *	port_sdma_config	User port SDMA config value.
1701 *	port_serial_control	User port serial control value.
1702 *
1703 *		This driver data flow is done using the struct pkt_info which
1704 *		is a unified struct for Rx and Tx operations:
1705 *
1706 *		byte_cnt	Tx/Rx descriptor buffer byte count.
1707 *		l4i_chk		CPU provided TCP Checksum. For Tx operation
1708 *				only.
1709 *		cmd_sts		Tx/Rx descriptor command status.
1710 *		buf_ptr		Tx/Rx descriptor buffer pointer.
1711 *		return_info	Tx/Rx user resource return information.
1712 */
1713
1714/* PHY routines */
1715static int ethernet_phy_get(unsigned int eth_port_num);
1716static void ethernet_phy_set(unsigned int eth_port_num, int phy_addr);
1717
1718/* Ethernet Port routines */
1719static void eth_port_set_filter_table_entry(int table, unsigned char entry);
1720
1721/*
1722 * eth_port_init - Initialize the Ethernet port driver
1723 *
1724 * DESCRIPTION:
1725 *	This function prepares the ethernet port to start its activity:
1726 *	1) Completes the ethernet port driver struct initialization toward port
1727 *		start routine.
1728 *	2) Resets the device to a quiescent state in case of warm reboot.
1729 *	3) Enable SDMA access to all four DRAM banks as well as internal SRAM.
1730 *	4) Clean MAC tables. The reset status of those tables is unknown.
1731 *	5) Set PHY address.
1732 *	Note: Call this routine prior to eth_port_start routine and after
1733 *	setting user values in the user fields of Ethernet port control
1734 *	struct.
1735 *
1736 * INPUT:
1737 *	struct mv643xx_private *mp	Ethernet port control struct
1738 *
1739 * OUTPUT:
1740 *	See description.
1741 *
1742 * RETURN:
1743 *	None.
1744 */
1745static void eth_port_init(struct mv643xx_private *mp)
1746{
1747	mp->rx_resource_err = 0;
1748
1749	eth_port_reset(mp->port_num);
1750
1751	eth_port_init_mac_tables(mp->port_num);
1752}
1753
1754/*
1755 * eth_port_start - Start the Ethernet port activity.
1756 *
1757 * DESCRIPTION:
1758 *	This routine prepares the Ethernet port for Rx and Tx activity:
1759 *	 1. Initialize Tx and Rx Current Descriptor Pointer for each queue that
1760 *	    has been initialized a descriptor's ring (using
1761 *	    ether_init_tx_desc_ring for Tx and ether_init_rx_desc_ring for Rx)
1762 *	 2. Initialize and enable the Ethernet configuration port by writing to
1763 *	    the port's configuration and command registers.
1764 *	 3. Initialize and enable the SDMA by writing to the SDMA's
1765 *	    configuration and command registers.  After completing these steps,
1766 *	    the ethernet port SDMA can starts to perform Rx and Tx activities.
1767 *
1768 *	Note: Each Rx and Tx queue descriptor's list must be initialized prior
1769 *	to calling this function (use ether_init_tx_desc_ring for Tx queues
1770 *	and ether_init_rx_desc_ring for Rx queues).
1771 *
1772 * INPUT:
1773 *	dev - a pointer to the required interface
1774 *
1775 * OUTPUT:
1776 *	Ethernet port is ready to receive and transmit.
1777 *
1778 * RETURN:
1779 *	None.
1780 */
1781static void eth_port_start(struct net_device *dev)
1782{
1783	struct mv643xx_private *mp = netdev_priv(dev);
1784	unsigned int port_num = mp->port_num;
1785	int tx_curr_desc, rx_curr_desc;
1786	u32 pscr;
1787	struct ethtool_cmd ethtool_cmd;
1788
1789	/* Assignment of Tx CTRP of given queue */
1790	tx_curr_desc = mp->tx_curr_desc_q;
1791	mv_write(MV643XX_ETH_TX_CURRENT_QUEUE_DESC_PTR_0(port_num),
1792		(u32)((struct eth_tx_desc *)mp->tx_desc_dma + tx_curr_desc));
1793
1794	/* Assignment of Rx CRDP of given queue */
1795	rx_curr_desc = mp->rx_curr_desc_q;
1796	mv_write(MV643XX_ETH_RX_CURRENT_QUEUE_DESC_PTR_0(port_num),
1797		(u32)((struct eth_rx_desc *)mp->rx_desc_dma + rx_curr_desc));
1798
1799	/* Add the assigned Ethernet address to the port's address table */
1800	eth_port_uc_addr_set(port_num, dev->dev_addr);
1801
1802	/* Assign port configuration and command. */
1803	mv_write(MV643XX_ETH_PORT_CONFIG_REG(port_num),
1804			  MV643XX_ETH_PORT_CONFIG_DEFAULT_VALUE);
1805
1806	mv_write(MV643XX_ETH_PORT_CONFIG_EXTEND_REG(port_num),
1807			  MV643XX_ETH_PORT_CONFIG_EXTEND_DEFAULT_VALUE);
1808
1809	pscr = mv_read(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num));
1810
1811	pscr &= ~(MV643XX_ETH_SERIAL_PORT_ENABLE | MV643XX_ETH_FORCE_LINK_PASS);
1812	mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num), pscr);
1813
1814	pscr |= MV643XX_ETH_DISABLE_AUTO_NEG_FOR_FLOW_CTRL |
1815		MV643XX_ETH_DISABLE_AUTO_NEG_SPEED_GMII    |
1816		MV643XX_ETH_DISABLE_AUTO_NEG_FOR_DUPLX     |
1817		MV643XX_ETH_DO_NOT_FORCE_LINK_FAIL	   |
1818		MV643XX_ETH_SERIAL_PORT_CONTROL_RESERVED;
1819
1820	mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num), pscr);
1821
1822	pscr |= MV643XX_ETH_SERIAL_PORT_ENABLE;
1823	mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num), pscr);
1824
1825	/* Assign port SDMA configuration */
1826	mv_write(MV643XX_ETH_SDMA_CONFIG_REG(port_num),
1827			  MV643XX_ETH_PORT_SDMA_CONFIG_DEFAULT_VALUE);
1828
1829	/* Enable port Rx. */
1830	mv643xx_eth_port_enable_rx(port_num, ETH_RX_QUEUES_ENABLED);
1831
1832	/* Disable port bandwidth limits by clearing MTU register */
1833	mv_write(MV643XX_ETH_MAXIMUM_TRANSMIT_UNIT(port_num), 0);
1834
1835	/* save phy settings across reset */
1836	mv643xx_get_settings(dev, &ethtool_cmd);
1837	ethernet_phy_reset(mp->port_num);
1838	mv643xx_set_settings(dev, &ethtool_cmd);
1839}
1840
1841/*
1842 * eth_port_uc_addr_set - Write a MAC address into the port's hw registers
1843 */
1844static void eth_port_uc_addr_set(unsigned int port_num, unsigned char *p_addr)
1845{
1846	unsigned int mac_h;
1847	unsigned int mac_l;
1848	int table;
1849
1850	mac_l = (p_addr[4] << 8) | (p_addr[5]);
1851	mac_h = (p_addr[0] << 24) | (p_addr[1] << 16) | (p_addr[2] << 8) |
1852							(p_addr[3] << 0);
1853
1854	mv_write(MV643XX_ETH_MAC_ADDR_LOW(port_num), mac_l);
1855	mv_write(MV643XX_ETH_MAC_ADDR_HIGH(port_num), mac_h);
1856
1857	/* Accept frames with this address */
1858	table = MV643XX_ETH_DA_FILTER_UNICAST_TABLE_BASE(port_num);
1859	eth_port_set_filter_table_entry(table, p_addr[5] & 0x0f);
1860}
1861
1862/*
1863 * eth_port_uc_addr_get - Read the MAC address from the port's hw registers
1864 */
1865static void eth_port_uc_addr_get(unsigned int port_num, unsigned char *p_addr)
1866{
1867	unsigned int mac_h;
1868	unsigned int mac_l;
1869
1870	mac_h = mv_read(MV643XX_ETH_MAC_ADDR_HIGH(port_num));
1871	mac_l = mv_read(MV643XX_ETH_MAC_ADDR_LOW(port_num));
1872
1873	p_addr[0] = (mac_h >> 24) & 0xff;
1874	p_addr[1] = (mac_h >> 16) & 0xff;
1875	p_addr[2] = (mac_h >> 8) & 0xff;
1876	p_addr[3] = mac_h & 0xff;
1877	p_addr[4] = (mac_l >> 8) & 0xff;
1878	p_addr[5] = mac_l & 0xff;
1879}
1880
1881/*
1882 * The entries in each table are indexed by a hash of a packet's MAC
1883 * address.  One bit in each entry determines whether the packet is
1884 * accepted.  There are 4 entries (each 8 bits wide) in each register
1885 * of the table.  The bits in each entry are defined as follows:
1886 *	0	Accept=1, Drop=0
1887 *	3-1	Queue			(ETH_Q0=0)
1888 *	7-4	Reserved = 0;
1889 */
1890static void eth_port_set_filter_table_entry(int table, unsigned char entry)
1891{
1892	unsigned int table_reg;
1893	unsigned int tbl_offset;
1894	unsigned int reg_offset;
1895
1896	tbl_offset = (entry / 4) * 4;	/* Register offset of DA table entry */
1897	reg_offset = entry % 4;		/* Entry offset within the register */
1898
1899	/* Set "accepts frame bit" at specified table entry */
1900	table_reg = mv_read(table + tbl_offset);
1901	table_reg |= 0x01 << (8 * reg_offset);
1902	mv_write(table + tbl_offset, table_reg);
1903}
1904
1905/*
1906 * eth_port_mc_addr - Multicast address settings.
1907 *
1908 * The MV device supports multicast using two tables:
1909 * 1) Special Multicast Table for MAC addresses of the form
1910 *    0x01-00-5E-00-00-XX (where XX is between 0x00 and 0x_FF).
1911 *    The MAC DA[7:0] bits are used as a pointer to the Special Multicast
1912 *    Table entries in the DA-Filter table.
1913 * 2) Other Multicast Table for multicast of another type. A CRC-8bit
1914 *    is used as an index to the Other Multicast Table entries in the
1915 *    DA-Filter table.  This function calculates the CRC-8bit value.
1916 * In either case, eth_port_set_filter_table_entry() is then called
1917 * to set to set the actual table entry.
1918 */
1919static void eth_port_mc_addr(unsigned int eth_port_num, unsigned char *p_addr)
1920{
1921	unsigned int mac_h;
1922	unsigned int mac_l;
1923	unsigned char crc_result = 0;
1924	int table;
1925	int mac_array[48];
1926	int crc[8];
1927	int i;
1928
1929	if ((p_addr[0] == 0x01) && (p_addr[1] == 0x00) &&
1930	    (p_addr[2] == 0x5E) && (p_addr[3] == 0x00) && (p_addr[4] == 0x00)) {
1931		table = MV643XX_ETH_DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE
1932					(eth_port_num);
1933		eth_port_set_filter_table_entry(table, p_addr[5]);
1934		return;
1935	}
1936
1937	/* Calculate CRC-8 out of the given address */
1938	mac_h = (p_addr[0] << 8) | (p_addr[1]);
1939	mac_l = (p_addr[2] << 24) | (p_addr[3] << 16) |
1940			(p_addr[4] << 8) | (p_addr[5] << 0);
1941
1942	for (i = 0; i < 32; i++)
1943		mac_array[i] = (mac_l >> i) & 0x1;
1944	for (i = 32; i < 48; i++)
1945		mac_array[i] = (mac_h >> (i - 32)) & 0x1;
1946
1947	crc[0] = mac_array[45] ^ mac_array[43] ^ mac_array[40] ^ mac_array[39] ^
1948		 mac_array[35] ^ mac_array[34] ^ mac_array[31] ^ mac_array[30] ^
1949		 mac_array[28] ^ mac_array[23] ^ mac_array[21] ^ mac_array[19] ^
1950		 mac_array[18] ^ mac_array[16] ^ mac_array[14] ^ mac_array[12] ^
1951		 mac_array[8]  ^ mac_array[7]  ^ mac_array[6]  ^ mac_array[0];
1952
1953	crc[1] = mac_array[46] ^ mac_array[45] ^ mac_array[44] ^ mac_array[43] ^
1954		 mac_array[41] ^ mac_array[39] ^ mac_array[36] ^ mac_array[34] ^
1955		 mac_array[32] ^ mac_array[30] ^ mac_array[29] ^ mac_array[28] ^
1956		 mac_array[24] ^ mac_array[23] ^ mac_array[22] ^ mac_array[21] ^
1957		 mac_array[20] ^ mac_array[18] ^ mac_array[17] ^ mac_array[16] ^
1958		 mac_array[15] ^ mac_array[14] ^ mac_array[13] ^ mac_array[12] ^
1959		 mac_array[9]  ^ mac_array[6]  ^ mac_array[1]  ^ mac_array[0];
1960
1961	crc[2] = mac_array[47] ^ mac_array[46] ^ mac_array[44] ^ mac_array[43] ^
1962		 mac_array[42] ^ mac_array[39] ^ mac_array[37] ^ mac_array[34] ^
1963		 mac_array[33] ^ mac_array[29] ^ mac_array[28] ^ mac_array[25] ^
1964		 mac_array[24] ^ mac_array[22] ^ mac_array[17] ^ mac_array[15] ^
1965		 mac_array[13] ^ mac_array[12] ^ mac_array[10] ^ mac_array[8]  ^
1966		 mac_array[6]  ^ mac_array[2]  ^ mac_array[1]  ^ mac_array[0];
1967
1968	crc[3] = mac_array[47] ^ mac_array[45] ^ mac_array[44] ^ mac_array[43] ^
1969		 mac_array[40] ^ mac_array[38] ^ mac_array[35] ^ mac_array[34] ^
1970		 mac_array[30] ^ mac_array[29] ^ mac_array[26] ^ mac_array[25] ^
1971		 mac_array[23] ^ mac_array[18] ^ mac_array[16] ^ mac_array[14] ^
1972		 mac_array[13] ^ mac_array[11] ^ mac_array[9]  ^ mac_array[7]  ^
1973		 mac_array[3]  ^ mac_array[2]  ^ mac_array[1];
1974
1975	crc[4] = mac_array[46] ^ mac_array[45] ^ mac_array[44] ^ mac_array[41] ^
1976		 mac_array[39] ^ mac_array[36] ^ mac_array[35] ^ mac_array[31] ^
1977		 mac_array[30] ^ mac_array[27] ^ mac_array[26] ^ mac_array[24] ^
1978		 mac_array[19] ^ mac_array[17] ^ mac_array[15] ^ mac_array[14] ^
1979		 mac_array[12] ^ mac_array[10] ^ mac_array[8]  ^ mac_array[4]  ^
1980		 mac_array[3]  ^ mac_array[2];
1981
1982	crc[5] = mac_array[47] ^ mac_array[46] ^ mac_array[45] ^ mac_array[42] ^
1983		 mac_array[40] ^ mac_array[37] ^ mac_array[36] ^ mac_array[32] ^
1984		 mac_array[31] ^ mac_array[28] ^ mac_array[27] ^ mac_array[25] ^
1985		 mac_array[20] ^ mac_array[18] ^ mac_array[16] ^ mac_array[15] ^
1986		 mac_array[13] ^ mac_array[11] ^ mac_array[9]  ^ mac_array[5]  ^
1987		 mac_array[4]  ^ mac_array[3];
1988
1989	crc[6] = mac_array[47] ^ mac_array[46] ^ mac_array[43] ^ mac_array[41] ^
1990		 mac_array[38] ^ mac_array[37] ^ mac_array[33] ^ mac_array[32] ^
1991		 mac_array[29] ^ mac_array[28] ^ mac_array[26] ^ mac_array[21] ^
1992		 mac_array[19] ^ mac_array[17] ^ mac_array[16] ^ mac_array[14] ^
1993		 mac_array[12] ^ mac_array[10] ^ mac_array[6]  ^ mac_array[5]  ^
1994		 mac_array[4];
1995
1996	crc[7] = mac_array[47] ^ mac_array[44] ^ mac_array[42] ^ mac_array[39] ^
1997		 mac_array[38] ^ mac_array[34] ^ mac_array[33] ^ mac_array[30] ^
1998		 mac_array[29] ^ mac_array[27] ^ mac_array[22] ^ mac_array[20] ^
1999		 mac_array[18] ^ mac_array[17] ^ mac_array[15] ^ mac_array[13] ^
2000		 mac_array[11] ^ mac_array[7]  ^ mac_array[6]  ^ mac_array[5];
2001
2002	for (i = 0; i < 8; i++)
2003		crc_result = crc_result | (crc[i] << i);
2004
2005	table = MV643XX_ETH_DA_FILTER_OTHER_MULTICAST_TABLE_BASE(eth_port_num);
2006	eth_port_set_filter_table_entry(table, crc_result);
2007}
2008
2009/*
2010 * Set the entire multicast list based on dev->mc_list.
2011 */
2012static void eth_port_set_multicast_list(struct net_device *dev)
2013{
2014
2015	struct dev_mc_list	*mc_list;
2016	int			i;
2017	int			table_index;
2018	struct mv643xx_private	*mp = netdev_priv(dev);
2019	unsigned int		eth_port_num = mp->port_num;
2020
2021	/* If the device is in promiscuous mode or in all multicast mode,
2022	 * we will fully populate both multicast tables with accept.
2023	 * This is guaranteed to yield a match on all multicast addresses...
2024	 */
2025	if ((dev->flags & IFF_PROMISC) || (dev->flags & IFF_ALLMULTI)) {
2026		for (table_index = 0; table_index <= 0xFC; table_index += 4) {
2027			/* Set all entries in DA filter special multicast
2028			 * table (Ex_dFSMT)
2029			 * Set for ETH_Q0 for now
2030			 * Bits
2031			 * 0	  Accept=1, Drop=0
2032			 * 3-1  Queue	 ETH_Q0=0
2033			 * 7-4  Reserved = 0;
2034			 */
2035			mv_write(MV643XX_ETH_DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE(eth_port_num) + table_index, 0x01010101);
2036
2037			/* Set all entries in DA filter other multicast
2038			 * table (Ex_dFOMT)
2039			 * Set for ETH_Q0 for now
2040			 * Bits
2041			 * 0	  Accept=1, Drop=0
2042			 * 3-1  Queue	 ETH_Q0=0
2043			 * 7-4  Reserved = 0;
2044			 */
2045			mv_write(MV643XX_ETH_DA_FILTER_OTHER_MULTICAST_TABLE_BASE(eth_port_num) + table_index, 0x01010101);
2046		}
2047		return;
2048	}
2049
2050	/* We will clear out multicast tables every time we get the list.
2051	 * Then add the entire new list...
2052	 */
2053	for (table_index = 0; table_index <= 0xFC; table_index += 4) {
2054		/* Clear DA filter special multicast table (Ex_dFSMT) */
2055		mv_write(MV643XX_ETH_DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE
2056				(eth_port_num) + table_index, 0);
2057
2058		/* Clear DA filter other multicast table (Ex_dFOMT) */
2059		mv_write(MV643XX_ETH_DA_FILTER_OTHER_MULTICAST_TABLE_BASE
2060				(eth_port_num) + table_index, 0);
2061	}
2062
2063	/* Get pointer to net_device multicast list and add each one... */
2064	for (i = 0, mc_list = dev->mc_list;
2065			(i < 256) && (mc_list != NULL) && (i < dev->mc_count);
2066			i++, mc_list = mc_list->next)
2067		if (mc_list->dmi_addrlen == 6)
2068			eth_port_mc_addr(eth_port_num, mc_list->dmi_addr);
2069}
2070
2071/*
2072 * eth_port_init_mac_tables - Clear all entrance in the UC, SMC and OMC tables
2073 *
2074 * DESCRIPTION:
2075 *	Go through all the DA filter tables (Unicast, Special Multicast &
2076 *	Other Multicast) and set each entry to 0.
2077 *
2078 * INPUT:
2079 *	unsigned int	eth_port_num	Ethernet Port number.
2080 *
2081 * OUTPUT:
2082 *	Multicast and Unicast packets are rejected.
2083 *
2084 * RETURN:
2085 *	None.
2086 */
2087static void eth_port_init_mac_tables(unsigned int eth_port_num)
2088{
2089	int table_index;
2090
2091	/* Clear DA filter unicast table (Ex_dFUT) */
2092	for (table_index = 0; table_index <= 0xC; table_index += 4)
2093		mv_write(MV643XX_ETH_DA_FILTER_UNICAST_TABLE_BASE
2094					(eth_port_num) + table_index, 0);
2095
2096	for (table_index = 0; table_index <= 0xFC; table_index += 4) {
2097		/* Clear DA filter special multicast table (Ex_dFSMT) */
2098		mv_write(MV643XX_ETH_DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE
2099					(eth_port_num) + table_index, 0);
2100		/* Clear DA filter other multicast table (Ex_dFOMT) */
2101		mv_write(MV643XX_ETH_DA_FILTER_OTHER_MULTICAST_TABLE_BASE
2102					(eth_port_num) + table_index, 0);
2103	}
2104}
2105
2106/*
2107 * eth_clear_mib_counters - Clear all MIB counters
2108 *
2109 * DESCRIPTION:
2110 *	This function clears all MIB counters of a specific ethernet port.
2111 *	A read from the MIB counter will reset the counter.
2112 *
2113 * INPUT:
2114 *	unsigned int	eth_port_num	Ethernet Port number.
2115 *
2116 * OUTPUT:
2117 *	After reading all MIB counters, the counters resets.
2118 *
2119 * RETURN:
2120 *	MIB counter value.
2121 *
2122 */
2123static void eth_clear_mib_counters(unsigned int eth_port_num)
2124{
2125	int i;
2126
2127	/* Perform dummy reads from MIB counters */
2128	for (i = ETH_MIB_GOOD_OCTETS_RECEIVED_LOW; i < ETH_MIB_LATE_COLLISION;
2129									i += 4)
2130		mv_read(MV643XX_ETH_MIB_COUNTERS_BASE(eth_port_num) + i);
2131}
2132
2133static inline u32 read_mib(struct mv643xx_private *mp, int offset)
2134{
2135	return mv_read(MV643XX_ETH_MIB_COUNTERS_BASE(mp->port_num) + offset);
2136}
2137
2138static void eth_update_mib_counters(struct mv643xx_private *mp)
2139{
2140	struct mv643xx_mib_counters *p = &mp->mib_counters;
2141	int offset;
2142
2143	p->good_octets_received +=
2144		read_mib(mp, ETH_MIB_GOOD_OCTETS_RECEIVED_LOW);
2145	p->good_octets_received +=
2146		(u64)read_mib(mp, ETH_MIB_GOOD_OCTETS_RECEIVED_HIGH) << 32;
2147
2148	for (offset = ETH_MIB_BAD_OCTETS_RECEIVED;
2149			offset <= ETH_MIB_FRAMES_1024_TO_MAX_OCTETS;
2150			offset += 4)
2151		*(u32 *)((char *)p + offset) += read_mib(mp, offset);
2152
2153	p->good_octets_sent += read_mib(mp, ETH_MIB_GOOD_OCTETS_SENT_LOW);
2154	p->good_octets_sent +=
2155		(u64)read_mib(mp, ETH_MIB_GOOD_OCTETS_SENT_HIGH) << 32;
2156
2157	for (offset = ETH_MIB_GOOD_FRAMES_SENT;
2158			offset <= ETH_MIB_LATE_COLLISION;
2159			offset += 4)
2160		*(u32 *)((char *)p + offset) += read_mib(mp, offset);
2161}
2162
2163/*
2164 * ethernet_phy_detect - Detect whether a phy is present
2165 *
2166 * DESCRIPTION:
2167 *	This function tests whether there is a PHY present on
2168 *	the specified port.
2169 *
2170 * INPUT:
2171 *	unsigned int	eth_port_num	Ethernet Port number.
2172 *
2173 * OUTPUT:
2174 *	None
2175 *
2176 * RETURN:
2177 *	0 on success
2178 *	-ENODEV on failure
2179 *
2180 */
2181static int ethernet_phy_detect(unsigned int port_num)
2182{
2183	unsigned int phy_reg_data0;
2184	int auto_neg;
2185
2186	eth_port_read_smi_reg(port_num, 0, &phy_reg_data0);
2187	auto_neg = phy_reg_data0 & 0x1000;
2188	phy_reg_data0 ^= 0x1000;	/* invert auto_neg */
2189	eth_port_write_smi_reg(port_num, 0, phy_reg_data0);
2190
2191	eth_port_read_smi_reg(port_num, 0, &phy_reg_data0);
2192	if ((phy_reg_data0 & 0x1000) == auto_neg)
2193		return -ENODEV;				/* change didn't take */
2194
2195	phy_reg_data0 ^= 0x1000;
2196	eth_port_write_smi_reg(port_num, 0, phy_reg_data0);
2197	return 0;
2198}
2199
2200/*
2201 * ethernet_phy_get - Get the ethernet port PHY address.
2202 *
2203 * DESCRIPTION:
2204 *	This routine returns the given ethernet port PHY address.
2205 *
2206 * INPUT:
2207 *	unsigned int	eth_port_num	Ethernet Port number.
2208 *
2209 * OUTPUT:
2210 *	None.
2211 *
2212 * RETURN:
2213 *	PHY address.
2214 *
2215 */
2216static int ethernet_phy_get(unsigned int eth_port_num)
2217{
2218	unsigned int reg_data;
2219
2220	reg_data = mv_read(MV643XX_ETH_PHY_ADDR_REG);
2221
2222	return ((reg_data >> (5 * eth_port_num)) & 0x1f);
2223}
2224
2225/*
2226 * ethernet_phy_set - Set the ethernet port PHY address.
2227 *
2228 * DESCRIPTION:
2229 *	This routine sets the given ethernet port PHY address.
2230 *
2231 * INPUT:
2232 *	unsigned int	eth_port_num	Ethernet Port number.
2233 *	int		phy_addr	PHY address.
2234 *
2235 * OUTPUT:
2236 *	None.
2237 *
2238 * RETURN:
2239 *	None.
2240 *
2241 */
2242static void ethernet_phy_set(unsigned int eth_port_num, int phy_addr)
2243{
2244	u32 reg_data;
2245	int addr_shift = 5 * eth_port_num;
2246
2247	reg_data = mv_read(MV643XX_ETH_PHY_ADDR_REG);
2248	reg_data &= ~(0x1f << addr_shift);
2249	reg_data |= (phy_addr & 0x1f) << addr_shift;
2250	mv_write(MV643XX_ETH_PHY_ADDR_REG, reg_data);
2251}
2252
2253/*
2254 * ethernet_phy_reset - Reset Ethernet port PHY.
2255 *
2256 * DESCRIPTION:
2257 *	This routine utilizes the SMI interface to reset the ethernet port PHY.
2258 *
2259 * INPUT:
2260 *	unsigned int	eth_port_num	Ethernet Port number.
2261 *
2262 * OUTPUT:
2263 *	The PHY is reset.
2264 *
2265 * RETURN:
2266 *	None.
2267 *
2268 */
2269static void ethernet_phy_reset(unsigned int eth_port_num)
2270{
2271	unsigned int phy_reg_data;
2272
2273	/* Reset the PHY */
2274	eth_port_read_smi_reg(eth_port_num, 0, &phy_reg_data);
2275	phy_reg_data |= 0x8000;	/* Set bit 15 to reset the PHY */
2276	eth_port_write_smi_reg(eth_port_num, 0, phy_reg_data);
2277
2278	/* wait for PHY to come out of reset */
2279	do {
2280		udelay(1);
2281		eth_port_read_smi_reg(eth_port_num, 0, &phy_reg_data);
2282	} while (phy_reg_data & 0x8000);
2283}
2284
2285static void mv643xx_eth_port_enable_tx(unsigned int port_num,
2286					unsigned int queues)
2287{
2288	mv_write(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num), queues);
2289}
2290
2291static void mv643xx_eth_port_enable_rx(unsigned int port_num,
2292					unsigned int queues)
2293{
2294	mv_write(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num), queues);
2295}
2296
2297static unsigned int mv643xx_eth_port_disable_tx(unsigned int port_num)
2298{
2299	u32 queues;
2300
2301	/* Stop Tx port activity. Check port Tx activity. */
2302	queues = mv_read(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num))
2303							& 0xFF;
2304	if (queues) {
2305		/* Issue stop command for active queues only */
2306		mv_write(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num),
2307							(queues << 8));
2308
2309		/* Wait for all Tx activity to terminate. */
2310		/* Check port cause register that all Tx queues are stopped */
2311		while (mv_read(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num))
2312							& 0xFF)
2313			udelay(PHY_WAIT_MICRO_SECONDS);
2314
2315		/* Wait for Tx FIFO to empty */
2316		while (mv_read(MV643XX_ETH_PORT_STATUS_REG(port_num)) &
2317							ETH_PORT_TX_FIFO_EMPTY)
2318			udelay(PHY_WAIT_MICRO_SECONDS);
2319	}
2320
2321	return queues;
2322}
2323
2324static unsigned int mv643xx_eth_port_disable_rx(unsigned int port_num)
2325{
2326	u32 queues;
2327
2328	/* Stop Rx port activity. Check port Rx activity. */
2329	queues = mv_read(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num))
2330							& 0xFF;
2331	if (queues) {
2332		/* Issue stop command for active queues only */
2333		mv_write(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num),
2334							(queues << 8));
2335
2336		/* Wait for all Rx activity to terminate. */
2337		/* Check port cause register that all Rx queues are stopped */
2338		while (mv_read(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num))
2339							& 0xFF)
2340			udelay(PHY_WAIT_MICRO_SECONDS);
2341	}
2342
2343	return queues;
2344}
2345
2346/*
2347 * eth_port_reset - Reset Ethernet port
2348 *
2349 * DESCRIPTION:
2350 * 	This routine resets the chip by aborting any SDMA engine activity and
2351 *	clearing the MIB counters. The Receiver and the Transmit unit are in
2352 *	idle state after this command is performed and the port is disabled.
2353 *
2354 * INPUT:
2355 *	unsigned int	eth_port_num	Ethernet Port number.
2356 *
2357 * OUTPUT:
2358 *	Channel activity is halted.
2359 *
2360 * RETURN:
2361 *	None.
2362 *
2363 */
2364static void eth_port_reset(unsigned int port_num)
2365{
2366	unsigned int reg_data;
2367
2368	mv643xx_eth_port_disable_tx(port_num);
2369	mv643xx_eth_port_disable_rx(port_num);
2370
2371	/* Clear all MIB counters */
2372	eth_clear_mib_counters(port_num);
2373
2374	/* Reset the Enable bit in the Configuration Register */
2375	reg_data = mv_read(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num));
2376	reg_data &= ~(MV643XX_ETH_SERIAL_PORT_ENABLE		|
2377			MV643XX_ETH_DO_NOT_FORCE_LINK_FAIL	|
2378			MV643XX_ETH_FORCE_LINK_PASS);
2379	mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num), reg_data);
2380}
2381
2382
2383/*
2384 * eth_port_read_smi_reg - Read PHY registers
2385 *
2386 * DESCRIPTION:
2387 *	This routine utilize the SMI interface to interact with the PHY in
2388 *	order to perform PHY register read.
2389 *
2390 * INPUT:
2391 *	unsigned int	port_num	Ethernet Port number.
2392 *	unsigned int	phy_reg		PHY register address offset.
2393 *	unsigned int	*value		Register value buffer.
2394 *
2395 * OUTPUT:
2396 *	Write the value of a specified PHY register into given buffer.
2397 *
2398 * RETURN:
2399 *	false if the PHY is busy or read data is not in valid state.
2400 *	true otherwise.
2401 *
2402 */
2403static void eth_port_read_smi_reg(unsigned int port_num,
2404				unsigned int phy_reg, unsigned int *value)
2405{
2406	int phy_addr = ethernet_phy_get(port_num);
2407	unsigned long flags;
2408	int i;
2409
2410	/* the SMI register is a shared resource */
2411	spin_lock_irqsave(&mv643xx_eth_phy_lock, flags);
2412
2413	/* wait for the SMI register to become available */
2414	for (i = 0; mv_read(MV643XX_ETH_SMI_REG) & ETH_SMI_BUSY; i++) {
2415		if (i == PHY_WAIT_ITERATIONS) {
2416			printk("mv643xx PHY busy timeout, port %d\n", port_num);
2417			goto out;
2418		}
2419		udelay(PHY_WAIT_MICRO_SECONDS);
2420	}
2421
2422	mv_write(MV643XX_ETH_SMI_REG,
2423		(phy_addr << 16) | (phy_reg << 21) | ETH_SMI_OPCODE_READ);
2424
2425	/* now wait for the data to be valid */
2426	for (i = 0; !(mv_read(MV643XX_ETH_SMI_REG) & ETH_SMI_READ_VALID); i++) {
2427		if (i == PHY_WAIT_ITERATIONS) {
2428			printk("mv643xx PHY read timeout, port %d\n", port_num);
2429			goto out;
2430		}
2431		udelay(PHY_WAIT_MICRO_SECONDS);
2432	}
2433
2434	*value = mv_read(MV643XX_ETH_SMI_REG) & 0xffff;
2435out:
2436	spin_unlock_irqrestore(&mv643xx_eth_phy_lock, flags);
2437}
2438
2439/*
2440 * eth_port_write_smi_reg - Write to PHY registers
2441 *
2442 * DESCRIPTION:
2443 *	This routine utilize the SMI interface to interact with the PHY in
2444 *	order to perform writes to PHY registers.
2445 *
2446 * INPUT:
2447 *	unsigned int	eth_port_num	Ethernet Port number.
2448 *	unsigned int	phy_reg		PHY register address offset.
2449 *	unsigned int	value		Register value.
2450 *
2451 * OUTPUT:
2452 *	Write the given value to the specified PHY register.
2453 *
2454 * RETURN:
2455 *	false if the PHY is busy.
2456 *	true otherwise.
2457 *
2458 */
2459static void eth_port_write_smi_reg(unsigned int eth_port_num,
2460				   unsigned int phy_reg, unsigned int value)
2461{
2462	int phy_addr;
2463	int i;
2464	unsigned long flags;
2465
2466	phy_addr = ethernet_phy_get(eth_port_num);
2467
2468	/* the SMI register is a shared resource */
2469	spin_lock_irqsave(&mv643xx_eth_phy_lock, flags);
2470
2471	/* wait for the SMI register to become available */
2472	for (i = 0; mv_read(MV643XX_ETH_SMI_REG) & ETH_SMI_BUSY; i++) {
2473		if (i == PHY_WAIT_ITERATIONS) {
2474			printk("mv643xx PHY busy timeout, port %d\n",
2475								eth_port_num);
2476			goto out;
2477		}
2478		udelay(PHY_WAIT_MICRO_SECONDS);
2479	}
2480
2481	mv_write(MV643XX_ETH_SMI_REG, (phy_addr << 16) | (phy_reg << 21) |
2482				ETH_SMI_OPCODE_WRITE | (value & 0xffff));
2483out:
2484	spin_unlock_irqrestore(&mv643xx_eth_phy_lock, flags);
2485}
2486
2487/*
2488 * Wrappers for MII support library.
2489 */
2490static int mv643xx_mdio_read(struct net_device *dev, int phy_id, int location)
2491{
2492	int val;
2493	struct mv643xx_private *mp = netdev_priv(dev);
2494
2495	eth_port_read_smi_reg(mp->port_num, location, &val);
2496	return val;
2497}
2498
2499static void mv643xx_mdio_write(struct net_device *dev, int phy_id, int location, int val)
2500{
2501	struct mv643xx_private *mp = netdev_priv(dev);
2502	eth_port_write_smi_reg(mp->port_num, location, val);
2503}
2504
2505/*
2506 * eth_port_receive - Get received information from Rx ring.
2507 *
2508 * DESCRIPTION:
2509 * 	This routine returns the received data to the caller. There is no
2510 *	data copying during routine operation. All information is returned
2511 *	using pointer to packet information struct passed from the caller.
2512 *	If the routine exhausts Rx ring resources then the resource error flag
2513 *	is set.
2514 *
2515 * INPUT:
2516 *	struct mv643xx_private	*mp		Ethernet Port Control srtuct.
2517 *	struct pkt_info		*p_pkt_info	User packet buffer.
2518 *
2519 * OUTPUT:
2520 *	Rx ring current and used indexes are updated.
2521 *
2522 * RETURN:
2523 *	ETH_ERROR in case the routine can not access Rx desc ring.
2524 *	ETH_QUEUE_FULL if Rx ring resources are exhausted.
2525 *	ETH_END_OF_JOB if there is no received data.
2526 *	ETH_OK otherwise.
2527 */
2528static ETH_FUNC_RET_STATUS eth_port_receive(struct mv643xx_private *mp,
2529						struct pkt_info *p_pkt_info)
2530{
2531	int rx_next_curr_desc, rx_curr_desc, rx_used_desc;
2532	volatile struct eth_rx_desc *p_rx_desc;
2533	unsigned int command_status;
2534	unsigned long flags;
2535
2536	/* Do not process Rx ring in case of Rx ring resource error */
2537	if (mp->rx_resource_err)
2538		return ETH_QUEUE_FULL;
2539
2540	spin_lock_irqsave(&mp->lock, flags);
2541
2542	/* Get the Rx Desc ring 'curr and 'used' indexes */
2543	rx_curr_desc = mp->rx_curr_desc_q;
2544	rx_used_desc = mp->rx_used_desc_q;
2545
2546	p_rx_desc = &mp->p_rx_desc_area[rx_curr_desc];
2547
2548	/* The following parameters are used to save readings from memory */
2549	command_status = p_rx_desc->cmd_sts;
2550	rmb();
2551
2552	/* Nothing to receive... */
2553	if (command_status & (ETH_BUFFER_OWNED_BY_DMA)) {
2554		spin_unlock_irqrestore(&mp->lock, flags);
2555		return ETH_END_OF_JOB;
2556	}
2557
2558	p_pkt_info->byte_cnt = (p_rx_desc->byte_cnt) - RX_BUF_OFFSET;
2559	p_pkt_info->cmd_sts = command_status;
2560	p_pkt_info->buf_ptr = (p_rx_desc->buf_ptr) + RX_BUF_OFFSET;
2561	p_pkt_info->return_info = mp->rx_skb[rx_curr_desc];
2562	p_pkt_info->l4i_chk = p_rx_desc->buf_size;
2563
2564	/*
2565	 * Clean the return info field to indicate that the
2566	 * packet has been moved to the upper layers
2567	 */
2568	mp->rx_skb[rx_curr_desc] = NULL;
2569
2570	/* Update current index in data structure */
2571	rx_next_curr_desc = (rx_curr_desc + 1) % mp->rx_ring_size;
2572	mp->rx_curr_desc_q = rx_next_curr_desc;
2573
2574	/* Rx descriptors exhausted. Set the Rx ring resource error flag */
2575	if (rx_next_curr_desc == rx_used_desc)
2576		mp->rx_resource_err = 1;
2577
2578	spin_unlock_irqrestore(&mp->lock, flags);
2579
2580	return ETH_OK;
2581}
2582
2583/*
2584 * eth_rx_return_buff - Returns a Rx buffer back to the Rx ring.
2585 *
2586 * DESCRIPTION:
2587 *	This routine returns a Rx buffer back to the Rx ring. It retrieves the
2588 *	next 'used' descriptor and attached the returned buffer to it.
2589 *	In case the Rx ring was in "resource error" condition, where there are
2590 *	no available Rx resources, the function resets the resource error flag.
2591 *
2592 * INPUT:
2593 *	struct mv643xx_private	*mp		Ethernet Port Control srtuct.
2594 *	struct pkt_info		*p_pkt_info	Information on returned buffer.
2595 *
2596 * OUTPUT:
2597 *	New available Rx resource in Rx descriptor ring.
2598 *
2599 * RETURN:
2600 *	ETH_ERROR in case the routine can not access Rx desc ring.
2601 *	ETH_OK otherwise.
2602 */
2603static ETH_FUNC_RET_STATUS eth_rx_return_buff(struct mv643xx_private *mp,
2604						struct pkt_info *p_pkt_info)
2605{
2606	int used_rx_desc;	/* Where to return Rx resource */
2607	volatile struct eth_rx_desc *p_used_rx_desc;
2608	unsigned long flags;
2609
2610	spin_lock_irqsave(&mp->lock, flags);
2611
2612	/* Get 'used' Rx descriptor */
2613	used_rx_desc = mp->rx_used_desc_q;
2614	p_used_rx_desc = &mp->p_rx_desc_area[used_rx_desc];
2615
2616	p_used_rx_desc->buf_ptr = p_pkt_info->buf_ptr;
2617	p_used_rx_desc->buf_size = p_pkt_info->byte_cnt;
2618	mp->rx_skb[used_rx_desc] = p_pkt_info->return_info;
2619
2620	/* Flush the write pipe */
2621
2622	/* Return the descriptor to DMA ownership */
2623	wmb();
2624	p_used_rx_desc->cmd_sts =
2625			ETH_BUFFER_OWNED_BY_DMA | ETH_RX_ENABLE_INTERRUPT;
2626	wmb();
2627
2628	/* Move the used descriptor pointer to the next descriptor */
2629	mp->rx_used_desc_q = (used_rx_desc + 1) % mp->rx_ring_size;
2630
2631	/* Any Rx return cancels the Rx resource error status */
2632	mp->rx_resource_err = 0;
2633
2634	spin_unlock_irqrestore(&mp->lock, flags);
2635
2636	return ETH_OK;
2637}
2638
2639/************* Begin ethtool support *************************/
2640
2641struct mv643xx_stats {
2642	char stat_string[ETH_GSTRING_LEN];
2643	int sizeof_stat;
2644	int stat_offset;
2645};
2646
2647#define MV643XX_STAT(m) sizeof(((struct mv643xx_private *)0)->m), \
2648					offsetof(struct mv643xx_private, m)
2649
2650static const struct mv643xx_stats mv643xx_gstrings_stats[] = {
2651	{ "rx_packets", MV643XX_STAT(stats.rx_packets) },
2652	{ "tx_packets", MV643XX_STAT(stats.tx_packets) },
2653	{ "rx_bytes", MV643XX_STAT(stats.rx_bytes) },
2654	{ "tx_bytes", MV643XX_STAT(stats.tx_bytes) },
2655	{ "rx_errors", MV643XX_STAT(stats.rx_errors) },
2656	{ "tx_errors", MV643XX_STAT(stats.tx_errors) },
2657	{ "rx_dropped", MV643XX_STAT(stats.rx_dropped) },
2658	{ "tx_dropped", MV643XX_STAT(stats.tx_dropped) },
2659	{ "good_octets_received", MV643XX_STAT(mib_counters.good_octets_received) },
2660	{ "bad_octets_received", MV643XX_STAT(mib_counters.bad_octets_received) },
2661	{ "internal_mac_transmit_err", MV643XX_STAT(mib_counters.internal_mac_transmit_err) },
2662	{ "good_frames_received", MV643XX_STAT(mib_counters.good_frames_received) },
2663	{ "bad_frames_received", MV643XX_STAT(mib_counters.bad_frames_received) },
2664	{ "broadcast_frames_received", MV643XX_STAT(mib_counters.broadcast_frames_received) },
2665	{ "multicast_frames_received", MV643XX_STAT(mib_counters.multicast_frames_received) },
2666	{ "frames_64_octets", MV643XX_STAT(mib_counters.frames_64_octets) },
2667	{ "frames_65_to_127_octets", MV643XX_STAT(mib_counters.frames_65_to_127_octets) },
2668	{ "frames_128_to_255_octets", MV643XX_STAT(mib_counters.frames_128_to_255_octets) },
2669	{ "frames_256_to_511_octets", MV643XX_STAT(mib_counters.frames_256_to_511_octets) },
2670	{ "frames_512_to_1023_octets", MV643XX_STAT(mib_counters.frames_512_to_1023_octets) },
2671	{ "frames_1024_to_max_octets", MV643XX_STAT(mib_counters.frames_1024_to_max_octets) },
2672	{ "good_octets_sent", MV643XX_STAT(mib_counters.good_octets_sent) },
2673	{ "good_frames_sent", MV643XX_STAT(mib_counters.good_frames_sent) },
2674	{ "excessive_collision", MV643XX_STAT(mib_counters.excessive_collision) },
2675	{ "multicast_frames_sent", MV643XX_STAT(mib_counters.multicast_frames_sent) },
2676	{ "broadcast_frames_sent", MV643XX_STAT(mib_counters.broadcast_frames_sent) },
2677	{ "unrec_mac_control_received", MV643XX_STAT(mib_counters.unrec_mac_control_received) },
2678	{ "fc_sent", MV643XX_STAT(mib_counters.fc_sent) },
2679	{ "good_fc_received", MV643XX_STAT(mib_counters.good_fc_received) },
2680	{ "bad_fc_received", MV643XX_STAT(mib_counters.bad_fc_received) },
2681	{ "undersize_received", MV643XX_STAT(mib_counters.undersize_received) },
2682	{ "fragments_received", MV643XX_STAT(mib_counters.fragments_received) },
2683	{ "oversize_received", MV643XX_STAT(mib_counters.oversize_received) },
2684	{ "jabber_received", MV643XX_STAT(mib_counters.jabber_received) },
2685	{ "mac_receive_error", MV643XX_STAT(mib_counters.mac_receive_error) },
2686	{ "bad_crc_event", MV643XX_STAT(mib_counters.bad_crc_event) },
2687	{ "collision", MV643XX_STAT(mib_counters.collision) },
2688	{ "late_collision", MV643XX_STAT(mib_counters.late_collision) },
2689};
2690
2691#define MV643XX_STATS_LEN	\
2692	sizeof(mv643xx_gstrings_stats) / sizeof(struct mv643xx_stats)
2693
2694static void mv643xx_get_drvinfo(struct net_device *netdev,
2695				struct ethtool_drvinfo *drvinfo)
2696{
2697	strncpy(drvinfo->driver,  mv643xx_driver_name, 32);
2698	strncpy(drvinfo->version, mv643xx_driver_version, 32);
2699	strncpy(drvinfo->fw_version, "N/A", 32);
2700	strncpy(drvinfo->bus_info, "mv643xx", 32);
2701	drvinfo->n_stats = MV643XX_STATS_LEN;
2702}
2703
2704static int mv643xx_get_stats_count(struct net_device *netdev)
2705{
2706	return MV643XX_STATS_LEN;
2707}
2708
2709static void mv643xx_get_ethtool_stats(struct net_device *netdev,
2710				struct ethtool_stats *stats, uint64_t *data)
2711{
2712	struct mv643xx_private *mp = netdev->priv;
2713	int i;
2714
2715	eth_update_mib_counters(mp);
2716
2717	for (i = 0; i < MV643XX_STATS_LEN; i++) {
2718		char *p = (char *)mp+mv643xx_gstrings_stats[i].stat_offset;
2719		data[i] = (mv643xx_gstrings_stats[i].sizeof_stat ==
2720			sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p;
2721	}
2722}
2723
2724static void mv643xx_get_strings(struct net_device *netdev, uint32_t stringset,
2725				uint8_t *data)
2726{
2727	int i;
2728
2729	switch(stringset) {
2730	case ETH_SS_STATS:
2731		for (i=0; i < MV643XX_STATS_LEN; i++) {
2732			memcpy(data + i * ETH_GSTRING_LEN,
2733					mv643xx_gstrings_stats[i].stat_string,
2734					ETH_GSTRING_LEN);
2735		}
2736		break;
2737	}
2738}
2739
2740static u32 mv643xx_eth_get_link(struct net_device *dev)
2741{
2742	struct mv643xx_private *mp = netdev_priv(dev);
2743
2744	return mii_link_ok(&mp->mii);
2745}
2746
2747static int mv643xx_eth_nway_restart(struct net_device *dev)
2748{
2749	struct mv643xx_private *mp = netdev_priv(dev);
2750
2751	return mii_nway_restart(&mp->mii);
2752}
2753
2754static int mv643xx_eth_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2755{
2756	struct mv643xx_private *mp = netdev_priv(dev);
2757
2758	return generic_mii_ioctl(&mp->mii, if_mii(ifr), cmd, NULL);
2759}
2760
2761static const struct ethtool_ops mv643xx_ethtool_ops = {
2762	.get_settings           = mv643xx_get_settings,
2763	.set_settings           = mv643xx_set_settings,
2764	.get_drvinfo            = mv643xx_get_drvinfo,
2765	.get_link               = mv643xx_eth_get_link,
2766	.get_sg			= ethtool_op_get_sg,
2767	.set_sg			= ethtool_op_set_sg,
2768	.get_stats_count        = mv643xx_get_stats_count,
2769	.get_ethtool_stats      = mv643xx_get_ethtool_stats,
2770	.get_strings            = mv643xx_get_strings,
2771	.get_stats_count        = mv643xx_get_stats_count,
2772	.get_ethtool_stats      = mv643xx_get_ethtool_stats,
2773	.nway_reset		= mv643xx_eth_nway_restart,
2774};
2775
2776/************* End ethtool support *************************/
2777