1/*
2 * drivers/base/dma-mapping.c - arch-independent dma-mapping routines
3 *
4 * Copyright (c) 2006  SUSE Linux Products GmbH
5 * Copyright (c) 2006  Tejun Heo <teheo@suse.de>
6 *
7 * This file is released under the GPLv2.
8 */
9
10#include <linux/dma-mapping.h>
11
12/*
13 * Managed DMA API
14 */
15struct dma_devres {
16	size_t		size;
17	void		*vaddr;
18	dma_addr_t	dma_handle;
19};
20
21static void dmam_coherent_release(struct device *dev, void *res)
22{
23	struct dma_devres *this = res;
24
25	dma_free_coherent(dev, this->size, this->vaddr, this->dma_handle);
26}
27
28static void dmam_noncoherent_release(struct device *dev, void *res)
29{
30	struct dma_devres *this = res;
31
32	dma_free_noncoherent(dev, this->size, this->vaddr, this->dma_handle);
33}
34
35static int dmam_match(struct device *dev, void *res, void *match_data)
36{
37	struct dma_devres *this = res, *match = match_data;
38
39	if (this->vaddr == match->vaddr) {
40		WARN_ON(this->size != match->size ||
41			this->dma_handle != match->dma_handle);
42		return 1;
43	}
44	return 0;
45}
46
47/**
48 * dmam_alloc_coherent - Managed dma_alloc_coherent()
49 * @dev: Device to allocate coherent memory for
50 * @size: Size of allocation
51 * @dma_handle: Out argument for allocated DMA handle
52 * @gfp: Allocation flags
53 *
54 * Managed dma_alloc_coherent().  Memory allocated using this function
55 * will be automatically released on driver detach.
56 *
57 * RETURNS:
58 * Pointer to allocated memory on success, NULL on failure.
59 */
60void * dmam_alloc_coherent(struct device *dev, size_t size,
61			   dma_addr_t *dma_handle, gfp_t gfp)
62{
63	struct dma_devres *dr;
64	void *vaddr;
65
66	dr = devres_alloc(dmam_coherent_release, sizeof(*dr), gfp);
67	if (!dr)
68		return NULL;
69
70	vaddr = dma_alloc_coherent(dev, size, dma_handle, gfp);
71	if (!vaddr) {
72		devres_free(dr);
73		return NULL;
74	}
75
76	dr->vaddr = vaddr;
77	dr->dma_handle = *dma_handle;
78	dr->size = size;
79
80	devres_add(dev, dr);
81
82	return vaddr;
83}
84EXPORT_SYMBOL(dmam_alloc_coherent);
85
86/**
87 * dmam_free_coherent - Managed dma_free_coherent()
88 * @dev: Device to free coherent memory for
89 * @size: Size of allocation
90 * @vaddr: Virtual address of the memory to free
91 * @dma_handle: DMA handle of the memory to free
92 *
93 * Managed dma_free_coherent().
94 */
95void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
96			dma_addr_t dma_handle)
97{
98	struct dma_devres match_data = { size, vaddr, dma_handle };
99
100	dma_free_coherent(dev, size, vaddr, dma_handle);
101	WARN_ON(devres_destroy(dev, dmam_coherent_release, dmam_match,
102			       &match_data));
103}
104EXPORT_SYMBOL(dmam_free_coherent);
105
106/**
107 * dmam_alloc_non_coherent - Managed dma_alloc_non_coherent()
108 * @dev: Device to allocate non_coherent memory for
109 * @size: Size of allocation
110 * @dma_handle: Out argument for allocated DMA handle
111 * @gfp: Allocation flags
112 *
113 * Managed dma_alloc_non_coherent().  Memory allocated using this
114 * function will be automatically released on driver detach.
115 *
116 * RETURNS:
117 * Pointer to allocated memory on success, NULL on failure.
118 */
119void *dmam_alloc_noncoherent(struct device *dev, size_t size,
120			     dma_addr_t *dma_handle, gfp_t gfp)
121{
122	struct dma_devres *dr;
123	void *vaddr;
124
125	dr = devres_alloc(dmam_noncoherent_release, sizeof(*dr), gfp);
126	if (!dr)
127		return NULL;
128
129	vaddr = dma_alloc_noncoherent(dev, size, dma_handle, gfp);
130	if (!vaddr) {
131		devres_free(dr);
132		return NULL;
133	}
134
135	dr->vaddr = vaddr;
136	dr->dma_handle = *dma_handle;
137	dr->size = size;
138
139	devres_add(dev, dr);
140
141	return vaddr;
142}
143EXPORT_SYMBOL(dmam_alloc_noncoherent);
144
145/**
146 * dmam_free_coherent - Managed dma_free_noncoherent()
147 * @dev: Device to free noncoherent memory for
148 * @size: Size of allocation
149 * @vaddr: Virtual address of the memory to free
150 * @dma_handle: DMA handle of the memory to free
151 *
152 * Managed dma_free_noncoherent().
153 */
154void dmam_free_noncoherent(struct device *dev, size_t size, void *vaddr,
155			   dma_addr_t dma_handle)
156{
157	struct dma_devres match_data = { size, vaddr, dma_handle };
158
159	dma_free_noncoherent(dev, size, vaddr, dma_handle);
160	WARN_ON(!devres_destroy(dev, dmam_noncoherent_release, dmam_match,
161				&match_data));
162}
163EXPORT_SYMBOL(dmam_free_noncoherent);
164
165#ifdef ARCH_HAS_DMA_DECLARE_COHERENT_MEMORY
166
167static void dmam_coherent_decl_release(struct device *dev, void *res)
168{
169	dma_release_declared_memory(dev);
170}
171
172/**
173 * dmam_declare_coherent_memory - Managed dma_declare_coherent_memory()
174 * @dev: Device to declare coherent memory for
175 * @bus_addr: Bus address of coherent memory to be declared
176 * @device_addr: Device address of coherent memory to be declared
177 * @size: Size of coherent memory to be declared
178 * @flags: Flags
179 *
180 * Managed dma_declare_coherent_memory().
181 *
182 * RETURNS:
183 * 0 on success, -errno on failure.
184 */
185int dmam_declare_coherent_memory(struct device *dev, dma_addr_t bus_addr,
186				 dma_addr_t device_addr, size_t size, int flags)
187{
188	void *res;
189	int rc;
190
191	res = devres_alloc(dmam_coherent_decl_release, 0, GFP_KERNEL);
192	if (!res)
193		return -ENOMEM;
194
195	rc = dma_declare_coherent_memory(dev, bus_addr, device_addr, size,
196					 flags);
197	if (rc == 0)
198		devres_add(dev, res);
199	else
200		devres_free(res);
201
202	return rc;
203}
204EXPORT_SYMBOL(dmam_declare_coherent_memory);
205
206/**
207 * dmam_release_declared_memory - Managed dma_release_declared_memory().
208 * @dev: Device to release declared coherent memory for
209 *
210 * Managed dmam_release_declared_memory().
211 */
212void dmam_release_declared_memory(struct device *dev)
213{
214	WARN_ON(devres_destroy(dev, dmam_coherent_decl_release, NULL, NULL));
215}
216EXPORT_SYMBOL(dmam_release_declared_memory);
217
218#endif
219