1/*
2 * Cryptographic API.
3 *
4 * Support for VIA PadLock hardware crypto engine.
5 *
6 * Copyright (c) 2004  Michal Ludvig <michal@logix.cz>
7 *
8 * Key expansion routine taken from crypto/aes.c
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 *
15 * ---------------------------------------------------------------------------
16 * Copyright (c) 2002, Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK.
17 * All rights reserved.
18 *
19 * LICENSE TERMS
20 *
21 * The free distribution and use of this software in both source and binary
22 * form is allowed (with or without changes) provided that:
23 *
24 *   1. distributions of this source code include the above copyright
25 *      notice, this list of conditions and the following disclaimer;
26 *
27 *   2. distributions in binary form include the above copyright
28 *      notice, this list of conditions and the following disclaimer
29 *      in the documentation and/or other associated materials;
30 *
31 *   3. the copyright holder's name is not used to endorse products
32 *      built using this software without specific written permission.
33 *
34 * ALTERNATIVELY, provided that this notice is retained in full, this product
35 * may be distributed under the terms of the GNU General Public License (GPL),
36 * in which case the provisions of the GPL apply INSTEAD OF those given above.
37 *
38 * DISCLAIMER
39 *
40 * This software is provided 'as is' with no explicit or implied warranties
41 * in respect of its properties, including, but not limited to, correctness
42 * and/or fitness for purpose.
43 * ---------------------------------------------------------------------------
44 */
45
46#include <crypto/algapi.h>
47#include <linux/module.h>
48#include <linux/init.h>
49#include <linux/types.h>
50#include <linux/errno.h>
51#include <linux/interrupt.h>
52#include <linux/kernel.h>
53#include <asm/byteorder.h>
54#include "padlock.h"
55
56#define AES_MIN_KEY_SIZE	16	/* in uint8_t units */
57#define AES_MAX_KEY_SIZE	32	/* ditto */
58#define AES_BLOCK_SIZE		16	/* ditto */
59#define AES_EXTENDED_KEY_SIZE	64	/* in uint32_t units */
60#define AES_EXTENDED_KEY_SIZE_B	(AES_EXTENDED_KEY_SIZE * sizeof(uint32_t))
61
62/* Control word. */
63struct cword {
64	unsigned int __attribute__ ((__packed__))
65		rounds:4,
66		algo:3,
67		keygen:1,
68		interm:1,
69		encdec:1,
70		ksize:2;
71} __attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
72
73/* Whenever making any changes to the following
74 * structure *make sure* you keep E, d_data
75 * and cword aligned on 16 Bytes boundaries!!! */
76struct aes_ctx {
77	struct {
78		struct cword encrypt;
79		struct cword decrypt;
80	} cword;
81	u32 *D;
82	int key_length;
83	u32 E[AES_EXTENDED_KEY_SIZE]
84		__attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
85	u32 d_data[AES_EXTENDED_KEY_SIZE]
86		__attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
87};
88
89/* ====== Key management routines ====== */
90
91static inline uint32_t
92generic_rotr32 (const uint32_t x, const unsigned bits)
93{
94	const unsigned n = bits % 32;
95	return (x >> n) | (x << (32 - n));
96}
97
98static inline uint32_t
99generic_rotl32 (const uint32_t x, const unsigned bits)
100{
101	const unsigned n = bits % 32;
102	return (x << n) | (x >> (32 - n));
103}
104
105#define rotl generic_rotl32
106#define rotr generic_rotr32
107
108/*
109 * #define byte(x, nr) ((unsigned char)((x) >> (nr*8)))
110 */
111static inline uint8_t
112byte(const uint32_t x, const unsigned n)
113{
114	return x >> (n << 3);
115}
116
117#define E_KEY ctx->E
118#define D_KEY ctx->D
119
120static uint8_t pow_tab[256];
121static uint8_t log_tab[256];
122static uint8_t sbx_tab[256];
123static uint8_t isb_tab[256];
124static uint32_t rco_tab[10];
125static uint32_t ft_tab[4][256];
126static uint32_t it_tab[4][256];
127
128static uint32_t fl_tab[4][256];
129static uint32_t il_tab[4][256];
130
131static inline uint8_t
132f_mult (uint8_t a, uint8_t b)
133{
134	uint8_t aa = log_tab[a], cc = aa + log_tab[b];
135
136	return pow_tab[cc + (cc < aa ? 1 : 0)];
137}
138
139#define ff_mult(a,b)    (a && b ? f_mult(a, b) : 0)
140
141#define f_rn(bo, bi, n, k)					\
142    bo[n] =  ft_tab[0][byte(bi[n],0)] ^				\
143             ft_tab[1][byte(bi[(n + 1) & 3],1)] ^		\
144             ft_tab[2][byte(bi[(n + 2) & 3],2)] ^		\
145             ft_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
146
147#define i_rn(bo, bi, n, k)					\
148    bo[n] =  it_tab[0][byte(bi[n],0)] ^				\
149             it_tab[1][byte(bi[(n + 3) & 3],1)] ^		\
150             it_tab[2][byte(bi[(n + 2) & 3],2)] ^		\
151             it_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
152
153#define ls_box(x)				\
154    ( fl_tab[0][byte(x, 0)] ^			\
155      fl_tab[1][byte(x, 1)] ^			\
156      fl_tab[2][byte(x, 2)] ^			\
157      fl_tab[3][byte(x, 3)] )
158
159#define f_rl(bo, bi, n, k)					\
160    bo[n] =  fl_tab[0][byte(bi[n],0)] ^				\
161             fl_tab[1][byte(bi[(n + 1) & 3],1)] ^		\
162             fl_tab[2][byte(bi[(n + 2) & 3],2)] ^		\
163             fl_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
164
165#define i_rl(bo, bi, n, k)					\
166    bo[n] =  il_tab[0][byte(bi[n],0)] ^				\
167             il_tab[1][byte(bi[(n + 3) & 3],1)] ^		\
168             il_tab[2][byte(bi[(n + 2) & 3],2)] ^		\
169             il_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
170
171static void
172gen_tabs (void)
173{
174	uint32_t i, t;
175	uint8_t p, q;
176
177	/* log and power tables for GF(2**8) finite field with
178	   0x011b as modular polynomial - the simplest prmitive
179	   root is 0x03, used here to generate the tables */
180
181	for (i = 0, p = 1; i < 256; ++i) {
182		pow_tab[i] = (uint8_t) p;
183		log_tab[p] = (uint8_t) i;
184
185		p ^= (p << 1) ^ (p & 0x80 ? 0x01b : 0);
186	}
187
188	log_tab[1] = 0;
189
190	for (i = 0, p = 1; i < 10; ++i) {
191		rco_tab[i] = p;
192
193		p = (p << 1) ^ (p & 0x80 ? 0x01b : 0);
194	}
195
196	for (i = 0; i < 256; ++i) {
197		p = (i ? pow_tab[255 - log_tab[i]] : 0);
198		q = ((p >> 7) | (p << 1)) ^ ((p >> 6) | (p << 2));
199		p ^= 0x63 ^ q ^ ((q >> 6) | (q << 2));
200		sbx_tab[i] = p;
201		isb_tab[p] = (uint8_t) i;
202	}
203
204	for (i = 0; i < 256; ++i) {
205		p = sbx_tab[i];
206
207		t = p;
208		fl_tab[0][i] = t;
209		fl_tab[1][i] = rotl (t, 8);
210		fl_tab[2][i] = rotl (t, 16);
211		fl_tab[3][i] = rotl (t, 24);
212
213		t = ((uint32_t) ff_mult (2, p)) |
214		    ((uint32_t) p << 8) |
215		    ((uint32_t) p << 16) | ((uint32_t) ff_mult (3, p) << 24);
216
217		ft_tab[0][i] = t;
218		ft_tab[1][i] = rotl (t, 8);
219		ft_tab[2][i] = rotl (t, 16);
220		ft_tab[3][i] = rotl (t, 24);
221
222		p = isb_tab[i];
223
224		t = p;
225		il_tab[0][i] = t;
226		il_tab[1][i] = rotl (t, 8);
227		il_tab[2][i] = rotl (t, 16);
228		il_tab[3][i] = rotl (t, 24);
229
230		t = ((uint32_t) ff_mult (14, p)) |
231		    ((uint32_t) ff_mult (9, p) << 8) |
232		    ((uint32_t) ff_mult (13, p) << 16) |
233		    ((uint32_t) ff_mult (11, p) << 24);
234
235		it_tab[0][i] = t;
236		it_tab[1][i] = rotl (t, 8);
237		it_tab[2][i] = rotl (t, 16);
238		it_tab[3][i] = rotl (t, 24);
239	}
240}
241
242#define star_x(x) (((x) & 0x7f7f7f7f) << 1) ^ ((((x) & 0x80808080) >> 7) * 0x1b)
243
244#define imix_col(y,x)       \
245    u   = star_x(x);        \
246    v   = star_x(u);        \
247    w   = star_x(v);        \
248    t   = w ^ (x);          \
249   (y)  = u ^ v ^ w;        \
250   (y) ^= rotr(u ^ t,  8) ^ \
251          rotr(v ^ t, 16) ^ \
252          rotr(t,24)
253
254/* initialise the key schedule from the user supplied key */
255
256#define loop4(i)                                    \
257{   t = rotr(t,  8); t = ls_box(t) ^ rco_tab[i];    \
258    t ^= E_KEY[4 * i];     E_KEY[4 * i + 4] = t;    \
259    t ^= E_KEY[4 * i + 1]; E_KEY[4 * i + 5] = t;    \
260    t ^= E_KEY[4 * i + 2]; E_KEY[4 * i + 6] = t;    \
261    t ^= E_KEY[4 * i + 3]; E_KEY[4 * i + 7] = t;    \
262}
263
264#define loop6(i)                                    \
265{   t = rotr(t,  8); t = ls_box(t) ^ rco_tab[i];    \
266    t ^= E_KEY[6 * i];     E_KEY[6 * i + 6] = t;    \
267    t ^= E_KEY[6 * i + 1]; E_KEY[6 * i + 7] = t;    \
268    t ^= E_KEY[6 * i + 2]; E_KEY[6 * i + 8] = t;    \
269    t ^= E_KEY[6 * i + 3]; E_KEY[6 * i + 9] = t;    \
270    t ^= E_KEY[6 * i + 4]; E_KEY[6 * i + 10] = t;   \
271    t ^= E_KEY[6 * i + 5]; E_KEY[6 * i + 11] = t;   \
272}
273
274#define loop8(i)                                    \
275{   t = rotr(t,  8); ; t = ls_box(t) ^ rco_tab[i];  \
276    t ^= E_KEY[8 * i];     E_KEY[8 * i + 8] = t;    \
277    t ^= E_KEY[8 * i + 1]; E_KEY[8 * i + 9] = t;    \
278    t ^= E_KEY[8 * i + 2]; E_KEY[8 * i + 10] = t;   \
279    t ^= E_KEY[8 * i + 3]; E_KEY[8 * i + 11] = t;   \
280    t  = E_KEY[8 * i + 4] ^ ls_box(t);    \
281    E_KEY[8 * i + 12] = t;                \
282    t ^= E_KEY[8 * i + 5]; E_KEY[8 * i + 13] = t;   \
283    t ^= E_KEY[8 * i + 6]; E_KEY[8 * i + 14] = t;   \
284    t ^= E_KEY[8 * i + 7]; E_KEY[8 * i + 15] = t;   \
285}
286
287/* Tells whether the ACE is capable to generate
288   the extended key for a given key_len. */
289static inline int
290aes_hw_extkey_available(uint8_t key_len)
291{
292	/* TODO: We should check the actual CPU model/stepping
293	         as it's possible that the capability will be
294	         added in the next CPU revisions. */
295	if (key_len == 16)
296		return 1;
297	return 0;
298}
299
300static inline struct aes_ctx *aes_ctx_common(void *ctx)
301{
302	unsigned long addr = (unsigned long)ctx;
303	unsigned long align = PADLOCK_ALIGNMENT;
304
305	if (align <= crypto_tfm_ctx_alignment())
306		align = 1;
307	return (struct aes_ctx *)ALIGN(addr, align);
308}
309
310static inline struct aes_ctx *aes_ctx(struct crypto_tfm *tfm)
311{
312	return aes_ctx_common(crypto_tfm_ctx(tfm));
313}
314
315static inline struct aes_ctx *blk_aes_ctx(struct crypto_blkcipher *tfm)
316{
317	return aes_ctx_common(crypto_blkcipher_ctx(tfm));
318}
319
320static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
321		       unsigned int key_len)
322{
323	struct aes_ctx *ctx = aes_ctx(tfm);
324	const __le32 *key = (const __le32 *)in_key;
325	u32 *flags = &tfm->crt_flags;
326	uint32_t i, t, u, v, w;
327	uint32_t P[AES_EXTENDED_KEY_SIZE];
328	uint32_t rounds;
329
330	if (key_len % 8) {
331		*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
332		return -EINVAL;
333	}
334
335	ctx->key_length = key_len;
336
337	/*
338	 * If the hardware is capable of generating the extended key
339	 * itself we must supply the plain key for both encryption
340	 * and decryption.
341	 */
342	ctx->D = ctx->E;
343
344	E_KEY[0] = le32_to_cpu(key[0]);
345	E_KEY[1] = le32_to_cpu(key[1]);
346	E_KEY[2] = le32_to_cpu(key[2]);
347	E_KEY[3] = le32_to_cpu(key[3]);
348
349	/* Prepare control words. */
350	memset(&ctx->cword, 0, sizeof(ctx->cword));
351
352	ctx->cword.decrypt.encdec = 1;
353	ctx->cword.encrypt.rounds = 10 + (key_len - 16) / 4;
354	ctx->cword.decrypt.rounds = ctx->cword.encrypt.rounds;
355	ctx->cword.encrypt.ksize = (key_len - 16) / 8;
356	ctx->cword.decrypt.ksize = ctx->cword.encrypt.ksize;
357
358	/* Don't generate extended keys if the hardware can do it. */
359	if (aes_hw_extkey_available(key_len))
360		return 0;
361
362	ctx->D = ctx->d_data;
363	ctx->cword.encrypt.keygen = 1;
364	ctx->cword.decrypt.keygen = 1;
365
366	switch (key_len) {
367	case 16:
368		t = E_KEY[3];
369		for (i = 0; i < 10; ++i)
370			loop4 (i);
371		break;
372
373	case 24:
374		E_KEY[4] = le32_to_cpu(key[4]);
375		t = E_KEY[5] = le32_to_cpu(key[5]);
376		for (i = 0; i < 8; ++i)
377			loop6 (i);
378		break;
379
380	case 32:
381		E_KEY[4] = le32_to_cpu(key[4]);
382		E_KEY[5] = le32_to_cpu(key[5]);
383		E_KEY[6] = le32_to_cpu(key[6]);
384		t = E_KEY[7] = le32_to_cpu(key[7]);
385		for (i = 0; i < 7; ++i)
386			loop8 (i);
387		break;
388	}
389
390	D_KEY[0] = E_KEY[0];
391	D_KEY[1] = E_KEY[1];
392	D_KEY[2] = E_KEY[2];
393	D_KEY[3] = E_KEY[3];
394
395	for (i = 4; i < key_len + 24; ++i) {
396		imix_col (D_KEY[i], E_KEY[i]);
397	}
398
399	/* PadLock needs a different format of the decryption key. */
400	rounds = 10 + (key_len - 16) / 4;
401
402	for (i = 0; i < rounds; i++) {
403		P[((i + 1) * 4) + 0] = D_KEY[((rounds - i - 1) * 4) + 0];
404		P[((i + 1) * 4) + 1] = D_KEY[((rounds - i - 1) * 4) + 1];
405		P[((i + 1) * 4) + 2] = D_KEY[((rounds - i - 1) * 4) + 2];
406		P[((i + 1) * 4) + 3] = D_KEY[((rounds - i - 1) * 4) + 3];
407	}
408
409	P[0] = E_KEY[(rounds * 4) + 0];
410	P[1] = E_KEY[(rounds * 4) + 1];
411	P[2] = E_KEY[(rounds * 4) + 2];
412	P[3] = E_KEY[(rounds * 4) + 3];
413
414	memcpy(D_KEY, P, AES_EXTENDED_KEY_SIZE_B);
415
416	return 0;
417}
418
419/* ====== Encryption/decryption routines ====== */
420
421/* These are the real call to PadLock. */
422static inline void padlock_xcrypt_ecb(const u8 *input, u8 *output, void *key,
423				      void *control_word, u32 count)
424{
425	asm volatile ("pushfl; popfl");		/* enforce key reload. */
426	asm volatile (".byte 0xf3,0x0f,0xa7,0xc8"	/* rep xcryptecb */
427		      : "+S"(input), "+D"(output)
428		      : "d"(control_word), "b"(key), "c"(count));
429}
430
431static inline u8 *padlock_xcrypt_cbc(const u8 *input, u8 *output, void *key,
432				     u8 *iv, void *control_word, u32 count)
433{
434	/* Enforce key reload. */
435	asm volatile ("pushfl; popfl");
436	/* rep xcryptcbc */
437	asm volatile (".byte 0xf3,0x0f,0xa7,0xd0"
438		      : "+S" (input), "+D" (output), "+a" (iv)
439		      : "d" (control_word), "b" (key), "c" (count));
440	return iv;
441}
442
443static void aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
444{
445	struct aes_ctx *ctx = aes_ctx(tfm);
446	padlock_xcrypt_ecb(in, out, ctx->E, &ctx->cword.encrypt, 1);
447}
448
449static void aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
450{
451	struct aes_ctx *ctx = aes_ctx(tfm);
452	padlock_xcrypt_ecb(in, out, ctx->D, &ctx->cword.decrypt, 1);
453}
454
455static struct crypto_alg aes_alg = {
456	.cra_name		=	"aes",
457	.cra_driver_name	=	"aes-padlock",
458	.cra_priority		=	PADLOCK_CRA_PRIORITY,
459	.cra_flags		=	CRYPTO_ALG_TYPE_CIPHER,
460	.cra_blocksize		=	AES_BLOCK_SIZE,
461	.cra_ctxsize		=	sizeof(struct aes_ctx),
462	.cra_alignmask		=	PADLOCK_ALIGNMENT - 1,
463	.cra_module		=	THIS_MODULE,
464	.cra_list		=	LIST_HEAD_INIT(aes_alg.cra_list),
465	.cra_u			=	{
466		.cipher = {
467			.cia_min_keysize	=	AES_MIN_KEY_SIZE,
468			.cia_max_keysize	=	AES_MAX_KEY_SIZE,
469			.cia_setkey	   	= 	aes_set_key,
470			.cia_encrypt	 	=	aes_encrypt,
471			.cia_decrypt	  	=	aes_decrypt,
472		}
473	}
474};
475
476static int ecb_aes_encrypt(struct blkcipher_desc *desc,
477			   struct scatterlist *dst, struct scatterlist *src,
478			   unsigned int nbytes)
479{
480	struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
481	struct blkcipher_walk walk;
482	int err;
483
484	blkcipher_walk_init(&walk, dst, src, nbytes);
485	err = blkcipher_walk_virt(desc, &walk);
486
487	while ((nbytes = walk.nbytes)) {
488		padlock_xcrypt_ecb(walk.src.virt.addr, walk.dst.virt.addr,
489				   ctx->E, &ctx->cword.encrypt,
490				   nbytes / AES_BLOCK_SIZE);
491		nbytes &= AES_BLOCK_SIZE - 1;
492		err = blkcipher_walk_done(desc, &walk, nbytes);
493	}
494
495	return err;
496}
497
498static int ecb_aes_decrypt(struct blkcipher_desc *desc,
499			   struct scatterlist *dst, struct scatterlist *src,
500			   unsigned int nbytes)
501{
502	struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
503	struct blkcipher_walk walk;
504	int err;
505
506	blkcipher_walk_init(&walk, dst, src, nbytes);
507	err = blkcipher_walk_virt(desc, &walk);
508
509	while ((nbytes = walk.nbytes)) {
510		padlock_xcrypt_ecb(walk.src.virt.addr, walk.dst.virt.addr,
511				   ctx->D, &ctx->cword.decrypt,
512				   nbytes / AES_BLOCK_SIZE);
513		nbytes &= AES_BLOCK_SIZE - 1;
514		err = blkcipher_walk_done(desc, &walk, nbytes);
515	}
516
517	return err;
518}
519
520static struct crypto_alg ecb_aes_alg = {
521	.cra_name		=	"ecb(aes)",
522	.cra_driver_name	=	"ecb-aes-padlock",
523	.cra_priority		=	PADLOCK_COMPOSITE_PRIORITY,
524	.cra_flags		=	CRYPTO_ALG_TYPE_BLKCIPHER,
525	.cra_blocksize		=	AES_BLOCK_SIZE,
526	.cra_ctxsize		=	sizeof(struct aes_ctx),
527	.cra_alignmask		=	PADLOCK_ALIGNMENT - 1,
528	.cra_type		=	&crypto_blkcipher_type,
529	.cra_module		=	THIS_MODULE,
530	.cra_list		=	LIST_HEAD_INIT(ecb_aes_alg.cra_list),
531	.cra_u			=	{
532		.blkcipher = {
533			.min_keysize		=	AES_MIN_KEY_SIZE,
534			.max_keysize		=	AES_MAX_KEY_SIZE,
535			.setkey	   		= 	aes_set_key,
536			.encrypt		=	ecb_aes_encrypt,
537			.decrypt		=	ecb_aes_decrypt,
538		}
539	}
540};
541
542static int cbc_aes_encrypt(struct blkcipher_desc *desc,
543			   struct scatterlist *dst, struct scatterlist *src,
544			   unsigned int nbytes)
545{
546	struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
547	struct blkcipher_walk walk;
548	int err;
549
550	blkcipher_walk_init(&walk, dst, src, nbytes);
551	err = blkcipher_walk_virt(desc, &walk);
552
553	while ((nbytes = walk.nbytes)) {
554		u8 *iv = padlock_xcrypt_cbc(walk.src.virt.addr,
555					    walk.dst.virt.addr, ctx->E,
556					    walk.iv, &ctx->cword.encrypt,
557					    nbytes / AES_BLOCK_SIZE);
558		memcpy(walk.iv, iv, AES_BLOCK_SIZE);
559		nbytes &= AES_BLOCK_SIZE - 1;
560		err = blkcipher_walk_done(desc, &walk, nbytes);
561	}
562
563	return err;
564}
565
566static int cbc_aes_decrypt(struct blkcipher_desc *desc,
567			   struct scatterlist *dst, struct scatterlist *src,
568			   unsigned int nbytes)
569{
570	struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
571	struct blkcipher_walk walk;
572	int err;
573
574	blkcipher_walk_init(&walk, dst, src, nbytes);
575	err = blkcipher_walk_virt(desc, &walk);
576
577	while ((nbytes = walk.nbytes)) {
578		padlock_xcrypt_cbc(walk.src.virt.addr, walk.dst.virt.addr,
579				   ctx->D, walk.iv, &ctx->cword.decrypt,
580				   nbytes / AES_BLOCK_SIZE);
581		nbytes &= AES_BLOCK_SIZE - 1;
582		err = blkcipher_walk_done(desc, &walk, nbytes);
583	}
584
585	return err;
586}
587
588static struct crypto_alg cbc_aes_alg = {
589	.cra_name		=	"cbc(aes)",
590	.cra_driver_name	=	"cbc-aes-padlock",
591	.cra_priority		=	PADLOCK_COMPOSITE_PRIORITY,
592	.cra_flags		=	CRYPTO_ALG_TYPE_BLKCIPHER,
593	.cra_blocksize		=	AES_BLOCK_SIZE,
594	.cra_ctxsize		=	sizeof(struct aes_ctx),
595	.cra_alignmask		=	PADLOCK_ALIGNMENT - 1,
596	.cra_type		=	&crypto_blkcipher_type,
597	.cra_module		=	THIS_MODULE,
598	.cra_list		=	LIST_HEAD_INIT(cbc_aes_alg.cra_list),
599	.cra_u			=	{
600		.blkcipher = {
601			.min_keysize		=	AES_MIN_KEY_SIZE,
602			.max_keysize		=	AES_MAX_KEY_SIZE,
603			.ivsize			=	AES_BLOCK_SIZE,
604			.setkey	   		= 	aes_set_key,
605			.encrypt		=	cbc_aes_encrypt,
606			.decrypt		=	cbc_aes_decrypt,
607		}
608	}
609};
610
611static int __init padlock_init(void)
612{
613	int ret;
614
615	if (!cpu_has_xcrypt) {
616		printk(KERN_ERR PFX "VIA PadLock not detected.\n");
617		return -ENODEV;
618	}
619
620	if (!cpu_has_xcrypt_enabled) {
621		printk(KERN_ERR PFX "VIA PadLock detected, but not enabled. Hmm, strange...\n");
622		return -ENODEV;
623	}
624
625	gen_tabs();
626	if ((ret = crypto_register_alg(&aes_alg)))
627		goto aes_err;
628
629	if ((ret = crypto_register_alg(&ecb_aes_alg)))
630		goto ecb_aes_err;
631
632	if ((ret = crypto_register_alg(&cbc_aes_alg)))
633		goto cbc_aes_err;
634
635	printk(KERN_NOTICE PFX "Using VIA PadLock ACE for AES algorithm.\n");
636
637out:
638	return ret;
639
640cbc_aes_err:
641	crypto_unregister_alg(&ecb_aes_alg);
642ecb_aes_err:
643	crypto_unregister_alg(&aes_alg);
644aes_err:
645	printk(KERN_ERR PFX "VIA PadLock AES initialization failed.\n");
646	goto out;
647}
648
649static void __exit padlock_fini(void)
650{
651	crypto_unregister_alg(&cbc_aes_alg);
652	crypto_unregister_alg(&ecb_aes_alg);
653	crypto_unregister_alg(&aes_alg);
654}
655
656module_init(padlock_init);
657module_exit(padlock_fini);
658
659MODULE_DESCRIPTION("VIA PadLock AES algorithm support");
660MODULE_LICENSE("GPL");
661MODULE_AUTHOR("Michal Ludvig");
662
663MODULE_ALIAS("aes-padlock");
664