1/*
2 *
3 * Alchemy Au1x00 ethernet driver
4 *
5 * Copyright 2001-2003, 2006 MontaVista Software Inc.
6 * Copyright 2002 TimeSys Corp.
7 * Added ethtool/mii-tool support,
8 * Copyright 2004 Matt Porter <mporter@kernel.crashing.org>
9 * Update: 2004 Bjoern Riemer, riemer@fokus.fraunhofer.de
10 * or riemer@riemer-nt.de: fixed the link beat detection with
11 * ioctls (SIOCGMIIPHY)
12 * Copyright 2006 Herbert Valerio Riedel <hvr@gnu.org>
13 *  converted to use linux-2.6.x's PHY framework
14 *
15 * Author: MontaVista Software, Inc.
16 *         	ppopov@mvista.com or source@mvista.com
17 *
18 * ########################################################################
19 *
20 *  This program is free software; you can distribute it and/or modify it
21 *  under the terms of the GNU General Public License (Version 2) as
22 *  published by the Free Software Foundation.
23 *
24 *  This program is distributed in the hope it will be useful, but WITHOUT
25 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
26 *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
27 *  for more details.
28 *
29 *  You should have received a copy of the GNU General Public License along
30 *  with this program; if not, write to the Free Software Foundation, Inc.,
31 *  59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
32 *
33 * ########################################################################
34 *
35 *
36 */
37#include <linux/dma-mapping.h>
38#include <linux/module.h>
39#include <linux/kernel.h>
40#include <linux/string.h>
41#include <linux/timer.h>
42#include <linux/errno.h>
43#include <linux/in.h>
44#include <linux/ioport.h>
45#include <linux/bitops.h>
46#include <linux/slab.h>
47#include <linux/interrupt.h>
48#include <linux/init.h>
49#include <linux/netdevice.h>
50#include <linux/etherdevice.h>
51#include <linux/ethtool.h>
52#include <linux/mii.h>
53#include <linux/skbuff.h>
54#include <linux/delay.h>
55#include <linux/crc32.h>
56#include <linux/phy.h>
57#include <asm/mipsregs.h>
58#include <asm/irq.h>
59#include <asm/io.h>
60#include <asm/processor.h>
61
62#include <asm/mach-au1x00/au1000.h>
63#include <asm/cpu.h>
64#include "au1000_eth.h"
65
66#ifdef AU1000_ETH_DEBUG
67static int au1000_debug = 5;
68#else
69static int au1000_debug = 3;
70#endif
71
72#define DRV_NAME	"au1000_eth"
73#define DRV_VERSION	"1.6"
74#define DRV_AUTHOR	"Pete Popov <ppopov@embeddedalley.com>"
75#define DRV_DESC	"Au1xxx on-chip Ethernet driver"
76
77MODULE_AUTHOR(DRV_AUTHOR);
78MODULE_DESCRIPTION(DRV_DESC);
79MODULE_LICENSE("GPL");
80
81// prototypes
82static void hard_stop(struct net_device *);
83static void enable_rx_tx(struct net_device *dev);
84static struct net_device * au1000_probe(int port_num);
85static int au1000_init(struct net_device *);
86static int au1000_open(struct net_device *);
87static int au1000_close(struct net_device *);
88static int au1000_tx(struct sk_buff *, struct net_device *);
89static int au1000_rx(struct net_device *);
90static irqreturn_t au1000_interrupt(int, void *);
91static void au1000_tx_timeout(struct net_device *);
92static void set_rx_mode(struct net_device *);
93static struct net_device_stats *au1000_get_stats(struct net_device *);
94static int au1000_ioctl(struct net_device *, struct ifreq *, int);
95static int mdio_read(struct net_device *, int, int);
96static void mdio_write(struct net_device *, int, int, u16);
97static void au1000_adjust_link(struct net_device *);
98static void enable_mac(struct net_device *, int);
99
100// externs
101extern int get_ethernet_addr(char *ethernet_addr);
102extern void str2eaddr(unsigned char *ea, unsigned char *str);
103extern char * prom_getcmdline(void);
104
105/*
106 * Theory of operation
107 *
108 * The Au1000 MACs use a simple rx and tx descriptor ring scheme.
109 * There are four receive and four transmit descriptors.  These
110 * descriptors are not in memory; rather, they are just a set of
111 * hardware registers.
112 *
113 * Since the Au1000 has a coherent data cache, the receive and
114 * transmit buffers are allocated from the KSEG0 segment. The
115 * hardware registers, however, are still mapped at KSEG1 to
116 * make sure there's no out-of-order writes, and that all writes
117 * complete immediately.
118 */
119
120/* These addresses are only used if yamon doesn't tell us what
121 * the mac address is, and the mac address is not passed on the
122 * command line.
123 */
124static unsigned char au1000_mac_addr[6] __devinitdata = {
125	0x00, 0x50, 0xc2, 0x0c, 0x30, 0x00
126};
127
128struct au1000_private *au_macs[NUM_ETH_INTERFACES];
129
130/*
131 * board-specific configurations
132 *
133 * PHY detection algorithm
134 *
135 * If AU1XXX_PHY_STATIC_CONFIG is undefined, the PHY setup is
136 * autodetected:
137 *
138 * mii_probe() first searches the current MAC's MII bus for a PHY,
139 * selecting the first (or last, if AU1XXX_PHY_SEARCH_HIGHEST_ADDR is
140 * defined) PHY address not already claimed by another netdev.
141 *
142 * If nothing was found that way when searching for the 2nd ethernet
143 * controller's PHY and AU1XXX_PHY1_SEARCH_ON_MAC0 is defined, then
144 * the first MII bus is searched as well for an unclaimed PHY; this is
145 * needed in case of a dual-PHY accessible only through the MAC0's MII
146 * bus.
147 *
148 * Finally, if no PHY is found, then the corresponding ethernet
149 * controller is not registered to the network subsystem.
150 */
151
152/* autodetection defaults */
153#undef  AU1XXX_PHY_SEARCH_HIGHEST_ADDR
154#define AU1XXX_PHY1_SEARCH_ON_MAC0
155
156/* static PHY setup
157 *
158 * most boards PHY setup should be detectable properly with the
159 * autodetection algorithm in mii_probe(), but in some cases (e.g. if
160 * you have a switch attached, or want to use the PHY's interrupt
161 * notification capabilities) you can provide a static PHY
162 * configuration here
163 *
164 * IRQs may only be set, if a PHY address was configured
165 * If a PHY address is given, also a bus id is required to be set
166 *
167 * ps: make sure the used irqs are configured properly in the board
168 * specific irq-map
169 */
170
171#if defined(CONFIG_MIPS_BOSPORUS)
172/*
173 * Micrel/Kendin 5 port switch attached to MAC0,
174 * MAC0 is associated with PHY address 5 (== WAN port)
175 * MAC1 is not associated with any PHY, since it's connected directly
176 * to the switch.
177 * no interrupts are used
178 */
179# define AU1XXX_PHY_STATIC_CONFIG
180
181# define AU1XXX_PHY0_ADDR  5
182# define AU1XXX_PHY0_BUSID 0
183#  undef AU1XXX_PHY0_IRQ
184
185#  undef AU1XXX_PHY1_ADDR
186#  undef AU1XXX_PHY1_BUSID
187#  undef AU1XXX_PHY1_IRQ
188#endif
189
190#if defined(AU1XXX_PHY0_BUSID) && (AU1XXX_PHY0_BUSID > 0)
191# error MAC0-associated PHY attached 2nd MACs MII bus not supported yet
192#endif
193
194/*
195 * MII operations
196 */
197static int mdio_read(struct net_device *dev, int phy_addr, int reg)
198{
199	struct au1000_private *aup = (struct au1000_private *) dev->priv;
200	volatile u32 *const mii_control_reg = &aup->mac->mii_control;
201	volatile u32 *const mii_data_reg = &aup->mac->mii_data;
202	u32 timedout = 20;
203	u32 mii_control;
204
205	while (*mii_control_reg & MAC_MII_BUSY) {
206		mdelay(1);
207		if (--timedout == 0) {
208			printk(KERN_ERR "%s: read_MII busy timeout!!\n",
209					dev->name);
210			return -1;
211		}
212	}
213
214	mii_control = MAC_SET_MII_SELECT_REG(reg) |
215		MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_READ;
216
217	*mii_control_reg = mii_control;
218
219	timedout = 20;
220	while (*mii_control_reg & MAC_MII_BUSY) {
221		mdelay(1);
222		if (--timedout == 0) {
223			printk(KERN_ERR "%s: mdio_read busy timeout!!\n",
224					dev->name);
225			return -1;
226		}
227	}
228	return (int)*mii_data_reg;
229}
230
231static void mdio_write(struct net_device *dev, int phy_addr, int reg, u16 value)
232{
233	struct au1000_private *aup = (struct au1000_private *) dev->priv;
234	volatile u32 *const mii_control_reg = &aup->mac->mii_control;
235	volatile u32 *const mii_data_reg = &aup->mac->mii_data;
236	u32 timedout = 20;
237	u32 mii_control;
238
239	while (*mii_control_reg & MAC_MII_BUSY) {
240		mdelay(1);
241		if (--timedout == 0) {
242			printk(KERN_ERR "%s: mdio_write busy timeout!!\n",
243					dev->name);
244			return;
245		}
246	}
247
248	mii_control = MAC_SET_MII_SELECT_REG(reg) |
249		MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_WRITE;
250
251	*mii_data_reg = value;
252	*mii_control_reg = mii_control;
253}
254
255static int mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum)
256{
257	/* WARNING: bus->phy_map[phy_addr].attached_dev == dev does
258	 * _NOT_ hold (e.g. when PHY is accessed through other MAC's MII bus) */
259	struct net_device *const dev = bus->priv;
260
261	enable_mac(dev, 0); /* make sure the MAC associated with this
262			     * mii_bus is enabled */
263	return mdio_read(dev, phy_addr, regnum);
264}
265
266static int mdiobus_write(struct mii_bus *bus, int phy_addr, int regnum,
267			 u16 value)
268{
269	struct net_device *const dev = bus->priv;
270
271	enable_mac(dev, 0); /* make sure the MAC associated with this
272			     * mii_bus is enabled */
273	mdio_write(dev, phy_addr, regnum, value);
274	return 0;
275}
276
277static int mdiobus_reset(struct mii_bus *bus)
278{
279	struct net_device *const dev = bus->priv;
280
281	enable_mac(dev, 0); /* make sure the MAC associated with this
282			     * mii_bus is enabled */
283	return 0;
284}
285
286static int mii_probe (struct net_device *dev)
287{
288	struct au1000_private *const aup = (struct au1000_private *) dev->priv;
289	struct phy_device *phydev = NULL;
290
291#if defined(AU1XXX_PHY_STATIC_CONFIG)
292	BUG_ON(aup->mac_id < 0 || aup->mac_id > 1);
293
294	if(aup->mac_id == 0) { /* get PHY0 */
295# if defined(AU1XXX_PHY0_ADDR)
296		phydev = au_macs[AU1XXX_PHY0_BUSID]->mii_bus.phy_map[AU1XXX_PHY0_ADDR];
297# else
298		printk (KERN_INFO DRV_NAME ":%s: using PHY-less setup\n",
299			dev->name);
300		return 0;
301# endif /* defined(AU1XXX_PHY0_ADDR) */
302	} else if (aup->mac_id == 1) { /* get PHY1 */
303# if defined(AU1XXX_PHY1_ADDR)
304		phydev = au_macs[AU1XXX_PHY1_BUSID]->mii_bus.phy_map[AU1XXX_PHY1_ADDR];
305# else
306		printk (KERN_INFO DRV_NAME ":%s: using PHY-less setup\n",
307			dev->name);
308		return 0;
309# endif /* defined(AU1XXX_PHY1_ADDR) */
310	}
311
312#else /* defined(AU1XXX_PHY_STATIC_CONFIG) */
313	int phy_addr;
314
315	/* find the first (lowest address) PHY on the current MAC's MII bus */
316	for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++)
317		if (aup->mii_bus.phy_map[phy_addr]) {
318			phydev = aup->mii_bus.phy_map[phy_addr];
319# if !defined(AU1XXX_PHY_SEARCH_HIGHEST_ADDR)
320			break; /* break out with first one found */
321# endif
322		}
323
324# if defined(AU1XXX_PHY1_SEARCH_ON_MAC0)
325	/* try harder to find a PHY */
326	if (!phydev && (aup->mac_id == 1)) {
327		/* no PHY found, maybe we have a dual PHY? */
328		printk (KERN_INFO DRV_NAME ": no PHY found on MAC1, "
329			"let's see if it's attached to MAC0...\n");
330
331		BUG_ON(!au_macs[0]);
332
333		/* find the first (lowest address) non-attached PHY on
334		 * the MAC0 MII bus */
335		for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++) {
336			struct phy_device *const tmp_phydev =
337				au_macs[0]->mii_bus.phy_map[phy_addr];
338
339			if (!tmp_phydev)
340				continue; /* no PHY here... */
341
342			if (tmp_phydev->attached_dev)
343				continue; /* already claimed by MAC0 */
344
345			phydev = tmp_phydev;
346			break; /* found it */
347		}
348	}
349# endif /* defined(AU1XXX_PHY1_SEARCH_OTHER_BUS) */
350
351#endif /* defined(AU1XXX_PHY_STATIC_CONFIG) */
352	if (!phydev) {
353		printk (KERN_ERR DRV_NAME ":%s: no PHY found\n", dev->name);
354		return -1;
355	}
356
357	/* now we are supposed to have a proper phydev, to attach to... */
358	BUG_ON(!phydev);
359	BUG_ON(phydev->attached_dev);
360
361	phydev = phy_connect(dev, phydev->dev.bus_id, &au1000_adjust_link, 0,
362			PHY_INTERFACE_MODE_MII);
363
364	if (IS_ERR(phydev)) {
365		printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
366		return PTR_ERR(phydev);
367	}
368
369	/* mask with MAC supported features */
370	phydev->supported &= (SUPPORTED_10baseT_Half
371			      | SUPPORTED_10baseT_Full
372			      | SUPPORTED_100baseT_Half
373			      | SUPPORTED_100baseT_Full
374			      | SUPPORTED_Autoneg
375			      /* | SUPPORTED_Pause | SUPPORTED_Asym_Pause */
376			      | SUPPORTED_MII
377			      | SUPPORTED_TP);
378
379	phydev->advertising = phydev->supported;
380
381	aup->old_link = 0;
382	aup->old_speed = 0;
383	aup->old_duplex = -1;
384	aup->phy_dev = phydev;
385
386	printk(KERN_INFO "%s: attached PHY driver [%s] "
387	       "(mii_bus:phy_addr=%s, irq=%d)\n",
388	       dev->name, phydev->drv->name, phydev->dev.bus_id, phydev->irq);
389
390	return 0;
391}
392
393
394/*
395 * Buffer allocation/deallocation routines. The buffer descriptor returned
396 * has the virtual and dma address of a buffer suitable for
397 * both, receive and transmit operations.
398 */
399static db_dest_t *GetFreeDB(struct au1000_private *aup)
400{
401	db_dest_t *pDB;
402	pDB = aup->pDBfree;
403
404	if (pDB) {
405		aup->pDBfree = pDB->pnext;
406	}
407	return pDB;
408}
409
410void ReleaseDB(struct au1000_private *aup, db_dest_t *pDB)
411{
412	db_dest_t *pDBfree = aup->pDBfree;
413	if (pDBfree)
414		pDBfree->pnext = pDB;
415	aup->pDBfree = pDB;
416}
417
418static void enable_rx_tx(struct net_device *dev)
419{
420	struct au1000_private *aup = (struct au1000_private *) dev->priv;
421
422	if (au1000_debug > 4)
423		printk(KERN_INFO "%s: enable_rx_tx\n", dev->name);
424
425	aup->mac->control |= (MAC_RX_ENABLE | MAC_TX_ENABLE);
426	au_sync_delay(10);
427}
428
429static void hard_stop(struct net_device *dev)
430{
431	struct au1000_private *aup = (struct au1000_private *) dev->priv;
432
433	if (au1000_debug > 4)
434		printk(KERN_INFO "%s: hard stop\n", dev->name);
435
436	aup->mac->control &= ~(MAC_RX_ENABLE | MAC_TX_ENABLE);
437	au_sync_delay(10);
438}
439
440static void enable_mac(struct net_device *dev, int force_reset)
441{
442	unsigned long flags;
443	struct au1000_private *aup = (struct au1000_private *) dev->priv;
444
445	spin_lock_irqsave(&aup->lock, flags);
446
447	if(force_reset || (!aup->mac_enabled)) {
448		*aup->enable = MAC_EN_CLOCK_ENABLE;
449		au_sync_delay(2);
450		*aup->enable = (MAC_EN_RESET0 | MAC_EN_RESET1 | MAC_EN_RESET2
451				| MAC_EN_CLOCK_ENABLE);
452		au_sync_delay(2);
453
454		aup->mac_enabled = 1;
455	}
456
457	spin_unlock_irqrestore(&aup->lock, flags);
458}
459
460static void reset_mac_unlocked(struct net_device *dev)
461{
462	struct au1000_private *const aup = (struct au1000_private *) dev->priv;
463	int i;
464
465	hard_stop(dev);
466
467	*aup->enable = MAC_EN_CLOCK_ENABLE;
468	au_sync_delay(2);
469	*aup->enable = 0;
470	au_sync_delay(2);
471
472	aup->tx_full = 0;
473	for (i = 0; i < NUM_RX_DMA; i++) {
474		/* reset control bits */
475		aup->rx_dma_ring[i]->buff_stat &= ~0xf;
476	}
477	for (i = 0; i < NUM_TX_DMA; i++) {
478		/* reset control bits */
479		aup->tx_dma_ring[i]->buff_stat &= ~0xf;
480	}
481
482	aup->mac_enabled = 0;
483
484}
485
486static void reset_mac(struct net_device *dev)
487{
488	struct au1000_private *const aup = (struct au1000_private *) dev->priv;
489	unsigned long flags;
490
491	if (au1000_debug > 4)
492		printk(KERN_INFO "%s: reset mac, aup %x\n",
493		       dev->name, (unsigned)aup);
494
495	spin_lock_irqsave(&aup->lock, flags);
496
497	reset_mac_unlocked (dev);
498
499	spin_unlock_irqrestore(&aup->lock, flags);
500}
501
502/*
503 * Setup the receive and transmit "rings".  These pointers are the addresses
504 * of the rx and tx MAC DMA registers so they are fixed by the hardware --
505 * these are not descriptors sitting in memory.
506 */
507static void
508setup_hw_rings(struct au1000_private *aup, u32 rx_base, u32 tx_base)
509{
510	int i;
511
512	for (i = 0; i < NUM_RX_DMA; i++) {
513		aup->rx_dma_ring[i] =
514			(volatile rx_dma_t *) (rx_base + sizeof(rx_dma_t)*i);
515	}
516	for (i = 0; i < NUM_TX_DMA; i++) {
517		aup->tx_dma_ring[i] =
518			(volatile tx_dma_t *) (tx_base + sizeof(tx_dma_t)*i);
519	}
520}
521
522static struct {
523	u32 base_addr;
524	u32 macen_addr;
525	int irq;
526	struct net_device *dev;
527} iflist[2] = {
528#ifdef CONFIG_SOC_AU1000
529	{AU1000_ETH0_BASE, AU1000_MAC0_ENABLE, AU1000_MAC0_DMA_INT},
530	{AU1000_ETH1_BASE, AU1000_MAC1_ENABLE, AU1000_MAC1_DMA_INT}
531#endif
532#ifdef CONFIG_SOC_AU1100
533	{AU1100_ETH0_BASE, AU1100_MAC0_ENABLE, AU1100_MAC0_DMA_INT}
534#endif
535#ifdef CONFIG_SOC_AU1500
536	{AU1500_ETH0_BASE, AU1500_MAC0_ENABLE, AU1500_MAC0_DMA_INT},
537	{AU1500_ETH1_BASE, AU1500_MAC1_ENABLE, AU1500_MAC1_DMA_INT}
538#endif
539#ifdef CONFIG_SOC_AU1550
540	{AU1550_ETH0_BASE, AU1550_MAC0_ENABLE, AU1550_MAC0_DMA_INT},
541	{AU1550_ETH1_BASE, AU1550_MAC1_ENABLE, AU1550_MAC1_DMA_INT}
542#endif
543};
544
545static int num_ifs;
546
547/*
548 * Setup the base address and interupt of the Au1xxx ethernet macs
549 * based on cpu type and whether the interface is enabled in sys_pinfunc
550 * register. The last interface is enabled if SYS_PF_NI2 (bit 4) is 0.
551 */
552static int __init au1000_init_module(void)
553{
554	int ni = (int)((au_readl(SYS_PINFUNC) & (u32)(SYS_PF_NI2)) >> 4);
555	struct net_device *dev;
556	int i, found_one = 0;
557
558	num_ifs = NUM_ETH_INTERFACES - ni;
559
560	for(i = 0; i < num_ifs; i++) {
561		dev = au1000_probe(i);
562		iflist[i].dev = dev;
563		if (dev)
564			found_one++;
565	}
566	if (!found_one)
567		return -ENODEV;
568	return 0;
569}
570
571/*
572 * ethtool operations
573 */
574
575static int au1000_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
576{
577	struct au1000_private *aup = (struct au1000_private *)dev->priv;
578
579	if (aup->phy_dev)
580		return phy_ethtool_gset(aup->phy_dev, cmd);
581
582	return -EINVAL;
583}
584
585static int au1000_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
586{
587	struct au1000_private *aup = (struct au1000_private *)dev->priv;
588
589	if (!capable(CAP_NET_ADMIN))
590		return -EPERM;
591
592	if (aup->phy_dev)
593		return phy_ethtool_sset(aup->phy_dev, cmd);
594
595	return -EINVAL;
596}
597
598static void
599au1000_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
600{
601	struct au1000_private *aup = (struct au1000_private *)dev->priv;
602
603	strcpy(info->driver, DRV_NAME);
604	strcpy(info->version, DRV_VERSION);
605	info->fw_version[0] = '\0';
606	sprintf(info->bus_info, "%s %d", DRV_NAME, aup->mac_id);
607	info->regdump_len = 0;
608}
609
610static const struct ethtool_ops au1000_ethtool_ops = {
611	.get_settings = au1000_get_settings,
612	.set_settings = au1000_set_settings,
613	.get_drvinfo = au1000_get_drvinfo,
614	.get_link = ethtool_op_get_link,
615};
616
617static struct net_device * au1000_probe(int port_num)
618{
619	static unsigned version_printed = 0;
620	struct au1000_private *aup = NULL;
621	struct net_device *dev = NULL;
622	db_dest_t *pDB, *pDBfree;
623	char *pmac, *argptr;
624	char ethaddr[6];
625	int irq, i, err;
626	u32 base, macen;
627
628	if (port_num >= NUM_ETH_INTERFACES)
629 		return NULL;
630
631	base  = CPHYSADDR(iflist[port_num].base_addr );
632	macen = CPHYSADDR(iflist[port_num].macen_addr);
633	irq = iflist[port_num].irq;
634
635	if (!request_mem_region( base, MAC_IOSIZE, "Au1x00 ENET") ||
636	    !request_mem_region(macen, 4, "Au1x00 ENET"))
637		return NULL;
638
639	if (version_printed++ == 0)
640		printk("%s version %s %s\n", DRV_NAME, DRV_VERSION, DRV_AUTHOR);
641
642	dev = alloc_etherdev(sizeof(struct au1000_private));
643	if (!dev) {
644		printk(KERN_ERR "%s: alloc_etherdev failed\n", DRV_NAME);
645		return NULL;
646	}
647
648	if ((err = register_netdev(dev)) != 0) {
649		printk(KERN_ERR "%s: Cannot register net device, error %d\n",
650				DRV_NAME, err);
651		free_netdev(dev);
652		return NULL;
653	}
654
655	printk("%s: Au1xx0 Ethernet found at 0x%x, irq %d\n",
656		dev->name, base, irq);
657
658	aup = dev->priv;
659
660	/* Allocate the data buffers */
661	/* Snooping works fine with eth on all au1xxx */
662	aup->vaddr = (u32)dma_alloc_noncoherent(NULL, MAX_BUF_SIZE *
663						(NUM_TX_BUFFS + NUM_RX_BUFFS),
664						&aup->dma_addr,	0);
665	if (!aup->vaddr) {
666		free_netdev(dev);
667		release_mem_region( base, MAC_IOSIZE);
668		release_mem_region(macen, 4);
669		return NULL;
670	}
671
672	/* aup->mac is the base address of the MAC's registers */
673	aup->mac = (volatile mac_reg_t *)iflist[port_num].base_addr;
674
675	/* Setup some variables for quick register address access */
676	aup->enable = (volatile u32 *)iflist[port_num].macen_addr;
677	aup->mac_id = port_num;
678	au_macs[port_num] = aup;
679
680	if (port_num == 0) {
681		/* Check the environment variables first */
682		if (get_ethernet_addr(ethaddr) == 0)
683			memcpy(au1000_mac_addr, ethaddr, sizeof(au1000_mac_addr));
684		else {
685			/* Check command line */
686			argptr = prom_getcmdline();
687			if ((pmac = strstr(argptr, "ethaddr=")) == NULL)
688				printk(KERN_INFO "%s: No MAC address found\n",
689						 dev->name);
690				/* Use the hard coded MAC addresses */
691			else {
692				str2eaddr(ethaddr, pmac + strlen("ethaddr="));
693				memcpy(au1000_mac_addr, ethaddr,
694				       sizeof(au1000_mac_addr));
695			}
696		}
697
698		setup_hw_rings(aup, MAC0_RX_DMA_ADDR, MAC0_TX_DMA_ADDR);
699	} else if (port_num == 1)
700		setup_hw_rings(aup, MAC1_RX_DMA_ADDR, MAC1_TX_DMA_ADDR);
701
702	/*
703	 * Assign to the Ethernet ports two consecutive MAC addresses
704	 * to match those that are printed on their stickers
705	 */
706	memcpy(dev->dev_addr, au1000_mac_addr, sizeof(au1000_mac_addr));
707	dev->dev_addr[5] += port_num;
708
709	*aup->enable = 0;
710	aup->mac_enabled = 0;
711
712	aup->mii_bus.priv = dev;
713	aup->mii_bus.read = mdiobus_read;
714	aup->mii_bus.write = mdiobus_write;
715	aup->mii_bus.reset = mdiobus_reset;
716	aup->mii_bus.name = "au1000_eth_mii";
717	aup->mii_bus.id = aup->mac_id;
718	aup->mii_bus.irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL);
719	for(i = 0; i < PHY_MAX_ADDR; ++i)
720		aup->mii_bus.irq[i] = PHY_POLL;
721
722	/* if known, set corresponding PHY IRQs */
723#if defined(AU1XXX_PHY_STATIC_CONFIG)
724# if defined(AU1XXX_PHY0_IRQ)
725	if (AU1XXX_PHY0_BUSID == aup->mii_bus.id)
726		aup->mii_bus.irq[AU1XXX_PHY0_ADDR] = AU1XXX_PHY0_IRQ;
727# endif
728# if defined(AU1XXX_PHY1_IRQ)
729	if (AU1XXX_PHY1_BUSID == aup->mii_bus.id)
730		aup->mii_bus.irq[AU1XXX_PHY1_ADDR] = AU1XXX_PHY1_IRQ;
731# endif
732#endif
733	mdiobus_register(&aup->mii_bus);
734
735	if (mii_probe(dev) != 0) {
736		goto err_out;
737	}
738
739	pDBfree = NULL;
740	/* setup the data buffer descriptors and attach a buffer to each one */
741	pDB = aup->db;
742	for (i = 0; i < (NUM_TX_BUFFS+NUM_RX_BUFFS); i++) {
743		pDB->pnext = pDBfree;
744		pDBfree = pDB;
745		pDB->vaddr = (u32 *)((unsigned)aup->vaddr + MAX_BUF_SIZE*i);
746		pDB->dma_addr = (dma_addr_t)virt_to_bus(pDB->vaddr);
747		pDB++;
748	}
749	aup->pDBfree = pDBfree;
750
751	for (i = 0; i < NUM_RX_DMA; i++) {
752		pDB = GetFreeDB(aup);
753		if (!pDB) {
754			goto err_out;
755		}
756		aup->rx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr;
757		aup->rx_db_inuse[i] = pDB;
758	}
759	for (i = 0; i < NUM_TX_DMA; i++) {
760		pDB = GetFreeDB(aup);
761		if (!pDB) {
762			goto err_out;
763		}
764		aup->tx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr;
765		aup->tx_dma_ring[i]->len = 0;
766		aup->tx_db_inuse[i] = pDB;
767	}
768
769	spin_lock_init(&aup->lock);
770	dev->base_addr = base;
771	dev->irq = irq;
772	dev->open = au1000_open;
773	dev->hard_start_xmit = au1000_tx;
774	dev->stop = au1000_close;
775	dev->get_stats = au1000_get_stats;
776	dev->set_multicast_list = &set_rx_mode;
777	dev->do_ioctl = &au1000_ioctl;
778	SET_ETHTOOL_OPS(dev, &au1000_ethtool_ops);
779	dev->tx_timeout = au1000_tx_timeout;
780	dev->watchdog_timeo = ETH_TX_TIMEOUT;
781
782	/*
783	 * The boot code uses the ethernet controller, so reset it to start
784	 * fresh.  au1000_init() expects that the device is in reset state.
785	 */
786	reset_mac(dev);
787
788	return dev;
789
790err_out:
791	/* here we should have a valid dev plus aup-> register addresses
792	 * so we can reset the mac properly.*/
793	reset_mac(dev);
794
795	for (i = 0; i < NUM_RX_DMA; i++) {
796		if (aup->rx_db_inuse[i])
797			ReleaseDB(aup, aup->rx_db_inuse[i]);
798	}
799	for (i = 0; i < NUM_TX_DMA; i++) {
800		if (aup->tx_db_inuse[i])
801			ReleaseDB(aup, aup->tx_db_inuse[i]);
802	}
803	dma_free_noncoherent(NULL, MAX_BUF_SIZE * (NUM_TX_BUFFS + NUM_RX_BUFFS),
804			     (void *)aup->vaddr, aup->dma_addr);
805	unregister_netdev(dev);
806	free_netdev(dev);
807	release_mem_region( base, MAC_IOSIZE);
808	release_mem_region(macen, 4);
809	return NULL;
810}
811
812/*
813 * Initialize the interface.
814 *
815 * When the device powers up, the clocks are disabled and the
816 * mac is in reset state.  When the interface is closed, we
817 * do the same -- reset the device and disable the clocks to
818 * conserve power. Thus, whenever au1000_init() is called,
819 * the device should already be in reset state.
820 */
821static int au1000_init(struct net_device *dev)
822{
823	struct au1000_private *aup = (struct au1000_private *) dev->priv;
824	u32 flags;
825	int i;
826	u32 control;
827
828	if (au1000_debug > 4)
829		printk("%s: au1000_init\n", dev->name);
830
831	/* bring the device out of reset */
832	enable_mac(dev, 1);
833
834	spin_lock_irqsave(&aup->lock, flags);
835
836	aup->mac->control = 0;
837	aup->tx_head = (aup->tx_dma_ring[0]->buff_stat & 0xC) >> 2;
838	aup->tx_tail = aup->tx_head;
839	aup->rx_head = (aup->rx_dma_ring[0]->buff_stat & 0xC) >> 2;
840
841	aup->mac->mac_addr_high = dev->dev_addr[5]<<8 | dev->dev_addr[4];
842	aup->mac->mac_addr_low = dev->dev_addr[3]<<24 | dev->dev_addr[2]<<16 |
843		dev->dev_addr[1]<<8 | dev->dev_addr[0];
844
845	for (i = 0; i < NUM_RX_DMA; i++) {
846		aup->rx_dma_ring[i]->buff_stat |= RX_DMA_ENABLE;
847	}
848	au_sync();
849
850	control = MAC_RX_ENABLE | MAC_TX_ENABLE;
851#ifndef CONFIG_CPU_LITTLE_ENDIAN
852	control |= MAC_BIG_ENDIAN;
853#endif
854	if (aup->phy_dev) {
855		if (aup->phy_dev->link && (DUPLEX_FULL == aup->phy_dev->duplex))
856			control |= MAC_FULL_DUPLEX;
857		else
858			control |= MAC_DISABLE_RX_OWN;
859	} else { /* PHY-less op, assume full-duplex */
860		control |= MAC_FULL_DUPLEX;
861	}
862
863	aup->mac->control = control;
864	aup->mac->vlan1_tag = 0x8100; /* activate vlan support */
865	au_sync();
866
867	spin_unlock_irqrestore(&aup->lock, flags);
868	return 0;
869}
870
871static void
872au1000_adjust_link(struct net_device *dev)
873{
874	struct au1000_private *aup = (struct au1000_private *) dev->priv;
875	struct phy_device *phydev = aup->phy_dev;
876	unsigned long flags;
877
878	int status_change = 0;
879
880	BUG_ON(!aup->phy_dev);
881
882	spin_lock_irqsave(&aup->lock, flags);
883
884	if (phydev->link && (aup->old_speed != phydev->speed)) {
885		// speed changed
886
887		switch(phydev->speed) {
888		case SPEED_10:
889		case SPEED_100:
890			break;
891		default:
892			printk(KERN_WARNING
893			       "%s: Speed (%d) is not 10/100 ???\n",
894			       dev->name, phydev->speed);
895			break;
896		}
897
898		aup->old_speed = phydev->speed;
899
900		status_change = 1;
901	}
902
903	if (phydev->link && (aup->old_duplex != phydev->duplex)) {
904		// duplex mode changed
905
906		/* switching duplex mode requires to disable rx and tx! */
907		hard_stop(dev);
908
909		if (DUPLEX_FULL == phydev->duplex)
910			aup->mac->control = ((aup->mac->control
911					     | MAC_FULL_DUPLEX)
912					     & ~MAC_DISABLE_RX_OWN);
913		else
914			aup->mac->control = ((aup->mac->control
915					      & ~MAC_FULL_DUPLEX)
916					     | MAC_DISABLE_RX_OWN);
917		au_sync_delay(1);
918
919		enable_rx_tx(dev);
920		aup->old_duplex = phydev->duplex;
921
922		status_change = 1;
923	}
924
925	if(phydev->link != aup->old_link) {
926		// link state changed
927
928		if (phydev->link) // link went up
929			netif_schedule(dev);
930		else { // link went down
931			aup->old_speed = 0;
932			aup->old_duplex = -1;
933		}
934
935		aup->old_link = phydev->link;
936		status_change = 1;
937	}
938
939	spin_unlock_irqrestore(&aup->lock, flags);
940
941	if (status_change) {
942		if (phydev->link)
943			printk(KERN_INFO "%s: link up (%d/%s)\n",
944			       dev->name, phydev->speed,
945			       DUPLEX_FULL == phydev->duplex ? "Full" : "Half");
946		else
947			printk(KERN_INFO "%s: link down\n", dev->name);
948	}
949}
950
951static int au1000_open(struct net_device *dev)
952{
953	int retval;
954	struct au1000_private *aup = (struct au1000_private *) dev->priv;
955
956	if (au1000_debug > 4)
957		printk("%s: open: dev=%p\n", dev->name, dev);
958
959	if ((retval = request_irq(dev->irq, &au1000_interrupt, 0,
960					dev->name, dev))) {
961		printk(KERN_ERR "%s: unable to get IRQ %d\n",
962				dev->name, dev->irq);
963		return retval;
964	}
965
966	if ((retval = au1000_init(dev))) {
967		printk(KERN_ERR "%s: error in au1000_init\n", dev->name);
968		free_irq(dev->irq, dev);
969		return retval;
970	}
971
972	if (aup->phy_dev) {
973		/* cause the PHY state machine to schedule a link state check */
974		aup->phy_dev->state = PHY_CHANGELINK;
975		phy_start(aup->phy_dev);
976	}
977
978	netif_start_queue(dev);
979
980	if (au1000_debug > 4)
981		printk("%s: open: Initialization done.\n", dev->name);
982
983	return 0;
984}
985
986static int au1000_close(struct net_device *dev)
987{
988	unsigned long flags;
989	struct au1000_private *const aup = (struct au1000_private *) dev->priv;
990
991	if (au1000_debug > 4)
992		printk("%s: close: dev=%p\n", dev->name, dev);
993
994	if (aup->phy_dev)
995		phy_stop(aup->phy_dev);
996
997	spin_lock_irqsave(&aup->lock, flags);
998
999	reset_mac_unlocked (dev);
1000
1001	/* stop the device */
1002	netif_stop_queue(dev);
1003
1004	/* disable the interrupt */
1005	free_irq(dev->irq, dev);
1006	spin_unlock_irqrestore(&aup->lock, flags);
1007
1008	return 0;
1009}
1010
1011static void __exit au1000_cleanup_module(void)
1012{
1013	int i, j;
1014	struct net_device *dev;
1015	struct au1000_private *aup;
1016
1017	for (i = 0; i < num_ifs; i++) {
1018		dev = iflist[i].dev;
1019		if (dev) {
1020			aup = (struct au1000_private *) dev->priv;
1021			unregister_netdev(dev);
1022			for (j = 0; j < NUM_RX_DMA; j++)
1023				if (aup->rx_db_inuse[j])
1024					ReleaseDB(aup, aup->rx_db_inuse[j]);
1025			for (j = 0; j < NUM_TX_DMA; j++)
1026				if (aup->tx_db_inuse[j])
1027					ReleaseDB(aup, aup->tx_db_inuse[j]);
1028 			dma_free_noncoherent(NULL, MAX_BUF_SIZE *
1029 					     (NUM_TX_BUFFS + NUM_RX_BUFFS),
1030 					     (void *)aup->vaddr, aup->dma_addr);
1031 			release_mem_region(dev->base_addr, MAC_IOSIZE);
1032 			release_mem_region(CPHYSADDR(iflist[i].macen_addr), 4);
1033			free_netdev(dev);
1034		}
1035	}
1036}
1037
1038static void update_tx_stats(struct net_device *dev, u32 status)
1039{
1040	struct au1000_private *aup = (struct au1000_private *) dev->priv;
1041	struct net_device_stats *ps = &aup->stats;
1042
1043	if (status & TX_FRAME_ABORTED) {
1044		if (!aup->phy_dev || (DUPLEX_FULL == aup->phy_dev->duplex)) {
1045			if (status & (TX_JAB_TIMEOUT | TX_UNDERRUN)) {
1046				/* any other tx errors are only valid
1047				 * in half duplex mode */
1048				ps->tx_errors++;
1049				ps->tx_aborted_errors++;
1050			}
1051		}
1052		else {
1053			ps->tx_errors++;
1054			ps->tx_aborted_errors++;
1055			if (status & (TX_NO_CARRIER | TX_LOSS_CARRIER))
1056				ps->tx_carrier_errors++;
1057		}
1058	}
1059}
1060
1061
1062/*
1063 * Called from the interrupt service routine to acknowledge
1064 * the TX DONE bits.  This is a must if the irq is setup as
1065 * edge triggered.
1066 */
1067static void au1000_tx_ack(struct net_device *dev)
1068{
1069	struct au1000_private *aup = (struct au1000_private *) dev->priv;
1070	volatile tx_dma_t *ptxd;
1071
1072	ptxd = aup->tx_dma_ring[aup->tx_tail];
1073
1074	while (ptxd->buff_stat & TX_T_DONE) {
1075		update_tx_stats(dev, ptxd->status);
1076		ptxd->buff_stat &= ~TX_T_DONE;
1077		ptxd->len = 0;
1078		au_sync();
1079
1080		aup->tx_tail = (aup->tx_tail + 1) & (NUM_TX_DMA - 1);
1081		ptxd = aup->tx_dma_ring[aup->tx_tail];
1082
1083		if (aup->tx_full) {
1084			aup->tx_full = 0;
1085			netif_wake_queue(dev);
1086		}
1087	}
1088}
1089
1090
1091/*
1092 * Au1000 transmit routine.
1093 */
1094static int au1000_tx(struct sk_buff *skb, struct net_device *dev)
1095{
1096	struct au1000_private *aup = (struct au1000_private *) dev->priv;
1097	struct net_device_stats *ps = &aup->stats;
1098	volatile tx_dma_t *ptxd;
1099	u32 buff_stat;
1100	db_dest_t *pDB;
1101	int i;
1102
1103	if (au1000_debug > 5)
1104		printk("%s: tx: aup %x len=%d, data=%p, head %d\n",
1105				dev->name, (unsigned)aup, skb->len,
1106				skb->data, aup->tx_head);
1107
1108	ptxd = aup->tx_dma_ring[aup->tx_head];
1109	buff_stat = ptxd->buff_stat;
1110	if (buff_stat & TX_DMA_ENABLE) {
1111		/* We've wrapped around and the transmitter is still busy */
1112		netif_stop_queue(dev);
1113		aup->tx_full = 1;
1114		return 1;
1115	}
1116	else if (buff_stat & TX_T_DONE) {
1117		update_tx_stats(dev, ptxd->status);
1118		ptxd->len = 0;
1119	}
1120
1121	if (aup->tx_full) {
1122		aup->tx_full = 0;
1123		netif_wake_queue(dev);
1124	}
1125
1126	pDB = aup->tx_db_inuse[aup->tx_head];
1127	skb_copy_from_linear_data(skb, pDB->vaddr, skb->len);
1128	if (skb->len < ETH_ZLEN) {
1129		for (i=skb->len; i<ETH_ZLEN; i++) {
1130			((char *)pDB->vaddr)[i] = 0;
1131		}
1132		ptxd->len = ETH_ZLEN;
1133	}
1134	else
1135		ptxd->len = skb->len;
1136
1137	ps->tx_packets++;
1138	ps->tx_bytes += ptxd->len;
1139
1140	ptxd->buff_stat = pDB->dma_addr | TX_DMA_ENABLE;
1141	au_sync();
1142	dev_kfree_skb(skb);
1143	aup->tx_head = (aup->tx_head + 1) & (NUM_TX_DMA - 1);
1144	dev->trans_start = jiffies;
1145	return 0;
1146}
1147
1148static inline void update_rx_stats(struct net_device *dev, u32 status)
1149{
1150	struct au1000_private *aup = (struct au1000_private *) dev->priv;
1151	struct net_device_stats *ps = &aup->stats;
1152
1153	ps->rx_packets++;
1154	if (status & RX_MCAST_FRAME)
1155		ps->multicast++;
1156
1157	if (status & RX_ERROR) {
1158		ps->rx_errors++;
1159		if (status & RX_MISSED_FRAME)
1160			ps->rx_missed_errors++;
1161		if (status & (RX_OVERLEN | RX_OVERLEN | RX_LEN_ERROR))
1162			ps->rx_length_errors++;
1163		if (status & RX_CRC_ERROR)
1164			ps->rx_crc_errors++;
1165		if (status & RX_COLL)
1166			ps->collisions++;
1167	}
1168	else
1169		ps->rx_bytes += status & RX_FRAME_LEN_MASK;
1170
1171}
1172
1173/*
1174 * Au1000 receive routine.
1175 */
1176static int au1000_rx(struct net_device *dev)
1177{
1178	struct au1000_private *aup = (struct au1000_private *) dev->priv;
1179	struct sk_buff *skb;
1180	volatile rx_dma_t *prxd;
1181	u32 buff_stat, status;
1182	db_dest_t *pDB;
1183	u32	frmlen;
1184
1185	if (au1000_debug > 5)
1186		printk("%s: au1000_rx head %d\n", dev->name, aup->rx_head);
1187
1188	prxd = aup->rx_dma_ring[aup->rx_head];
1189	buff_stat = prxd->buff_stat;
1190	while (buff_stat & RX_T_DONE)  {
1191		status = prxd->status;
1192		pDB = aup->rx_db_inuse[aup->rx_head];
1193		update_rx_stats(dev, status);
1194		if (!(status & RX_ERROR))  {
1195
1196			/* good frame */
1197			frmlen = (status & RX_FRAME_LEN_MASK);
1198			frmlen -= 4; /* Remove FCS */
1199			skb = dev_alloc_skb(frmlen + 2);
1200			if (skb == NULL) {
1201				printk(KERN_ERR
1202				       "%s: Memory squeeze, dropping packet.\n",
1203				       dev->name);
1204				aup->stats.rx_dropped++;
1205				continue;
1206			}
1207			skb_reserve(skb, 2);	/* 16 byte IP header align */
1208			eth_copy_and_sum(skb,
1209				(unsigned char *)pDB->vaddr, frmlen, 0);
1210			skb_put(skb, frmlen);
1211			skb->protocol = eth_type_trans(skb, dev);
1212			netif_rx(skb);	/* pass the packet to upper layers */
1213		}
1214		else {
1215			if (au1000_debug > 4) {
1216				if (status & RX_MISSED_FRAME)
1217					printk("rx miss\n");
1218				if (status & RX_WDOG_TIMER)
1219					printk("rx wdog\n");
1220				if (status & RX_RUNT)
1221					printk("rx runt\n");
1222				if (status & RX_OVERLEN)
1223					printk("rx overlen\n");
1224				if (status & RX_COLL)
1225					printk("rx coll\n");
1226				if (status & RX_MII_ERROR)
1227					printk("rx mii error\n");
1228				if (status & RX_CRC_ERROR)
1229					printk("rx crc error\n");
1230				if (status & RX_LEN_ERROR)
1231					printk("rx len error\n");
1232				if (status & RX_U_CNTRL_FRAME)
1233					printk("rx u control frame\n");
1234				if (status & RX_MISSED_FRAME)
1235					printk("rx miss\n");
1236			}
1237		}
1238		prxd->buff_stat = (u32)(pDB->dma_addr | RX_DMA_ENABLE);
1239		aup->rx_head = (aup->rx_head + 1) & (NUM_RX_DMA - 1);
1240		au_sync();
1241
1242		/* next descriptor */
1243		prxd = aup->rx_dma_ring[aup->rx_head];
1244		buff_stat = prxd->buff_stat;
1245		dev->last_rx = jiffies;
1246	}
1247	return 0;
1248}
1249
1250
1251/*
1252 * Au1000 interrupt service routine.
1253 */
1254static irqreturn_t au1000_interrupt(int irq, void *dev_id)
1255{
1256	struct net_device *dev = (struct net_device *) dev_id;
1257
1258	if (dev == NULL) {
1259		printk(KERN_ERR "%s: isr: null dev ptr\n", dev->name);
1260		return IRQ_RETVAL(1);
1261	}
1262
1263	/* Handle RX interrupts first to minimize chance of overrun */
1264
1265	au1000_rx(dev);
1266	au1000_tx_ack(dev);
1267	return IRQ_RETVAL(1);
1268}
1269
1270
1271/*
1272 * The Tx ring has been full longer than the watchdog timeout
1273 * value. The transmitter must be hung?
1274 */
1275static void au1000_tx_timeout(struct net_device *dev)
1276{
1277	printk(KERN_ERR "%s: au1000_tx_timeout: dev=%p\n", dev->name, dev);
1278	reset_mac(dev);
1279	au1000_init(dev);
1280	dev->trans_start = jiffies;
1281	netif_wake_queue(dev);
1282}
1283
1284static void set_rx_mode(struct net_device *dev)
1285{
1286	struct au1000_private *aup = (struct au1000_private *) dev->priv;
1287
1288	if (au1000_debug > 4)
1289		printk("%s: set_rx_mode: flags=%x\n", dev->name, dev->flags);
1290
1291	if (dev->flags & IFF_PROMISC) {			/* Set promiscuous. */
1292		aup->mac->control |= MAC_PROMISCUOUS;
1293	} else if ((dev->flags & IFF_ALLMULTI)  ||
1294			   dev->mc_count > MULTICAST_FILTER_LIMIT) {
1295		aup->mac->control |= MAC_PASS_ALL_MULTI;
1296		aup->mac->control &= ~MAC_PROMISCUOUS;
1297		printk(KERN_INFO "%s: Pass all multicast\n", dev->name);
1298	} else {
1299		int i;
1300		struct dev_mc_list *mclist;
1301		u32 mc_filter[2];	/* Multicast hash filter */
1302
1303		mc_filter[1] = mc_filter[0] = 0;
1304		for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
1305			 i++, mclist = mclist->next) {
1306			set_bit(ether_crc(ETH_ALEN, mclist->dmi_addr)>>26,
1307					(long *)mc_filter);
1308		}
1309		aup->mac->multi_hash_high = mc_filter[1];
1310		aup->mac->multi_hash_low = mc_filter[0];
1311		aup->mac->control &= ~MAC_PROMISCUOUS;
1312		aup->mac->control |= MAC_HASH_MODE;
1313	}
1314}
1315
1316static int au1000_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1317{
1318	struct au1000_private *aup = (struct au1000_private *)dev->priv;
1319
1320	if (!netif_running(dev)) return -EINVAL;
1321
1322	if (!aup->phy_dev) return -EINVAL; // PHY not controllable
1323
1324	return phy_mii_ioctl(aup->phy_dev, if_mii(rq), cmd);
1325}
1326
1327static struct net_device_stats *au1000_get_stats(struct net_device *dev)
1328{
1329	struct au1000_private *aup = (struct au1000_private *) dev->priv;
1330
1331	if (au1000_debug > 4)
1332		printk("%s: au1000_get_stats: dev=%p\n", dev->name, dev);
1333
1334	if (netif_device_present(dev)) {
1335		return &aup->stats;
1336	}
1337	return 0;
1338}
1339
1340module_init(au1000_init_module);
1341module_exit(au1000_cleanup_module);
1342