1/*
2 * linux/drivers/ide/ide-iops.c	Version 0.37	Mar 05, 2003
3 *
4 *  Copyright (C) 2000-2002	Andre Hedrick <andre@linux-ide.org>
5 *  Copyright (C) 2003		Red Hat <alan@redhat.com>
6 *
7 */
8
9#include <linux/module.h>
10#include <linux/types.h>
11#include <linux/string.h>
12#include <linux/kernel.h>
13#include <linux/timer.h>
14#include <linux/mm.h>
15#include <linux/interrupt.h>
16#include <linux/major.h>
17#include <linux/errno.h>
18#include <linux/genhd.h>
19#include <linux/blkpg.h>
20#include <linux/slab.h>
21#include <linux/pci.h>
22#include <linux/delay.h>
23#include <linux/hdreg.h>
24#include <linux/ide.h>
25#include <linux/bitops.h>
26#include <linux/nmi.h>
27
28#include <asm/byteorder.h>
29#include <asm/irq.h>
30#include <asm/uaccess.h>
31#include <asm/io.h>
32
33/*
34 *	Conventional PIO operations for ATA devices
35 */
36
37static u8 ide_inb (unsigned long port)
38{
39	return (u8) inb(port);
40}
41
42static u16 ide_inw (unsigned long port)
43{
44	return (u16) inw(port);
45}
46
47static void ide_insw (unsigned long port, void *addr, u32 count)
48{
49	insw(port, addr, count);
50}
51
52static void ide_insl (unsigned long port, void *addr, u32 count)
53{
54	insl(port, addr, count);
55}
56
57static void ide_outb (u8 val, unsigned long port)
58{
59	outb(val, port);
60}
61
62static void ide_outbsync (ide_drive_t *drive, u8 addr, unsigned long port)
63{
64	outb(addr, port);
65}
66
67static void ide_outw (u16 val, unsigned long port)
68{
69	outw(val, port);
70}
71
72static void ide_outsw (unsigned long port, void *addr, u32 count)
73{
74	outsw(port, addr, count);
75}
76
77static void ide_outsl (unsigned long port, void *addr, u32 count)
78{
79	outsl(port, addr, count);
80}
81
82void default_hwif_iops (ide_hwif_t *hwif)
83{
84	hwif->OUTB	= ide_outb;
85	hwif->OUTBSYNC	= ide_outbsync;
86	hwif->OUTW	= ide_outw;
87	hwif->OUTSW	= ide_outsw;
88	hwif->OUTSL	= ide_outsl;
89	hwif->INB	= ide_inb;
90	hwif->INW	= ide_inw;
91	hwif->INSW	= ide_insw;
92	hwif->INSL	= ide_insl;
93}
94
95/*
96 *	MMIO operations, typically used for SATA controllers
97 */
98
99static u8 ide_mm_inb (unsigned long port)
100{
101	return (u8) readb((void __iomem *) port);
102}
103
104static u16 ide_mm_inw (unsigned long port)
105{
106	return (u16) readw((void __iomem *) port);
107}
108
109static void ide_mm_insw (unsigned long port, void *addr, u32 count)
110{
111	__ide_mm_insw((void __iomem *) port, addr, count);
112}
113
114static void ide_mm_insl (unsigned long port, void *addr, u32 count)
115{
116	__ide_mm_insl((void __iomem *) port, addr, count);
117}
118
119static void ide_mm_outb (u8 value, unsigned long port)
120{
121	writeb(value, (void __iomem *) port);
122}
123
124static void ide_mm_outbsync (ide_drive_t *drive, u8 value, unsigned long port)
125{
126	writeb(value, (void __iomem *) port);
127}
128
129static void ide_mm_outw (u16 value, unsigned long port)
130{
131	writew(value, (void __iomem *) port);
132}
133
134static void ide_mm_outsw (unsigned long port, void *addr, u32 count)
135{
136	__ide_mm_outsw((void __iomem *) port, addr, count);
137}
138
139static void ide_mm_outsl (unsigned long port, void *addr, u32 count)
140{
141	__ide_mm_outsl((void __iomem *) port, addr, count);
142}
143
144void default_hwif_mmiops (ide_hwif_t *hwif)
145{
146	hwif->OUTB	= ide_mm_outb;
147	/* Most systems will need to override OUTBSYNC, alas however
148	   this one is controller specific! */
149	hwif->OUTBSYNC	= ide_mm_outbsync;
150	hwif->OUTW	= ide_mm_outw;
151	hwif->OUTSW	= ide_mm_outsw;
152	hwif->OUTSL	= ide_mm_outsl;
153	hwif->INB	= ide_mm_inb;
154	hwif->INW	= ide_mm_inw;
155	hwif->INSW	= ide_mm_insw;
156	hwif->INSL	= ide_mm_insl;
157}
158
159EXPORT_SYMBOL(default_hwif_mmiops);
160
161u32 ide_read_24 (ide_drive_t *drive)
162{
163	u8 hcyl = HWIF(drive)->INB(IDE_HCYL_REG);
164	u8 lcyl = HWIF(drive)->INB(IDE_LCYL_REG);
165	u8 sect = HWIF(drive)->INB(IDE_SECTOR_REG);
166	return (hcyl<<16)|(lcyl<<8)|sect;
167}
168
169void SELECT_DRIVE (ide_drive_t *drive)
170{
171	if (HWIF(drive)->selectproc)
172		HWIF(drive)->selectproc(drive);
173	HWIF(drive)->OUTB(drive->select.all, IDE_SELECT_REG);
174}
175
176EXPORT_SYMBOL(SELECT_DRIVE);
177
178void SELECT_INTERRUPT (ide_drive_t *drive)
179{
180	if (HWIF(drive)->intrproc)
181		HWIF(drive)->intrproc(drive);
182	else
183		HWIF(drive)->OUTB(drive->ctl|2, IDE_CONTROL_REG);
184}
185
186void SELECT_MASK (ide_drive_t *drive, int mask)
187{
188	if (HWIF(drive)->maskproc)
189		HWIF(drive)->maskproc(drive, mask);
190}
191
192void QUIRK_LIST (ide_drive_t *drive)
193{
194	if (HWIF(drive)->quirkproc)
195		drive->quirk_list = HWIF(drive)->quirkproc(drive);
196}
197
198/*
199 * Some localbus EIDE interfaces require a special access sequence
200 * when using 32-bit I/O instructions to transfer data.  We call this
201 * the "vlb_sync" sequence, which consists of three successive reads
202 * of the sector count register location, with interrupts disabled
203 * to ensure that the reads all happen together.
204 */
205static void ata_vlb_sync(ide_drive_t *drive, unsigned long port)
206{
207	(void) HWIF(drive)->INB(port);
208	(void) HWIF(drive)->INB(port);
209	(void) HWIF(drive)->INB(port);
210}
211
212/*
213 * This is used for most PIO data transfers *from* the IDE interface
214 */
215static void ata_input_data(ide_drive_t *drive, void *buffer, u32 wcount)
216{
217	ide_hwif_t *hwif	= HWIF(drive);
218	u8 io_32bit		= drive->io_32bit;
219
220	if (io_32bit) {
221		if (io_32bit & 2) {
222			unsigned long flags;
223			local_irq_save(flags);
224			ata_vlb_sync(drive, IDE_NSECTOR_REG);
225			hwif->INSL(IDE_DATA_REG, buffer, wcount);
226			local_irq_restore(flags);
227		} else
228			hwif->INSL(IDE_DATA_REG, buffer, wcount);
229	} else {
230		hwif->INSW(IDE_DATA_REG, buffer, wcount<<1);
231	}
232}
233
234/*
235 * This is used for most PIO data transfers *to* the IDE interface
236 */
237static void ata_output_data(ide_drive_t *drive, void *buffer, u32 wcount)
238{
239	ide_hwif_t *hwif	= HWIF(drive);
240	u8 io_32bit		= drive->io_32bit;
241
242	if (io_32bit) {
243		if (io_32bit & 2) {
244			unsigned long flags;
245			local_irq_save(flags);
246			ata_vlb_sync(drive, IDE_NSECTOR_REG);
247			hwif->OUTSL(IDE_DATA_REG, buffer, wcount);
248			local_irq_restore(flags);
249		} else
250			hwif->OUTSL(IDE_DATA_REG, buffer, wcount);
251	} else {
252		hwif->OUTSW(IDE_DATA_REG, buffer, wcount<<1);
253	}
254}
255
256/*
257 * The following routines are mainly used by the ATAPI drivers.
258 *
259 * These routines will round up any request for an odd number of bytes,
260 * so if an odd bytecount is specified, be sure that there's at least one
261 * extra byte allocated for the buffer.
262 */
263
264static void atapi_input_bytes(ide_drive_t *drive, void *buffer, u32 bytecount)
265{
266	ide_hwif_t *hwif = HWIF(drive);
267
268	++bytecount;
269#if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
270	if (MACH_IS_ATARI || MACH_IS_Q40) {
271		/* Atari has a byte-swapped IDE interface */
272		insw_swapw(IDE_DATA_REG, buffer, bytecount / 2);
273		return;
274	}
275#endif /* CONFIG_ATARI || CONFIG_Q40 */
276	hwif->ata_input_data(drive, buffer, bytecount / 4);
277	if ((bytecount & 0x03) >= 2)
278		hwif->INSW(IDE_DATA_REG, ((u8 *)buffer)+(bytecount & ~0x03), 1);
279}
280
281static void atapi_output_bytes(ide_drive_t *drive, void *buffer, u32 bytecount)
282{
283	ide_hwif_t *hwif = HWIF(drive);
284
285	++bytecount;
286#if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
287	if (MACH_IS_ATARI || MACH_IS_Q40) {
288		/* Atari has a byte-swapped IDE interface */
289		outsw_swapw(IDE_DATA_REG, buffer, bytecount / 2);
290		return;
291	}
292#endif /* CONFIG_ATARI || CONFIG_Q40 */
293	hwif->ata_output_data(drive, buffer, bytecount / 4);
294	if ((bytecount & 0x03) >= 2)
295		hwif->OUTSW(IDE_DATA_REG, ((u8*)buffer)+(bytecount & ~0x03), 1);
296}
297
298void default_hwif_transport(ide_hwif_t *hwif)
299{
300	hwif->ata_input_data		= ata_input_data;
301	hwif->ata_output_data		= ata_output_data;
302	hwif->atapi_input_bytes		= atapi_input_bytes;
303	hwif->atapi_output_bytes	= atapi_output_bytes;
304}
305
306/*
307 * Beginning of Taskfile OPCODE Library and feature sets.
308 */
309void ide_fix_driveid (struct hd_driveid *id)
310{
311#ifndef __LITTLE_ENDIAN
312# ifdef __BIG_ENDIAN
313	int i;
314	u16 *stringcast;
315
316	id->config         = __le16_to_cpu(id->config);
317	id->cyls           = __le16_to_cpu(id->cyls);
318	id->reserved2      = __le16_to_cpu(id->reserved2);
319	id->heads          = __le16_to_cpu(id->heads);
320	id->track_bytes    = __le16_to_cpu(id->track_bytes);
321	id->sector_bytes   = __le16_to_cpu(id->sector_bytes);
322	id->sectors        = __le16_to_cpu(id->sectors);
323	id->vendor0        = __le16_to_cpu(id->vendor0);
324	id->vendor1        = __le16_to_cpu(id->vendor1);
325	id->vendor2        = __le16_to_cpu(id->vendor2);
326	stringcast = (u16 *)&id->serial_no[0];
327	for (i = 0; i < (20/2); i++)
328		stringcast[i] = __le16_to_cpu(stringcast[i]);
329	id->buf_type       = __le16_to_cpu(id->buf_type);
330	id->buf_size       = __le16_to_cpu(id->buf_size);
331	id->ecc_bytes      = __le16_to_cpu(id->ecc_bytes);
332	stringcast = (u16 *)&id->fw_rev[0];
333	for (i = 0; i < (8/2); i++)
334		stringcast[i] = __le16_to_cpu(stringcast[i]);
335	stringcast = (u16 *)&id->model[0];
336	for (i = 0; i < (40/2); i++)
337		stringcast[i] = __le16_to_cpu(stringcast[i]);
338	id->dword_io       = __le16_to_cpu(id->dword_io);
339	id->reserved50     = __le16_to_cpu(id->reserved50);
340	id->field_valid    = __le16_to_cpu(id->field_valid);
341	id->cur_cyls       = __le16_to_cpu(id->cur_cyls);
342	id->cur_heads      = __le16_to_cpu(id->cur_heads);
343	id->cur_sectors    = __le16_to_cpu(id->cur_sectors);
344	id->cur_capacity0  = __le16_to_cpu(id->cur_capacity0);
345	id->cur_capacity1  = __le16_to_cpu(id->cur_capacity1);
346	id->lba_capacity   = __le32_to_cpu(id->lba_capacity);
347	id->dma_1word      = __le16_to_cpu(id->dma_1word);
348	id->dma_mword      = __le16_to_cpu(id->dma_mword);
349	id->eide_pio_modes = __le16_to_cpu(id->eide_pio_modes);
350	id->eide_dma_min   = __le16_to_cpu(id->eide_dma_min);
351	id->eide_dma_time  = __le16_to_cpu(id->eide_dma_time);
352	id->eide_pio       = __le16_to_cpu(id->eide_pio);
353	id->eide_pio_iordy = __le16_to_cpu(id->eide_pio_iordy);
354	for (i = 0; i < 2; ++i)
355		id->words69_70[i] = __le16_to_cpu(id->words69_70[i]);
356	for (i = 0; i < 4; ++i)
357		id->words71_74[i] = __le16_to_cpu(id->words71_74[i]);
358	id->queue_depth    = __le16_to_cpu(id->queue_depth);
359	for (i = 0; i < 4; ++i)
360		id->words76_79[i] = __le16_to_cpu(id->words76_79[i]);
361	id->major_rev_num  = __le16_to_cpu(id->major_rev_num);
362	id->minor_rev_num  = __le16_to_cpu(id->minor_rev_num);
363	id->command_set_1  = __le16_to_cpu(id->command_set_1);
364	id->command_set_2  = __le16_to_cpu(id->command_set_2);
365	id->cfsse          = __le16_to_cpu(id->cfsse);
366	id->cfs_enable_1   = __le16_to_cpu(id->cfs_enable_1);
367	id->cfs_enable_2   = __le16_to_cpu(id->cfs_enable_2);
368	id->csf_default    = __le16_to_cpu(id->csf_default);
369	id->dma_ultra      = __le16_to_cpu(id->dma_ultra);
370	id->trseuc         = __le16_to_cpu(id->trseuc);
371	id->trsEuc         = __le16_to_cpu(id->trsEuc);
372	id->CurAPMvalues   = __le16_to_cpu(id->CurAPMvalues);
373	id->mprc           = __le16_to_cpu(id->mprc);
374	id->hw_config      = __le16_to_cpu(id->hw_config);
375	id->acoustic       = __le16_to_cpu(id->acoustic);
376	id->msrqs          = __le16_to_cpu(id->msrqs);
377	id->sxfert         = __le16_to_cpu(id->sxfert);
378	id->sal            = __le16_to_cpu(id->sal);
379	id->spg            = __le32_to_cpu(id->spg);
380	id->lba_capacity_2 = __le64_to_cpu(id->lba_capacity_2);
381	for (i = 0; i < 22; i++)
382		id->words104_125[i]   = __le16_to_cpu(id->words104_125[i]);
383	id->last_lun       = __le16_to_cpu(id->last_lun);
384	id->word127        = __le16_to_cpu(id->word127);
385	id->dlf            = __le16_to_cpu(id->dlf);
386	id->csfo           = __le16_to_cpu(id->csfo);
387	for (i = 0; i < 26; i++)
388		id->words130_155[i] = __le16_to_cpu(id->words130_155[i]);
389	id->word156        = __le16_to_cpu(id->word156);
390	for (i = 0; i < 3; i++)
391		id->words157_159[i] = __le16_to_cpu(id->words157_159[i]);
392	id->cfa_power      = __le16_to_cpu(id->cfa_power);
393	for (i = 0; i < 14; i++)
394		id->words161_175[i] = __le16_to_cpu(id->words161_175[i]);
395	for (i = 0; i < 31; i++)
396		id->words176_205[i] = __le16_to_cpu(id->words176_205[i]);
397	for (i = 0; i < 48; i++)
398		id->words206_254[i] = __le16_to_cpu(id->words206_254[i]);
399	id->integrity_word  = __le16_to_cpu(id->integrity_word);
400# else
401#  error "Please fix <asm/byteorder.h>"
402# endif
403#endif
404}
405
406EXPORT_SYMBOL(ide_fix_driveid);
407
408void ide_fixstring (u8 *s, const int bytecount, const int byteswap)
409{
410	u8 *p = s, *end = &s[bytecount & ~1]; /* bytecount must be even */
411
412	if (byteswap) {
413		/* convert from big-endian to host byte order */
414		for (p = end ; p != s;) {
415			unsigned short *pp = (unsigned short *) (p -= 2);
416			*pp = ntohs(*pp);
417		}
418	}
419	/* strip leading blanks */
420	while (s != end && *s == ' ')
421		++s;
422	/* compress internal blanks and strip trailing blanks */
423	while (s != end && *s) {
424		if (*s++ != ' ' || (s != end && *s && *s != ' '))
425			*p++ = *(s-1);
426	}
427	/* wipe out trailing garbage */
428	while (p != end)
429		*p++ = '\0';
430}
431
432EXPORT_SYMBOL(ide_fixstring);
433
434/*
435 * Needed for PCI irq sharing
436 */
437int drive_is_ready (ide_drive_t *drive)
438{
439	ide_hwif_t *hwif	= HWIF(drive);
440	u8 stat			= 0;
441
442	if (drive->waiting_for_dma)
443		return hwif->ide_dma_test_irq(drive);
444
445
446#ifdef CONFIG_IDEPCI_SHARE_IRQ
447	/*
448	 * We do a passive status test under shared PCI interrupts on
449	 * cards that truly share the ATA side interrupt, but may also share
450	 * an interrupt with another pci card/device.  We make no assumptions
451	 * about possible isa-pnp and pci-pnp issues yet.
452	 */
453	if (IDE_CONTROL_REG)
454		stat = hwif->INB(IDE_ALTSTATUS_REG);
455	else
456#endif /* CONFIG_IDEPCI_SHARE_IRQ */
457		/* Note: this may clear a pending IRQ!! */
458		stat = hwif->INB(IDE_STATUS_REG);
459
460	if (stat & BUSY_STAT)
461		/* drive busy:  definitely not interrupting */
462		return 0;
463
464	/* drive ready: *might* be interrupting */
465	return 1;
466}
467
468EXPORT_SYMBOL(drive_is_ready);
469
470/*
471 * Global for All, and taken from ide-pmac.c. Can be called
472 * with spinlock held & IRQs disabled, so don't schedule !
473 */
474int wait_for_ready (ide_drive_t *drive, int timeout)
475{
476	ide_hwif_t *hwif	= HWIF(drive);
477	u8 stat			= 0;
478
479	while(--timeout) {
480		stat = hwif->INB(IDE_STATUS_REG);
481		if (!(stat & BUSY_STAT)) {
482			if (drive->ready_stat == 0)
483				break;
484			else if ((stat & drive->ready_stat)||(stat & ERR_STAT))
485				break;
486		}
487		mdelay(1);
488	}
489	if ((stat & ERR_STAT) || timeout <= 0) {
490		if (stat & ERR_STAT) {
491			printk(KERN_ERR "%s: wait_for_ready, "
492				"error status: %x\n", drive->name, stat);
493		}
494		return 1;
495	}
496	return 0;
497}
498
499/*
500 * This routine busy-waits for the drive status to be not "busy".
501 * It then checks the status for all of the "good" bits and none
502 * of the "bad" bits, and if all is okay it returns 0.  All other
503 * cases return 1 after invoking ide_error() -- caller should just return.
504 *
505 * This routine should get fixed to not hog the cpu during extra long waits..
506 * That could be done by busy-waiting for the first jiffy or two, and then
507 * setting a timer to wake up at half second intervals thereafter,
508 * until timeout is achieved, before timing out.
509 */
510int ide_wait_stat (ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout)
511{
512	ide_hwif_t *hwif = HWIF(drive);
513	u8 stat;
514	int i;
515	unsigned long flags;
516
517	/* bail early if we've exceeded max_failures */
518	if (drive->max_failures && (drive->failures > drive->max_failures)) {
519		*startstop = ide_stopped;
520		return 1;
521	}
522
523	udelay(1);	/* spec allows drive 400ns to assert "BUSY" */
524	if ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
525		local_irq_set(flags);
526		timeout += jiffies;
527		while ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
528			if (time_after(jiffies, timeout)) {
529				/*
530				 * One last read after the timeout in case
531				 * heavy interrupt load made us not make any
532				 * progress during the timeout..
533				 */
534				stat = hwif->INB(IDE_STATUS_REG);
535				if (!(stat & BUSY_STAT))
536					break;
537
538				local_irq_restore(flags);
539				*startstop = ide_error(drive, "status timeout", stat);
540				return 1;
541			}
542		}
543		local_irq_restore(flags);
544	}
545	/*
546	 * Allow status to settle, then read it again.
547	 * A few rare drives vastly violate the 400ns spec here,
548	 * so we'll wait up to 10usec for a "good" status
549	 * rather than expensively fail things immediately.
550	 * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
551	 */
552	for (i = 0; i < 10; i++) {
553		udelay(1);
554		if (OK_STAT((stat = hwif->INB(IDE_STATUS_REG)), good, bad))
555			return 0;
556	}
557	*startstop = ide_error(drive, "status error", stat);
558	return 1;
559}
560
561EXPORT_SYMBOL(ide_wait_stat);
562
563/*
564 *  All hosts that use the 80c ribbon must use!
565 *  The name is derived from upper byte of word 93 and the 80c ribbon.
566 */
567u8 eighty_ninty_three (ide_drive_t *drive)
568{
569	ide_hwif_t *hwif = drive->hwif;
570	struct hd_driveid *id = drive->id;
571
572	if (hwif->udma_four == 0)
573		goto no_80w;
574
575	/* Check for SATA but only if we are ATA5 or higher */
576	if (id->hw_config == 0 && (id->major_rev_num & 0x7FE0))
577		return 1;
578
579#ifndef CONFIG_IDEDMA_IVB
580	if (id->hw_config & 0x4000)
581#else
582	if (id->hw_config & 0x6000)
583#endif
584		return 1;
585
586no_80w:
587	if (drive->udma33_warned == 1)
588		return 0;
589
590	printk(KERN_WARNING "%s: %s side 80-wire cable detection failed, "
591			    "limiting max speed to UDMA33\n",
592			    drive->name, hwif->udma_four ? "drive" : "host");
593
594	drive->udma33_warned = 1;
595
596	return 0;
597}
598
599int ide_ata66_check (ide_drive_t *drive, ide_task_t *args)
600{
601	if ((args->tfRegister[IDE_COMMAND_OFFSET] == WIN_SETFEATURES) &&
602	    (args->tfRegister[IDE_SECTOR_OFFSET] > XFER_UDMA_2) &&
603	    (args->tfRegister[IDE_FEATURE_OFFSET] == SETFEATURES_XFER)) {
604		if (eighty_ninty_three(drive) == 0) {
605			printk(KERN_WARNING "%s: UDMA speeds >UDMA33 cannot "
606					    "be set\n", drive->name);
607			return 1;
608		}
609	}
610
611	return 0;
612}
613
614/*
615 * Backside of HDIO_DRIVE_CMD call of SETFEATURES_XFER.
616 * 1 : Safe to update drive->id DMA registers.
617 * 0 : OOPs not allowed.
618 */
619int set_transfer (ide_drive_t *drive, ide_task_t *args)
620{
621	if ((args->tfRegister[IDE_COMMAND_OFFSET] == WIN_SETFEATURES) &&
622	    (args->tfRegister[IDE_SECTOR_OFFSET] >= XFER_SW_DMA_0) &&
623	    (args->tfRegister[IDE_FEATURE_OFFSET] == SETFEATURES_XFER) &&
624	    (drive->id->dma_ultra ||
625	     drive->id->dma_mword ||
626	     drive->id->dma_1word))
627		return 1;
628
629	return 0;
630}
631
632#ifdef CONFIG_BLK_DEV_IDEDMA
633static u8 ide_auto_reduce_xfer (ide_drive_t *drive)
634{
635	if (!drive->crc_count)
636		return drive->current_speed;
637	drive->crc_count = 0;
638
639	switch(drive->current_speed) {
640		case XFER_UDMA_7:	return XFER_UDMA_6;
641		case XFER_UDMA_6:	return XFER_UDMA_5;
642		case XFER_UDMA_5:	return XFER_UDMA_4;
643		case XFER_UDMA_4:	return XFER_UDMA_3;
644		case XFER_UDMA_3:	return XFER_UDMA_2;
645		case XFER_UDMA_2:	return XFER_UDMA_1;
646		case XFER_UDMA_1:	return XFER_UDMA_0;
647			/*
648			 * OOPS we do not goto non Ultra DMA modes
649			 * without iCRC's available we force
650			 * the system to PIO and make the user
651			 * invoke the ATA-1 ATA-2 DMA modes.
652			 */
653		case XFER_UDMA_0:
654		default:		return XFER_PIO_4;
655	}
656}
657#endif /* CONFIG_BLK_DEV_IDEDMA */
658
659/*
660 * Update the
661 */
662int ide_driveid_update (ide_drive_t *drive)
663{
664	ide_hwif_t *hwif	= HWIF(drive);
665	struct hd_driveid *id;
666	/*
667	 * Re-read drive->id for possible DMA mode
668	 * change (copied from ide-probe.c)
669	 */
670	unsigned long timeout, flags;
671
672	SELECT_MASK(drive, 1);
673	if (IDE_CONTROL_REG)
674		hwif->OUTB(drive->ctl,IDE_CONTROL_REG);
675	msleep(50);
676	hwif->OUTB(WIN_IDENTIFY, IDE_COMMAND_REG);
677	timeout = jiffies + WAIT_WORSTCASE;
678	do {
679		if (time_after(jiffies, timeout)) {
680			SELECT_MASK(drive, 0);
681			return 0;	/* drive timed-out */
682		}
683		msleep(50);	/* give drive a breather */
684	} while (hwif->INB(IDE_ALTSTATUS_REG) & BUSY_STAT);
685	msleep(50);	/* wait for IRQ and DRQ_STAT */
686	if (!OK_STAT(hwif->INB(IDE_STATUS_REG),DRQ_STAT,BAD_R_STAT)) {
687		SELECT_MASK(drive, 0);
688		printk("%s: CHECK for good STATUS\n", drive->name);
689		return 0;
690	}
691	local_irq_save(flags);
692	SELECT_MASK(drive, 0);
693	id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC);
694	if (!id) {
695		local_irq_restore(flags);
696		return 0;
697	}
698	ata_input_data(drive, id, SECTOR_WORDS);
699	(void) hwif->INB(IDE_STATUS_REG);	/* clear drive IRQ */
700	local_irq_enable();
701	local_irq_restore(flags);
702	ide_fix_driveid(id);
703	if (id) {
704		drive->id->dma_ultra = id->dma_ultra;
705		drive->id->dma_mword = id->dma_mword;
706		drive->id->dma_1word = id->dma_1word;
707		/* anything more ? */
708		kfree(id);
709	}
710
711	return 1;
712}
713
714/*
715 * Similar to ide_wait_stat(), except it never calls ide_error internally.
716 * This is a kludge to handle the new ide_config_drive_speed() function,
717 * and should not otherwise be used anywhere.  Eventually, the tuneproc's
718 * should be updated to return ide_startstop_t, in which case we can get
719 * rid of this abomination again.  :)   -ml
720 *
721 * It is gone..........
722 *
723 * const char *msg == consider adding for verbose errors.
724 */
725int ide_config_drive_speed (ide_drive_t *drive, u8 speed)
726{
727	ide_hwif_t *hwif	= HWIF(drive);
728	int	i, error	= 1;
729	u8 stat;
730
731//	while (HWGROUP(drive)->busy)
732//		msleep(50);
733
734#ifdef CONFIG_BLK_DEV_IDEDMA
735	if (hwif->ide_dma_check)	 /* check if host supports DMA */
736		hwif->dma_host_off(drive);
737#endif
738
739	/*
740	 * Don't use ide_wait_cmd here - it will
741	 * attempt to set_geometry and recalibrate,
742	 * but for some reason these don't work at
743	 * this point (lost interrupt).
744	 */
745        /*
746         * Select the drive, and issue the SETFEATURES command
747         */
748	disable_irq_nosync(hwif->irq);
749
750
751	udelay(1);
752	SELECT_DRIVE(drive);
753	SELECT_MASK(drive, 0);
754	udelay(1);
755	if (IDE_CONTROL_REG)
756		hwif->OUTB(drive->ctl | 2, IDE_CONTROL_REG);
757	hwif->OUTB(speed, IDE_NSECTOR_REG);
758	hwif->OUTB(SETFEATURES_XFER, IDE_FEATURE_REG);
759	hwif->OUTB(WIN_SETFEATURES, IDE_COMMAND_REG);
760	if ((IDE_CONTROL_REG) && (drive->quirk_list == 2))
761		hwif->OUTB(drive->ctl, IDE_CONTROL_REG);
762	udelay(1);
763	/*
764	 * Wait for drive to become non-BUSY
765	 */
766	if ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
767		unsigned long flags, timeout;
768		local_irq_set(flags);
769		timeout = jiffies + WAIT_CMD;
770		while ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
771			if (time_after(jiffies, timeout))
772				break;
773		}
774		local_irq_restore(flags);
775	}
776
777	/*
778	 * Allow status to settle, then read it again.
779	 * A few rare drives vastly violate the 400ns spec here,
780	 * so we'll wait up to 10usec for a "good" status
781	 * rather than expensively fail things immediately.
782	 * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
783	 */
784	for (i = 0; i < 10; i++) {
785		udelay(1);
786		if (OK_STAT((stat = hwif->INB(IDE_STATUS_REG)), DRIVE_READY, BUSY_STAT|DRQ_STAT|ERR_STAT)) {
787			error = 0;
788			break;
789		}
790	}
791
792	SELECT_MASK(drive, 0);
793
794	enable_irq(hwif->irq);
795
796	if (error) {
797		(void) ide_dump_status(drive, "set_drive_speed_status", stat);
798		return error;
799	}
800
801	drive->id->dma_ultra &= ~0xFF00;
802	drive->id->dma_mword &= ~0x0F00;
803	drive->id->dma_1word &= ~0x0F00;
804
805#ifdef CONFIG_BLK_DEV_IDEDMA
806	if (speed >= XFER_SW_DMA_0)
807		hwif->dma_host_on(drive);
808	else if (hwif->ide_dma_check)	/* check if host supports DMA */
809		hwif->dma_off_quietly(drive);
810#endif
811
812	switch(speed) {
813		case XFER_UDMA_7:   drive->id->dma_ultra |= 0x8080; break;
814		case XFER_UDMA_6:   drive->id->dma_ultra |= 0x4040; break;
815		case XFER_UDMA_5:   drive->id->dma_ultra |= 0x2020; break;
816		case XFER_UDMA_4:   drive->id->dma_ultra |= 0x1010; break;
817		case XFER_UDMA_3:   drive->id->dma_ultra |= 0x0808; break;
818		case XFER_UDMA_2:   drive->id->dma_ultra |= 0x0404; break;
819		case XFER_UDMA_1:   drive->id->dma_ultra |= 0x0202; break;
820		case XFER_UDMA_0:   drive->id->dma_ultra |= 0x0101; break;
821		case XFER_MW_DMA_2: drive->id->dma_mword |= 0x0404; break;
822		case XFER_MW_DMA_1: drive->id->dma_mword |= 0x0202; break;
823		case XFER_MW_DMA_0: drive->id->dma_mword |= 0x0101; break;
824		case XFER_SW_DMA_2: drive->id->dma_1word |= 0x0404; break;
825		case XFER_SW_DMA_1: drive->id->dma_1word |= 0x0202; break;
826		case XFER_SW_DMA_0: drive->id->dma_1word |= 0x0101; break;
827		default: break;
828	}
829	if (!drive->init_speed)
830		drive->init_speed = speed;
831	drive->current_speed = speed;
832	return error;
833}
834
835EXPORT_SYMBOL(ide_config_drive_speed);
836
837
838/*
839 * This should get invoked any time we exit the driver to
840 * wait for an interrupt response from a drive.  handler() points
841 * at the appropriate code to handle the next interrupt, and a
842 * timer is started to prevent us from waiting forever in case
843 * something goes wrong (see the ide_timer_expiry() handler later on).
844 *
845 * See also ide_execute_command
846 */
847static void __ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
848		      unsigned int timeout, ide_expiry_t *expiry)
849{
850	ide_hwgroup_t *hwgroup = HWGROUP(drive);
851
852	if (hwgroup->handler != NULL) {
853		printk(KERN_CRIT "%s: ide_set_handler: handler not null; "
854			"old=%p, new=%p\n",
855			drive->name, hwgroup->handler, handler);
856	}
857	hwgroup->handler	= handler;
858	hwgroup->expiry		= expiry;
859	hwgroup->timer.expires	= jiffies + timeout;
860	hwgroup->req_gen_timer = hwgroup->req_gen;
861	add_timer(&hwgroup->timer);
862}
863
864void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
865		      unsigned int timeout, ide_expiry_t *expiry)
866{
867	unsigned long flags;
868	spin_lock_irqsave(&ide_lock, flags);
869	__ide_set_handler(drive, handler, timeout, expiry);
870	spin_unlock_irqrestore(&ide_lock, flags);
871}
872
873EXPORT_SYMBOL(ide_set_handler);
874
875/**
876 *	ide_execute_command	-	execute an IDE command
877 *	@drive: IDE drive to issue the command against
878 *	@command: command byte to write
879 *	@handler: handler for next phase
880 *	@timeout: timeout for command
881 *	@expiry:  handler to run on timeout
882 *
883 *	Helper function to issue an IDE command. This handles the
884 *	atomicity requirements, command timing and ensures that the
885 *	handler and IRQ setup do not race. All IDE command kick off
886 *	should go via this function or do equivalent locking.
887 */
888
889void ide_execute_command(ide_drive_t *drive, task_ioreg_t cmd, ide_handler_t *handler, unsigned timeout, ide_expiry_t *expiry)
890{
891	unsigned long flags;
892	ide_hwgroup_t *hwgroup = HWGROUP(drive);
893	ide_hwif_t *hwif = HWIF(drive);
894
895	spin_lock_irqsave(&ide_lock, flags);
896
897	BUG_ON(hwgroup->handler);
898	hwgroup->handler	= handler;
899	hwgroup->expiry		= expiry;
900	hwgroup->timer.expires	= jiffies + timeout;
901	hwgroup->req_gen_timer = hwgroup->req_gen;
902	add_timer(&hwgroup->timer);
903	hwif->OUTBSYNC(drive, cmd, IDE_COMMAND_REG);
904	ndelay(400);
905	spin_unlock_irqrestore(&ide_lock, flags);
906}
907
908EXPORT_SYMBOL(ide_execute_command);
909
910
911/* needed below */
912static ide_startstop_t do_reset1 (ide_drive_t *, int);
913
914/*
915 * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms
916 * during an atapi drive reset operation. If the drive has not yet responded,
917 * and we have not yet hit our maximum waiting time, then the timer is restarted
918 * for another 50ms.
919 */
920static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive)
921{
922	ide_hwgroup_t *hwgroup	= HWGROUP(drive);
923	ide_hwif_t *hwif	= HWIF(drive);
924	u8 stat;
925
926	SELECT_DRIVE(drive);
927	udelay (10);
928
929	if (OK_STAT(stat = hwif->INB(IDE_STATUS_REG), 0, BUSY_STAT)) {
930		printk("%s: ATAPI reset complete\n", drive->name);
931	} else {
932		if (time_before(jiffies, hwgroup->poll_timeout)) {
933			BUG_ON(HWGROUP(drive)->handler != NULL);
934			ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
935			/* continue polling */
936			return ide_started;
937		}
938		/* end of polling */
939		hwgroup->polling = 0;
940		printk("%s: ATAPI reset timed-out, status=0x%02x\n",
941				drive->name, stat);
942		/* do it the old fashioned way */
943		return do_reset1(drive, 1);
944	}
945	/* done polling */
946	hwgroup->polling = 0;
947	hwgroup->resetting = 0;
948	return ide_stopped;
949}
950
951/*
952 * reset_pollfunc() gets invoked to poll the interface for completion every 50ms
953 * during an ide reset operation. If the drives have not yet responded,
954 * and we have not yet hit our maximum waiting time, then the timer is restarted
955 * for another 50ms.
956 */
957static ide_startstop_t reset_pollfunc (ide_drive_t *drive)
958{
959	ide_hwgroup_t *hwgroup	= HWGROUP(drive);
960	ide_hwif_t *hwif	= HWIF(drive);
961	u8 tmp;
962
963	if (hwif->reset_poll != NULL) {
964		if (hwif->reset_poll(drive)) {
965			printk(KERN_ERR "%s: host reset_poll failure for %s.\n",
966				hwif->name, drive->name);
967			return ide_stopped;
968		}
969	}
970
971	if (!OK_STAT(tmp = hwif->INB(IDE_STATUS_REG), 0, BUSY_STAT)) {
972		if (time_before(jiffies, hwgroup->poll_timeout)) {
973			BUG_ON(HWGROUP(drive)->handler != NULL);
974			ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
975			/* continue polling */
976			return ide_started;
977		}
978		printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp);
979		drive->failures++;
980	} else  {
981		printk("%s: reset: ", hwif->name);
982		if ((tmp = hwif->INB(IDE_ERROR_REG)) == 1) {
983			printk("success\n");
984			drive->failures = 0;
985		} else {
986			drive->failures++;
987			printk("master: ");
988			switch (tmp & 0x7f) {
989				case 1: printk("passed");
990					break;
991				case 2: printk("formatter device error");
992					break;
993				case 3: printk("sector buffer error");
994					break;
995				case 4: printk("ECC circuitry error");
996					break;
997				case 5: printk("controlling MPU error");
998					break;
999				default:printk("error (0x%02x?)", tmp);
1000			}
1001			if (tmp & 0x80)
1002				printk("; slave: failed");
1003			printk("\n");
1004		}
1005	}
1006	hwgroup->polling = 0;	/* done polling */
1007	hwgroup->resetting = 0; /* done reset attempt */
1008	return ide_stopped;
1009}
1010
1011static void check_dma_crc(ide_drive_t *drive)
1012{
1013#ifdef CONFIG_BLK_DEV_IDEDMA
1014	if (drive->crc_count) {
1015		drive->hwif->dma_off_quietly(drive);
1016		ide_set_xfer_rate(drive, ide_auto_reduce_xfer(drive));
1017		if (drive->current_speed >= XFER_SW_DMA_0)
1018			(void) HWIF(drive)->ide_dma_on(drive);
1019	} else
1020		ide_dma_off(drive);
1021#endif
1022}
1023
1024static void ide_disk_pre_reset(ide_drive_t *drive)
1025{
1026	int legacy = (drive->id->cfs_enable_2 & 0x0400) ? 0 : 1;
1027
1028	drive->special.all = 0;
1029	drive->special.b.set_geometry = legacy;
1030	drive->special.b.recalibrate  = legacy;
1031	if (OK_TO_RESET_CONTROLLER)
1032		drive->mult_count = 0;
1033	if (!drive->keep_settings && !drive->using_dma)
1034		drive->mult_req = 0;
1035	if (drive->mult_req != drive->mult_count)
1036		drive->special.b.set_multmode = 1;
1037}
1038
1039static void pre_reset(ide_drive_t *drive)
1040{
1041	if (drive->media == ide_disk)
1042		ide_disk_pre_reset(drive);
1043	else
1044		drive->post_reset = 1;
1045
1046	if (!drive->keep_settings) {
1047		if (drive->using_dma) {
1048			check_dma_crc(drive);
1049		} else {
1050			drive->unmask = 0;
1051			drive->io_32bit = 0;
1052		}
1053		return;
1054	}
1055	if (drive->using_dma)
1056		check_dma_crc(drive);
1057
1058	if (HWIF(drive)->pre_reset != NULL)
1059		HWIF(drive)->pre_reset(drive);
1060
1061	if (drive->current_speed != 0xff)
1062		drive->desired_speed = drive->current_speed;
1063	drive->current_speed = 0xff;
1064}
1065
1066/*
1067 * do_reset1() attempts to recover a confused drive by resetting it.
1068 * Unfortunately, resetting a disk drive actually resets all devices on
1069 * the same interface, so it can really be thought of as resetting the
1070 * interface rather than resetting the drive.
1071 *
1072 * ATAPI devices have their own reset mechanism which allows them to be
1073 * individually reset without clobbering other devices on the same interface.
1074 *
1075 * Unfortunately, the IDE interface does not generate an interrupt to let
1076 * us know when the reset operation has finished, so we must poll for this.
1077 * Equally poor, though, is the fact that this may a very long time to complete,
1078 * (up to 30 seconds worstcase).  So, instead of busy-waiting here for it,
1079 * we set a timer to poll at 50ms intervals.
1080 */
1081static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi)
1082{
1083	unsigned int unit;
1084	unsigned long flags;
1085	ide_hwif_t *hwif;
1086	ide_hwgroup_t *hwgroup;
1087
1088	spin_lock_irqsave(&ide_lock, flags);
1089	hwif = HWIF(drive);
1090	hwgroup = HWGROUP(drive);
1091
1092	/* We must not reset with running handlers */
1093	BUG_ON(hwgroup->handler != NULL);
1094
1095	/* For an ATAPI device, first try an ATAPI SRST. */
1096	if (drive->media != ide_disk && !do_not_try_atapi) {
1097		hwgroup->resetting = 1;
1098		pre_reset(drive);
1099		SELECT_DRIVE(drive);
1100		udelay (20);
1101		hwif->OUTBSYNC(drive, WIN_SRST, IDE_COMMAND_REG);
1102		ndelay(400);
1103		hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1104		hwgroup->polling = 1;
1105		__ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
1106		spin_unlock_irqrestore(&ide_lock, flags);
1107		return ide_started;
1108	}
1109
1110	/*
1111	 * First, reset any device state data we were maintaining
1112	 * for any of the drives on this interface.
1113	 */
1114	for (unit = 0; unit < MAX_DRIVES; ++unit)
1115		pre_reset(&hwif->drives[unit]);
1116
1117#if OK_TO_RESET_CONTROLLER
1118	if (!IDE_CONTROL_REG) {
1119		spin_unlock_irqrestore(&ide_lock, flags);
1120		return ide_stopped;
1121	}
1122
1123	hwgroup->resetting = 1;
1124	/*
1125	 * Note that we also set nIEN while resetting the device,
1126	 * to mask unwanted interrupts from the interface during the reset.
1127	 * However, due to the design of PC hardware, this will cause an
1128	 * immediate interrupt due to the edge transition it produces.
1129	 * This single interrupt gives us a "fast poll" for drives that
1130	 * recover from reset very quickly, saving us the first 50ms wait time.
1131	 */
1132	/* set SRST and nIEN */
1133	hwif->OUTBSYNC(drive, drive->ctl|6,IDE_CONTROL_REG);
1134	/* more than enough time */
1135	udelay(10);
1136	if (drive->quirk_list == 2) {
1137		/* clear SRST and nIEN */
1138		hwif->OUTBSYNC(drive, drive->ctl, IDE_CONTROL_REG);
1139	} else {
1140		/* clear SRST, leave nIEN */
1141		hwif->OUTBSYNC(drive, drive->ctl|2, IDE_CONTROL_REG);
1142	}
1143	/* more than enough time */
1144	udelay(10);
1145	hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1146	hwgroup->polling = 1;
1147	__ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1148
1149	/*
1150	 * Some weird controller like resetting themselves to a strange
1151	 * state when the disks are reset this way. At least, the Winbond
1152	 * 553 documentation says that
1153	 */
1154	if (hwif->resetproc != NULL) {
1155		hwif->resetproc(drive);
1156	}
1157
1158#endif	/* OK_TO_RESET_CONTROLLER */
1159
1160	spin_unlock_irqrestore(&ide_lock, flags);
1161	return ide_started;
1162}
1163
1164/*
1165 * ide_do_reset() is the entry point to the drive/interface reset code.
1166 */
1167
1168ide_startstop_t ide_do_reset (ide_drive_t *drive)
1169{
1170	return do_reset1(drive, 0);
1171}
1172
1173EXPORT_SYMBOL(ide_do_reset);
1174
1175/*
1176 * ide_wait_not_busy() waits for the currently selected device on the hwif
1177 * to report a non-busy status, see comments in probe_hwif().
1178 */
1179int ide_wait_not_busy(ide_hwif_t *hwif, unsigned long timeout)
1180{
1181	u8 stat = 0;
1182
1183	while(timeout--) {
1184		/*
1185		 * Turn this into a schedule() sleep once I'm sure
1186		 * about locking issues (2.5 work ?).
1187		 */
1188		mdelay(1);
1189		stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1190		if ((stat & BUSY_STAT) == 0)
1191			return 0;
1192		/*
1193		 * Assume a value of 0xff means nothing is connected to
1194		 * the interface and it doesn't implement the pull-down
1195		 * resistor on D7.
1196		 */
1197		if (stat == 0xff)
1198			return -ENODEV;
1199		touch_softlockup_watchdog();
1200		touch_nmi_watchdog();
1201	}
1202	return -EBUSY;
1203}
1204
1205EXPORT_SYMBOL_GPL(ide_wait_not_busy);
1206