1/*
2** -----------------------------------------------------------------------------
3**
4**  Perle Specialix driver for Linux
5**  Ported from existing RIO Driver for SCO sources.
6 *
7 *  (C) 1990 - 2000 Specialix International Ltd., Byfleet, Surrey, UK.
8 *
9 *      This program is free software; you can redistribute it and/or modify
10 *      it under the terms of the GNU General Public License as published by
11 *      the Free Software Foundation; either version 2 of the License, or
12 *      (at your option) any later version.
13 *
14 *      This program is distributed in the hope that it will be useful,
15 *      but WITHOUT ANY WARRANTY; without even the implied warranty of
16 *      MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 *      GNU General Public License for more details.
18 *
19 *      You should have received a copy of the GNU General Public License
20 *      along with this program; if not, write to the Free Software
21 *      Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22**
23**	Module		: rioboot.c
24**	SID		: 1.3
25**	Last Modified	: 11/6/98 10:33:36
26**	Retrieved	: 11/6/98 10:33:48
27**
28**  ident @(#)rioboot.c	1.3
29**
30** -----------------------------------------------------------------------------
31*/
32
33#include <linux/module.h>
34#include <linux/slab.h>
35#include <linux/termios.h>
36#include <linux/serial.h>
37#include <linux/vmalloc.h>
38#include <asm/semaphore.h>
39#include <linux/generic_serial.h>
40#include <linux/errno.h>
41#include <linux/interrupt.h>
42#include <linux/delay.h>
43#include <asm/io.h>
44#include <asm/system.h>
45#include <asm/string.h>
46#include <asm/uaccess.h>
47
48
49#include "linux_compat.h"
50#include "rio_linux.h"
51#include "pkt.h"
52#include "daemon.h"
53#include "rio.h"
54#include "riospace.h"
55#include "cmdpkt.h"
56#include "map.h"
57#include "rup.h"
58#include "port.h"
59#include "riodrvr.h"
60#include "rioinfo.h"
61#include "func.h"
62#include "errors.h"
63#include "pci.h"
64
65#include "parmmap.h"
66#include "unixrup.h"
67#include "board.h"
68#include "host.h"
69#include "phb.h"
70#include "link.h"
71#include "cmdblk.h"
72#include "route.h"
73
74static int RIOBootComplete(struct rio_info *p, struct Host *HostP, unsigned int Rup, struct PktCmd __iomem *PktCmdP);
75
76static const unsigned char RIOAtVec2Ctrl[] = {
77	/* 0 */ INTERRUPT_DISABLE,
78	/* 1 */ INTERRUPT_DISABLE,
79	/* 2 */ INTERRUPT_DISABLE,
80	/* 3 */ INTERRUPT_DISABLE,
81	/* 4 */ INTERRUPT_DISABLE,
82	/* 5 */ INTERRUPT_DISABLE,
83	/* 6 */ INTERRUPT_DISABLE,
84	/* 7 */ INTERRUPT_DISABLE,
85	/* 8 */ INTERRUPT_DISABLE,
86	/* 9 */ IRQ_9 | INTERRUPT_ENABLE,
87	/* 10 */ INTERRUPT_DISABLE,
88	/* 11 */ IRQ_11 | INTERRUPT_ENABLE,
89	/* 12 */ IRQ_12 | INTERRUPT_ENABLE,
90	/* 13 */ INTERRUPT_DISABLE,
91	/* 14 */ INTERRUPT_DISABLE,
92	/* 15 */ IRQ_15 | INTERRUPT_ENABLE
93};
94
95/**
96 *	RIOBootCodeRTA		-	Load RTA boot code
97 *	@p: RIO to load
98 *	@rbp: Download descriptor
99 *
100 *	Called when the user process initiates booting of the card firmware.
101 *	Lads the firmware
102 */
103
104int RIOBootCodeRTA(struct rio_info *p, struct DownLoad * rbp)
105{
106	int offset;
107
108	func_enter();
109
110	rio_dprintk(RIO_DEBUG_BOOT, "Data at user address %p\n", rbp->DataP);
111
112	/*
113	 ** Check that we have set asside enough memory for this
114	 */
115	if (rbp->Count > SIXTY_FOUR_K) {
116		rio_dprintk(RIO_DEBUG_BOOT, "RTA Boot Code Too Large!\n");
117		p->RIOError.Error = HOST_FILE_TOO_LARGE;
118		func_exit();
119		return -ENOMEM;
120	}
121
122	if (p->RIOBooting) {
123		rio_dprintk(RIO_DEBUG_BOOT, "RTA Boot Code : BUSY BUSY BUSY!\n");
124		p->RIOError.Error = BOOT_IN_PROGRESS;
125		func_exit();
126		return -EBUSY;
127	}
128
129	/*
130	 ** The data we load in must end on a (RTA_BOOT_DATA_SIZE) byte boundary,
131	 ** so calculate how far we have to move the data up the buffer
132	 ** to achieve this.
133	 */
134	offset = (RTA_BOOT_DATA_SIZE - (rbp->Count % RTA_BOOT_DATA_SIZE)) % RTA_BOOT_DATA_SIZE;
135
136	/*
137	 ** Be clean, and clear the 'unused' portion of the boot buffer,
138	 ** because it will (eventually) be part of the Rta run time environment
139	 ** and so should be zeroed.
140	 */
141	memset(p->RIOBootPackets, 0, offset);
142
143	/*
144	 ** Copy the data from user space into the array
145	 */
146
147	if (copy_from_user(((u8 *)p->RIOBootPackets) + offset, rbp->DataP, rbp->Count)) {
148		rio_dprintk(RIO_DEBUG_BOOT, "Bad data copy from user space\n");
149		p->RIOError.Error = COPYIN_FAILED;
150		func_exit();
151		return -EFAULT;
152	}
153
154	/*
155	 ** Make sure that our copy of the size includes that offset we discussed
156	 ** earlier.
157	 */
158	p->RIONumBootPkts = (rbp->Count + offset) / RTA_BOOT_DATA_SIZE;
159	p->RIOBootCount = rbp->Count;
160
161	func_exit();
162	return 0;
163}
164
165/**
166 *	rio_start_card_running		-	host card start
167 *	@HostP: The RIO to kick off
168 *
169 *	Start a RIO processor unit running. Encapsulates the knowledge
170 *	of the card type.
171 */
172
173void rio_start_card_running(struct Host *HostP)
174{
175	switch (HostP->Type) {
176	case RIO_AT:
177		rio_dprintk(RIO_DEBUG_BOOT, "Start ISA card running\n");
178		writeb(BOOT_FROM_RAM | EXTERNAL_BUS_ON | HostP->Mode | RIOAtVec2Ctrl[HostP->Ivec & 0xF], &HostP->Control);
179		break;
180	case RIO_PCI:
181		/*
182		 ** PCI is much the same as MCA. Everything is once again memory
183		 ** mapped, so we are writing to memory registers instead of io
184		 ** ports.
185		 */
186		rio_dprintk(RIO_DEBUG_BOOT, "Start PCI card running\n");
187		writeb(PCITpBootFromRam | PCITpBusEnable | HostP->Mode, &HostP->Control);
188		break;
189	default:
190		rio_dprintk(RIO_DEBUG_BOOT, "Unknown host type %d\n", HostP->Type);
191		break;
192	}
193	return;
194}
195
196/*
197** Load in the host boot code - load it directly onto all halted hosts
198** of the correct type.
199**
200** Put your rubber pants on before messing with this code - even the magic
201** numbers have trouble understanding what they are doing here.
202*/
203
204int RIOBootCodeHOST(struct rio_info *p, struct DownLoad *rbp)
205{
206	struct Host *HostP;
207	u8 __iomem *Cad;
208	PARM_MAP __iomem *ParmMapP;
209	int RupN;
210	int PortN;
211	unsigned int host;
212	u8 __iomem *StartP;
213	u8 __iomem *DestP;
214	int wait_count;
215	u16 OldParmMap;
216	u16 offset;		/* It is very important that this is a u16 */
217	u8 *DownCode = NULL;
218	unsigned long flags;
219
220	HostP = NULL;		/* Assure the compiler we've initialized it */
221
222
223	/* Walk the hosts */
224	for (host = 0; host < p->RIONumHosts; host++) {
225		rio_dprintk(RIO_DEBUG_BOOT, "Attempt to boot host %d\n", host);
226		HostP = &p->RIOHosts[host];
227
228		rio_dprintk(RIO_DEBUG_BOOT, "Host Type = 0x%x, Mode = 0x%x, IVec = 0x%x\n", HostP->Type, HostP->Mode, HostP->Ivec);
229
230		/* Don't boot hosts already running */
231		if ((HostP->Flags & RUN_STATE) != RC_WAITING) {
232			rio_dprintk(RIO_DEBUG_BOOT, "%s %d already running\n", "Host", host);
233			continue;
234		}
235
236		/*
237		 ** Grab a pointer to the card (ioremapped)
238		 */
239		Cad = HostP->Caddr;
240
241		/*
242		 ** We are going to (try) and load in rbp->Count bytes.
243		 ** The last byte will reside at p->RIOConf.HostLoadBase-1;
244		 ** Therefore, we need to start copying at address
245		 ** (caddr+p->RIOConf.HostLoadBase-rbp->Count)
246		 */
247		StartP = &Cad[p->RIOConf.HostLoadBase - rbp->Count];
248
249		rio_dprintk(RIO_DEBUG_BOOT, "kernel virtual address for host is %p\n", Cad);
250		rio_dprintk(RIO_DEBUG_BOOT, "kernel virtual address for download is %p\n", StartP);
251		rio_dprintk(RIO_DEBUG_BOOT, "host loadbase is 0x%x\n", p->RIOConf.HostLoadBase);
252		rio_dprintk(RIO_DEBUG_BOOT, "size of download is 0x%x\n", rbp->Count);
253
254		/* Make sure it fits */
255		if (p->RIOConf.HostLoadBase < rbp->Count) {
256			rio_dprintk(RIO_DEBUG_BOOT, "Bin too large\n");
257			p->RIOError.Error = HOST_FILE_TOO_LARGE;
258			func_exit();
259			return -EFBIG;
260		}
261		/*
262		 ** Ensure that the host really is stopped.
263		 ** Disable it's external bus & twang its reset line.
264		 */
265		RIOHostReset(HostP->Type, HostP->CardP, HostP->Slot);
266
267		/*
268		 ** Copy the data directly from user space to the SRAM.
269		 ** This ain't going to be none too clever if the download
270		 ** code is bigger than this segment.
271		 */
272		rio_dprintk(RIO_DEBUG_BOOT, "Copy in code\n");
273
274		/* Buffer to local memory as we want to use I/O space and
275		   some cards only do 8 or 16 bit I/O */
276
277		DownCode = vmalloc(rbp->Count);
278		if (!DownCode) {
279			p->RIOError.Error = NOT_ENOUGH_CORE_FOR_PCI_COPY;
280			func_exit();
281			return -ENOMEM;
282		}
283		if (copy_from_user(DownCode, rbp->DataP, rbp->Count)) {
284			kfree(DownCode);
285			p->RIOError.Error = COPYIN_FAILED;
286			func_exit();
287			return -EFAULT;
288		}
289		HostP->Copy(DownCode, StartP, rbp->Count);
290		vfree(DownCode);
291
292		rio_dprintk(RIO_DEBUG_BOOT, "Copy completed\n");
293
294		/*
295		 **                     S T O P !
296		 **
297		 ** Upto this point the code has been fairly rational, and possibly
298		 ** even straight forward. What follows is a pile of crud that will
299		 ** magically turn into six bytes of transputer assembler. Normally
300		 ** you would expect an array or something, but, being me, I have
301		 ** chosen [been told] to use a technique whereby the startup code
302		 ** will be correct if we change the loadbase for the code. Which
303		 ** brings us onto another issue - the loadbase is the *end* of the
304		 ** code, not the start.
305		 **
306		 ** If I were you I wouldn't start from here.
307		 */
308
309		/*
310		 ** We now need to insert a short boot section into
311		 ** the memory at the end of Sram2. This is normally (de)composed
312		 ** of the last eight bytes of the download code. The
313		 ** download has been assembled/compiled to expect to be
314		 ** loaded from 0x7FFF downwards. We have loaded it
315		 ** at some other address. The startup code goes into the small
316		 ** ram window at Sram2, in the last 8 bytes, which are really
317		 ** at addresses 0x7FF8-0x7FFF.
318		 **
319		 ** If the loadbase is, say, 0x7C00, then we need to branch to
320		 ** address 0x7BFE to run the host.bin startup code. We assemble
321		 ** this jump manually.
322		 **
323		 ** The two byte sequence 60 08 is loaded into memory at address
324		 ** 0x7FFE,F. This is a local branch to location 0x7FF8 (60 is nfix 0,
325		 ** which adds '0' to the .O register, complements .O, and then shifts
326		 ** it left by 4 bit positions, 08 is a jump .O+8 instruction. This will
327		 ** add 8 to .O (which was 0xFFF0), and will branch RELATIVE to the new
328		 ** location. Now, the branch starts from the value of .PC (or .IP or
329		 ** whatever the bloody register is called on this chip), and the .PC
330		 ** will be pointing to the location AFTER the branch, in this case
331		 ** .PC == 0x8000, so the branch will be to 0x8000+0xFFF8 = 0x7FF8.
332		 **
333		 ** A long branch is coded at 0x7FF8. This consists of loading a four
334		 ** byte offset into .O using nfix (as above) and pfix operators. The
335		 ** pfix operates in exactly the same way as the nfix operator, but
336		 ** without the complement operation. The offset, of course, must be
337		 ** relative to the address of the byte AFTER the branch instruction,
338		 ** which will be (urm) 0x7FFC, so, our final destination of the branch
339		 ** (loadbase-2), has to be reached from here. Imagine that the loadbase
340		 ** is 0x7C00 (which it is), then we will need to branch to 0x7BFE (which
341		 ** is the first byte of the initial two byte short local branch of the
342		 ** download code).
343		 **
344		 ** To code a jump from 0x7FFC (which is where the branch will start
345		 ** from) to 0x7BFE, we will need to branch 0xFC02 bytes (0x7FFC+0xFC02)=
346		 ** 0x7BFE.
347		 ** This will be coded as four bytes:
348		 ** 60 2C 20 02
349		 ** being nfix .O+0
350		 **        pfix .O+C
351		 **        pfix .O+0
352		 **        jump .O+2
353		 **
354		 ** The nfix operator is used, so that the startup code will be
355		 ** compatible with the whole Tp family. (lies, damn lies, it'll never
356		 ** work in a month of Sundays).
357		 **
358		 ** The nfix nyble is the 1s complement of the nyble value you
359		 ** want to load - in this case we wanted 'F' so we nfix loaded '0'.
360		 */
361
362
363		/*
364		 ** Dest points to the top 8 bytes of Sram2. The Tp jumps
365		 ** to 0x7FFE at reset time, and starts executing. This is
366		 ** a short branch to 0x7FF8, where a long branch is coded.
367		 */
368
369		DestP = &Cad[0x7FF8];	/* <<<---- READ THE ABOVE COMMENTS */
370
371#define	NFIX(N)	(0x60 | (N))	/* .O  = (~(.O + N))<<4 */
372#define	PFIX(N)	(0x20 | (N))	/* .O  =   (.O + N)<<4  */
373#define	JUMP(N)	(0x00 | (N))	/* .PC =   .PC + .O      */
374
375		/*
376		 ** 0x7FFC is the address of the location following the last byte of
377		 ** the four byte jump instruction.
378		 ** READ THE ABOVE COMMENTS
379		 **
380		 ** offset is (TO-FROM) % MEMSIZE, but with compound buggering about.
381		 ** Memsize is 64K for this range of Tp, so offset is a short (unsigned,
382		 ** cos I don't understand 2's complement).
383		 */
384		offset = (p->RIOConf.HostLoadBase - 2) - 0x7FFC;
385
386		writeb(NFIX(((unsigned short) (~offset) >> (unsigned short) 12) & 0xF), DestP);
387		writeb(PFIX((offset >> 8) & 0xF), DestP + 1);
388		writeb(PFIX((offset >> 4) & 0xF), DestP + 2);
389		writeb(JUMP(offset & 0xF), DestP + 3);
390
391		writeb(NFIX(0), DestP + 6);
392		writeb(JUMP(8), DestP + 7);
393
394		rio_dprintk(RIO_DEBUG_BOOT, "host loadbase is 0x%x\n", p->RIOConf.HostLoadBase);
395		rio_dprintk(RIO_DEBUG_BOOT, "startup offset is 0x%x\n", offset);
396
397		/*
398		 ** Flag what is going on
399		 */
400		HostP->Flags &= ~RUN_STATE;
401		HostP->Flags |= RC_STARTUP;
402
403		/*
404		 ** Grab a copy of the current ParmMap pointer, so we
405		 ** can tell when it has changed.
406		 */
407		OldParmMap = readw(&HostP->__ParmMapR);
408
409		rio_dprintk(RIO_DEBUG_BOOT, "Original parmmap is 0x%x\n", OldParmMap);
410
411		/*
412		 ** And start it running (I hope).
413		 ** As there is nothing dodgy or obscure about the
414		 ** above code, this is guaranteed to work every time.
415		 */
416		rio_dprintk(RIO_DEBUG_BOOT, "Host Type = 0x%x, Mode = 0x%x, IVec = 0x%x\n", HostP->Type, HostP->Mode, HostP->Ivec);
417
418		rio_start_card_running(HostP);
419
420		rio_dprintk(RIO_DEBUG_BOOT, "Set control port\n");
421
422		/*
423		 ** Now, wait for upto five seconds for the Tp to setup the parmmap
424		 ** pointer:
425		 */
426		for (wait_count = 0; (wait_count < p->RIOConf.StartupTime) && (readw(&HostP->__ParmMapR) == OldParmMap); wait_count++) {
427			rio_dprintk(RIO_DEBUG_BOOT, "Checkout %d, 0x%x\n", wait_count, readw(&HostP->__ParmMapR));
428			mdelay(100);
429
430		}
431
432		/*
433		 ** If the parmmap pointer is unchanged, then the host code
434		 ** has crashed & burned in a really spectacular way
435		 */
436		if (readw(&HostP->__ParmMapR) == OldParmMap) {
437			rio_dprintk(RIO_DEBUG_BOOT, "parmmap 0x%x\n", readw(&HostP->__ParmMapR));
438			rio_dprintk(RIO_DEBUG_BOOT, "RIO Mesg Run Fail\n");
439			HostP->Flags &= ~RUN_STATE;
440			HostP->Flags |= RC_STUFFED;
441			RIOHostReset( HostP->Type, HostP->CardP, HostP->Slot );
442			continue;
443		}
444
445		rio_dprintk(RIO_DEBUG_BOOT, "Running 0x%x\n", readw(&HostP->__ParmMapR));
446
447		/*
448		 ** Well, the board thought it was OK, and setup its parmmap
449		 ** pointer. For the time being, we will pretend that this
450		 ** board is running, and check out what the error flag says.
451		 */
452
453		/*
454		 ** Grab a 32 bit pointer to the parmmap structure
455		 */
456		ParmMapP = (PARM_MAP __iomem *) RIO_PTR(Cad, readw(&HostP->__ParmMapR));
457		rio_dprintk(RIO_DEBUG_BOOT, "ParmMapP : %p\n", ParmMapP);
458		ParmMapP = (PARM_MAP __iomem *)(Cad + readw(&HostP->__ParmMapR));
459		rio_dprintk(RIO_DEBUG_BOOT, "ParmMapP : %p\n", ParmMapP);
460
461		/*
462		 ** The links entry should be 0xFFFF; we set it up
463		 ** with a mask to say how many PHBs to use, and
464		 ** which links to use.
465		 */
466		if (readw(&ParmMapP->links) != 0xFFFF) {
467			rio_dprintk(RIO_DEBUG_BOOT, "RIO Mesg Run Fail %s\n", HostP->Name);
468			rio_dprintk(RIO_DEBUG_BOOT, "Links = 0x%x\n", readw(&ParmMapP->links));
469			HostP->Flags &= ~RUN_STATE;
470			HostP->Flags |= RC_STUFFED;
471			RIOHostReset( HostP->Type, HostP->CardP, HostP->Slot );
472			continue;
473		}
474
475		writew(RIO_LINK_ENABLE, &ParmMapP->links);
476
477		rio_dprintk(RIO_DEBUG_BOOT, "Looking for init_done - %d ticks\n", p->RIOConf.StartupTime);
478		HostP->timeout_id = 0;
479		for (wait_count = 0; (wait_count < p->RIOConf.StartupTime) && !readw(&ParmMapP->init_done); wait_count++) {
480			rio_dprintk(RIO_DEBUG_BOOT, "Waiting for init_done\n");
481			mdelay(100);
482		}
483		rio_dprintk(RIO_DEBUG_BOOT, "OK! init_done!\n");
484
485		if (readw(&ParmMapP->error) != E_NO_ERROR || !readw(&ParmMapP->init_done)) {
486			rio_dprintk(RIO_DEBUG_BOOT, "RIO Mesg Run Fail %s\n", HostP->Name);
487			rio_dprintk(RIO_DEBUG_BOOT, "Timedout waiting for init_done\n");
488			HostP->Flags &= ~RUN_STATE;
489			HostP->Flags |= RC_STUFFED;
490			RIOHostReset( HostP->Type, HostP->CardP, HostP->Slot );
491			continue;
492		}
493
494		rio_dprintk(RIO_DEBUG_BOOT, "Got init_done\n");
495
496		/*
497		 ** It runs! It runs!
498		 */
499		rio_dprintk(RIO_DEBUG_BOOT, "Host ID %x Running\n", HostP->UniqueNum);
500
501		/*
502		 ** set the time period between interrupts.
503		 */
504		writew(p->RIOConf.Timer, &ParmMapP->timer);
505
506		/*
507		 ** Translate all the 16 bit pointers in the __ParmMapR into
508		 ** 32 bit pointers for the driver in ioremap space.
509		 */
510		HostP->ParmMapP = ParmMapP;
511		HostP->PhbP = (struct PHB __iomem *) RIO_PTR(Cad, readw(&ParmMapP->phb_ptr));
512		HostP->RupP = (struct RUP __iomem *) RIO_PTR(Cad, readw(&ParmMapP->rups));
513		HostP->PhbNumP = (unsigned short __iomem *) RIO_PTR(Cad, readw(&ParmMapP->phb_num_ptr));
514		HostP->LinkStrP = (struct LPB __iomem *) RIO_PTR(Cad, readw(&ParmMapP->link_str_ptr));
515
516		/*
517		 ** point the UnixRups at the real Rups
518		 */
519		for (RupN = 0; RupN < MAX_RUP; RupN++) {
520			HostP->UnixRups[RupN].RupP = &HostP->RupP[RupN];
521			HostP->UnixRups[RupN].Id = RupN + 1;
522			HostP->UnixRups[RupN].BaseSysPort = NO_PORT;
523			spin_lock_init(&HostP->UnixRups[RupN].RupLock);
524		}
525
526		for (RupN = 0; RupN < LINKS_PER_UNIT; RupN++) {
527			HostP->UnixRups[RupN + MAX_RUP].RupP = &HostP->LinkStrP[RupN].rup;
528			HostP->UnixRups[RupN + MAX_RUP].Id = 0;
529			HostP->UnixRups[RupN + MAX_RUP].BaseSysPort = NO_PORT;
530			spin_lock_init(&HostP->UnixRups[RupN + MAX_RUP].RupLock);
531		}
532
533		/*
534		 ** point the PortP->Phbs at the real Phbs
535		 */
536		for (PortN = p->RIOFirstPortsMapped; PortN < p->RIOLastPortsMapped + PORTS_PER_RTA; PortN++) {
537			if (p->RIOPortp[PortN]->HostP == HostP) {
538				struct Port *PortP = p->RIOPortp[PortN];
539				struct PHB __iomem *PhbP;
540				/* int oldspl; */
541
542				if (!PortP->Mapped)
543					continue;
544
545				PhbP = &HostP->PhbP[PortP->HostPort];
546				rio_spin_lock_irqsave(&PortP->portSem, flags);
547
548				PortP->PhbP = PhbP;
549
550				PortP->TxAdd = (u16 __iomem *) RIO_PTR(Cad, readw(&PhbP->tx_add));
551				PortP->TxStart = (u16 __iomem *) RIO_PTR(Cad, readw(&PhbP->tx_start));
552				PortP->TxEnd = (u16 __iomem *) RIO_PTR(Cad, readw(&PhbP->tx_end));
553				PortP->RxRemove = (u16 __iomem *) RIO_PTR(Cad, readw(&PhbP->rx_remove));
554				PortP->RxStart = (u16 __iomem *) RIO_PTR(Cad, readw(&PhbP->rx_start));
555				PortP->RxEnd = (u16 __iomem *) RIO_PTR(Cad, readw(&PhbP->rx_end));
556
557				rio_spin_unlock_irqrestore(&PortP->portSem, flags);
558				/*
559				 ** point the UnixRup at the base SysPort
560				 */
561				if (!(PortN % PORTS_PER_RTA))
562					HostP->UnixRups[PortP->RupNum].BaseSysPort = PortN;
563			}
564		}
565
566		rio_dprintk(RIO_DEBUG_BOOT, "Set the card running... \n");
567		/*
568		 ** last thing - show the world that everything is in place
569		 */
570		HostP->Flags &= ~RUN_STATE;
571		HostP->Flags |= RC_RUNNING;
572	}
573	/*
574	 ** MPX always uses a poller. This is actually patched into the system
575	 ** configuration and called directly from each clock tick.
576	 **
577	 */
578	p->RIOPolling = 1;
579
580	p->RIOSystemUp++;
581
582	rio_dprintk(RIO_DEBUG_BOOT, "Done everything %x\n", HostP->Ivec);
583	func_exit();
584	return 0;
585}
586
587
588
589/**
590 *	RIOBootRup		-	Boot an RTA
591 *	@p: rio we are working with
592 *	@Rup: Rup number
593 *	@HostP: host object
594 *	@PacketP: packet to use
595 *
596 *	If we have successfully processed this boot, then
597 *	return 1. If we havent, then return 0.
598 */
599
600int RIOBootRup(struct rio_info *p, unsigned int Rup, struct Host *HostP, struct PKT __iomem *PacketP)
601{
602	struct PktCmd __iomem *PktCmdP = (struct PktCmd __iomem *) PacketP->data;
603	struct PktCmd_M *PktReplyP;
604	struct CmdBlk *CmdBlkP;
605	unsigned int sequence;
606
607	/*
608	 ** If we haven't been told what to boot, we can't boot it.
609	 */
610	if (p->RIONumBootPkts == 0) {
611		rio_dprintk(RIO_DEBUG_BOOT, "No RTA code to download yet\n");
612		return 0;
613	}
614
615	/*
616	 ** Special case of boot completed - if we get one of these then we
617	 ** don't need a command block. For all other cases we do, so handle
618	 ** this first and then get a command block, then handle every other
619	 ** case, relinquishing the command block if disaster strikes!
620	 */
621	if ((readb(&PacketP->len) & PKT_CMD_BIT) && (readb(&PktCmdP->Command) == BOOT_COMPLETED))
622		return RIOBootComplete(p, HostP, Rup, PktCmdP);
623
624	/*
625	 ** Try to allocate a command block. This is in kernel space
626	 */
627	if (!(CmdBlkP = RIOGetCmdBlk())) {
628		rio_dprintk(RIO_DEBUG_BOOT, "No command blocks to boot RTA! come back later.\n");
629		return 0;
630	}
631
632	/*
633	 ** Fill in the default info on the command block
634	 */
635	CmdBlkP->Packet.dest_unit = Rup < (unsigned short) MAX_RUP ? Rup : 0;
636	CmdBlkP->Packet.dest_port = BOOT_RUP;
637	CmdBlkP->Packet.src_unit = 0;
638	CmdBlkP->Packet.src_port = BOOT_RUP;
639
640	CmdBlkP->PreFuncP = CmdBlkP->PostFuncP = NULL;
641	PktReplyP = (struct PktCmd_M *) CmdBlkP->Packet.data;
642
643	/*
644	 ** process COMMANDS on the boot rup!
645	 */
646	if (readb(&PacketP->len) & PKT_CMD_BIT) {
647		/*
648		 ** We only expect one type of command - a BOOT_REQUEST!
649		 */
650		if (readb(&PktCmdP->Command) != BOOT_REQUEST) {
651			rio_dprintk(RIO_DEBUG_BOOT, "Unexpected command %d on BOOT RUP %d of host %Zd\n", readb(&PktCmdP->Command), Rup, HostP - p->RIOHosts);
652			RIOFreeCmdBlk(CmdBlkP);
653			return 1;
654		}
655
656		/*
657		 ** Build a Boot Sequence command block
658		 **
659		 ** We no longer need to use "Boot Mode", we'll always allow
660		 ** boot requests - the boot will not complete if the device
661		 ** appears in the bindings table.
662		 **
663		 ** We'll just (always) set the command field in packet reply
664		 ** to allow an attempted boot sequence :
665		 */
666		PktReplyP->Command = BOOT_SEQUENCE;
667
668		PktReplyP->BootSequence.NumPackets = p->RIONumBootPkts;
669		PktReplyP->BootSequence.LoadBase = p->RIOConf.RtaLoadBase;
670		PktReplyP->BootSequence.CodeSize = p->RIOBootCount;
671
672		CmdBlkP->Packet.len = BOOT_SEQUENCE_LEN | PKT_CMD_BIT;
673
674		memcpy((void *) &CmdBlkP->Packet.data[BOOT_SEQUENCE_LEN], "BOOT", 4);
675
676		rio_dprintk(RIO_DEBUG_BOOT, "Boot RTA on Host %Zd Rup %d - %d (0x%x) packets to 0x%x\n", HostP - p->RIOHosts, Rup, p->RIONumBootPkts, p->RIONumBootPkts, p->RIOConf.RtaLoadBase);
677
678		/*
679		 ** If this host is in slave mode, send the RTA an invalid boot
680		 ** sequence command block to force it to kill the boot. We wait
681		 ** for half a second before sending this packet to prevent the RTA
682		 ** attempting to boot too often. The master host should then grab
683		 ** the RTA and make it its own.
684		 */
685		p->RIOBooting++;
686		RIOQueueCmdBlk(HostP, Rup, CmdBlkP);
687		return 1;
688	}
689
690	/*
691	 ** It is a request for boot data.
692	 */
693	sequence = readw(&PktCmdP->Sequence);
694
695	rio_dprintk(RIO_DEBUG_BOOT, "Boot block %d on Host %Zd Rup%d\n", sequence, HostP - p->RIOHosts, Rup);
696
697	if (sequence >= p->RIONumBootPkts) {
698		rio_dprintk(RIO_DEBUG_BOOT, "Got a request for packet %d, max is %d\n", sequence, p->RIONumBootPkts);
699	}
700
701	PktReplyP->Sequence = sequence;
702	memcpy(PktReplyP->BootData, p->RIOBootPackets[p->RIONumBootPkts - sequence - 1], RTA_BOOT_DATA_SIZE);
703	CmdBlkP->Packet.len = PKT_MAX_DATA_LEN;
704	RIOQueueCmdBlk(HostP, Rup, CmdBlkP);
705	return 1;
706}
707
708/**
709 *	RIOBootComplete		-	RTA boot is done
710 *	@p: RIO we are working with
711 *	@HostP: Host structure
712 *	@Rup: RUP being used
713 *	@PktCmdP: Packet command that was used
714 *
715 *	This function is called when an RTA been booted.
716 *	If booted by a host, HostP->HostUniqueNum is the booting host.
717 *	If booted by an RTA, HostP->Mapping[Rup].RtaUniqueNum is the booting RTA.
718 *	RtaUniq is the booted RTA.
719 */
720
721static int RIOBootComplete(struct rio_info *p, struct Host *HostP, unsigned int Rup, struct PktCmd __iomem *PktCmdP)
722{
723	struct Map *MapP = NULL;
724	struct Map *MapP2 = NULL;
725	int Flag;
726	int found;
727	int host, rta;
728	int EmptySlot = -1;
729	int entry, entry2;
730	char *MyType, *MyName;
731	unsigned int MyLink;
732	unsigned short RtaType;
733	u32 RtaUniq = (readb(&PktCmdP->UniqNum[0])) + (readb(&PktCmdP->UniqNum[1]) << 8) + (readb(&PktCmdP->UniqNum[2]) << 16) + (readb(&PktCmdP->UniqNum[3]) << 24);
734
735	p->RIOBooting = 0;
736
737	rio_dprintk(RIO_DEBUG_BOOT, "RTA Boot completed - BootInProgress now %d\n", p->RIOBooting);
738
739	/*
740	 ** Determine type of unit (16/8 port RTA).
741	 */
742
743	RtaType = GetUnitType(RtaUniq);
744	if (Rup >= (unsigned short) MAX_RUP)
745		rio_dprintk(RIO_DEBUG_BOOT, "RIO: Host %s has booted an RTA(%d) on link %c\n", HostP->Name, 8 * RtaType, readb(&PktCmdP->LinkNum) + 'A');
746	else
747		rio_dprintk(RIO_DEBUG_BOOT, "RIO: RTA %s has booted an RTA(%d) on link %c\n", HostP->Mapping[Rup].Name, 8 * RtaType, readb(&PktCmdP->LinkNum) + 'A');
748
749	rio_dprintk(RIO_DEBUG_BOOT, "UniqNum is 0x%x\n", RtaUniq);
750
751	if (RtaUniq == 0x00000000 || RtaUniq == 0xffffffff) {
752		rio_dprintk(RIO_DEBUG_BOOT, "Illegal RTA Uniq Number\n");
753		return 1;
754	}
755
756	/*
757	 ** If this RTA has just booted an RTA which doesn't belong to this
758	 ** system, or the system is in slave mode, do not attempt to create
759	 ** a new table entry for it.
760	 */
761
762	if (!RIOBootOk(p, HostP, RtaUniq)) {
763		MyLink = readb(&PktCmdP->LinkNum);
764		if (Rup < (unsigned short) MAX_RUP) {
765			/*
766			 ** RtaUniq was clone booted (by this RTA). Instruct this RTA
767			 ** to hold off further attempts to boot on this link for 30
768			 ** seconds.
769			 */
770			if (RIOSuspendBootRta(HostP, HostP->Mapping[Rup].ID, MyLink)) {
771				rio_dprintk(RIO_DEBUG_BOOT, "RTA failed to suspend booting on link %c\n", 'A' + MyLink);
772			}
773		} else
774			/*
775			 ** RtaUniq was booted by this host. Set the booting link
776			 ** to hold off for 30 seconds to give another unit a
777			 ** chance to boot it.
778			 */
779			writew(30, &HostP->LinkStrP[MyLink].WaitNoBoot);
780		rio_dprintk(RIO_DEBUG_BOOT, "RTA %x not owned - suspend booting down link %c on unit %x\n", RtaUniq, 'A' + MyLink, HostP->Mapping[Rup].RtaUniqueNum);
781		return 1;
782	}
783
784	/*
785	 ** Check for a SLOT_IN_USE entry for this RTA attached to the
786	 ** current host card in the driver table.
787	 **
788	 ** If it exists, make a note that we have booted it. Other parts of
789	 ** the driver are interested in this information at a later date,
790	 ** in particular when the booting RTA asks for an ID for this unit,
791	 ** we must have set the BOOTED flag, and the NEWBOOT flag is used
792	 ** to force an open on any ports that where previously open on this
793	 ** unit.
794	 */
795	for (entry = 0; entry < MAX_RUP; entry++) {
796		unsigned int sysport;
797
798		if ((HostP->Mapping[entry].Flags & SLOT_IN_USE) && (HostP->Mapping[entry].RtaUniqueNum == RtaUniq)) {
799			HostP->Mapping[entry].Flags |= RTA_BOOTED | RTA_NEWBOOT;
800			if ((sysport = HostP->Mapping[entry].SysPort) != NO_PORT) {
801				if (sysport < p->RIOFirstPortsBooted)
802					p->RIOFirstPortsBooted = sysport;
803				if (sysport > p->RIOLastPortsBooted)
804					p->RIOLastPortsBooted = sysport;
805				/*
806				 ** For a 16 port RTA, check the second bank of 8 ports
807				 */
808				if (RtaType == TYPE_RTA16) {
809					entry2 = HostP->Mapping[entry].ID2 - 1;
810					HostP->Mapping[entry2].Flags |= RTA_BOOTED | RTA_NEWBOOT;
811					sysport = HostP->Mapping[entry2].SysPort;
812					if (sysport < p->RIOFirstPortsBooted)
813						p->RIOFirstPortsBooted = sysport;
814					if (sysport > p->RIOLastPortsBooted)
815						p->RIOLastPortsBooted = sysport;
816				}
817			}
818			if (RtaType == TYPE_RTA16)
819				rio_dprintk(RIO_DEBUG_BOOT, "RTA will be given IDs %d+%d\n", entry + 1, entry2 + 1);
820			else
821				rio_dprintk(RIO_DEBUG_BOOT, "RTA will be given ID %d\n", entry + 1);
822			return 1;
823		}
824	}
825
826	rio_dprintk(RIO_DEBUG_BOOT, "RTA not configured for this host\n");
827
828	if (Rup >= (unsigned short) MAX_RUP) {
829		/*
830		 ** It was a host that did the booting
831		 */
832		MyType = "Host";
833		MyName = HostP->Name;
834	} else {
835		/*
836		 ** It was an RTA that did the booting
837		 */
838		MyType = "RTA";
839		MyName = HostP->Mapping[Rup].Name;
840	}
841	MyLink = readb(&PktCmdP->LinkNum);
842
843	/*
844	 ** There is no SLOT_IN_USE entry for this RTA attached to the current
845	 ** host card in the driver table.
846	 **
847	 ** Check for a SLOT_TENTATIVE entry for this RTA attached to the
848	 ** current host card in the driver table.
849	 **
850	 ** If we find one, then we re-use that slot.
851	 */
852	for (entry = 0; entry < MAX_RUP; entry++) {
853		if ((HostP->Mapping[entry].Flags & SLOT_TENTATIVE) && (HostP->Mapping[entry].RtaUniqueNum == RtaUniq)) {
854			if (RtaType == TYPE_RTA16) {
855				entry2 = HostP->Mapping[entry].ID2 - 1;
856				if ((HostP->Mapping[entry2].Flags & SLOT_TENTATIVE) && (HostP->Mapping[entry2].RtaUniqueNum == RtaUniq))
857					rio_dprintk(RIO_DEBUG_BOOT, "Found previous tentative slots (%d+%d)\n", entry, entry2);
858				else
859					continue;
860			} else
861				rio_dprintk(RIO_DEBUG_BOOT, "Found previous tentative slot (%d)\n", entry);
862			if (!p->RIONoMessage)
863				printk("RTA connected to %s '%s' (%c) not configured.\n", MyType, MyName, MyLink + 'A');
864			return 1;
865		}
866	}
867
868	/*
869	 ** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA
870	 ** attached to the current host card in the driver table.
871	 **
872	 ** Check if there is a SLOT_IN_USE or SLOT_TENTATIVE entry on another
873	 ** host for this RTA in the driver table.
874	 **
875	 ** For a SLOT_IN_USE entry on another host, we need to delete the RTA
876	 ** entry from the other host and add it to this host (using some of
877	 ** the functions from table.c which do this).
878	 ** For a SLOT_TENTATIVE entry on another host, we must cope with the
879	 ** following scenario:
880	 **
881	 ** + Plug 8 port RTA into host A. (This creates SLOT_TENTATIVE entry
882	 **   in table)
883	 ** + Unplug RTA and plug into host B. (We now have 2 SLOT_TENTATIVE
884	 **   entries)
885	 ** + Configure RTA on host B. (This slot now becomes SLOT_IN_USE)
886	 ** + Unplug RTA and plug back into host A.
887	 ** + Configure RTA on host A. We now have the same RTA configured
888	 **   with different ports on two different hosts.
889	 */
890	rio_dprintk(RIO_DEBUG_BOOT, "Have we seen RTA %x before?\n", RtaUniq);
891	found = 0;
892	Flag = 0;		/* Convince the compiler this variable is initialized */
893	for (host = 0; !found && (host < p->RIONumHosts); host++) {
894		for (rta = 0; rta < MAX_RUP; rta++) {
895			if ((p->RIOHosts[host].Mapping[rta].Flags & (SLOT_IN_USE | SLOT_TENTATIVE)) && (p->RIOHosts[host].Mapping[rta].RtaUniqueNum == RtaUniq)) {
896				Flag = p->RIOHosts[host].Mapping[rta].Flags;
897				MapP = &p->RIOHosts[host].Mapping[rta];
898				if (RtaType == TYPE_RTA16) {
899					MapP2 = &p->RIOHosts[host].Mapping[MapP->ID2 - 1];
900					rio_dprintk(RIO_DEBUG_BOOT, "This RTA is units %d+%d from host %s\n", rta + 1, MapP->ID2, p->RIOHosts[host].Name);
901				} else
902					rio_dprintk(RIO_DEBUG_BOOT, "This RTA is unit %d from host %s\n", rta + 1, p->RIOHosts[host].Name);
903				found = 1;
904				break;
905			}
906		}
907	}
908
909	/*
910	 ** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA
911	 ** attached to the current host card in the driver table.
912	 **
913	 ** If we have not found a SLOT_IN_USE or SLOT_TENTATIVE entry on
914	 ** another host for this RTA in the driver table...
915	 **
916	 ** Check for a SLOT_IN_USE entry for this RTA in the config table.
917	 */
918	if (!MapP) {
919		rio_dprintk(RIO_DEBUG_BOOT, "Look for RTA %x in RIOSavedTable\n", RtaUniq);
920		for (rta = 0; rta < TOTAL_MAP_ENTRIES; rta++) {
921			rio_dprintk(RIO_DEBUG_BOOT, "Check table entry %d (%x)", rta, p->RIOSavedTable[rta].RtaUniqueNum);
922
923			if ((p->RIOSavedTable[rta].Flags & SLOT_IN_USE) && (p->RIOSavedTable[rta].RtaUniqueNum == RtaUniq)) {
924				MapP = &p->RIOSavedTable[rta];
925				Flag = p->RIOSavedTable[rta].Flags;
926				if (RtaType == TYPE_RTA16) {
927					for (entry2 = rta + 1; entry2 < TOTAL_MAP_ENTRIES; entry2++) {
928						if (p->RIOSavedTable[entry2].RtaUniqueNum == RtaUniq)
929							break;
930					}
931					MapP2 = &p->RIOSavedTable[entry2];
932					rio_dprintk(RIO_DEBUG_BOOT, "This RTA is from table entries %d+%d\n", rta, entry2);
933				} else
934					rio_dprintk(RIO_DEBUG_BOOT, "This RTA is from table entry %d\n", rta);
935				break;
936			}
937		}
938	}
939
940	/*
941	 ** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA
942	 ** attached to the current host card in the driver table.
943	 **
944	 ** We may have found a SLOT_IN_USE entry on another host for this
945	 ** RTA in the config table, or a SLOT_IN_USE or SLOT_TENTATIVE entry
946	 ** on another host for this RTA in the driver table.
947	 **
948	 ** Check the driver table for room to fit this newly discovered RTA.
949	 ** RIOFindFreeID() first looks for free slots and if it does not
950	 ** find any free slots it will then attempt to oust any
951	 ** tentative entry in the table.
952	 */
953	EmptySlot = 1;
954	if (RtaType == TYPE_RTA16) {
955		if (RIOFindFreeID(p, HostP, &entry, &entry2) == 0) {
956			RIODefaultName(p, HostP, entry);
957			rio_fill_host_slot(entry, entry2, RtaUniq, HostP);
958			EmptySlot = 0;
959		}
960	} else {
961		if (RIOFindFreeID(p, HostP, &entry, NULL) == 0) {
962			RIODefaultName(p, HostP, entry);
963			rio_fill_host_slot(entry, 0, RtaUniq, HostP);
964			EmptySlot = 0;
965		}
966	}
967
968	/*
969	 ** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA
970	 ** attached to the current host card in the driver table.
971	 **
972	 ** If we found a SLOT_IN_USE entry on another host for this
973	 ** RTA in the config or driver table, and there are enough free
974	 ** slots in the driver table, then we need to move it over and
975	 ** delete it from the other host.
976	 ** If we found a SLOT_TENTATIVE entry on another host for this
977	 ** RTA in the driver table, just delete the other host entry.
978	 */
979	if (EmptySlot == 0) {
980		if (MapP) {
981			if (Flag & SLOT_IN_USE) {
982				rio_dprintk(RIO_DEBUG_BOOT, "This RTA configured on another host - move entry to current host (1)\n");
983				HostP->Mapping[entry].SysPort = MapP->SysPort;
984				memcpy(HostP->Mapping[entry].Name, MapP->Name, MAX_NAME_LEN);
985				HostP->Mapping[entry].Flags = SLOT_IN_USE | RTA_BOOTED | RTA_NEWBOOT;
986				RIOReMapPorts(p, HostP, &HostP->Mapping[entry]);
987				if (HostP->Mapping[entry].SysPort < p->RIOFirstPortsBooted)
988					p->RIOFirstPortsBooted = HostP->Mapping[entry].SysPort;
989				if (HostP->Mapping[entry].SysPort > p->RIOLastPortsBooted)
990					p->RIOLastPortsBooted = HostP->Mapping[entry].SysPort;
991				rio_dprintk(RIO_DEBUG_BOOT, "SysPort %d, Name %s\n", (int) MapP->SysPort, MapP->Name);
992			} else {
993				rio_dprintk(RIO_DEBUG_BOOT, "This RTA has a tentative entry on another host - delete that entry (1)\n");
994				HostP->Mapping[entry].Flags = SLOT_TENTATIVE | RTA_BOOTED | RTA_NEWBOOT;
995			}
996			if (RtaType == TYPE_RTA16) {
997				if (Flag & SLOT_IN_USE) {
998					HostP->Mapping[entry2].Flags = SLOT_IN_USE | RTA_BOOTED | RTA_NEWBOOT | RTA16_SECOND_SLOT;
999					HostP->Mapping[entry2].SysPort = MapP2->SysPort;
1000					/*
1001					 ** Map second block of ttys for 16 port RTA
1002					 */
1003					RIOReMapPorts(p, HostP, &HostP->Mapping[entry2]);
1004					if (HostP->Mapping[entry2].SysPort < p->RIOFirstPortsBooted)
1005						p->RIOFirstPortsBooted = HostP->Mapping[entry2].SysPort;
1006					if (HostP->Mapping[entry2].SysPort > p->RIOLastPortsBooted)
1007						p->RIOLastPortsBooted = HostP->Mapping[entry2].SysPort;
1008					rio_dprintk(RIO_DEBUG_BOOT, "SysPort %d, Name %s\n", (int) HostP->Mapping[entry2].SysPort, HostP->Mapping[entry].Name);
1009				} else
1010					HostP->Mapping[entry2].Flags = SLOT_TENTATIVE | RTA_BOOTED | RTA_NEWBOOT | RTA16_SECOND_SLOT;
1011				memset(MapP2, 0, sizeof(struct Map));
1012			}
1013			memset(MapP, 0, sizeof(struct Map));
1014			if (!p->RIONoMessage)
1015				printk("An orphaned RTA has been adopted by %s '%s' (%c).\n", MyType, MyName, MyLink + 'A');
1016		} else if (!p->RIONoMessage)
1017			printk("RTA connected to %s '%s' (%c) not configured.\n", MyType, MyName, MyLink + 'A');
1018		RIOSetChange(p);
1019		return 1;
1020	}
1021
1022	/*
1023	 ** There is no room in the driver table to make an entry for the
1024	 ** booted RTA. Keep a note of its Uniq Num in the overflow table,
1025	 ** so we can ignore it's ID requests.
1026	 */
1027	if (!p->RIONoMessage)
1028		printk("The RTA connected to %s '%s' (%c) cannot be configured.  You cannot configure more than 128 ports to one host card.\n", MyType, MyName, MyLink + 'A');
1029	for (entry = 0; entry < HostP->NumExtraBooted; entry++) {
1030		if (HostP->ExtraUnits[entry] == RtaUniq) {
1031			/*
1032			 ** already got it!
1033			 */
1034			return 1;
1035		}
1036	}
1037	/*
1038	 ** If there is room, add the unit to the list of extras
1039	 */
1040	if (HostP->NumExtraBooted < MAX_EXTRA_UNITS)
1041		HostP->ExtraUnits[HostP->NumExtraBooted++] = RtaUniq;
1042	return 1;
1043}
1044
1045
1046/*
1047** If the RTA or its host appears in the RIOBindTab[] structure then
1048** we mustn't boot the RTA and should return 0.
1049** This operation is slightly different from the other drivers for RIO
1050** in that this is designed to work with the new utilities
1051** not config.rio and is FAR SIMPLER.
1052** We no longer support the RIOBootMode variable. It is all done from the
1053** "boot/noboot" field in the rio.cf file.
1054*/
1055int RIOBootOk(struct rio_info *p, struct Host *HostP, unsigned long RtaUniq)
1056{
1057	int Entry;
1058	unsigned int HostUniq = HostP->UniqueNum;
1059
1060	/*
1061	 ** Search bindings table for RTA or its parent.
1062	 ** If it exists, return 0, else 1.
1063	 */
1064	for (Entry = 0; (Entry < MAX_RTA_BINDINGS) && (p->RIOBindTab[Entry] != 0); Entry++) {
1065		if ((p->RIOBindTab[Entry] == HostUniq) || (p->RIOBindTab[Entry] == RtaUniq))
1066			return 0;
1067	}
1068	return 1;
1069}
1070
1071/*
1072** Make an empty slot tentative. If this is a 16 port RTA, make both
1073** slots tentative, and the second one RTA_SECOND_SLOT as well.
1074*/
1075
1076void rio_fill_host_slot(int entry, int entry2, unsigned int rta_uniq, struct Host *host)
1077{
1078	int link;
1079
1080	rio_dprintk(RIO_DEBUG_BOOT, "rio_fill_host_slot(%d, %d, 0x%x...)\n", entry, entry2, rta_uniq);
1081
1082	host->Mapping[entry].Flags = (RTA_BOOTED | RTA_NEWBOOT | SLOT_TENTATIVE);
1083	host->Mapping[entry].SysPort = NO_PORT;
1084	host->Mapping[entry].RtaUniqueNum = rta_uniq;
1085	host->Mapping[entry].HostUniqueNum = host->UniqueNum;
1086	host->Mapping[entry].ID = entry + 1;
1087	host->Mapping[entry].ID2 = 0;
1088	if (entry2) {
1089		host->Mapping[entry2].Flags = (RTA_BOOTED | RTA_NEWBOOT | SLOT_TENTATIVE | RTA16_SECOND_SLOT);
1090		host->Mapping[entry2].SysPort = NO_PORT;
1091		host->Mapping[entry2].RtaUniqueNum = rta_uniq;
1092		host->Mapping[entry2].HostUniqueNum = host->UniqueNum;
1093		host->Mapping[entry2].Name[0] = '\0';
1094		host->Mapping[entry2].ID = entry2 + 1;
1095		host->Mapping[entry2].ID2 = entry + 1;
1096		host->Mapping[entry].ID2 = entry2 + 1;
1097	}
1098	/*
1099	 ** Must set these up, so that utilities show
1100	 ** topology of 16 port RTAs correctly
1101	 */
1102	for (link = 0; link < LINKS_PER_UNIT; link++) {
1103		host->Mapping[entry].Topology[link].Unit = ROUTE_DISCONNECT;
1104		host->Mapping[entry].Topology[link].Link = NO_LINK;
1105		if (entry2) {
1106			host->Mapping[entry2].Topology[link].Unit = ROUTE_DISCONNECT;
1107			host->Mapping[entry2].Topology[link].Link = NO_LINK;
1108		}
1109	}
1110}
1111