1/*
2 * Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License as published by the
6 * Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful, but
10 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
11 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * for more details.
13 *
14 * You should have received a copy of the GNU General Public License along
15 * with this program; if not, write to the Free Software Foundation, Inc.,
16 * 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17 *
18 * The full GNU General Public License is included in this distribution in the
19 * file called LICENSE.
20 *
21 */
22
23//#define BONDING_DEBUG 1
24
25#include <linux/skbuff.h>
26#include <linux/netdevice.h>
27#include <linux/etherdevice.h>
28#include <linux/pkt_sched.h>
29#include <linux/spinlock.h>
30#include <linux/slab.h>
31#include <linux/timer.h>
32#include <linux/ip.h>
33#include <linux/ipv6.h>
34#include <linux/if_arp.h>
35#include <linux/if_ether.h>
36#include <linux/if_bonding.h>
37#include <linux/if_vlan.h>
38#include <linux/in.h>
39#include <net/ipx.h>
40#include <net/arp.h>
41#include <asm/byteorder.h>
42#include "bonding.h"
43#include "bond_alb.h"
44
45
46#define ALB_TIMER_TICKS_PER_SEC	    10	/* should be a divisor of HZ */
47#define BOND_TLB_REBALANCE_INTERVAL 10	/* In seconds, periodic re-balancing.
48					 * Used for division - never set
49					 * to zero !!!
50					 */
51#define BOND_ALB_LP_INTERVAL	    1	/* In seconds, periodic send of
52					 * learning packets to the switch
53					 */
54
55#define BOND_TLB_REBALANCE_TICKS (BOND_TLB_REBALANCE_INTERVAL \
56				  * ALB_TIMER_TICKS_PER_SEC)
57
58#define BOND_ALB_LP_TICKS (BOND_ALB_LP_INTERVAL \
59			   * ALB_TIMER_TICKS_PER_SEC)
60
61#define TLB_HASH_TABLE_SIZE 256	/* The size of the clients hash table.
62				 * Note that this value MUST NOT be smaller
63				 * because the key hash table is BYTE wide !
64				 */
65
66
67#define TLB_NULL_INDEX		0xffffffff
68#define MAX_LP_BURST		3
69
70/* rlb defs */
71#define RLB_HASH_TABLE_SIZE	256
72#define RLB_NULL_INDEX		0xffffffff
73#define RLB_UPDATE_DELAY	2*ALB_TIMER_TICKS_PER_SEC /* 2 seconds */
74#define RLB_ARP_BURST_SIZE	2
75#define RLB_UPDATE_RETRY	3	/* 3-ticks - must be smaller than the rlb
76					 * rebalance interval (5 min).
77					 */
78/* RLB_PROMISC_TIMEOUT = 10 sec equals the time that the current slave is
79 * promiscuous after failover
80 */
81#define RLB_PROMISC_TIMEOUT	10*ALB_TIMER_TICKS_PER_SEC
82
83static const u8 mac_bcast[ETH_ALEN] = {0xff,0xff,0xff,0xff,0xff,0xff};
84static const int alb_delta_in_ticks = HZ / ALB_TIMER_TICKS_PER_SEC;
85
86#pragma pack(1)
87struct learning_pkt {
88	u8 mac_dst[ETH_ALEN];
89	u8 mac_src[ETH_ALEN];
90	u16 type;
91	u8 padding[ETH_ZLEN - ETH_HLEN];
92};
93
94struct arp_pkt {
95	u16     hw_addr_space;
96	u16     prot_addr_space;
97	u8      hw_addr_len;
98	u8      prot_addr_len;
99	u16     op_code;
100	u8      mac_src[ETH_ALEN];	/* sender hardware address */
101	u32     ip_src;			/* sender IP address */
102	u8      mac_dst[ETH_ALEN];	/* target hardware address */
103	u32     ip_dst;			/* target IP address */
104};
105#pragma pack()
106
107static inline struct arp_pkt *arp_pkt(const struct sk_buff *skb)
108{
109	return (struct arp_pkt *)skb_network_header(skb);
110}
111
112/* Forward declaration */
113static void alb_send_learning_packets(struct slave *slave, u8 mac_addr[]);
114
115static inline u8 _simple_hash(const u8 *hash_start, int hash_size)
116{
117	int i;
118	u8 hash = 0;
119
120	for (i = 0; i < hash_size; i++) {
121		hash ^= hash_start[i];
122	}
123
124	return hash;
125}
126
127/*********************** tlb specific functions ***************************/
128
129static inline void _lock_tx_hashtbl(struct bonding *bond)
130{
131	spin_lock(&(BOND_ALB_INFO(bond).tx_hashtbl_lock));
132}
133
134static inline void _unlock_tx_hashtbl(struct bonding *bond)
135{
136	spin_unlock(&(BOND_ALB_INFO(bond).tx_hashtbl_lock));
137}
138
139/* Caller must hold tx_hashtbl lock */
140static inline void tlb_init_table_entry(struct tlb_client_info *entry, int save_load)
141{
142	if (save_load) {
143		entry->load_history = 1 + entry->tx_bytes /
144				      BOND_TLB_REBALANCE_INTERVAL;
145		entry->tx_bytes = 0;
146	}
147
148	entry->tx_slave = NULL;
149	entry->next = TLB_NULL_INDEX;
150	entry->prev = TLB_NULL_INDEX;
151}
152
153static inline void tlb_init_slave(struct slave *slave)
154{
155	SLAVE_TLB_INFO(slave).load = 0;
156	SLAVE_TLB_INFO(slave).head = TLB_NULL_INDEX;
157}
158
159/* Caller must hold bond lock for read */
160static void tlb_clear_slave(struct bonding *bond, struct slave *slave, int save_load)
161{
162	struct tlb_client_info *tx_hash_table;
163	u32 index;
164
165	_lock_tx_hashtbl(bond);
166
167	/* clear slave from tx_hashtbl */
168	tx_hash_table = BOND_ALB_INFO(bond).tx_hashtbl;
169
170	index = SLAVE_TLB_INFO(slave).head;
171	while (index != TLB_NULL_INDEX) {
172		u32 next_index = tx_hash_table[index].next;
173		tlb_init_table_entry(&tx_hash_table[index], save_load);
174		index = next_index;
175	}
176
177	tlb_init_slave(slave);
178
179	_unlock_tx_hashtbl(bond);
180}
181
182/* Must be called before starting the monitor timer */
183static int tlb_initialize(struct bonding *bond)
184{
185	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
186	int size = TLB_HASH_TABLE_SIZE * sizeof(struct tlb_client_info);
187	struct tlb_client_info *new_hashtbl;
188	int i;
189
190	spin_lock_init(&(bond_info->tx_hashtbl_lock));
191
192	new_hashtbl = kzalloc(size, GFP_KERNEL);
193	if (!new_hashtbl) {
194		printk(KERN_ERR DRV_NAME
195		       ": %s: Error: Failed to allocate TLB hash table\n",
196		       bond->dev->name);
197		return -1;
198	}
199	_lock_tx_hashtbl(bond);
200
201	bond_info->tx_hashtbl = new_hashtbl;
202
203	for (i = 0; i < TLB_HASH_TABLE_SIZE; i++) {
204		tlb_init_table_entry(&bond_info->tx_hashtbl[i], 1);
205	}
206
207	_unlock_tx_hashtbl(bond);
208
209	return 0;
210}
211
212/* Must be called only after all slaves have been released */
213static void tlb_deinitialize(struct bonding *bond)
214{
215	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
216
217	_lock_tx_hashtbl(bond);
218
219	kfree(bond_info->tx_hashtbl);
220	bond_info->tx_hashtbl = NULL;
221
222	_unlock_tx_hashtbl(bond);
223}
224
225/* Caller must hold bond lock for read */
226static struct slave *tlb_get_least_loaded_slave(struct bonding *bond)
227{
228	struct slave *slave, *least_loaded;
229	s64 max_gap;
230	int i, found = 0;
231
232	/* Find the first enabled slave */
233	bond_for_each_slave(bond, slave, i) {
234		if (SLAVE_IS_OK(slave)) {
235			found = 1;
236			break;
237		}
238	}
239
240	if (!found) {
241		return NULL;
242	}
243
244	least_loaded = slave;
245	max_gap = (s64)(slave->speed << 20) - /* Convert to Megabit per sec */
246			(s64)(SLAVE_TLB_INFO(slave).load << 3); /* Bytes to bits */
247
248	/* Find the slave with the largest gap */
249	bond_for_each_slave_from(bond, slave, i, least_loaded) {
250		if (SLAVE_IS_OK(slave)) {
251			s64 gap = (s64)(slave->speed << 20) -
252					(s64)(SLAVE_TLB_INFO(slave).load << 3);
253			if (max_gap < gap) {
254				least_loaded = slave;
255				max_gap = gap;
256			}
257		}
258	}
259
260	return least_loaded;
261}
262
263/* Caller must hold bond lock for read */
264static struct slave *tlb_choose_channel(struct bonding *bond, u32 hash_index, u32 skb_len)
265{
266	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
267	struct tlb_client_info *hash_table;
268	struct slave *assigned_slave;
269
270	_lock_tx_hashtbl(bond);
271
272	hash_table = bond_info->tx_hashtbl;
273	assigned_slave = hash_table[hash_index].tx_slave;
274	if (!assigned_slave) {
275		assigned_slave = tlb_get_least_loaded_slave(bond);
276
277		if (assigned_slave) {
278			struct tlb_slave_info *slave_info =
279				&(SLAVE_TLB_INFO(assigned_slave));
280			u32 next_index = slave_info->head;
281
282			hash_table[hash_index].tx_slave = assigned_slave;
283			hash_table[hash_index].next = next_index;
284			hash_table[hash_index].prev = TLB_NULL_INDEX;
285
286			if (next_index != TLB_NULL_INDEX) {
287				hash_table[next_index].prev = hash_index;
288			}
289
290			slave_info->head = hash_index;
291			slave_info->load +=
292				hash_table[hash_index].load_history;
293		}
294	}
295
296	if (assigned_slave) {
297		hash_table[hash_index].tx_bytes += skb_len;
298	}
299
300	_unlock_tx_hashtbl(bond);
301
302	return assigned_slave;
303}
304
305/*********************** rlb specific functions ***************************/
306static inline void _lock_rx_hashtbl(struct bonding *bond)
307{
308	spin_lock(&(BOND_ALB_INFO(bond).rx_hashtbl_lock));
309}
310
311static inline void _unlock_rx_hashtbl(struct bonding *bond)
312{
313	spin_unlock(&(BOND_ALB_INFO(bond).rx_hashtbl_lock));
314}
315
316/* when an ARP REPLY is received from a client update its info
317 * in the rx_hashtbl
318 */
319static void rlb_update_entry_from_arp(struct bonding *bond, struct arp_pkt *arp)
320{
321	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
322	struct rlb_client_info *client_info;
323	u32 hash_index;
324
325	_lock_rx_hashtbl(bond);
326
327	hash_index = _simple_hash((u8*)&(arp->ip_src), sizeof(arp->ip_src));
328	client_info = &(bond_info->rx_hashtbl[hash_index]);
329
330	if ((client_info->assigned) &&
331	    (client_info->ip_src == arp->ip_dst) &&
332	    (client_info->ip_dst == arp->ip_src)) {
333		/* update the clients MAC address */
334		memcpy(client_info->mac_dst, arp->mac_src, ETH_ALEN);
335		client_info->ntt = 1;
336		bond_info->rx_ntt = 1;
337	}
338
339	_unlock_rx_hashtbl(bond);
340}
341
342static int rlb_arp_recv(struct sk_buff *skb, struct net_device *bond_dev, struct packet_type *ptype, struct net_device *orig_dev)
343{
344	struct bonding *bond = bond_dev->priv;
345	struct arp_pkt *arp = (struct arp_pkt *)skb->data;
346	int res = NET_RX_DROP;
347
348	if (!(bond_dev->flags & IFF_MASTER))
349		goto out;
350
351	if (!arp) {
352		dprintk("Packet has no ARP data\n");
353		goto out;
354	}
355
356	if (skb->len < sizeof(struct arp_pkt)) {
357		dprintk("Packet is too small to be an ARP\n");
358		goto out;
359	}
360
361	if (arp->op_code == htons(ARPOP_REPLY)) {
362		/* update rx hash table for this ARP */
363		rlb_update_entry_from_arp(bond, arp);
364		dprintk("Server received an ARP Reply from client\n");
365	}
366
367	res = NET_RX_SUCCESS;
368
369out:
370	dev_kfree_skb(skb);
371
372	return res;
373}
374
375/* Caller must hold bond lock for read */
376static struct slave *rlb_next_rx_slave(struct bonding *bond)
377{
378	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
379	struct slave *rx_slave, *slave, *start_at;
380	int i = 0;
381
382	if (bond_info->next_rx_slave) {
383		start_at = bond_info->next_rx_slave;
384	} else {
385		start_at = bond->first_slave;
386	}
387
388	rx_slave = NULL;
389
390	bond_for_each_slave_from(bond, slave, i, start_at) {
391		if (SLAVE_IS_OK(slave)) {
392			if (!rx_slave) {
393				rx_slave = slave;
394			} else if (slave->speed > rx_slave->speed) {
395				rx_slave = slave;
396			}
397		}
398	}
399
400	if (rx_slave) {
401		bond_info->next_rx_slave = rx_slave->next;
402	}
403
404	return rx_slave;
405}
406
407/* teach the switch the mac of a disabled slave
408 * on the primary for fault tolerance
409 *
410 * Caller must hold bond->curr_slave_lock for write or bond lock for write
411 */
412static void rlb_teach_disabled_mac_on_primary(struct bonding *bond, u8 addr[])
413{
414	if (!bond->curr_active_slave) {
415		return;
416	}
417
418	if (!bond->alb_info.primary_is_promisc) {
419		bond->alb_info.primary_is_promisc = 1;
420		dev_set_promiscuity(bond->curr_active_slave->dev, 1);
421	}
422
423	bond->alb_info.rlb_promisc_timeout_counter = 0;
424
425	alb_send_learning_packets(bond->curr_active_slave, addr);
426}
427
428/* slave being removed should not be active at this point
429 *
430 * Caller must hold bond lock for read
431 */
432static void rlb_clear_slave(struct bonding *bond, struct slave *slave)
433{
434	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
435	struct rlb_client_info *rx_hash_table;
436	u32 index, next_index;
437
438	/* clear slave from rx_hashtbl */
439	_lock_rx_hashtbl(bond);
440
441	rx_hash_table = bond_info->rx_hashtbl;
442	index = bond_info->rx_hashtbl_head;
443	for (; index != RLB_NULL_INDEX; index = next_index) {
444		next_index = rx_hash_table[index].next;
445		if (rx_hash_table[index].slave == slave) {
446			struct slave *assigned_slave = rlb_next_rx_slave(bond);
447
448			if (assigned_slave) {
449				rx_hash_table[index].slave = assigned_slave;
450				if (memcmp(rx_hash_table[index].mac_dst,
451					   mac_bcast, ETH_ALEN)) {
452					bond_info->rx_hashtbl[index].ntt = 1;
453					bond_info->rx_ntt = 1;
454					/* A slave has been removed from the
455					 * table because it is either disabled
456					 * or being released. We must retry the
457					 * update to avoid clients from not
458					 * being updated & disconnecting when
459					 * there is stress
460					 */
461					bond_info->rlb_update_retry_counter =
462						RLB_UPDATE_RETRY;
463				}
464			} else {  /* there is no active slave */
465				rx_hash_table[index].slave = NULL;
466			}
467		}
468	}
469
470	_unlock_rx_hashtbl(bond);
471
472	write_lock(&bond->curr_slave_lock);
473
474	if (slave != bond->curr_active_slave) {
475		rlb_teach_disabled_mac_on_primary(bond, slave->dev->dev_addr);
476	}
477
478	write_unlock(&bond->curr_slave_lock);
479}
480
481static void rlb_update_client(struct rlb_client_info *client_info)
482{
483	int i;
484
485	if (!client_info->slave) {
486		return;
487	}
488
489	for (i = 0; i < RLB_ARP_BURST_SIZE; i++) {
490		struct sk_buff *skb;
491
492		skb = arp_create(ARPOP_REPLY, ETH_P_ARP,
493				 client_info->ip_dst,
494				 client_info->slave->dev,
495				 client_info->ip_src,
496				 client_info->mac_dst,
497				 client_info->slave->dev->dev_addr,
498				 client_info->mac_dst);
499		if (!skb) {
500			printk(KERN_ERR DRV_NAME
501			       ": %s: Error: failed to create an ARP packet\n",
502			       client_info->slave->dev->master->name);
503			continue;
504		}
505
506		skb->dev = client_info->slave->dev;
507
508		if (client_info->tag) {
509			skb = vlan_put_tag(skb, client_info->vlan_id);
510			if (!skb) {
511				printk(KERN_ERR DRV_NAME
512				       ": %s: Error: failed to insert VLAN tag\n",
513				       client_info->slave->dev->master->name);
514				continue;
515			}
516		}
517
518		arp_xmit(skb);
519	}
520}
521
522/* sends ARP REPLIES that update the clients that need updating */
523static void rlb_update_rx_clients(struct bonding *bond)
524{
525	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
526	struct rlb_client_info *client_info;
527	u32 hash_index;
528
529	_lock_rx_hashtbl(bond);
530
531	hash_index = bond_info->rx_hashtbl_head;
532	for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) {
533		client_info = &(bond_info->rx_hashtbl[hash_index]);
534		if (client_info->ntt) {
535			rlb_update_client(client_info);
536			if (bond_info->rlb_update_retry_counter == 0) {
537				client_info->ntt = 0;
538			}
539		}
540	}
541
542	/* do not update the entries again untill this counter is zero so that
543	 * not to confuse the clients.
544	 */
545	bond_info->rlb_update_delay_counter = RLB_UPDATE_DELAY;
546
547	_unlock_rx_hashtbl(bond);
548}
549
550/* The slave was assigned a new mac address - update the clients */
551static void rlb_req_update_slave_clients(struct bonding *bond, struct slave *slave)
552{
553	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
554	struct rlb_client_info *client_info;
555	int ntt = 0;
556	u32 hash_index;
557
558	_lock_rx_hashtbl(bond);
559
560	hash_index = bond_info->rx_hashtbl_head;
561	for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) {
562		client_info = &(bond_info->rx_hashtbl[hash_index]);
563
564		if ((client_info->slave == slave) &&
565		    memcmp(client_info->mac_dst, mac_bcast, ETH_ALEN)) {
566			client_info->ntt = 1;
567			ntt = 1;
568		}
569	}
570
571	// update the team's flag only after the whole iteration
572	if (ntt) {
573		bond_info->rx_ntt = 1;
574		//fasten the change
575		bond_info->rlb_update_retry_counter = RLB_UPDATE_RETRY;
576	}
577
578	_unlock_rx_hashtbl(bond);
579}
580
581/* mark all clients using src_ip to be updated */
582static void rlb_req_update_subnet_clients(struct bonding *bond, u32 src_ip)
583{
584	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
585	struct rlb_client_info *client_info;
586	u32 hash_index;
587
588	_lock_rx_hashtbl(bond);
589
590	hash_index = bond_info->rx_hashtbl_head;
591	for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) {
592		client_info = &(bond_info->rx_hashtbl[hash_index]);
593
594		if (!client_info->slave) {
595			printk(KERN_ERR DRV_NAME
596			       ": %s: Error: found a client with no channel in "
597			       "the client's hash table\n",
598			       bond->dev->name);
599			continue;
600		}
601		/*update all clients using this src_ip, that are not assigned
602		 * to the team's address (curr_active_slave) and have a known
603		 * unicast mac address.
604		 */
605		if ((client_info->ip_src == src_ip) &&
606		    memcmp(client_info->slave->dev->dev_addr,
607			   bond->dev->dev_addr, ETH_ALEN) &&
608		    memcmp(client_info->mac_dst, mac_bcast, ETH_ALEN)) {
609			client_info->ntt = 1;
610			bond_info->rx_ntt = 1;
611		}
612	}
613
614	_unlock_rx_hashtbl(bond);
615}
616
617/* Caller must hold both bond and ptr locks for read */
618static struct slave *rlb_choose_channel(struct sk_buff *skb, struct bonding *bond)
619{
620	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
621	struct arp_pkt *arp = arp_pkt(skb);
622	struct slave *assigned_slave;
623	struct rlb_client_info *client_info;
624	u32 hash_index = 0;
625
626	_lock_rx_hashtbl(bond);
627
628	hash_index = _simple_hash((u8 *)&arp->ip_dst, sizeof(arp->ip_src));
629	client_info = &(bond_info->rx_hashtbl[hash_index]);
630
631	if (client_info->assigned) {
632		if ((client_info->ip_src == arp->ip_src) &&
633		    (client_info->ip_dst == arp->ip_dst)) {
634			/* the entry is already assigned to this client */
635			if (memcmp(arp->mac_dst, mac_bcast, ETH_ALEN)) {
636				/* update mac address from arp */
637				memcpy(client_info->mac_dst, arp->mac_dst, ETH_ALEN);
638			}
639
640			assigned_slave = client_info->slave;
641			if (assigned_slave) {
642				_unlock_rx_hashtbl(bond);
643				return assigned_slave;
644			}
645		} else {
646			/* the entry is already assigned to some other client,
647			 * move the old client to primary (curr_active_slave) so
648			 * that the new client can be assigned to this entry.
649			 */
650			if (bond->curr_active_slave &&
651			    client_info->slave != bond->curr_active_slave) {
652				client_info->slave = bond->curr_active_slave;
653				rlb_update_client(client_info);
654			}
655		}
656	}
657	/* assign a new slave */
658	assigned_slave = rlb_next_rx_slave(bond);
659
660	if (assigned_slave) {
661		client_info->ip_src = arp->ip_src;
662		client_info->ip_dst = arp->ip_dst;
663		/* arp->mac_dst is broadcast for arp reqeusts.
664		 * will be updated with clients actual unicast mac address
665		 * upon receiving an arp reply.
666		 */
667		memcpy(client_info->mac_dst, arp->mac_dst, ETH_ALEN);
668		client_info->slave = assigned_slave;
669
670		if (memcmp(client_info->mac_dst, mac_bcast, ETH_ALEN)) {
671			client_info->ntt = 1;
672			bond->alb_info.rx_ntt = 1;
673		} else {
674			client_info->ntt = 0;
675		}
676
677		if (!list_empty(&bond->vlan_list)) {
678			unsigned short vlan_id;
679			int res = vlan_get_tag(skb, &vlan_id);
680			if (!res) {
681				client_info->tag = 1;
682				client_info->vlan_id = vlan_id;
683			}
684		}
685
686		if (!client_info->assigned) {
687			u32 prev_tbl_head = bond_info->rx_hashtbl_head;
688			bond_info->rx_hashtbl_head = hash_index;
689			client_info->next = prev_tbl_head;
690			if (prev_tbl_head != RLB_NULL_INDEX) {
691				bond_info->rx_hashtbl[prev_tbl_head].prev =
692					hash_index;
693			}
694			client_info->assigned = 1;
695		}
696	}
697
698	_unlock_rx_hashtbl(bond);
699
700	return assigned_slave;
701}
702
703/* chooses (and returns) transmit channel for arp reply
704 * does not choose channel for other arp types since they are
705 * sent on the curr_active_slave
706 */
707static struct slave *rlb_arp_xmit(struct sk_buff *skb, struct bonding *bond)
708{
709	struct arp_pkt *arp = arp_pkt(skb);
710	struct slave *tx_slave = NULL;
711
712	if (arp->op_code == __constant_htons(ARPOP_REPLY)) {
713		/* the arp must be sent on the selected
714		* rx channel
715		*/
716		tx_slave = rlb_choose_channel(skb, bond);
717		if (tx_slave) {
718			memcpy(arp->mac_src,tx_slave->dev->dev_addr, ETH_ALEN);
719		}
720		dprintk("Server sent ARP Reply packet\n");
721	} else if (arp->op_code == __constant_htons(ARPOP_REQUEST)) {
722		/* Create an entry in the rx_hashtbl for this client as a
723		 * place holder.
724		 * When the arp reply is received the entry will be updated
725		 * with the correct unicast address of the client.
726		 */
727		rlb_choose_channel(skb, bond);
728
729		/* The ARP relpy packets must be delayed so that
730		 * they can cancel out the influence of the ARP request.
731		 */
732		bond->alb_info.rlb_update_delay_counter = RLB_UPDATE_DELAY;
733
734		/* arp requests are broadcast and are sent on the primary
735		 * the arp request will collapse all clients on the subnet to
736		 * the primary slave. We must register these clients to be
737		 * updated with their assigned mac.
738		 */
739		rlb_req_update_subnet_clients(bond, arp->ip_src);
740		dprintk("Server sent ARP Request packet\n");
741	}
742
743	return tx_slave;
744}
745
746/* Caller must hold bond lock for read */
747static void rlb_rebalance(struct bonding *bond)
748{
749	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
750	struct slave *assigned_slave;
751	struct rlb_client_info *client_info;
752	int ntt;
753	u32 hash_index;
754
755	_lock_rx_hashtbl(bond);
756
757	ntt = 0;
758	hash_index = bond_info->rx_hashtbl_head;
759	for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) {
760		client_info = &(bond_info->rx_hashtbl[hash_index]);
761		assigned_slave = rlb_next_rx_slave(bond);
762		if (assigned_slave && (client_info->slave != assigned_slave)) {
763			client_info->slave = assigned_slave;
764			client_info->ntt = 1;
765			ntt = 1;
766		}
767	}
768
769	/* update the team's flag only after the whole iteration */
770	if (ntt) {
771		bond_info->rx_ntt = 1;
772	}
773	_unlock_rx_hashtbl(bond);
774}
775
776/* Caller must hold rx_hashtbl lock */
777static void rlb_init_table_entry(struct rlb_client_info *entry)
778{
779	memset(entry, 0, sizeof(struct rlb_client_info));
780	entry->next = RLB_NULL_INDEX;
781	entry->prev = RLB_NULL_INDEX;
782}
783
784static int rlb_initialize(struct bonding *bond)
785{
786	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
787	struct packet_type *pk_type = &(BOND_ALB_INFO(bond).rlb_pkt_type);
788	struct rlb_client_info	*new_hashtbl;
789	int size = RLB_HASH_TABLE_SIZE * sizeof(struct rlb_client_info);
790	int i;
791
792	spin_lock_init(&(bond_info->rx_hashtbl_lock));
793
794	new_hashtbl = kmalloc(size, GFP_KERNEL);
795	if (!new_hashtbl) {
796		printk(KERN_ERR DRV_NAME
797		       ": %s: Error: Failed to allocate RLB hash table\n",
798		       bond->dev->name);
799		return -1;
800	}
801	_lock_rx_hashtbl(bond);
802
803	bond_info->rx_hashtbl = new_hashtbl;
804
805	bond_info->rx_hashtbl_head = RLB_NULL_INDEX;
806
807	for (i = 0; i < RLB_HASH_TABLE_SIZE; i++) {
808		rlb_init_table_entry(bond_info->rx_hashtbl + i);
809	}
810
811	_unlock_rx_hashtbl(bond);
812
813	/*initialize packet type*/
814	pk_type->type = __constant_htons(ETH_P_ARP);
815	pk_type->dev = bond->dev;
816	pk_type->func = rlb_arp_recv;
817
818	/* register to receive ARPs */
819	dev_add_pack(pk_type);
820
821	return 0;
822}
823
824static void rlb_deinitialize(struct bonding *bond)
825{
826	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
827
828	dev_remove_pack(&(bond_info->rlb_pkt_type));
829
830	_lock_rx_hashtbl(bond);
831
832	kfree(bond_info->rx_hashtbl);
833	bond_info->rx_hashtbl = NULL;
834	bond_info->rx_hashtbl_head = RLB_NULL_INDEX;
835
836	_unlock_rx_hashtbl(bond);
837}
838
839static void rlb_clear_vlan(struct bonding *bond, unsigned short vlan_id)
840{
841	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
842	u32 curr_index;
843
844	_lock_rx_hashtbl(bond);
845
846	curr_index = bond_info->rx_hashtbl_head;
847	while (curr_index != RLB_NULL_INDEX) {
848		struct rlb_client_info *curr = &(bond_info->rx_hashtbl[curr_index]);
849		u32 next_index = bond_info->rx_hashtbl[curr_index].next;
850		u32 prev_index = bond_info->rx_hashtbl[curr_index].prev;
851
852		if (curr->tag && (curr->vlan_id == vlan_id)) {
853			if (curr_index == bond_info->rx_hashtbl_head) {
854				bond_info->rx_hashtbl_head = next_index;
855			}
856			if (prev_index != RLB_NULL_INDEX) {
857				bond_info->rx_hashtbl[prev_index].next = next_index;
858			}
859			if (next_index != RLB_NULL_INDEX) {
860				bond_info->rx_hashtbl[next_index].prev = prev_index;
861			}
862
863			rlb_init_table_entry(curr);
864		}
865
866		curr_index = next_index;
867	}
868
869	_unlock_rx_hashtbl(bond);
870}
871
872/*********************** tlb/rlb shared functions *********************/
873
874static void alb_send_learning_packets(struct slave *slave, u8 mac_addr[])
875{
876	struct bonding *bond = bond_get_bond_by_slave(slave);
877	struct learning_pkt pkt;
878	int size = sizeof(struct learning_pkt);
879	int i;
880
881	memset(&pkt, 0, size);
882	memcpy(pkt.mac_dst, mac_addr, ETH_ALEN);
883	memcpy(pkt.mac_src, mac_addr, ETH_ALEN);
884	pkt.type = __constant_htons(ETH_P_LOOP);
885
886	for (i = 0; i < MAX_LP_BURST; i++) {
887		struct sk_buff *skb;
888		char *data;
889
890		skb = dev_alloc_skb(size);
891		if (!skb) {
892			return;
893		}
894
895		data = skb_put(skb, size);
896		memcpy(data, &pkt, size);
897
898		skb_reset_mac_header(skb);
899		skb->network_header = skb->mac_header + ETH_HLEN;
900		skb->protocol = pkt.type;
901		skb->priority = TC_PRIO_CONTROL;
902		skb->dev = slave->dev;
903
904		if (!list_empty(&bond->vlan_list)) {
905			struct vlan_entry *vlan;
906
907			vlan = bond_next_vlan(bond,
908					      bond->alb_info.current_alb_vlan);
909
910			bond->alb_info.current_alb_vlan = vlan;
911			if (!vlan) {
912				kfree_skb(skb);
913				continue;
914			}
915
916			skb = vlan_put_tag(skb, vlan->vlan_id);
917			if (!skb) {
918				printk(KERN_ERR DRV_NAME
919				       ": %s: Error: failed to insert VLAN tag\n",
920				       bond->dev->name);
921				continue;
922			}
923		}
924
925		dev_queue_xmit(skb);
926	}
927}
928
929/* hw is a boolean parameter that determines whether we should try and
930 * set the hw address of the device as well as the hw address of the
931 * net_device
932 */
933static int alb_set_slave_mac_addr(struct slave *slave, u8 addr[], int hw)
934{
935	struct net_device *dev = slave->dev;
936	struct sockaddr s_addr;
937
938	if (!hw) {
939		memcpy(dev->dev_addr, addr, dev->addr_len);
940		return 0;
941	}
942
943	/* for rlb each slave must have a unique hw mac addresses so that */
944	/* each slave will receive packets destined to a different mac */
945	memcpy(s_addr.sa_data, addr, dev->addr_len);
946	s_addr.sa_family = dev->type;
947	if (dev_set_mac_address(dev, &s_addr)) {
948		printk(KERN_ERR DRV_NAME
949		       ": %s: Error: dev_set_mac_address of dev %s failed! ALB "
950		       "mode requires that the base driver support setting "
951		       "the hw address also when the network device's "
952		       "interface is open\n",
953		       dev->master->name, dev->name);
954		return -EOPNOTSUPP;
955	}
956	return 0;
957}
958
959/* Caller must hold bond lock for write or curr_slave_lock for write*/
960static void alb_swap_mac_addr(struct bonding *bond, struct slave *slave1, struct slave *slave2)
961{
962	struct slave *disabled_slave = NULL;
963	u8 tmp_mac_addr[ETH_ALEN];
964	int slaves_state_differ;
965
966	slaves_state_differ = (SLAVE_IS_OK(slave1) != SLAVE_IS_OK(slave2));
967
968	memcpy(tmp_mac_addr, slave1->dev->dev_addr, ETH_ALEN);
969	alb_set_slave_mac_addr(slave1, slave2->dev->dev_addr, bond->alb_info.rlb_enabled);
970	alb_set_slave_mac_addr(slave2, tmp_mac_addr, bond->alb_info.rlb_enabled);
971
972	/* fasten the change in the switch */
973	if (SLAVE_IS_OK(slave1)) {
974		alb_send_learning_packets(slave1, slave1->dev->dev_addr);
975		if (bond->alb_info.rlb_enabled) {
976			/* inform the clients that the mac address
977			 * has changed
978			 */
979			rlb_req_update_slave_clients(bond, slave1);
980		}
981	} else {
982		disabled_slave = slave1;
983	}
984
985	if (SLAVE_IS_OK(slave2)) {
986		alb_send_learning_packets(slave2, slave2->dev->dev_addr);
987		if (bond->alb_info.rlb_enabled) {
988			/* inform the clients that the mac address
989			 * has changed
990			 */
991			rlb_req_update_slave_clients(bond, slave2);
992		}
993	} else {
994		disabled_slave = slave2;
995	}
996
997	if (bond->alb_info.rlb_enabled && slaves_state_differ) {
998		/* A disabled slave was assigned an active mac addr */
999		rlb_teach_disabled_mac_on_primary(bond,
1000						  disabled_slave->dev->dev_addr);
1001	}
1002}
1003
1004/**
1005 * alb_change_hw_addr_on_detach
1006 * @bond: bonding we're working on
1007 * @slave: the slave that was just detached
1008 *
1009 * We assume that @slave was already detached from the slave list.
1010 *
1011 * If @slave's permanent hw address is different both from its current
1012 * address and from @bond's address, then somewhere in the bond there's
1013 * a slave that has @slave's permanet address as its current address.
1014 * We'll make sure that that slave no longer uses @slave's permanent address.
1015 *
1016 * Caller must hold bond lock
1017 */
1018static void alb_change_hw_addr_on_detach(struct bonding *bond, struct slave *slave)
1019{
1020	int perm_curr_diff;
1021	int perm_bond_diff;
1022
1023	perm_curr_diff = memcmp(slave->perm_hwaddr,
1024				slave->dev->dev_addr,
1025				ETH_ALEN);
1026	perm_bond_diff = memcmp(slave->perm_hwaddr,
1027				bond->dev->dev_addr,
1028				ETH_ALEN);
1029
1030	if (perm_curr_diff && perm_bond_diff) {
1031		struct slave *tmp_slave;
1032		int i, found = 0;
1033
1034		bond_for_each_slave(bond, tmp_slave, i) {
1035			if (!memcmp(slave->perm_hwaddr,
1036				    tmp_slave->dev->dev_addr,
1037				    ETH_ALEN)) {
1038				found = 1;
1039				break;
1040			}
1041		}
1042
1043		if (found) {
1044			alb_swap_mac_addr(bond, slave, tmp_slave);
1045		}
1046	}
1047}
1048
1049/**
1050 * alb_handle_addr_collision_on_attach
1051 * @bond: bonding we're working on
1052 * @slave: the slave that was just attached
1053 *
1054 * checks uniqueness of slave's mac address and handles the case the
1055 * new slave uses the bonds mac address.
1056 *
1057 * If the permanent hw address of @slave is @bond's hw address, we need to
1058 * find a different hw address to give @slave, that isn't in use by any other
1059 * slave in the bond. This address must be, of course, one of the premanent
1060 * addresses of the other slaves.
1061 *
1062 * We go over the slave list, and for each slave there we compare its
1063 * permanent hw address with the current address of all the other slaves.
1064 * If no match was found, then we've found a slave with a permanent address
1065 * that isn't used by any other slave in the bond, so we can assign it to
1066 * @slave.
1067 *
1068 * assumption: this function is called before @slave is attached to the
1069 * 	       bond slave list.
1070 *
1071 * caller must hold the bond lock for write since the mac addresses are compared
1072 * and may be swapped.
1073 */
1074static int alb_handle_addr_collision_on_attach(struct bonding *bond, struct slave *slave)
1075{
1076	struct slave *tmp_slave1, *tmp_slave2, *free_mac_slave;
1077	struct slave *has_bond_addr = bond->curr_active_slave;
1078	int i, j, found = 0;
1079
1080	if (bond->slave_cnt == 0) {
1081		/* this is the first slave */
1082		return 0;
1083	}
1084
1085	/* if slave's mac address differs from bond's mac address
1086	 * check uniqueness of slave's mac address against the other
1087	 * slaves in the bond.
1088	 */
1089	if (memcmp(slave->perm_hwaddr, bond->dev->dev_addr, ETH_ALEN)) {
1090		bond_for_each_slave(bond, tmp_slave1, i) {
1091			if (!memcmp(tmp_slave1->dev->dev_addr, slave->dev->dev_addr,
1092				    ETH_ALEN)) {
1093				found = 1;
1094				break;
1095			}
1096		}
1097
1098		if (!found)
1099			return 0;
1100
1101		/* Try setting slave mac to bond address and fall-through
1102		   to code handling that situation below... */
1103		alb_set_slave_mac_addr(slave, bond->dev->dev_addr,
1104				       bond->alb_info.rlb_enabled);
1105	}
1106
1107	/* The slave's address is equal to the address of the bond.
1108	 * Search for a spare address in the bond for this slave.
1109	 */
1110	free_mac_slave = NULL;
1111
1112	bond_for_each_slave(bond, tmp_slave1, i) {
1113		found = 0;
1114		bond_for_each_slave(bond, tmp_slave2, j) {
1115			if (!memcmp(tmp_slave1->perm_hwaddr,
1116				    tmp_slave2->dev->dev_addr,
1117				    ETH_ALEN)) {
1118				found = 1;
1119				break;
1120			}
1121		}
1122
1123		if (!found) {
1124			/* no slave has tmp_slave1's perm addr
1125			 * as its curr addr
1126			 */
1127			free_mac_slave = tmp_slave1;
1128			break;
1129		}
1130
1131		if (!has_bond_addr) {
1132			if (!memcmp(tmp_slave1->dev->dev_addr,
1133				    bond->dev->dev_addr,
1134				    ETH_ALEN)) {
1135
1136				has_bond_addr = tmp_slave1;
1137			}
1138		}
1139	}
1140
1141	if (free_mac_slave) {
1142		alb_set_slave_mac_addr(slave, free_mac_slave->perm_hwaddr,
1143				       bond->alb_info.rlb_enabled);
1144
1145		printk(KERN_WARNING DRV_NAME
1146		       ": %s: Warning: the hw address of slave %s is in use by "
1147		       "the bond; giving it the hw address of %s\n",
1148		       bond->dev->name, slave->dev->name, free_mac_slave->dev->name);
1149
1150	} else if (has_bond_addr) {
1151		printk(KERN_ERR DRV_NAME
1152		       ": %s: Error: the hw address of slave %s is in use by the "
1153		       "bond; couldn't find a slave with a free hw address to "
1154		       "give it (this should not have happened)\n",
1155		       bond->dev->name, slave->dev->name);
1156		return -EFAULT;
1157	}
1158
1159	return 0;
1160}
1161
1162/**
1163 * alb_set_mac_address
1164 * @bond:
1165 * @addr:
1166 *
1167 * In TLB mode all slaves are configured to the bond's hw address, but set
1168 * their dev_addr field to different addresses (based on their permanent hw
1169 * addresses).
1170 *
1171 * For each slave, this function sets the interface to the new address and then
1172 * changes its dev_addr field to its previous value.
1173 *
1174 * Unwinding assumes bond's mac address has not yet changed.
1175 */
1176static int alb_set_mac_address(struct bonding *bond, void *addr)
1177{
1178	struct sockaddr sa;
1179	struct slave *slave, *stop_at;
1180	char tmp_addr[ETH_ALEN];
1181	int res;
1182	int i;
1183
1184	if (bond->alb_info.rlb_enabled) {
1185		return 0;
1186	}
1187
1188	bond_for_each_slave(bond, slave, i) {
1189		if (slave->dev->set_mac_address == NULL) {
1190			res = -EOPNOTSUPP;
1191			goto unwind;
1192		}
1193
1194		/* save net_device's current hw address */
1195		memcpy(tmp_addr, slave->dev->dev_addr, ETH_ALEN);
1196
1197		res = dev_set_mac_address(slave->dev, addr);
1198
1199		/* restore net_device's hw address */
1200		memcpy(slave->dev->dev_addr, tmp_addr, ETH_ALEN);
1201
1202		if (res) {
1203			goto unwind;
1204		}
1205	}
1206
1207	return 0;
1208
1209unwind:
1210	memcpy(sa.sa_data, bond->dev->dev_addr, bond->dev->addr_len);
1211	sa.sa_family = bond->dev->type;
1212
1213	/* unwind from head to the slave that failed */
1214	stop_at = slave;
1215	bond_for_each_slave_from_to(bond, slave, i, bond->first_slave, stop_at) {
1216		memcpy(tmp_addr, slave->dev->dev_addr, ETH_ALEN);
1217		dev_set_mac_address(slave->dev, &sa);
1218		memcpy(slave->dev->dev_addr, tmp_addr, ETH_ALEN);
1219	}
1220
1221	return res;
1222}
1223
1224/************************ exported alb funcions ************************/
1225
1226int bond_alb_initialize(struct bonding *bond, int rlb_enabled)
1227{
1228	int res;
1229
1230	res = tlb_initialize(bond);
1231	if (res) {
1232		return res;
1233	}
1234
1235	if (rlb_enabled) {
1236		bond->alb_info.rlb_enabled = 1;
1237		/* initialize rlb */
1238		res = rlb_initialize(bond);
1239		if (res) {
1240			tlb_deinitialize(bond);
1241			return res;
1242		}
1243	} else {
1244		bond->alb_info.rlb_enabled = 0;
1245	}
1246
1247	return 0;
1248}
1249
1250void bond_alb_deinitialize(struct bonding *bond)
1251{
1252	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
1253
1254	tlb_deinitialize(bond);
1255
1256	if (bond_info->rlb_enabled) {
1257		rlb_deinitialize(bond);
1258	}
1259}
1260
1261int bond_alb_xmit(struct sk_buff *skb, struct net_device *bond_dev)
1262{
1263	struct bonding *bond = bond_dev->priv;
1264	struct ethhdr *eth_data;
1265	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
1266	struct slave *tx_slave = NULL;
1267	static const u32 ip_bcast = 0xffffffff;
1268	int hash_size = 0;
1269	int do_tx_balance = 1;
1270	u32 hash_index = 0;
1271	const u8 *hash_start = NULL;
1272	int res = 1;
1273
1274	skb_reset_mac_header(skb);
1275	eth_data = eth_hdr(skb);
1276
1277	/* make sure that the curr_active_slave and the slaves list do
1278	 * not change during tx
1279	 */
1280	read_lock(&bond->lock);
1281	read_lock(&bond->curr_slave_lock);
1282
1283	if (!BOND_IS_OK(bond)) {
1284		goto out;
1285	}
1286
1287	switch (ntohs(skb->protocol)) {
1288	case ETH_P_IP: {
1289		const struct iphdr *iph = ip_hdr(skb);
1290
1291		if ((memcmp(eth_data->h_dest, mac_bcast, ETH_ALEN) == 0) ||
1292		    (iph->daddr == ip_bcast) ||
1293		    (iph->protocol == IPPROTO_IGMP)) {
1294			do_tx_balance = 0;
1295			break;
1296		}
1297		hash_start = (char *)&(iph->daddr);
1298		hash_size = sizeof(iph->daddr);
1299	}
1300		break;
1301	case ETH_P_IPV6:
1302		if (memcmp(eth_data->h_dest, mac_bcast, ETH_ALEN) == 0) {
1303			do_tx_balance = 0;
1304			break;
1305		}
1306
1307		hash_start = (char *)&(ipv6_hdr(skb)->daddr);
1308		hash_size = sizeof(ipv6_hdr(skb)->daddr);
1309		break;
1310	case ETH_P_IPX:
1311		if (ipx_hdr(skb)->ipx_checksum !=
1312		    __constant_htons(IPX_NO_CHECKSUM)) {
1313			/* something is wrong with this packet */
1314			do_tx_balance = 0;
1315			break;
1316		}
1317
1318		if (ipx_hdr(skb)->ipx_type != IPX_TYPE_NCP) {
1319			/* The only protocol worth balancing in
1320			 * this family since it has an "ARP" like
1321			 * mechanism
1322			 */
1323			do_tx_balance = 0;
1324			break;
1325		}
1326
1327		hash_start = (char*)eth_data->h_dest;
1328		hash_size = ETH_ALEN;
1329		break;
1330	case ETH_P_ARP:
1331		do_tx_balance = 0;
1332		if (bond_info->rlb_enabled) {
1333			tx_slave = rlb_arp_xmit(skb, bond);
1334		}
1335		break;
1336	default:
1337		do_tx_balance = 0;
1338		break;
1339	}
1340
1341	if (do_tx_balance) {
1342		hash_index = _simple_hash(hash_start, hash_size);
1343		tx_slave = tlb_choose_channel(bond, hash_index, skb->len);
1344	}
1345
1346	if (!tx_slave) {
1347		/* unbalanced or unassigned, send through primary */
1348		tx_slave = bond->curr_active_slave;
1349		bond_info->unbalanced_load += skb->len;
1350	}
1351
1352	if (tx_slave && SLAVE_IS_OK(tx_slave)) {
1353		if (tx_slave != bond->curr_active_slave) {
1354			memcpy(eth_data->h_source,
1355			       tx_slave->dev->dev_addr,
1356			       ETH_ALEN);
1357		}
1358
1359		res = bond_dev_queue_xmit(bond, skb, tx_slave->dev);
1360	} else {
1361		if (tx_slave) {
1362			tlb_clear_slave(bond, tx_slave, 0);
1363		}
1364	}
1365
1366out:
1367	if (res) {
1368		/* no suitable interface, frame not sent */
1369		dev_kfree_skb(skb);
1370	}
1371	read_unlock(&bond->curr_slave_lock);
1372	read_unlock(&bond->lock);
1373	return 0;
1374}
1375
1376void bond_alb_monitor(struct bonding *bond)
1377{
1378	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
1379	struct slave *slave;
1380	int i;
1381
1382	read_lock(&bond->lock);
1383
1384	if (bond->kill_timers) {
1385		goto out;
1386	}
1387
1388	if (bond->slave_cnt == 0) {
1389		bond_info->tx_rebalance_counter = 0;
1390		bond_info->lp_counter = 0;
1391		goto re_arm;
1392	}
1393
1394	bond_info->tx_rebalance_counter++;
1395	bond_info->lp_counter++;
1396
1397	/* send learning packets */
1398	if (bond_info->lp_counter >= BOND_ALB_LP_TICKS) {
1399		/* change of curr_active_slave involves swapping of mac addresses.
1400		 * in order to avoid this swapping from happening while
1401		 * sending the learning packets, the curr_slave_lock must be held for
1402		 * read.
1403		 */
1404		read_lock(&bond->curr_slave_lock);
1405
1406		bond_for_each_slave(bond, slave, i) {
1407			alb_send_learning_packets(slave, slave->dev->dev_addr);
1408		}
1409
1410		read_unlock(&bond->curr_slave_lock);
1411
1412		bond_info->lp_counter = 0;
1413	}
1414
1415	/* rebalance tx traffic */
1416	if (bond_info->tx_rebalance_counter >= BOND_TLB_REBALANCE_TICKS) {
1417
1418		read_lock(&bond->curr_slave_lock);
1419
1420		bond_for_each_slave(bond, slave, i) {
1421			tlb_clear_slave(bond, slave, 1);
1422			if (slave == bond->curr_active_slave) {
1423				SLAVE_TLB_INFO(slave).load =
1424					bond_info->unbalanced_load /
1425						BOND_TLB_REBALANCE_INTERVAL;
1426				bond_info->unbalanced_load = 0;
1427			}
1428		}
1429
1430		read_unlock(&bond->curr_slave_lock);
1431
1432		bond_info->tx_rebalance_counter = 0;
1433	}
1434
1435	/* handle rlb stuff */
1436	if (bond_info->rlb_enabled) {
1437		/* the following code changes the promiscuity of the
1438		 * the curr_active_slave. It needs to be locked with a
1439		 * write lock to protect from other code that also
1440		 * sets the promiscuity.
1441		 */
1442		write_lock_bh(&bond->curr_slave_lock);
1443
1444		if (bond_info->primary_is_promisc &&
1445		    (++bond_info->rlb_promisc_timeout_counter >= RLB_PROMISC_TIMEOUT)) {
1446
1447			bond_info->rlb_promisc_timeout_counter = 0;
1448
1449			/* If the primary was set to promiscuous mode
1450			 * because a slave was disabled then
1451			 * it can now leave promiscuous mode.
1452			 */
1453			dev_set_promiscuity(bond->curr_active_slave->dev, -1);
1454			bond_info->primary_is_promisc = 0;
1455		}
1456
1457		write_unlock_bh(&bond->curr_slave_lock);
1458
1459		if (bond_info->rlb_rebalance) {
1460			bond_info->rlb_rebalance = 0;
1461			rlb_rebalance(bond);
1462		}
1463
1464		/* check if clients need updating */
1465		if (bond_info->rx_ntt) {
1466			if (bond_info->rlb_update_delay_counter) {
1467				--bond_info->rlb_update_delay_counter;
1468			} else {
1469				rlb_update_rx_clients(bond);
1470				if (bond_info->rlb_update_retry_counter) {
1471					--bond_info->rlb_update_retry_counter;
1472				} else {
1473					bond_info->rx_ntt = 0;
1474				}
1475			}
1476		}
1477	}
1478
1479re_arm:
1480	mod_timer(&(bond_info->alb_timer), jiffies + alb_delta_in_ticks);
1481out:
1482	read_unlock(&bond->lock);
1483}
1484
1485/* assumption: called before the slave is attached to the bond
1486 * and not locked by the bond lock
1487 */
1488int bond_alb_init_slave(struct bonding *bond, struct slave *slave)
1489{
1490	int res;
1491
1492	res = alb_set_slave_mac_addr(slave, slave->perm_hwaddr,
1493				     bond->alb_info.rlb_enabled);
1494	if (res) {
1495		return res;
1496	}
1497
1498	/* caller must hold the bond lock for write since the mac addresses
1499	 * are compared and may be swapped.
1500	 */
1501	write_lock_bh(&bond->lock);
1502
1503	res = alb_handle_addr_collision_on_attach(bond, slave);
1504
1505	write_unlock_bh(&bond->lock);
1506
1507	if (res) {
1508		return res;
1509	}
1510
1511	tlb_init_slave(slave);
1512
1513	/* order a rebalance ASAP */
1514	bond->alb_info.tx_rebalance_counter = BOND_TLB_REBALANCE_TICKS;
1515
1516	if (bond->alb_info.rlb_enabled) {
1517		bond->alb_info.rlb_rebalance = 1;
1518	}
1519
1520	return 0;
1521}
1522
1523/* Caller must hold bond lock for write */
1524void bond_alb_deinit_slave(struct bonding *bond, struct slave *slave)
1525{
1526	if (bond->slave_cnt > 1) {
1527		alb_change_hw_addr_on_detach(bond, slave);
1528	}
1529
1530	tlb_clear_slave(bond, slave, 0);
1531
1532	if (bond->alb_info.rlb_enabled) {
1533		bond->alb_info.next_rx_slave = NULL;
1534		rlb_clear_slave(bond, slave);
1535	}
1536}
1537
1538/* Caller must hold bond lock for read */
1539void bond_alb_handle_link_change(struct bonding *bond, struct slave *slave, char link)
1540{
1541	struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
1542
1543	if (link == BOND_LINK_DOWN) {
1544		tlb_clear_slave(bond, slave, 0);
1545		if (bond->alb_info.rlb_enabled) {
1546			rlb_clear_slave(bond, slave);
1547		}
1548	} else if (link == BOND_LINK_UP) {
1549		/* order a rebalance ASAP */
1550		bond_info->tx_rebalance_counter = BOND_TLB_REBALANCE_TICKS;
1551		if (bond->alb_info.rlb_enabled) {
1552			bond->alb_info.rlb_rebalance = 1;
1553			/* If the updelay module parameter is smaller than the
1554			 * forwarding delay of the switch the rebalance will
1555			 * not work because the rebalance arp replies will
1556			 * not be forwarded to the clients..
1557			 */
1558		}
1559	}
1560}
1561
1562/**
1563 * bond_alb_handle_active_change - assign new curr_active_slave
1564 * @bond: our bonding struct
1565 * @new_slave: new slave to assign
1566 *
1567 * Set the bond->curr_active_slave to @new_slave and handle
1568 * mac address swapping and promiscuity changes as needed.
1569 *
1570 * Caller must hold bond curr_slave_lock for write (or bond lock for write)
1571 */
1572void bond_alb_handle_active_change(struct bonding *bond, struct slave *new_slave)
1573{
1574	struct slave *swap_slave;
1575	int i;
1576
1577	if (bond->curr_active_slave == new_slave) {
1578		return;
1579	}
1580
1581	if (bond->curr_active_slave && bond->alb_info.primary_is_promisc) {
1582		dev_set_promiscuity(bond->curr_active_slave->dev, -1);
1583		bond->alb_info.primary_is_promisc = 0;
1584		bond->alb_info.rlb_promisc_timeout_counter = 0;
1585	}
1586
1587	swap_slave = bond->curr_active_slave;
1588	bond->curr_active_slave = new_slave;
1589
1590	if (!new_slave || (bond->slave_cnt == 0)) {
1591		return;
1592	}
1593
1594	/* set the new curr_active_slave to the bonds mac address
1595	 * i.e. swap mac addresses of old curr_active_slave and new curr_active_slave
1596	 */
1597	if (!swap_slave) {
1598		struct slave *tmp_slave;
1599		/* find slave that is holding the bond's mac address */
1600		bond_for_each_slave(bond, tmp_slave, i) {
1601			if (!memcmp(tmp_slave->dev->dev_addr,
1602				    bond->dev->dev_addr, ETH_ALEN)) {
1603				swap_slave = tmp_slave;
1604				break;
1605			}
1606		}
1607	}
1608
1609	/* curr_active_slave must be set before calling alb_swap_mac_addr */
1610	if (swap_slave) {
1611		/* swap mac address */
1612		alb_swap_mac_addr(bond, swap_slave, new_slave);
1613	} else {
1614		/* set the new_slave to the bond mac address */
1615		alb_set_slave_mac_addr(new_slave, bond->dev->dev_addr,
1616				       bond->alb_info.rlb_enabled);
1617		/* fasten bond mac on new current slave */
1618		alb_send_learning_packets(new_slave, bond->dev->dev_addr);
1619	}
1620}
1621
1622int bond_alb_set_mac_address(struct net_device *bond_dev, void *addr)
1623{
1624	struct bonding *bond = bond_dev->priv;
1625	struct sockaddr *sa = addr;
1626	struct slave *slave, *swap_slave;
1627	int res;
1628	int i;
1629
1630	if (!is_valid_ether_addr(sa->sa_data)) {
1631		return -EADDRNOTAVAIL;
1632	}
1633
1634	res = alb_set_mac_address(bond, addr);
1635	if (res) {
1636		return res;
1637	}
1638
1639	memcpy(bond_dev->dev_addr, sa->sa_data, bond_dev->addr_len);
1640
1641	/* If there is no curr_active_slave there is nothing else to do.
1642	 * Otherwise we'll need to pass the new address to it and handle
1643	 * duplications.
1644	 */
1645	if (!bond->curr_active_slave) {
1646		return 0;
1647	}
1648
1649	swap_slave = NULL;
1650
1651	bond_for_each_slave(bond, slave, i) {
1652		if (!memcmp(slave->dev->dev_addr, bond_dev->dev_addr, ETH_ALEN)) {
1653			swap_slave = slave;
1654			break;
1655		}
1656	}
1657
1658	if (swap_slave) {
1659		alb_swap_mac_addr(bond, swap_slave, bond->curr_active_slave);
1660	} else {
1661		alb_set_slave_mac_addr(bond->curr_active_slave, bond_dev->dev_addr,
1662				       bond->alb_info.rlb_enabled);
1663
1664		alb_send_learning_packets(bond->curr_active_slave, bond_dev->dev_addr);
1665		if (bond->alb_info.rlb_enabled) {
1666			/* inform clients mac address has changed */
1667			rlb_req_update_slave_clients(bond, bond->curr_active_slave);
1668		}
1669	}
1670
1671	return 0;
1672}
1673
1674void bond_alb_clear_vlan(struct bonding *bond, unsigned short vlan_id)
1675{
1676	if (bond->alb_info.current_alb_vlan &&
1677	    (bond->alb_info.current_alb_vlan->vlan_id == vlan_id)) {
1678		bond->alb_info.current_alb_vlan = NULL;
1679	}
1680
1681	if (bond->alb_info.rlb_enabled) {
1682		rlb_clear_vlan(bond, vlan_id);
1683	}
1684}
1685