1#include <linux/types.h>
2#include <linux/string.h>
3#include <linux/init.h>
4#include <linux/module.h>
5#include <linux/dmi.h>
6#include <linux/efi.h>
7#include <linux/bootmem.h>
8#include <linux/slab.h>
9#include <asm/dmi.h>
10
11static char * __init dmi_string(struct dmi_header *dm, u8 s)
12{
13	u8 *bp = ((u8 *) dm) + dm->length;
14	char *str = "";
15
16	if (s) {
17		s--;
18		while (s > 0 && *bp) {
19			bp += strlen(bp) + 1;
20			s--;
21		}
22
23		if (*bp != 0) {
24			str = dmi_alloc(strlen(bp) + 1);
25			if (str != NULL)
26				strcpy(str, bp);
27			else
28				printk(KERN_ERR "dmi_string: out of memory.\n");
29		}
30	}
31
32	return str;
33}
34
35/*
36 *	We have to be cautious here. We have seen BIOSes with DMI pointers
37 *	pointing to completely the wrong place for example
38 */
39static int __init dmi_table(u32 base, int len, int num,
40			    void (*decode)(struct dmi_header *))
41{
42	u8 *buf, *data;
43	int i = 0;
44
45	buf = dmi_ioremap(base, len);
46	if (buf == NULL)
47		return -1;
48
49	data = buf;
50
51	/*
52	 *	Stop when we see all the items the table claimed to have
53	 *	OR we run off the end of the table (also happens)
54	 */
55	while ((i < num) && (data - buf + sizeof(struct dmi_header)) <= len) {
56		struct dmi_header *dm = (struct dmi_header *)data;
57		/*
58		 *  We want to know the total length (formated area and strings)
59		 *  before decoding to make sure we won't run off the table in
60		 *  dmi_decode or dmi_string
61		 */
62		data += dm->length;
63		while ((data - buf < len - 1) && (data[0] || data[1]))
64			data++;
65		if (data - buf < len - 1)
66			decode(dm);
67		data += 2;
68		i++;
69	}
70	dmi_iounmap(buf, len);
71	return 0;
72}
73
74static int __init dmi_checksum(u8 *buf)
75{
76	u8 sum = 0;
77	int a;
78
79	for (a = 0; a < 15; a++)
80		sum += buf[a];
81
82	return sum == 0;
83}
84
85static char *dmi_ident[DMI_STRING_MAX];
86static LIST_HEAD(dmi_devices);
87
88/*
89 *	Save a DMI string
90 */
91static void __init dmi_save_ident(struct dmi_header *dm, int slot, int string)
92{
93	char *p, *d = (char*) dm;
94
95	if (dmi_ident[slot])
96		return;
97
98	p = dmi_string(dm, d[string]);
99	if (p == NULL)
100		return;
101
102	dmi_ident[slot] = p;
103}
104
105static void __init dmi_save_devices(struct dmi_header *dm)
106{
107	int i, count = (dm->length - sizeof(struct dmi_header)) / 2;
108	struct dmi_device *dev;
109
110	for (i = 0; i < count; i++) {
111		char *d = (char *)(dm + 1) + (i * 2);
112
113		/* Skip disabled device */
114		if ((*d & 0x80) == 0)
115			continue;
116
117		dev = dmi_alloc(sizeof(*dev));
118		if (!dev) {
119			printk(KERN_ERR "dmi_save_devices: out of memory.\n");
120			break;
121		}
122
123		dev->type = *d++ & 0x7f;
124		dev->name = dmi_string(dm, *d);
125		dev->device_data = NULL;
126		list_add(&dev->list, &dmi_devices);
127	}
128}
129
130static void __init dmi_save_oem_strings_devices(struct dmi_header *dm)
131{
132	int i, count = *(u8 *)(dm + 1);
133	struct dmi_device *dev;
134
135	for (i = 1; i <= count; i++) {
136		dev = dmi_alloc(sizeof(*dev));
137		if (!dev) {
138			printk(KERN_ERR
139			   "dmi_save_oem_strings_devices: out of memory.\n");
140			break;
141		}
142
143		dev->type = DMI_DEV_TYPE_OEM_STRING;
144		dev->name = dmi_string(dm, i);
145		dev->device_data = NULL;
146
147		list_add(&dev->list, &dmi_devices);
148	}
149}
150
151static void __init dmi_save_ipmi_device(struct dmi_header *dm)
152{
153	struct dmi_device *dev;
154	void * data;
155
156	data = dmi_alloc(dm->length);
157	if (data == NULL) {
158		printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n");
159		return;
160	}
161
162	memcpy(data, dm, dm->length);
163
164	dev = dmi_alloc(sizeof(*dev));
165	if (!dev) {
166		printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n");
167		return;
168	}
169
170	dev->type = DMI_DEV_TYPE_IPMI;
171	dev->name = "IPMI controller";
172	dev->device_data = data;
173
174	list_add(&dev->list, &dmi_devices);
175}
176
177/*
178 *	Process a DMI table entry. Right now all we care about are the BIOS
179 *	and machine entries. For 2.5 we should pull the smbus controller info
180 *	out of here.
181 */
182static void __init dmi_decode(struct dmi_header *dm)
183{
184	switch(dm->type) {
185	case 0:		/* BIOS Information */
186		dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
187		dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
188		dmi_save_ident(dm, DMI_BIOS_DATE, 8);
189		break;
190	case 1:		/* System Information */
191		dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
192		dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
193		dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
194		dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
195		break;
196	case 2:		/* Base Board Information */
197		dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
198		dmi_save_ident(dm, DMI_BOARD_NAME, 5);
199		dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
200		break;
201	case 10:	/* Onboard Devices Information */
202		dmi_save_devices(dm);
203		break;
204	case 11:	/* OEM Strings */
205		dmi_save_oem_strings_devices(dm);
206		break;
207	case 38:	/* IPMI Device Information */
208		dmi_save_ipmi_device(dm);
209	}
210}
211
212static int __init dmi_present(char __iomem *p)
213{
214	u8 buf[15];
215	memcpy_fromio(buf, p, 15);
216	if ((memcmp(buf, "_DMI_", 5) == 0) && dmi_checksum(buf)) {
217		u16 num = (buf[13] << 8) | buf[12];
218		u16 len = (buf[7] << 8) | buf[6];
219		u32 base = (buf[11] << 24) | (buf[10] << 16) |
220			(buf[9] << 8) | buf[8];
221
222		/*
223		 * DMI version 0.0 means that the real version is taken from
224		 * the SMBIOS version, which we don't know at this point.
225		 */
226		if (buf[14] != 0)
227			printk(KERN_INFO "DMI %d.%d present.\n",
228			       buf[14] >> 4, buf[14] & 0xF);
229		else
230			printk(KERN_INFO "DMI present.\n");
231		if (dmi_table(base,len, num, dmi_decode) == 0)
232			return 0;
233	}
234	return 1;
235}
236
237void __init dmi_scan_machine(void)
238{
239	char __iomem *p, *q;
240	int rc;
241
242	if (efi_enabled) {
243		if (efi.smbios == EFI_INVALID_TABLE_ADDR)
244			goto out;
245
246               /* This is called as a core_initcall() because it isn't
247                * needed during early boot.  This also means we can
248                * iounmap the space when we're done with it.
249		*/
250		p = dmi_ioremap(efi.smbios, 32);
251		if (p == NULL)
252			goto out;
253
254		rc = dmi_present(p + 0x10); /* offset of _DMI_ string */
255		dmi_iounmap(p, 32);
256		if (!rc)
257			return;
258	}
259	else {
260		/*
261		 * no iounmap() for that ioremap(); it would be a no-op, but
262		 * it's so early in setup that sucker gets confused into doing
263		 * what it shouldn't if we actually call it.
264		 */
265		p = dmi_ioremap(0xF0000, 0x10000);
266		if (p == NULL)
267			goto out;
268
269		for (q = p; q < p + 0x10000; q += 16) {
270			rc = dmi_present(q);
271			if (!rc)
272				return;
273		}
274	}
275 out:	printk(KERN_INFO "DMI not present or invalid.\n");
276}
277
278/**
279 *	dmi_check_system - check system DMI data
280 *	@list: array of dmi_system_id structures to match against
281 *		All non-null elements of the list must match
282 *		their slot's (field index's) data (i.e., each
283 *		list string must be a substring of the specified
284 *		DMI slot's string data) to be considered a
285 *		successful match.
286 *
287 *	Walk the blacklist table running matching functions until someone
288 *	returns non zero or we hit the end. Callback function is called for
289 *	each successful match. Returns the number of matches.
290 */
291int dmi_check_system(struct dmi_system_id *list)
292{
293	int i, count = 0;
294	struct dmi_system_id *d = list;
295
296	while (d->ident) {
297		for (i = 0; i < ARRAY_SIZE(d->matches); i++) {
298			int s = d->matches[i].slot;
299			if (s == DMI_NONE)
300				continue;
301			if (dmi_ident[s] && strstr(dmi_ident[s], d->matches[i].substr))
302				continue;
303			/* No match */
304			goto fail;
305		}
306		count++;
307		if (d->callback && d->callback(d))
308			break;
309fail:		d++;
310	}
311
312	return count;
313}
314EXPORT_SYMBOL(dmi_check_system);
315
316/**
317 *	dmi_get_system_info - return DMI data value
318 *	@field: data index (see enum dmi_field)
319 *
320 *	Returns one DMI data value, can be used to perform
321 *	complex DMI data checks.
322 */
323char *dmi_get_system_info(int field)
324{
325	return dmi_ident[field];
326}
327EXPORT_SYMBOL(dmi_get_system_info);
328
329
330/**
331 *	dmi_name_in_vendors - Check if string is anywhere in the DMI vendor information.
332 *	@str: 	Case sensitive Name
333 */
334int dmi_name_in_vendors(char *str)
335{
336	static int fields[] = { DMI_BIOS_VENDOR, DMI_BIOS_VERSION, DMI_SYS_VENDOR,
337				DMI_PRODUCT_NAME, DMI_PRODUCT_VERSION, DMI_BOARD_VENDOR,
338				DMI_BOARD_NAME, DMI_BOARD_VERSION, DMI_NONE };
339	int i;
340	for (i = 0; fields[i] != DMI_NONE; i++) {
341		int f = fields[i];
342		if (dmi_ident[f] && strstr(dmi_ident[f], str))
343			return 1;
344	}
345	return 0;
346}
347EXPORT_SYMBOL(dmi_name_in_vendors);
348
349/**
350 *	dmi_find_device - find onboard device by type/name
351 *	@type: device type or %DMI_DEV_TYPE_ANY to match all device types
352 *	@name: device name string or %NULL to match all
353 *	@from: previous device found in search, or %NULL for new search.
354 *
355 *	Iterates through the list of known onboard devices. If a device is
356 *	found with a matching @vendor and @device, a pointer to its device
357 *	structure is returned.  Otherwise, %NULL is returned.
358 *	A new search is initiated by passing %NULL as the @from argument.
359 *	If @from is not %NULL, searches continue from next device.
360 */
361struct dmi_device * dmi_find_device(int type, const char *name,
362				    struct dmi_device *from)
363{
364	struct list_head *d, *head = from ? &from->list : &dmi_devices;
365
366	for(d = head->next; d != &dmi_devices; d = d->next) {
367		struct dmi_device *dev = list_entry(d, struct dmi_device, list);
368
369		if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) &&
370		    ((name == NULL) || (strcmp(dev->name, name) == 0)))
371			return dev;
372	}
373
374	return NULL;
375}
376EXPORT_SYMBOL(dmi_find_device);
377
378/**
379 *	dmi_get_year - Return year of a DMI date
380 *	@field:	data index (like dmi_get_system_info)
381 *
382 *	Returns -1 when the field doesn't exist. 0 when it is broken.
383 */
384int dmi_get_year(int field)
385{
386	int year;
387	char *s = dmi_get_system_info(field);
388
389	if (!s)
390		return -1;
391	if (*s == '\0')
392		return 0;
393	s = strrchr(s, '/');
394	if (!s)
395		return 0;
396
397	s += 1;
398	year = simple_strtoul(s, NULL, 0);
399	if (year && year < 100) {	/* 2-digit year */
400		year += 1900;
401		if (year < 1996)	/* no dates < spec 1.0 */
402			year += 100;
403	}
404
405	return year;
406}
407