1/*
2 * linux/drivers/ide/ppc/pmac.c
3 *
4 * Support for IDE interfaces on PowerMacs.
5 * These IDE interfaces are memory-mapped and have a DBDMA channel
6 * for doing DMA.
7 *
8 *  Copyright (C) 1998-2003 Paul Mackerras & Ben. Herrenschmidt
9 *
10 *  This program is free software; you can redistribute it and/or
11 *  modify it under the terms of the GNU General Public License
12 *  as published by the Free Software Foundation; either version
13 *  2 of the License, or (at your option) any later version.
14 *
15 * Some code taken from drivers/ide/ide-dma.c:
16 *
17 *  Copyright (c) 1995-1998  Mark Lord
18 *
19 * TODO: - Use pre-calculated (kauai) timing tables all the time and
20 * get rid of the "rounded" tables used previously, so we have the
21 * same table format for all controllers and can then just have one
22 * big table
23 *
24 */
25#include <linux/types.h>
26#include <linux/kernel.h>
27#include <linux/init.h>
28#include <linux/delay.h>
29#include <linux/ide.h>
30#include <linux/notifier.h>
31#include <linux/reboot.h>
32#include <linux/pci.h>
33#include <linux/adb.h>
34#include <linux/pmu.h>
35#include <linux/scatterlist.h>
36
37#include <asm/prom.h>
38#include <asm/io.h>
39#include <asm/dbdma.h>
40#include <asm/ide.h>
41#include <asm/pci-bridge.h>
42#include <asm/machdep.h>
43#include <asm/pmac_feature.h>
44#include <asm/sections.h>
45#include <asm/irq.h>
46
47#ifndef CONFIG_PPC64
48#include <asm/mediabay.h>
49#endif
50
51#include "../ide-timing.h"
52
53#undef IDE_PMAC_DEBUG
54
55#define DMA_WAIT_TIMEOUT	50
56
57typedef struct pmac_ide_hwif {
58	unsigned long			regbase;
59	int				irq;
60	int				kind;
61	int				aapl_bus_id;
62	unsigned			cable_80 : 1;
63	unsigned			mediabay : 1;
64	unsigned			broken_dma : 1;
65	unsigned			broken_dma_warn : 1;
66	struct device_node*		node;
67	struct macio_dev		*mdev;
68	u32				timings[4];
69	volatile u32 __iomem *		*kauai_fcr;
70#ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
71	/* Those fields are duplicating what is in hwif. We currently
72	 * can't use the hwif ones because of some assumptions that are
73	 * beeing done by the generic code about the kind of dma controller
74	 * and format of the dma table. This will have to be fixed though.
75	 */
76	volatile struct dbdma_regs __iomem *	dma_regs;
77	struct dbdma_cmd*		dma_table_cpu;
78#endif
79
80} pmac_ide_hwif_t;
81
82static pmac_ide_hwif_t pmac_ide[MAX_HWIFS];
83static int pmac_ide_count;
84
85enum {
86	controller_ohare,	/* OHare based */
87	controller_heathrow,	/* Heathrow/Paddington */
88	controller_kl_ata3,	/* KeyLargo ATA-3 */
89	controller_kl_ata4,	/* KeyLargo ATA-4 */
90	controller_un_ata6,	/* UniNorth2 ATA-6 */
91	controller_k2_ata6,	/* K2 ATA-6 */
92	controller_sh_ata6,	/* Shasta ATA-6 */
93};
94
95static const char* model_name[] = {
96	"OHare ATA",		/* OHare based */
97	"Heathrow ATA",		/* Heathrow/Paddington */
98	"KeyLargo ATA-3",	/* KeyLargo ATA-3 (MDMA only) */
99	"KeyLargo ATA-4",	/* KeyLargo ATA-4 (UDMA/66) */
100	"UniNorth ATA-6",	/* UniNorth2 ATA-6 (UDMA/100) */
101	"K2 ATA-6",		/* K2 ATA-6 (UDMA/100) */
102	"Shasta ATA-6",		/* Shasta ATA-6 (UDMA/133) */
103};
104
105/*
106 * Extra registers, both 32-bit little-endian
107 */
108#define IDE_TIMING_CONFIG	0x200
109#define IDE_INTERRUPT		0x300
110
111/* Kauai (U2) ATA has different register setup */
112#define IDE_KAUAI_PIO_CONFIG	0x200
113#define IDE_KAUAI_ULTRA_CONFIG	0x210
114#define IDE_KAUAI_POLL_CONFIG	0x220
115
116/*
117 * Timing configuration register definitions
118 */
119
120/* Number of IDE_SYSCLK_NS ticks, argument is in nanoseconds */
121#define SYSCLK_TICKS(t)		(((t) + IDE_SYSCLK_NS - 1) / IDE_SYSCLK_NS)
122#define SYSCLK_TICKS_66(t)	(((t) + IDE_SYSCLK_66_NS - 1) / IDE_SYSCLK_66_NS)
123#define IDE_SYSCLK_NS		30	/* 33Mhz cell */
124#define IDE_SYSCLK_66_NS	15	/* 66Mhz cell */
125
126/* 133Mhz cell, found in shasta.
127 * See comments about 100 Mhz Uninorth 2...
128 * Note that PIO_MASK and MDMA_MASK seem to overlap
129 */
130#define TR_133_PIOREG_PIO_MASK		0xff000fff
131#define TR_133_PIOREG_MDMA_MASK		0x00fff800
132#define TR_133_UDMAREG_UDMA_MASK	0x0003ffff
133#define TR_133_UDMAREG_UDMA_EN		0x00000001
134
135/* 100Mhz cell, found in Uninorth 2. I don't have much infos about
136 * this one yet, it appears as a pci device (106b/0033) on uninorth
137 * internal PCI bus and it's clock is controlled like gem or fw. It
138 * appears to be an evolution of keylargo ATA4 with a timing register
139 * extended to 2 32bits registers and a similar DBDMA channel. Other
140 * registers seem to exist but I can't tell much about them.
141 *
142 * So far, I'm using pre-calculated tables for this extracted from
143 * the values used by the MacOS X driver.
144 *
145 * The "PIO" register controls PIO and MDMA timings, the "ULTRA"
146 * register controls the UDMA timings. At least, it seems bit 0
147 * of this one enables UDMA vs. MDMA, and bits 4..7 are the
148 * cycle time in units of 10ns. Bits 8..15 are used by I don't
149 * know their meaning yet
150 */
151#define TR_100_PIOREG_PIO_MASK		0xff000fff
152#define TR_100_PIOREG_MDMA_MASK		0x00fff000
153#define TR_100_UDMAREG_UDMA_MASK	0x0000ffff
154#define TR_100_UDMAREG_UDMA_EN		0x00000001
155
156
157/* 66Mhz cell, found in KeyLargo. Can do ultra mode 0 to 2 on
158 * 40 connector cable and to 4 on 80 connector one.
159 * Clock unit is 15ns (66Mhz)
160 *
161 * 3 Values can be programmed:
162 *  - Write data setup, which appears to match the cycle time. They
163 *    also call it DIOW setup.
164 *  - Ready to pause time (from spec)
165 *  - Address setup. That one is weird. I don't see where exactly
166 *    it fits in UDMA cycles, I got it's name from an obscure piece
167 *    of commented out code in Darwin. They leave it to 0, we do as
168 *    well, despite a comment that would lead to think it has a
169 *    min value of 45ns.
170 * Apple also add 60ns to the write data setup (or cycle time ?) on
171 * reads.
172 */
173#define TR_66_UDMA_MASK			0xfff00000
174#define TR_66_UDMA_EN			0x00100000 /* Enable Ultra mode for DMA */
175#define TR_66_UDMA_ADDRSETUP_MASK	0xe0000000 /* Address setup */
176#define TR_66_UDMA_ADDRSETUP_SHIFT	29
177#define TR_66_UDMA_RDY2PAUS_MASK	0x1e000000 /* Ready 2 pause time */
178#define TR_66_UDMA_RDY2PAUS_SHIFT	25
179#define TR_66_UDMA_WRDATASETUP_MASK	0x01e00000 /* Write data setup time */
180#define TR_66_UDMA_WRDATASETUP_SHIFT	21
181#define TR_66_MDMA_MASK			0x000ffc00
182#define TR_66_MDMA_RECOVERY_MASK	0x000f8000
183#define TR_66_MDMA_RECOVERY_SHIFT	15
184#define TR_66_MDMA_ACCESS_MASK		0x00007c00
185#define TR_66_MDMA_ACCESS_SHIFT		10
186#define TR_66_PIO_MASK			0x000003ff
187#define TR_66_PIO_RECOVERY_MASK		0x000003e0
188#define TR_66_PIO_RECOVERY_SHIFT	5
189#define TR_66_PIO_ACCESS_MASK		0x0000001f
190#define TR_66_PIO_ACCESS_SHIFT		0
191
192/* 33Mhz cell, found in OHare, Heathrow (& Paddington) and KeyLargo
193 * Can do pio & mdma modes, clock unit is 30ns (33Mhz)
194 *
195 * The access time and recovery time can be programmed. Some older
196 * Darwin code base limit OHare to 150ns cycle time. I decided to do
197 * the same here fore safety against broken old hardware ;)
198 * The HalfTick bit, when set, adds half a clock (15ns) to the access
199 * time and removes one from recovery. It's not supported on KeyLargo
200 * implementation afaik. The E bit appears to be set for PIO mode 0 and
201 * is used to reach long timings used in this mode.
202 */
203#define TR_33_MDMA_MASK			0x003ff800
204#define TR_33_MDMA_RECOVERY_MASK	0x001f0000
205#define TR_33_MDMA_RECOVERY_SHIFT	16
206#define TR_33_MDMA_ACCESS_MASK		0x0000f800
207#define TR_33_MDMA_ACCESS_SHIFT		11
208#define TR_33_MDMA_HALFTICK		0x00200000
209#define TR_33_PIO_MASK			0x000007ff
210#define TR_33_PIO_E			0x00000400
211#define TR_33_PIO_RECOVERY_MASK		0x000003e0
212#define TR_33_PIO_RECOVERY_SHIFT	5
213#define TR_33_PIO_ACCESS_MASK		0x0000001f
214#define TR_33_PIO_ACCESS_SHIFT		0
215
216/*
217 * Interrupt register definitions
218 */
219#define IDE_INTR_DMA			0x80000000
220#define IDE_INTR_DEVICE			0x40000000
221
222/*
223 * FCR Register on Kauai. Not sure what bit 0x4 is  ...
224 */
225#define KAUAI_FCR_UATA_MAGIC		0x00000004
226#define KAUAI_FCR_UATA_RESET_N		0x00000002
227#define KAUAI_FCR_UATA_ENABLE		0x00000001
228
229#ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
230
231/* Rounded Multiword DMA timings
232 *
233 * I gave up finding a generic formula for all controller
234 * types and instead, built tables based on timing values
235 * used by Apple in Darwin's implementation.
236 */
237struct mdma_timings_t {
238	int	accessTime;
239	int	recoveryTime;
240	int	cycleTime;
241};
242
243struct mdma_timings_t mdma_timings_33[] =
244{
245    { 240, 240, 480 },
246    { 180, 180, 360 },
247    { 135, 135, 270 },
248    { 120, 120, 240 },
249    { 105, 105, 210 },
250    {  90,  90, 180 },
251    {  75,  75, 150 },
252    {  75,  45, 120 },
253    {   0,   0,   0 }
254};
255
256struct mdma_timings_t mdma_timings_33k[] =
257{
258    { 240, 240, 480 },
259    { 180, 180, 360 },
260    { 150, 150, 300 },
261    { 120, 120, 240 },
262    {  90, 120, 210 },
263    {  90,  90, 180 },
264    {  90,  60, 150 },
265    {  90,  30, 120 },
266    {   0,   0,   0 }
267};
268
269struct mdma_timings_t mdma_timings_66[] =
270{
271    { 240, 240, 480 },
272    { 180, 180, 360 },
273    { 135, 135, 270 },
274    { 120, 120, 240 },
275    { 105, 105, 210 },
276    {  90,  90, 180 },
277    {  90,  75, 165 },
278    {  75,  45, 120 },
279    {   0,   0,   0 }
280};
281
282/* KeyLargo ATA-4 Ultra DMA timings (rounded) */
283struct {
284	int	addrSetup; /* ??? */
285	int	rdy2pause;
286	int	wrDataSetup;
287} kl66_udma_timings[] =
288{
289    {   0, 180,  120 },	/* Mode 0 */
290    {   0, 150,  90 },	/*      1 */
291    {   0, 120,  60 },	/*      2 */
292    {   0, 90,   45 },	/*      3 */
293    {   0, 90,   30 }	/*      4 */
294};
295
296/* UniNorth 2 ATA/100 timings */
297struct kauai_timing {
298	int	cycle_time;
299	u32	timing_reg;
300};
301
302static struct kauai_timing	kauai_pio_timings[] =
303{
304	{ 930	, 0x08000fff },
305	{ 600	, 0x08000a92 },
306	{ 383	, 0x0800060f },
307	{ 360	, 0x08000492 },
308	{ 330	, 0x0800048f },
309	{ 300	, 0x080003cf },
310	{ 270	, 0x080003cc },
311	{ 240	, 0x0800038b },
312	{ 239	, 0x0800030c },
313	{ 180	, 0x05000249 },
314	{ 120	, 0x04000148 }
315};
316
317static struct kauai_timing	kauai_mdma_timings[] =
318{
319	{ 1260	, 0x00fff000 },
320	{ 480	, 0x00618000 },
321	{ 360	, 0x00492000 },
322	{ 270	, 0x0038e000 },
323	{ 240	, 0x0030c000 },
324	{ 210	, 0x002cb000 },
325	{ 180	, 0x00249000 },
326	{ 150	, 0x00209000 },
327	{ 120	, 0x00148000 },
328	{ 0	, 0 },
329};
330
331static struct kauai_timing	kauai_udma_timings[] =
332{
333	{ 120	, 0x000070c0 },
334	{ 90	, 0x00005d80 },
335	{ 60	, 0x00004a60 },
336	{ 45	, 0x00003a50 },
337	{ 30	, 0x00002a30 },
338	{ 20	, 0x00002921 },
339	{ 0	, 0 },
340};
341
342static struct kauai_timing	shasta_pio_timings[] =
343{
344	{ 930	, 0x08000fff },
345	{ 600	, 0x0A000c97 },
346	{ 383	, 0x07000712 },
347	{ 360	, 0x040003cd },
348	{ 330	, 0x040003cd },
349	{ 300	, 0x040003cd },
350	{ 270	, 0x040003cd },
351	{ 240	, 0x040003cd },
352	{ 239	, 0x040003cd },
353	{ 180	, 0x0400028b },
354	{ 120	, 0x0400010a }
355};
356
357static struct kauai_timing	shasta_mdma_timings[] =
358{
359	{ 1260	, 0x00fff000 },
360	{ 480	, 0x00820800 },
361	{ 360	, 0x00820800 },
362	{ 270	, 0x00820800 },
363	{ 240	, 0x00820800 },
364	{ 210	, 0x00820800 },
365	{ 180	, 0x00820800 },
366	{ 150	, 0x0028b000 },
367	{ 120	, 0x001ca000 },
368	{ 0	, 0 },
369};
370
371static struct kauai_timing	shasta_udma133_timings[] =
372{
373	{ 120   , 0x00035901, },
374	{ 90    , 0x000348b1, },
375	{ 60    , 0x00033881, },
376	{ 45    , 0x00033861, },
377	{ 30    , 0x00033841, },
378	{ 20    , 0x00033031, },
379	{ 15    , 0x00033021, },
380	{ 0	, 0 },
381};
382
383
384static inline u32
385kauai_lookup_timing(struct kauai_timing* table, int cycle_time)
386{
387	int i;
388
389	for (i=0; table[i].cycle_time; i++)
390		if (cycle_time > table[i+1].cycle_time)
391			return table[i].timing_reg;
392	return 0;
393}
394
395/* allow up to 256 DBDMA commands per xfer */
396#define MAX_DCMDS		256
397
398/*
399 * Wait 1s for disk to answer on IDE bus after a hard reset
400 * of the device (via GPIO/FCR).
401 *
402 * Some devices seem to "pollute" the bus even after dropping
403 * the BSY bit (typically some combo drives slave on the UDMA
404 * bus) after a hard reset. Since we hard reset all drives on
405 * KeyLargo ATA66, we have to keep that delay around. I may end
406 * up not hard resetting anymore on these and keep the delay only
407 * for older interfaces instead (we have to reset when coming
408 * from MacOS...) --BenH.
409 */
410#define IDE_WAKEUP_DELAY	(1*HZ)
411
412static void pmac_ide_setup_dma(pmac_ide_hwif_t *pmif, ide_hwif_t *hwif);
413static int pmac_ide_build_dmatable(ide_drive_t *drive, struct request *rq);
414static int pmac_ide_tune_chipset(ide_drive_t *drive, u8 speed);
415static void pmac_ide_tuneproc(ide_drive_t *drive, u8 pio);
416static void pmac_ide_selectproc(ide_drive_t *drive);
417static void pmac_ide_kauai_selectproc(ide_drive_t *drive);
418
419#endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
420
421/*
422 * N.B. this can't be an initfunc, because the media-bay task can
423 * call ide_[un]register at any time.
424 */
425void
426pmac_ide_init_hwif_ports(hw_regs_t *hw,
427			      unsigned long data_port, unsigned long ctrl_port,
428			      int *irq)
429{
430	int i, ix;
431
432	if (data_port == 0)
433		return;
434
435	for (ix = 0; ix < MAX_HWIFS; ++ix)
436		if (data_port == pmac_ide[ix].regbase)
437			break;
438
439	if (ix >= MAX_HWIFS) {
440		/* Probably a PCI interface... */
441		for (i = IDE_DATA_OFFSET; i <= IDE_STATUS_OFFSET; ++i)
442			hw->io_ports[i] = data_port + i - IDE_DATA_OFFSET;
443		hw->io_ports[IDE_CONTROL_OFFSET] = ctrl_port;
444		return;
445	}
446
447	for (i = 0; i < 8; ++i)
448		hw->io_ports[i] = data_port + i * 0x10;
449	hw->io_ports[8] = data_port + 0x160;
450
451	if (irq != NULL)
452		*irq = pmac_ide[ix].irq;
453
454	hw->dev = &pmac_ide[ix].mdev->ofdev.dev;
455}
456
457#define PMAC_IDE_REG(x) ((void __iomem *)(IDE_DATA_REG+(x)))
458
459/*
460 * Apply the timings of the proper unit (master/slave) to the shared
461 * timing register when selecting that unit. This version is for
462 * ASICs with a single timing register
463 */
464static void
465pmac_ide_selectproc(ide_drive_t *drive)
466{
467	pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
468
469	if (pmif == NULL)
470		return;
471
472	if (drive->select.b.unit & 0x01)
473		writel(pmif->timings[1], PMAC_IDE_REG(IDE_TIMING_CONFIG));
474	else
475		writel(pmif->timings[0], PMAC_IDE_REG(IDE_TIMING_CONFIG));
476	(void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
477}
478
479/*
480 * Apply the timings of the proper unit (master/slave) to the shared
481 * timing register when selecting that unit. This version is for
482 * ASICs with a dual timing register (Kauai)
483 */
484static void
485pmac_ide_kauai_selectproc(ide_drive_t *drive)
486{
487	pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
488
489	if (pmif == NULL)
490		return;
491
492	if (drive->select.b.unit & 0x01) {
493		writel(pmif->timings[1], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
494		writel(pmif->timings[3], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG));
495	} else {
496		writel(pmif->timings[0], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
497		writel(pmif->timings[2], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG));
498	}
499	(void)readl(PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
500}
501
502/*
503 * Force an update of controller timing values for a given drive
504 */
505static void
506pmac_ide_do_update_timings(ide_drive_t *drive)
507{
508	pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
509
510	if (pmif == NULL)
511		return;
512
513	if (pmif->kind == controller_sh_ata6 ||
514	    pmif->kind == controller_un_ata6 ||
515	    pmif->kind == controller_k2_ata6)
516		pmac_ide_kauai_selectproc(drive);
517	else
518		pmac_ide_selectproc(drive);
519}
520
521static void
522pmac_outbsync(ide_drive_t *drive, u8 value, unsigned long port)
523{
524	u32 tmp;
525
526	writeb(value, (void __iomem *) port);
527	tmp = readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
528}
529
530/*
531 * Send the SET_FEATURE IDE command to the drive and update drive->id with
532 * the new state. We currently don't use the generic routine as it used to
533 * cause various trouble, especially with older mediabays.
534 * This code is sometimes triggering a spurrious interrupt though, I need
535 * to sort that out sooner or later and see if I can finally get the
536 * common version to work properly in all cases
537 */
538static int
539pmac_ide_do_setfeature(ide_drive_t *drive, u8 command)
540{
541	ide_hwif_t *hwif = HWIF(drive);
542	int result = 1;
543
544	disable_irq_nosync(hwif->irq);
545	udelay(1);
546	SELECT_DRIVE(drive);
547	SELECT_MASK(drive, 0);
548	udelay(1);
549	/* Get rid of pending error state */
550	(void) hwif->INB(IDE_STATUS_REG);
551	/* Timeout bumped for some powerbooks */
552	if (wait_for_ready(drive, 2000)) {
553		/* Timeout bumped for some powerbooks */
554		printk(KERN_ERR "%s: pmac_ide_do_setfeature disk not ready "
555			"before SET_FEATURE!\n", drive->name);
556		goto out;
557	}
558	udelay(10);
559	hwif->OUTB(drive->ctl | 2, IDE_CONTROL_REG);
560	hwif->OUTB(command, IDE_NSECTOR_REG);
561	hwif->OUTB(SETFEATURES_XFER, IDE_FEATURE_REG);
562	hwif->OUTBSYNC(drive, WIN_SETFEATURES, IDE_COMMAND_REG);
563	udelay(1);
564	/* Timeout bumped for some powerbooks */
565	result = wait_for_ready(drive, 2000);
566	hwif->OUTB(drive->ctl, IDE_CONTROL_REG);
567	if (result)
568		printk(KERN_ERR "%s: pmac_ide_do_setfeature disk not ready "
569			"after SET_FEATURE !\n", drive->name);
570out:
571	SELECT_MASK(drive, 0);
572	if (result == 0) {
573		drive->id->dma_ultra &= ~0xFF00;
574		drive->id->dma_mword &= ~0x0F00;
575		drive->id->dma_1word &= ~0x0F00;
576		switch(command) {
577			case XFER_UDMA_7:
578				drive->id->dma_ultra |= 0x8080; break;
579			case XFER_UDMA_6:
580				drive->id->dma_ultra |= 0x4040; break;
581			case XFER_UDMA_5:
582				drive->id->dma_ultra |= 0x2020; break;
583			case XFER_UDMA_4:
584				drive->id->dma_ultra |= 0x1010; break;
585			case XFER_UDMA_3:
586				drive->id->dma_ultra |= 0x0808; break;
587			case XFER_UDMA_2:
588				drive->id->dma_ultra |= 0x0404; break;
589			case XFER_UDMA_1:
590				drive->id->dma_ultra |= 0x0202; break;
591			case XFER_UDMA_0:
592				drive->id->dma_ultra |= 0x0101; break;
593			case XFER_MW_DMA_2:
594				drive->id->dma_mword |= 0x0404; break;
595			case XFER_MW_DMA_1:
596				drive->id->dma_mword |= 0x0202; break;
597			case XFER_MW_DMA_0:
598				drive->id->dma_mword |= 0x0101; break;
599			case XFER_SW_DMA_2:
600				drive->id->dma_1word |= 0x0404; break;
601			case XFER_SW_DMA_1:
602				drive->id->dma_1word |= 0x0202; break;
603			case XFER_SW_DMA_0:
604				drive->id->dma_1word |= 0x0101; break;
605			default: break;
606		}
607	}
608	enable_irq(hwif->irq);
609	return result;
610}
611
612/*
613 * Old tuning functions (called on hdparm -p), sets up drive PIO timings
614 */
615static void
616pmac_ide_tuneproc(ide_drive_t *drive, u8 pio)
617{
618	ide_pio_data_t d;
619	u32 *timings;
620	unsigned accessTicks, recTicks;
621	unsigned accessTime, recTime;
622	pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
623
624	if (pmif == NULL)
625		return;
626
627	/* which drive is it ? */
628	timings = &pmif->timings[drive->select.b.unit & 0x01];
629
630	pio = ide_get_best_pio_mode(drive, pio, 4, &d);
631
632	switch (pmif->kind) {
633	case controller_sh_ata6: {
634		/* 133Mhz cell */
635		u32 tr = kauai_lookup_timing(shasta_pio_timings, d.cycle_time);
636		if (tr == 0)
637			return;
638		*timings = ((*timings) & ~TR_133_PIOREG_PIO_MASK) | tr;
639		break;
640		}
641	case controller_un_ata6:
642	case controller_k2_ata6: {
643		/* 100Mhz cell */
644		u32 tr = kauai_lookup_timing(kauai_pio_timings, d.cycle_time);
645		if (tr == 0)
646			return;
647		*timings = ((*timings) & ~TR_100_PIOREG_PIO_MASK) | tr;
648		break;
649		}
650	case controller_kl_ata4:
651		/* 66Mhz cell */
652		recTime = d.cycle_time - ide_pio_timings[pio].active_time
653				- ide_pio_timings[pio].setup_time;
654		recTime = max(recTime, 150U);
655		accessTime = ide_pio_timings[pio].active_time;
656		accessTime = max(accessTime, 150U);
657		accessTicks = SYSCLK_TICKS_66(accessTime);
658		accessTicks = min(accessTicks, 0x1fU);
659		recTicks = SYSCLK_TICKS_66(recTime);
660		recTicks = min(recTicks, 0x1fU);
661		*timings = ((*timings) & ~TR_66_PIO_MASK) |
662				(accessTicks << TR_66_PIO_ACCESS_SHIFT) |
663				(recTicks << TR_66_PIO_RECOVERY_SHIFT);
664		break;
665	default: {
666		/* 33Mhz cell */
667		int ebit = 0;
668		recTime = d.cycle_time - ide_pio_timings[pio].active_time
669				- ide_pio_timings[pio].setup_time;
670		recTime = max(recTime, 150U);
671		accessTime = ide_pio_timings[pio].active_time;
672		accessTime = max(accessTime, 150U);
673		accessTicks = SYSCLK_TICKS(accessTime);
674		accessTicks = min(accessTicks, 0x1fU);
675		accessTicks = max(accessTicks, 4U);
676		recTicks = SYSCLK_TICKS(recTime);
677		recTicks = min(recTicks, 0x1fU);
678		recTicks = max(recTicks, 5U) - 4;
679		if (recTicks > 9) {
680			recTicks--; /* guess, but it's only for PIO0, so... */
681			ebit = 1;
682		}
683		*timings = ((*timings) & ~TR_33_PIO_MASK) |
684				(accessTicks << TR_33_PIO_ACCESS_SHIFT) |
685				(recTicks << TR_33_PIO_RECOVERY_SHIFT);
686		if (ebit)
687			*timings |= TR_33_PIO_E;
688		break;
689		}
690	}
691
692#ifdef IDE_PMAC_DEBUG
693	printk(KERN_ERR "%s: Set PIO timing for mode %d, reg: 0x%08x\n",
694		drive->name, pio,  *timings);
695#endif
696
697	if (drive->select.all == HWIF(drive)->INB(IDE_SELECT_REG))
698		pmac_ide_do_update_timings(drive);
699}
700
701#ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
702
703/*
704 * Calculate KeyLargo ATA/66 UDMA timings
705 */
706static int
707set_timings_udma_ata4(u32 *timings, u8 speed)
708{
709	unsigned rdyToPauseTicks, wrDataSetupTicks, addrTicks;
710
711	if (speed > XFER_UDMA_4)
712		return 1;
713
714	rdyToPauseTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].rdy2pause);
715	wrDataSetupTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].wrDataSetup);
716	addrTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].addrSetup);
717
718	*timings = ((*timings) & ~(TR_66_UDMA_MASK | TR_66_MDMA_MASK)) |
719			(wrDataSetupTicks << TR_66_UDMA_WRDATASETUP_SHIFT) |
720			(rdyToPauseTicks << TR_66_UDMA_RDY2PAUS_SHIFT) |
721			(addrTicks <<TR_66_UDMA_ADDRSETUP_SHIFT) |
722			TR_66_UDMA_EN;
723#ifdef IDE_PMAC_DEBUG
724	printk(KERN_ERR "ide_pmac: Set UDMA timing for mode %d, reg: 0x%08x\n",
725		speed & 0xf,  *timings);
726#endif
727
728	return 0;
729}
730
731/*
732 * Calculate Kauai ATA/100 UDMA timings
733 */
734static int
735set_timings_udma_ata6(u32 *pio_timings, u32 *ultra_timings, u8 speed)
736{
737	struct ide_timing *t = ide_timing_find_mode(speed);
738	u32 tr;
739
740	if (speed > XFER_UDMA_5 || t == NULL)
741		return 1;
742	tr = kauai_lookup_timing(kauai_udma_timings, (int)t->udma);
743	if (tr == 0)
744		return 1;
745	*ultra_timings = ((*ultra_timings) & ~TR_100_UDMAREG_UDMA_MASK) | tr;
746	*ultra_timings = (*ultra_timings) | TR_100_UDMAREG_UDMA_EN;
747
748	return 0;
749}
750
751/*
752 * Calculate Shasta ATA/133 UDMA timings
753 */
754static int
755set_timings_udma_shasta(u32 *pio_timings, u32 *ultra_timings, u8 speed)
756{
757	struct ide_timing *t = ide_timing_find_mode(speed);
758	u32 tr;
759
760	if (speed > XFER_UDMA_6 || t == NULL)
761		return 1;
762	tr = kauai_lookup_timing(shasta_udma133_timings, (int)t->udma);
763	if (tr == 0)
764		return 1;
765	*ultra_timings = ((*ultra_timings) & ~TR_133_UDMAREG_UDMA_MASK) | tr;
766	*ultra_timings = (*ultra_timings) | TR_133_UDMAREG_UDMA_EN;
767
768	return 0;
769}
770
771/*
772 * Calculate MDMA timings for all cells
773 */
774static int
775set_timings_mdma(ide_drive_t *drive, int intf_type, u32 *timings, u32 *timings2,
776			u8 speed, int drive_cycle_time)
777{
778	int cycleTime, accessTime = 0, recTime = 0;
779	unsigned accessTicks, recTicks;
780	struct mdma_timings_t* tm = NULL;
781	int i;
782
783	/* Get default cycle time for mode */
784	switch(speed & 0xf) {
785		case 0: cycleTime = 480; break;
786		case 1: cycleTime = 150; break;
787		case 2: cycleTime = 120; break;
788		default:
789			return 1;
790	}
791	/* Adjust for drive */
792	if (drive_cycle_time && drive_cycle_time > cycleTime)
793		cycleTime = drive_cycle_time;
794	/* OHare limits according to some old Apple sources */
795	if ((intf_type == controller_ohare) && (cycleTime < 150))
796		cycleTime = 150;
797	/* Get the proper timing array for this controller */
798	switch(intf_type) {
799	        case controller_sh_ata6:
800		case controller_un_ata6:
801		case controller_k2_ata6:
802			break;
803		case controller_kl_ata4:
804			tm = mdma_timings_66;
805			break;
806		case controller_kl_ata3:
807			tm = mdma_timings_33k;
808			break;
809		default:
810			tm = mdma_timings_33;
811			break;
812	}
813	if (tm != NULL) {
814		/* Lookup matching access & recovery times */
815		i = -1;
816		for (;;) {
817			if (tm[i+1].cycleTime < cycleTime)
818				break;
819			i++;
820		}
821		if (i < 0)
822			return 1;
823		cycleTime = tm[i].cycleTime;
824		accessTime = tm[i].accessTime;
825		recTime = tm[i].recoveryTime;
826
827#ifdef IDE_PMAC_DEBUG
828		printk(KERN_ERR "%s: MDMA, cycleTime: %d, accessTime: %d, recTime: %d\n",
829			drive->name, cycleTime, accessTime, recTime);
830#endif
831	}
832	switch(intf_type) {
833	case controller_sh_ata6: {
834		/* 133Mhz cell */
835		u32 tr = kauai_lookup_timing(shasta_mdma_timings, cycleTime);
836		if (tr == 0)
837			return 1;
838		*timings = ((*timings) & ~TR_133_PIOREG_MDMA_MASK) | tr;
839		*timings2 = (*timings2) & ~TR_133_UDMAREG_UDMA_EN;
840		}
841	case controller_un_ata6:
842	case controller_k2_ata6: {
843		/* 100Mhz cell */
844		u32 tr = kauai_lookup_timing(kauai_mdma_timings, cycleTime);
845		if (tr == 0)
846			return 1;
847		*timings = ((*timings) & ~TR_100_PIOREG_MDMA_MASK) | tr;
848		*timings2 = (*timings2) & ~TR_100_UDMAREG_UDMA_EN;
849		}
850		break;
851	case controller_kl_ata4:
852		/* 66Mhz cell */
853		accessTicks = SYSCLK_TICKS_66(accessTime);
854		accessTicks = min(accessTicks, 0x1fU);
855		accessTicks = max(accessTicks, 0x1U);
856		recTicks = SYSCLK_TICKS_66(recTime);
857		recTicks = min(recTicks, 0x1fU);
858		recTicks = max(recTicks, 0x3U);
859		/* Clear out mdma bits and disable udma */
860		*timings = ((*timings) & ~(TR_66_MDMA_MASK | TR_66_UDMA_MASK)) |
861			(accessTicks << TR_66_MDMA_ACCESS_SHIFT) |
862			(recTicks << TR_66_MDMA_RECOVERY_SHIFT);
863		break;
864	case controller_kl_ata3:
865		/* 33Mhz cell on KeyLargo */
866		accessTicks = SYSCLK_TICKS(accessTime);
867		accessTicks = max(accessTicks, 1U);
868		accessTicks = min(accessTicks, 0x1fU);
869		accessTime = accessTicks * IDE_SYSCLK_NS;
870		recTicks = SYSCLK_TICKS(recTime);
871		recTicks = max(recTicks, 1U);
872		recTicks = min(recTicks, 0x1fU);
873		*timings = ((*timings) & ~TR_33_MDMA_MASK) |
874				(accessTicks << TR_33_MDMA_ACCESS_SHIFT) |
875				(recTicks << TR_33_MDMA_RECOVERY_SHIFT);
876		break;
877	default: {
878		/* 33Mhz cell on others */
879		int halfTick = 0;
880		int origAccessTime = accessTime;
881		int origRecTime = recTime;
882
883		accessTicks = SYSCLK_TICKS(accessTime);
884		accessTicks = max(accessTicks, 1U);
885		accessTicks = min(accessTicks, 0x1fU);
886		accessTime = accessTicks * IDE_SYSCLK_NS;
887		recTicks = SYSCLK_TICKS(recTime);
888		recTicks = max(recTicks, 2U) - 1;
889		recTicks = min(recTicks, 0x1fU);
890		recTime = (recTicks + 1) * IDE_SYSCLK_NS;
891		if ((accessTicks > 1) &&
892		    ((accessTime - IDE_SYSCLK_NS/2) >= origAccessTime) &&
893		    ((recTime - IDE_SYSCLK_NS/2) >= origRecTime)) {
894            		halfTick = 1;
895			accessTicks--;
896		}
897		*timings = ((*timings) & ~TR_33_MDMA_MASK) |
898				(accessTicks << TR_33_MDMA_ACCESS_SHIFT) |
899				(recTicks << TR_33_MDMA_RECOVERY_SHIFT);
900		if (halfTick)
901			*timings |= TR_33_MDMA_HALFTICK;
902		}
903	}
904#ifdef IDE_PMAC_DEBUG
905	printk(KERN_ERR "%s: Set MDMA timing for mode %d, reg: 0x%08x\n",
906		drive->name, speed & 0xf,  *timings);
907#endif
908	return 0;
909}
910#endif /* #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC */
911
912/*
913 * Speedproc. This function is called by the core to set any of the standard
914 * timing (PIO, MDMA or UDMA) to both the drive and the controller.
915 * You may notice we don't use this function on normal "dma check" operation,
916 * our dedicated function is more precise as it uses the drive provided
917 * cycle time value. We should probably fix this one to deal with that too...
918 */
919static int
920pmac_ide_tune_chipset (ide_drive_t *drive, byte speed)
921{
922	int unit = (drive->select.b.unit & 0x01);
923	int ret = 0;
924	pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
925	u32 *timings, *timings2;
926
927	if (pmif == NULL)
928		return 1;
929
930	timings = &pmif->timings[unit];
931	timings2 = &pmif->timings[unit+2];
932
933	switch(speed) {
934#ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
935		case XFER_UDMA_6:
936		        if (pmif->kind != controller_sh_ata6)
937				return 1;
938		case XFER_UDMA_5:
939			if (pmif->kind != controller_un_ata6 &&
940			    pmif->kind != controller_k2_ata6 &&
941			    pmif->kind != controller_sh_ata6)
942				return 1;
943		case XFER_UDMA_4:
944		case XFER_UDMA_3:
945			if (HWIF(drive)->udma_four == 0)
946				return 1;
947		case XFER_UDMA_2:
948		case XFER_UDMA_1:
949		case XFER_UDMA_0:
950			if (pmif->kind == controller_kl_ata4)
951				ret = set_timings_udma_ata4(timings, speed);
952			else if (pmif->kind == controller_un_ata6
953				 || pmif->kind == controller_k2_ata6)
954				ret = set_timings_udma_ata6(timings, timings2, speed);
955			else if (pmif->kind == controller_sh_ata6)
956				ret = set_timings_udma_shasta(timings, timings2, speed);
957			else
958				ret = 1;
959			break;
960		case XFER_MW_DMA_2:
961		case XFER_MW_DMA_1:
962		case XFER_MW_DMA_0:
963			ret = set_timings_mdma(drive, pmif->kind, timings, timings2, speed, 0);
964			break;
965		case XFER_SW_DMA_2:
966		case XFER_SW_DMA_1:
967		case XFER_SW_DMA_0:
968			return 1;
969#endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
970		case XFER_PIO_4:
971		case XFER_PIO_3:
972		case XFER_PIO_2:
973		case XFER_PIO_1:
974		case XFER_PIO_0:
975			pmac_ide_tuneproc(drive, speed & 0x07);
976			break;
977		default:
978			ret = 1;
979	}
980	if (ret)
981		return ret;
982
983	ret = pmac_ide_do_setfeature(drive, speed);
984	if (ret)
985		return ret;
986
987	pmac_ide_do_update_timings(drive);
988	drive->current_speed = speed;
989
990	return 0;
991}
992
993/*
994 * Blast some well known "safe" values to the timing registers at init or
995 * wakeup from sleep time, before we do real calculation
996 */
997static void
998sanitize_timings(pmac_ide_hwif_t *pmif)
999{
1000	unsigned int value, value2 = 0;
1001
1002	switch(pmif->kind) {
1003		case controller_sh_ata6:
1004			value = 0x0a820c97;
1005			value2 = 0x00033031;
1006			break;
1007		case controller_un_ata6:
1008		case controller_k2_ata6:
1009			value = 0x08618a92;
1010			value2 = 0x00002921;
1011			break;
1012		case controller_kl_ata4:
1013			value = 0x0008438c;
1014			break;
1015		case controller_kl_ata3:
1016			value = 0x00084526;
1017			break;
1018		case controller_heathrow:
1019		case controller_ohare:
1020		default:
1021			value = 0x00074526;
1022			break;
1023	}
1024	pmif->timings[0] = pmif->timings[1] = value;
1025	pmif->timings[2] = pmif->timings[3] = value2;
1026}
1027
1028unsigned long
1029pmac_ide_get_base(int index)
1030{
1031	return pmac_ide[index].regbase;
1032}
1033
1034int
1035pmac_ide_check_base(unsigned long base)
1036{
1037	int ix;
1038
1039 	for (ix = 0; ix < MAX_HWIFS; ++ix)
1040		if (base == pmac_ide[ix].regbase)
1041			return ix;
1042	return -1;
1043}
1044
1045int
1046pmac_ide_get_irq(unsigned long base)
1047{
1048	int ix;
1049
1050	for (ix = 0; ix < MAX_HWIFS; ++ix)
1051		if (base == pmac_ide[ix].regbase)
1052			return pmac_ide[ix].irq;
1053	return 0;
1054}
1055
1056static int ide_majors[] = { 3, 22, 33, 34, 56, 57 };
1057
1058dev_t __init
1059pmac_find_ide_boot(char *bootdevice, int n)
1060{
1061	int i;
1062
1063	/*
1064	 * Look through the list of IDE interfaces for this one.
1065	 */
1066	for (i = 0; i < pmac_ide_count; ++i) {
1067		char *name;
1068		if (!pmac_ide[i].node || !pmac_ide[i].node->full_name)
1069			continue;
1070		name = pmac_ide[i].node->full_name;
1071		if (memcmp(name, bootdevice, n) == 0 && name[n] == 0) {
1072			return MKDEV(ide_majors[i], 0);
1073		}
1074	}
1075
1076	return 0;
1077}
1078
1079/* Suspend call back, should be called after the child devices
1080 * have actually been suspended
1081 */
1082static int
1083pmac_ide_do_suspend(ide_hwif_t *hwif)
1084{
1085	pmac_ide_hwif_t *pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
1086
1087	/* We clear the timings */
1088	pmif->timings[0] = 0;
1089	pmif->timings[1] = 0;
1090
1091	disable_irq(pmif->irq);
1092
1093	/* The media bay will handle itself just fine */
1094	if (pmif->mediabay)
1095		return 0;
1096
1097	/* Kauai has bus control FCRs directly here */
1098	if (pmif->kauai_fcr) {
1099		u32 fcr = readl(pmif->kauai_fcr);
1100		fcr &= ~(KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE);
1101		writel(fcr, pmif->kauai_fcr);
1102	}
1103
1104	/* Disable the bus on older machines and the cell on kauai */
1105	ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id,
1106			    0);
1107
1108	return 0;
1109}
1110
1111/* Resume call back, should be called before the child devices
1112 * are resumed
1113 */
1114static int
1115pmac_ide_do_resume(ide_hwif_t *hwif)
1116{
1117	pmac_ide_hwif_t *pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
1118
1119	/* Hard reset & re-enable controller (do we really need to reset ? -BenH) */
1120	if (!pmif->mediabay) {
1121		ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 1);
1122		ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id, 1);
1123		msleep(10);
1124		ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 0);
1125
1126		/* Kauai has it different */
1127		if (pmif->kauai_fcr) {
1128			u32 fcr = readl(pmif->kauai_fcr);
1129			fcr |= KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE;
1130			writel(fcr, pmif->kauai_fcr);
1131		}
1132
1133		msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY));
1134	}
1135
1136	/* Sanitize drive timings */
1137	sanitize_timings(pmif);
1138
1139	enable_irq(pmif->irq);
1140
1141	return 0;
1142}
1143
1144/*
1145 * Setup, register & probe an IDE channel driven by this driver, this is
1146 * called by one of the 2 probe functions (macio or PCI). Note that a channel
1147 * that ends up beeing free of any device is not kept around by this driver
1148 * (it is kept in 2.4). This introduce an interface numbering change on some
1149 * rare machines unfortunately, but it's better this way.
1150 */
1151static int
1152pmac_ide_setup_device(pmac_ide_hwif_t *pmif, ide_hwif_t *hwif)
1153{
1154	struct device_node *np = pmif->node;
1155	const int *bidp;
1156
1157	pmif->cable_80 = 0;
1158	pmif->broken_dma = pmif->broken_dma_warn = 0;
1159	if (of_device_is_compatible(np, "shasta-ata"))
1160		pmif->kind = controller_sh_ata6;
1161	else if (of_device_is_compatible(np, "kauai-ata"))
1162		pmif->kind = controller_un_ata6;
1163	else if (of_device_is_compatible(np, "K2-UATA"))
1164		pmif->kind = controller_k2_ata6;
1165	else if (of_device_is_compatible(np, "keylargo-ata")) {
1166		if (strcmp(np->name, "ata-4") == 0)
1167			pmif->kind = controller_kl_ata4;
1168		else
1169			pmif->kind = controller_kl_ata3;
1170	} else if (of_device_is_compatible(np, "heathrow-ata"))
1171		pmif->kind = controller_heathrow;
1172	else {
1173		pmif->kind = controller_ohare;
1174		pmif->broken_dma = 1;
1175	}
1176
1177	bidp = of_get_property(np, "AAPL,bus-id", NULL);
1178	pmif->aapl_bus_id =  bidp ? *bidp : 0;
1179
1180	/* Get cable type from device-tree */
1181	if (pmif->kind == controller_kl_ata4 || pmif->kind == controller_un_ata6
1182	    || pmif->kind == controller_k2_ata6
1183	    || pmif->kind == controller_sh_ata6) {
1184		const char* cable = of_get_property(np, "cable-type", NULL);
1185		if (cable && !strncmp(cable, "80-", 3))
1186			pmif->cable_80 = 1;
1187	}
1188	/* G5's seem to have incorrect cable type in device-tree. Let's assume
1189	 * they have a 80 conductor cable, this seem to be always the case unless
1190	 * the user mucked around
1191	 */
1192	if (of_device_is_compatible(np, "K2-UATA") ||
1193	    of_device_is_compatible(np, "shasta-ata"))
1194		pmif->cable_80 = 1;
1195
1196	/* On Kauai-type controllers, we make sure the FCR is correct */
1197	if (pmif->kauai_fcr)
1198		writel(KAUAI_FCR_UATA_MAGIC |
1199		       KAUAI_FCR_UATA_RESET_N |
1200		       KAUAI_FCR_UATA_ENABLE, pmif->kauai_fcr);
1201
1202	pmif->mediabay = 0;
1203
1204	/* Make sure we have sane timings */
1205	sanitize_timings(pmif);
1206
1207#ifndef CONFIG_PPC64
1208	if (np->parent && np->parent->name
1209	    && strcasecmp(np->parent->name, "media-bay") == 0) {
1210#ifdef CONFIG_PMAC_MEDIABAY
1211		media_bay_set_ide_infos(np->parent, pmif->regbase, pmif->irq, hwif->index);
1212#endif /* CONFIG_PMAC_MEDIABAY */
1213		pmif->mediabay = 1;
1214		if (!bidp)
1215			pmif->aapl_bus_id = 1;
1216	} else if (pmif->kind == controller_ohare) {
1217		/* The code below is having trouble on some ohare machines
1218		 * (timing related ?). Until I can put my hand on one of these
1219		 * units, I keep the old way
1220		 */
1221		ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, 0, 1);
1222	} else
1223#endif
1224	{
1225 		/* This is necessary to enable IDE when net-booting */
1226		ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 1);
1227		ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, pmif->aapl_bus_id, 1);
1228		msleep(10);
1229		ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 0);
1230		msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY));
1231	}
1232
1233	/* Setup MMIO ops */
1234	default_hwif_mmiops(hwif);
1235       	hwif->OUTBSYNC = pmac_outbsync;
1236
1237	/* Tell common code _not_ to mess with resources */
1238	hwif->mmio = 1;
1239	hwif->hwif_data = pmif;
1240	pmac_ide_init_hwif_ports(&hwif->hw, pmif->regbase, 0, &hwif->irq);
1241	memcpy(hwif->io_ports, hwif->hw.io_ports, sizeof(hwif->io_ports));
1242	hwif->chipset = ide_pmac;
1243	hwif->noprobe = !hwif->io_ports[IDE_DATA_OFFSET] || pmif->mediabay;
1244	hwif->hold = pmif->mediabay;
1245	hwif->udma_four = pmif->cable_80;
1246	hwif->drives[0].unmask = 1;
1247	hwif->drives[1].unmask = 1;
1248	hwif->tuneproc = pmac_ide_tuneproc;
1249	if (pmif->kind == controller_un_ata6
1250	    || pmif->kind == controller_k2_ata6
1251	    || pmif->kind == controller_sh_ata6)
1252		hwif->selectproc = pmac_ide_kauai_selectproc;
1253	else
1254		hwif->selectproc = pmac_ide_selectproc;
1255	hwif->speedproc = pmac_ide_tune_chipset;
1256
1257	printk(KERN_INFO "ide%d: Found Apple %s controller, bus ID %d%s, irq %d\n",
1258	       hwif->index, model_name[pmif->kind], pmif->aapl_bus_id,
1259	       pmif->mediabay ? " (mediabay)" : "", hwif->irq);
1260
1261#ifdef CONFIG_PMAC_MEDIABAY
1262	if (pmif->mediabay && check_media_bay_by_base(pmif->regbase, MB_CD) == 0)
1263		hwif->noprobe = 0;
1264#endif /* CONFIG_PMAC_MEDIABAY */
1265
1266	hwif->sg_max_nents = MAX_DCMDS;
1267
1268#ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
1269	/* has a DBDMA controller channel */
1270	if (pmif->dma_regs)
1271		pmac_ide_setup_dma(pmif, hwif);
1272#endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
1273
1274	/* We probe the hwif now */
1275	probe_hwif_init(hwif);
1276
1277	ide_proc_register_port(hwif);
1278
1279	return 0;
1280}
1281
1282/*
1283 * Attach to a macio probed interface
1284 */
1285static int __devinit
1286pmac_ide_macio_attach(struct macio_dev *mdev, const struct of_device_id *match)
1287{
1288	void __iomem *base;
1289	unsigned long regbase;
1290	int irq;
1291	ide_hwif_t *hwif;
1292	pmac_ide_hwif_t *pmif;
1293	int i, rc;
1294
1295	i = 0;
1296	while (i < MAX_HWIFS && (ide_hwifs[i].io_ports[IDE_DATA_OFFSET] != 0
1297	    || pmac_ide[i].node != NULL))
1298		++i;
1299	if (i >= MAX_HWIFS) {
1300		printk(KERN_ERR "ide-pmac: MacIO interface attach with no slot\n");
1301		printk(KERN_ERR "          %s\n", mdev->ofdev.node->full_name);
1302		return -ENODEV;
1303	}
1304
1305	pmif = &pmac_ide[i];
1306	hwif = &ide_hwifs[i];
1307
1308	if (macio_resource_count(mdev) == 0) {
1309		printk(KERN_WARNING "ide%d: no address for %s\n",
1310		       i, mdev->ofdev.node->full_name);
1311		return -ENXIO;
1312	}
1313
1314	/* Request memory resource for IO ports */
1315	if (macio_request_resource(mdev, 0, "ide-pmac (ports)")) {
1316		printk(KERN_ERR "ide%d: can't request mmio resource !\n", i);
1317		return -EBUSY;
1318	}
1319
1320	if (macio_irq_count(mdev) == 0) {
1321		printk(KERN_WARNING "ide%d: no intrs for device %s, using 13\n",
1322			i, mdev->ofdev.node->full_name);
1323		irq = irq_create_mapping(NULL, 13);
1324	} else
1325		irq = macio_irq(mdev, 0);
1326
1327	base = ioremap(macio_resource_start(mdev, 0), 0x400);
1328	regbase = (unsigned long) base;
1329
1330	hwif->pci_dev = mdev->bus->pdev;
1331	hwif->gendev.parent = &mdev->ofdev.dev;
1332
1333	pmif->mdev = mdev;
1334	pmif->node = mdev->ofdev.node;
1335	pmif->regbase = regbase;
1336	pmif->irq = irq;
1337	pmif->kauai_fcr = NULL;
1338#ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
1339	if (macio_resource_count(mdev) >= 2) {
1340		if (macio_request_resource(mdev, 1, "ide-pmac (dma)"))
1341			printk(KERN_WARNING "ide%d: can't request DMA resource !\n", i);
1342		else
1343			pmif->dma_regs = ioremap(macio_resource_start(mdev, 1), 0x1000);
1344	} else
1345		pmif->dma_regs = NULL;
1346#endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
1347	dev_set_drvdata(&mdev->ofdev.dev, hwif);
1348
1349	rc = pmac_ide_setup_device(pmif, hwif);
1350	if (rc != 0) {
1351		/* The inteface is released to the common IDE layer */
1352		dev_set_drvdata(&mdev->ofdev.dev, NULL);
1353		iounmap(base);
1354		if (pmif->dma_regs)
1355			iounmap(pmif->dma_regs);
1356		memset(pmif, 0, sizeof(*pmif));
1357		macio_release_resource(mdev, 0);
1358		if (pmif->dma_regs)
1359			macio_release_resource(mdev, 1);
1360	}
1361
1362	return rc;
1363}
1364
1365static int
1366pmac_ide_macio_suspend(struct macio_dev *mdev, pm_message_t mesg)
1367{
1368	ide_hwif_t	*hwif = (ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev);
1369	int		rc = 0;
1370
1371	if (mesg.event != mdev->ofdev.dev.power.power_state.event
1372			&& mesg.event == PM_EVENT_SUSPEND) {
1373		rc = pmac_ide_do_suspend(hwif);
1374		if (rc == 0)
1375			mdev->ofdev.dev.power.power_state = mesg;
1376	}
1377
1378	return rc;
1379}
1380
1381static int
1382pmac_ide_macio_resume(struct macio_dev *mdev)
1383{
1384	ide_hwif_t	*hwif = (ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev);
1385	int		rc = 0;
1386
1387	if (mdev->ofdev.dev.power.power_state.event != PM_EVENT_ON) {
1388		rc = pmac_ide_do_resume(hwif);
1389		if (rc == 0)
1390			mdev->ofdev.dev.power.power_state = PMSG_ON;
1391	}
1392
1393	return rc;
1394}
1395
1396/*
1397 * Attach to a PCI probed interface
1398 */
1399static int __devinit
1400pmac_ide_pci_attach(struct pci_dev *pdev, const struct pci_device_id *id)
1401{
1402	ide_hwif_t *hwif;
1403	struct device_node *np;
1404	pmac_ide_hwif_t *pmif;
1405	void __iomem *base;
1406	unsigned long rbase, rlen;
1407	int i, rc;
1408
1409	np = pci_device_to_OF_node(pdev);
1410	if (np == NULL) {
1411		printk(KERN_ERR "ide-pmac: cannot find MacIO node for Kauai ATA interface\n");
1412		return -ENODEV;
1413	}
1414	i = 0;
1415	while (i < MAX_HWIFS && (ide_hwifs[i].io_ports[IDE_DATA_OFFSET] != 0
1416	    || pmac_ide[i].node != NULL))
1417		++i;
1418	if (i >= MAX_HWIFS) {
1419		printk(KERN_ERR "ide-pmac: PCI interface attach with no slot\n");
1420		printk(KERN_ERR "          %s\n", np->full_name);
1421		return -ENODEV;
1422	}
1423
1424	pmif = &pmac_ide[i];
1425	hwif = &ide_hwifs[i];
1426
1427	if (pci_enable_device(pdev)) {
1428		printk(KERN_WARNING "ide%i: Can't enable PCI device for %s\n",
1429			i, np->full_name);
1430		return -ENXIO;
1431	}
1432	pci_set_master(pdev);
1433
1434	if (pci_request_regions(pdev, "Kauai ATA")) {
1435		printk(KERN_ERR "ide%d: Cannot obtain PCI resources for %s\n",
1436			i, np->full_name);
1437		return -ENXIO;
1438	}
1439
1440	hwif->pci_dev = pdev;
1441	hwif->gendev.parent = &pdev->dev;
1442	pmif->mdev = NULL;
1443	pmif->node = np;
1444
1445	rbase = pci_resource_start(pdev, 0);
1446	rlen = pci_resource_len(pdev, 0);
1447
1448	base = ioremap(rbase, rlen);
1449	pmif->regbase = (unsigned long) base + 0x2000;
1450#ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
1451	pmif->dma_regs = base + 0x1000;
1452#endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
1453	pmif->kauai_fcr = base;
1454	pmif->irq = pdev->irq;
1455
1456	pci_set_drvdata(pdev, hwif);
1457
1458	rc = pmac_ide_setup_device(pmif, hwif);
1459	if (rc != 0) {
1460		/* The inteface is released to the common IDE layer */
1461		pci_set_drvdata(pdev, NULL);
1462		iounmap(base);
1463		memset(pmif, 0, sizeof(*pmif));
1464		pci_release_regions(pdev);
1465	}
1466
1467	return rc;
1468}
1469
1470static int
1471pmac_ide_pci_suspend(struct pci_dev *pdev, pm_message_t mesg)
1472{
1473	ide_hwif_t	*hwif = (ide_hwif_t *)pci_get_drvdata(pdev);
1474	int		rc = 0;
1475
1476	if (mesg.event != pdev->dev.power.power_state.event
1477			&& mesg.event == PM_EVENT_SUSPEND) {
1478		rc = pmac_ide_do_suspend(hwif);
1479		if (rc == 0)
1480			pdev->dev.power.power_state = mesg;
1481	}
1482
1483	return rc;
1484}
1485
1486static int
1487pmac_ide_pci_resume(struct pci_dev *pdev)
1488{
1489	ide_hwif_t	*hwif = (ide_hwif_t *)pci_get_drvdata(pdev);
1490	int		rc = 0;
1491
1492	if (pdev->dev.power.power_state.event != PM_EVENT_ON) {
1493		rc = pmac_ide_do_resume(hwif);
1494		if (rc == 0)
1495			pdev->dev.power.power_state = PMSG_ON;
1496	}
1497
1498	return rc;
1499}
1500
1501static struct of_device_id pmac_ide_macio_match[] =
1502{
1503	{
1504	.name 		= "IDE",
1505	},
1506	{
1507	.name 		= "ATA",
1508	},
1509	{
1510	.type		= "ide",
1511	},
1512	{
1513	.type		= "ata",
1514	},
1515	{},
1516};
1517
1518static struct macio_driver pmac_ide_macio_driver =
1519{
1520	.name 		= "ide-pmac",
1521	.match_table	= pmac_ide_macio_match,
1522	.probe		= pmac_ide_macio_attach,
1523	.suspend	= pmac_ide_macio_suspend,
1524	.resume		= pmac_ide_macio_resume,
1525};
1526
1527static struct pci_device_id pmac_ide_pci_match[] = {
1528	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_ATA,
1529	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
1530	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_IPID_ATA100,
1531	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
1532	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_K2_ATA100,
1533	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
1534	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_SH_ATA,
1535	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
1536	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_IPID2_ATA,
1537	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
1538};
1539
1540static struct pci_driver pmac_ide_pci_driver = {
1541	.name		= "ide-pmac",
1542	.id_table	= pmac_ide_pci_match,
1543	.probe		= pmac_ide_pci_attach,
1544	.suspend	= pmac_ide_pci_suspend,
1545	.resume		= pmac_ide_pci_resume,
1546};
1547MODULE_DEVICE_TABLE(pci, pmac_ide_pci_match);
1548
1549int __init pmac_ide_probe(void)
1550{
1551	int error;
1552
1553	if (!machine_is(powermac))
1554		return -ENODEV;
1555
1556#ifdef CONFIG_BLK_DEV_IDE_PMAC_ATA100FIRST
1557	error = pci_register_driver(&pmac_ide_pci_driver);
1558	if (error)
1559		goto out;
1560	error = macio_register_driver(&pmac_ide_macio_driver);
1561	if (error) {
1562		pci_unregister_driver(&pmac_ide_pci_driver);
1563		goto out;
1564	}
1565#else
1566	error = macio_register_driver(&pmac_ide_macio_driver);
1567	if (error)
1568		goto out;
1569	error = pci_register_driver(&pmac_ide_pci_driver);
1570	if (error) {
1571		macio_unregister_driver(&pmac_ide_macio_driver);
1572		goto out;
1573	}
1574#endif
1575out:
1576	return error;
1577}
1578
1579#ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
1580
1581/*
1582 * pmac_ide_build_dmatable builds the DBDMA command list
1583 * for a transfer and sets the DBDMA channel to point to it.
1584 */
1585static int
1586pmac_ide_build_dmatable(ide_drive_t *drive, struct request *rq)
1587{
1588	struct dbdma_cmd *table;
1589	int i, count = 0;
1590	ide_hwif_t *hwif = HWIF(drive);
1591	pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
1592	volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
1593	struct scatterlist *sg;
1594	int wr = (rq_data_dir(rq) == WRITE);
1595
1596	/* DMA table is already aligned */
1597	table = (struct dbdma_cmd *) pmif->dma_table_cpu;
1598
1599	/* Make sure DMA controller is stopped (necessary ?) */
1600	writel((RUN|PAUSE|FLUSH|WAKE|DEAD) << 16, &dma->control);
1601	while (readl(&dma->status) & RUN)
1602		udelay(1);
1603
1604	hwif->sg_nents = i = ide_build_sglist(drive, rq);
1605
1606	if (!i)
1607		return 0;
1608
1609	/* Build DBDMA commands list */
1610	sg = hwif->sg_table;
1611	while (i && sg_dma_len(sg)) {
1612		u32 cur_addr;
1613		u32 cur_len;
1614
1615		cur_addr = sg_dma_address(sg);
1616		cur_len = sg_dma_len(sg);
1617
1618		if (pmif->broken_dma && cur_addr & (L1_CACHE_BYTES - 1)) {
1619			if (pmif->broken_dma_warn == 0) {
1620				printk(KERN_WARNING "%s: DMA on non aligned address,"
1621				       "switching to PIO on Ohare chipset\n", drive->name);
1622				pmif->broken_dma_warn = 1;
1623			}
1624			goto use_pio_instead;
1625		}
1626		while (cur_len) {
1627			unsigned int tc = (cur_len < 0xfe00)? cur_len: 0xfe00;
1628
1629			if (count++ >= MAX_DCMDS) {
1630				printk(KERN_WARNING "%s: DMA table too small\n",
1631				       drive->name);
1632				goto use_pio_instead;
1633			}
1634			st_le16(&table->command, wr? OUTPUT_MORE: INPUT_MORE);
1635			st_le16(&table->req_count, tc);
1636			st_le32(&table->phy_addr, cur_addr);
1637			table->cmd_dep = 0;
1638			table->xfer_status = 0;
1639			table->res_count = 0;
1640			cur_addr += tc;
1641			cur_len -= tc;
1642			++table;
1643		}
1644		sg++;
1645		i--;
1646	}
1647
1648	/* convert the last command to an input/output last command */
1649	if (count) {
1650		st_le16(&table[-1].command, wr? OUTPUT_LAST: INPUT_LAST);
1651		/* add the stop command to the end of the list */
1652		memset(table, 0, sizeof(struct dbdma_cmd));
1653		st_le16(&table->command, DBDMA_STOP);
1654		mb();
1655		writel(hwif->dmatable_dma, &dma->cmdptr);
1656		return 1;
1657	}
1658
1659	printk(KERN_DEBUG "%s: empty DMA table?\n", drive->name);
1660 use_pio_instead:
1661	pci_unmap_sg(hwif->pci_dev,
1662		     hwif->sg_table,
1663		     hwif->sg_nents,
1664		     hwif->sg_dma_direction);
1665	return 0; /* revert to PIO for this request */
1666}
1667
1668/* Teardown mappings after DMA has completed.  */
1669static void
1670pmac_ide_destroy_dmatable (ide_drive_t *drive)
1671{
1672	ide_hwif_t *hwif = drive->hwif;
1673	struct pci_dev *dev = HWIF(drive)->pci_dev;
1674	struct scatterlist *sg = hwif->sg_table;
1675	int nents = hwif->sg_nents;
1676
1677	if (nents) {
1678		pci_unmap_sg(dev, sg, nents, hwif->sg_dma_direction);
1679		hwif->sg_nents = 0;
1680	}
1681}
1682
1683/*
1684 * Pick up best MDMA timing for the drive and apply it
1685 */
1686static int
1687pmac_ide_mdma_enable(ide_drive_t *drive, u16 mode)
1688{
1689	ide_hwif_t *hwif = HWIF(drive);
1690	pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
1691	int drive_cycle_time;
1692	struct hd_driveid *id = drive->id;
1693	u32 *timings, *timings2;
1694	u32 timing_local[2];
1695	int ret;
1696
1697	/* which drive is it ? */
1698	timings = &pmif->timings[drive->select.b.unit & 0x01];
1699	timings2 = &pmif->timings[(drive->select.b.unit & 0x01) + 2];
1700
1701	/* Check if drive provide explicit cycle time */
1702	if ((id->field_valid & 2) && (id->eide_dma_time))
1703		drive_cycle_time = id->eide_dma_time;
1704	else
1705		drive_cycle_time = 0;
1706
1707	/* Copy timings to local image */
1708	timing_local[0] = *timings;
1709	timing_local[1] = *timings2;
1710
1711	/* Calculate controller timings */
1712	ret = set_timings_mdma(	drive, pmif->kind,
1713				&timing_local[0],
1714				&timing_local[1],
1715				mode,
1716				drive_cycle_time);
1717	if (ret)
1718		return 0;
1719
1720	/* Set feature on drive */
1721    	printk(KERN_INFO "%s: Enabling MultiWord DMA %d\n", drive->name, mode & 0xf);
1722	ret = pmac_ide_do_setfeature(drive, mode);
1723	if (ret) {
1724	    	printk(KERN_WARNING "%s: Failed !\n", drive->name);
1725	    	return 0;
1726	}
1727
1728	/* Apply timings to controller */
1729	*timings = timing_local[0];
1730	*timings2 = timing_local[1];
1731
1732	/* Set speed info in drive */
1733	drive->current_speed = mode;
1734	if (!drive->init_speed)
1735		drive->init_speed = mode;
1736
1737	return 1;
1738}
1739
1740/*
1741 * Pick up best UDMA timing for the drive and apply it
1742 */
1743static int
1744pmac_ide_udma_enable(ide_drive_t *drive, u16 mode)
1745{
1746	ide_hwif_t *hwif = HWIF(drive);
1747	pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
1748	u32 *timings, *timings2;
1749	u32 timing_local[2];
1750	int ret;
1751
1752	/* which drive is it ? */
1753	timings = &pmif->timings[drive->select.b.unit & 0x01];
1754	timings2 = &pmif->timings[(drive->select.b.unit & 0x01) + 2];
1755
1756	/* Copy timings to local image */
1757	timing_local[0] = *timings;
1758	timing_local[1] = *timings2;
1759
1760	/* Calculate timings for interface */
1761	if (pmif->kind == controller_un_ata6
1762	    || pmif->kind == controller_k2_ata6)
1763		ret = set_timings_udma_ata6(	&timing_local[0],
1764						&timing_local[1],
1765						mode);
1766	else if (pmif->kind == controller_sh_ata6)
1767		ret = set_timings_udma_shasta(	&timing_local[0],
1768						&timing_local[1],
1769						mode);
1770	else
1771		ret = set_timings_udma_ata4(&timing_local[0], mode);
1772	if (ret)
1773		return 0;
1774
1775	/* Set feature on drive */
1776    	printk(KERN_INFO "%s: Enabling Ultra DMA %d\n", drive->name, mode & 0x0f);
1777	ret = pmac_ide_do_setfeature(drive, mode);
1778	if (ret) {
1779		printk(KERN_WARNING "%s: Failed !\n", drive->name);
1780		return 0;
1781	}
1782
1783	/* Apply timings to controller */
1784	*timings = timing_local[0];
1785	*timings2 = timing_local[1];
1786
1787	/* Set speed info in drive */
1788	drive->current_speed = mode;
1789	if (!drive->init_speed)
1790		drive->init_speed = mode;
1791
1792	return 1;
1793}
1794
1795/*
1796 * Check what is the best DMA timing setting for the drive and
1797 * call appropriate functions to apply it.
1798 */
1799static int
1800pmac_ide_dma_check(ide_drive_t *drive)
1801{
1802	struct hd_driveid *id = drive->id;
1803	ide_hwif_t *hwif = HWIF(drive);
1804	pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
1805	int enable = 1;
1806	int map;
1807	drive->using_dma = 0;
1808
1809	if (drive->media == ide_floppy)
1810		enable = 0;
1811	if (((id->capability & 1) == 0) && !__ide_dma_good_drive(drive))
1812		enable = 0;
1813	if (__ide_dma_bad_drive(drive))
1814		enable = 0;
1815
1816	if (enable) {
1817		short mode;
1818
1819		map = XFER_MWDMA;
1820		if (pmif->kind == controller_kl_ata4
1821		    || pmif->kind == controller_un_ata6
1822		    || pmif->kind == controller_k2_ata6
1823		    || pmif->kind == controller_sh_ata6) {
1824			map |= XFER_UDMA;
1825			if (pmif->cable_80) {
1826				map |= XFER_UDMA_66;
1827				if (pmif->kind == controller_un_ata6 ||
1828				    pmif->kind == controller_k2_ata6 ||
1829				    pmif->kind == controller_sh_ata6)
1830					map |= XFER_UDMA_100;
1831				if (pmif->kind == controller_sh_ata6)
1832					map |= XFER_UDMA_133;
1833			}
1834		}
1835		mode = ide_find_best_mode(drive, map);
1836		if (mode & XFER_UDMA)
1837			drive->using_dma = pmac_ide_udma_enable(drive, mode);
1838		else if (mode & XFER_MWDMA)
1839			drive->using_dma = pmac_ide_mdma_enable(drive, mode);
1840		hwif->OUTB(0, IDE_CONTROL_REG);
1841		/* Apply settings to controller */
1842		pmac_ide_do_update_timings(drive);
1843	}
1844	return 0;
1845}
1846
1847/*
1848 * Prepare a DMA transfer. We build the DMA table, adjust the timings for
1849 * a read on KeyLargo ATA/66 and mark us as waiting for DMA completion
1850 */
1851static int
1852pmac_ide_dma_setup(ide_drive_t *drive)
1853{
1854	ide_hwif_t *hwif = HWIF(drive);
1855	pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
1856	struct request *rq = HWGROUP(drive)->rq;
1857	u8 unit = (drive->select.b.unit & 0x01);
1858	u8 ata4;
1859
1860	if (pmif == NULL)
1861		return 1;
1862	ata4 = (pmif->kind == controller_kl_ata4);
1863
1864	if (!pmac_ide_build_dmatable(drive, rq)) {
1865		ide_map_sg(drive, rq);
1866		return 1;
1867	}
1868
1869	/* Apple adds 60ns to wrDataSetup on reads */
1870	if (ata4 && (pmif->timings[unit] & TR_66_UDMA_EN)) {
1871		writel(pmif->timings[unit] + (!rq_data_dir(rq) ? 0x00800000UL : 0),
1872			PMAC_IDE_REG(IDE_TIMING_CONFIG));
1873		(void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
1874	}
1875
1876	drive->waiting_for_dma = 1;
1877
1878	return 0;
1879}
1880
1881static void
1882pmac_ide_dma_exec_cmd(ide_drive_t *drive, u8 command)
1883{
1884	/* issue cmd to drive */
1885	ide_execute_command(drive, command, &ide_dma_intr, 2*WAIT_CMD, NULL);
1886}
1887
1888/*
1889 * Kick the DMA controller into life after the DMA command has been issued
1890 * to the drive.
1891 */
1892static void
1893pmac_ide_dma_start(ide_drive_t *drive)
1894{
1895	pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
1896	volatile struct dbdma_regs __iomem *dma;
1897
1898	dma = pmif->dma_regs;
1899
1900	writel((RUN << 16) | RUN, &dma->control);
1901	/* Make sure it gets to the controller right now */
1902	(void)readl(&dma->control);
1903}
1904
1905/*
1906 * After a DMA transfer, make sure the controller is stopped
1907 */
1908static int
1909pmac_ide_dma_end (ide_drive_t *drive)
1910{
1911	pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
1912	volatile struct dbdma_regs __iomem *dma;
1913	u32 dstat;
1914
1915	if (pmif == NULL)
1916		return 0;
1917	dma = pmif->dma_regs;
1918
1919	drive->waiting_for_dma = 0;
1920	dstat = readl(&dma->status);
1921	writel(((RUN|WAKE|DEAD) << 16), &dma->control);
1922	pmac_ide_destroy_dmatable(drive);
1923	/* verify good dma status. we don't check for ACTIVE beeing 0. We should...
1924	 * in theory, but with ATAPI decices doing buffer underruns, that would
1925	 * cause us to disable DMA, which isn't what we want
1926	 */
1927	return (dstat & (RUN|DEAD)) != RUN;
1928}
1929
1930/*
1931 * Check out that the interrupt we got was for us. We can't always know this
1932 * for sure with those Apple interfaces (well, we could on the recent ones but
1933 * that's not implemented yet), on the other hand, we don't have shared interrupts
1934 * so it's not really a problem
1935 */
1936static int
1937pmac_ide_dma_test_irq (ide_drive_t *drive)
1938{
1939	pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
1940	volatile struct dbdma_regs __iomem *dma;
1941	unsigned long status, timeout;
1942
1943	if (pmif == NULL)
1944		return 0;
1945	dma = pmif->dma_regs;
1946
1947	/* We have to things to deal with here:
1948	 *
1949	 * - The dbdma won't stop if the command was started
1950	 * but completed with an error without transferring all
1951	 * datas. This happens when bad blocks are met during
1952	 * a multi-block transfer.
1953	 *
1954	 * - The dbdma fifo hasn't yet finished flushing to
1955	 * to system memory when the disk interrupt occurs.
1956	 *
1957	 */
1958
1959	/* If ACTIVE is cleared, the STOP command have passed and
1960	 * transfer is complete.
1961	 */
1962	status = readl(&dma->status);
1963	if (!(status & ACTIVE))
1964		return 1;
1965	if (!drive->waiting_for_dma)
1966		printk(KERN_WARNING "ide%d, ide_dma_test_irq \
1967			called while not waiting\n", HWIF(drive)->index);
1968
1969	/* If dbdma didn't execute the STOP command yet, the
1970	 * active bit is still set. We consider that we aren't
1971	 * sharing interrupts (which is hopefully the case with
1972	 * those controllers) and so we just try to flush the
1973	 * channel for pending data in the fifo
1974	 */
1975	udelay(1);
1976	writel((FLUSH << 16) | FLUSH, &dma->control);
1977	timeout = 0;
1978	for (;;) {
1979		udelay(1);
1980		status = readl(&dma->status);
1981		if ((status & FLUSH) == 0)
1982			break;
1983		if (++timeout > 100) {
1984			printk(KERN_WARNING "ide%d, ide_dma_test_irq \
1985			timeout flushing channel\n", HWIF(drive)->index);
1986			break;
1987		}
1988	}
1989	return 1;
1990}
1991
1992static void pmac_ide_dma_host_off(ide_drive_t *drive)
1993{
1994}
1995
1996static void pmac_ide_dma_host_on(ide_drive_t *drive)
1997{
1998}
1999
2000static int
2001pmac_ide_dma_lostirq (ide_drive_t *drive)
2002{
2003	pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
2004	volatile struct dbdma_regs __iomem *dma;
2005	unsigned long status;
2006
2007	if (pmif == NULL)
2008		return 0;
2009	dma = pmif->dma_regs;
2010
2011	status = readl(&dma->status);
2012	printk(KERN_ERR "ide-pmac lost interrupt, dma status: %lx\n", status);
2013	return 0;
2014}
2015
2016/*
2017 * Allocate the data structures needed for using DMA with an interface
2018 * and fill the proper list of functions pointers
2019 */
2020static void __init
2021pmac_ide_setup_dma(pmac_ide_hwif_t *pmif, ide_hwif_t *hwif)
2022{
2023	/* We won't need pci_dev if we switch to generic consistent
2024	 * DMA routines ...
2025	 */
2026	if (hwif->pci_dev == NULL)
2027		return;
2028	/*
2029	 * Allocate space for the DBDMA commands.
2030	 * The +2 is +1 for the stop command and +1 to allow for
2031	 * aligning the start address to a multiple of 16 bytes.
2032	 */
2033	pmif->dma_table_cpu = (struct dbdma_cmd*)pci_alloc_consistent(
2034		hwif->pci_dev,
2035		(MAX_DCMDS + 2) * sizeof(struct dbdma_cmd),
2036		&hwif->dmatable_dma);
2037	if (pmif->dma_table_cpu == NULL) {
2038		printk(KERN_ERR "%s: unable to allocate DMA command list\n",
2039		       hwif->name);
2040		return;
2041	}
2042
2043	hwif->dma_off_quietly = &ide_dma_off_quietly;
2044	hwif->ide_dma_on = &__ide_dma_on;
2045	hwif->ide_dma_check = &pmac_ide_dma_check;
2046	hwif->dma_setup = &pmac_ide_dma_setup;
2047	hwif->dma_exec_cmd = &pmac_ide_dma_exec_cmd;
2048	hwif->dma_start = &pmac_ide_dma_start;
2049	hwif->ide_dma_end = &pmac_ide_dma_end;
2050	hwif->ide_dma_test_irq = &pmac_ide_dma_test_irq;
2051	hwif->dma_host_off = &pmac_ide_dma_host_off;
2052	hwif->dma_host_on = &pmac_ide_dma_host_on;
2053	hwif->ide_dma_timeout = &__ide_dma_timeout;
2054	hwif->ide_dma_lostirq = &pmac_ide_dma_lostirq;
2055
2056	hwif->atapi_dma = 1;
2057	switch(pmif->kind) {
2058		case controller_sh_ata6:
2059			hwif->ultra_mask = pmif->cable_80 ? 0x7f : 0x07;
2060			hwif->mwdma_mask = 0x07;
2061			hwif->swdma_mask = 0x00;
2062			break;
2063		case controller_un_ata6:
2064		case controller_k2_ata6:
2065			hwif->ultra_mask = pmif->cable_80 ? 0x3f : 0x07;
2066			hwif->mwdma_mask = 0x07;
2067			hwif->swdma_mask = 0x00;
2068			break;
2069		case controller_kl_ata4:
2070			hwif->ultra_mask = pmif->cable_80 ? 0x1f : 0x07;
2071			hwif->mwdma_mask = 0x07;
2072			hwif->swdma_mask = 0x00;
2073			break;
2074		default:
2075			hwif->ultra_mask = 0x00;
2076			hwif->mwdma_mask = 0x07;
2077			hwif->swdma_mask = 0x00;
2078			break;
2079	}
2080}
2081
2082#endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
2083