1/*******************************************************************************
2 *
3 * Module Name: utmath - Integer math support routines
4 *
5 ******************************************************************************/
6
7/*
8 * Copyright (C) 2000 - 2007, R. Byron Moore
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions, and the following disclaimer,
16 *    without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 *    substantially similar to the "NO WARRANTY" disclaimer below
19 *    ("Disclaimer") and any redistribution must be conditioned upon
20 *    including a substantially similar Disclaimer requirement for further
21 *    binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 *    of any contributors may be used to endorse or promote products derived
24 *    from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */
43
44#include <acpi/acpi.h>
45
46#define _COMPONENT          ACPI_UTILITIES
47ACPI_MODULE_NAME("utmath")
48
49/*
50 * Support for double-precision integer divide.  This code is included here
51 * in order to support kernel environments where the double-precision math
52 * library is not available.
53 */
54#ifndef ACPI_USE_NATIVE_DIVIDE
55/*******************************************************************************
56 *
57 * FUNCTION:    acpi_ut_short_divide
58 *
59 * PARAMETERS:  Dividend            - 64-bit dividend
60 *              Divisor             - 32-bit divisor
61 *              out_quotient        - Pointer to where the quotient is returned
62 *              out_remainder       - Pointer to where the remainder is returned
63 *
64 * RETURN:      Status (Checks for divide-by-zero)
65 *
66 * DESCRIPTION: Perform a short (maximum 64 bits divided by 32 bits)
67 *              divide and modulo.  The result is a 64-bit quotient and a
68 *              32-bit remainder.
69 *
70 ******************************************************************************/
71acpi_status
72acpi_ut_short_divide(acpi_integer dividend,
73		     u32 divisor,
74		     acpi_integer * out_quotient, u32 * out_remainder)
75{
76	union uint64_overlay dividend_ovl;
77	union uint64_overlay quotient;
78	u32 remainder32;
79
80	ACPI_FUNCTION_TRACE(ut_short_divide);
81
82	/* Always check for a zero divisor */
83
84	if (divisor == 0) {
85		ACPI_ERROR((AE_INFO, "Divide by zero"));
86		return_ACPI_STATUS(AE_AML_DIVIDE_BY_ZERO);
87	}
88
89	dividend_ovl.full = dividend;
90
91	/*
92	 * The quotient is 64 bits, the remainder is always 32 bits,
93	 * and is generated by the second divide.
94	 */
95	ACPI_DIV_64_BY_32(0, dividend_ovl.part.hi, divisor,
96			  quotient.part.hi, remainder32);
97	ACPI_DIV_64_BY_32(remainder32, dividend_ovl.part.lo, divisor,
98			  quotient.part.lo, remainder32);
99
100	/* Return only what was requested */
101
102	if (out_quotient) {
103		*out_quotient = quotient.full;
104	}
105	if (out_remainder) {
106		*out_remainder = remainder32;
107	}
108
109	return_ACPI_STATUS(AE_OK);
110}
111
112/*******************************************************************************
113 *
114 * FUNCTION:    acpi_ut_divide
115 *
116 * PARAMETERS:  in_dividend         - Dividend
117 *              in_divisor          - Divisor
118 *              out_quotient        - Pointer to where the quotient is returned
119 *              out_remainder       - Pointer to where the remainder is returned
120 *
121 * RETURN:      Status (Checks for divide-by-zero)
122 *
123 * DESCRIPTION: Perform a divide and modulo.
124 *
125 ******************************************************************************/
126
127acpi_status
128acpi_ut_divide(acpi_integer in_dividend,
129	       acpi_integer in_divisor,
130	       acpi_integer * out_quotient, acpi_integer * out_remainder)
131{
132	union uint64_overlay dividend;
133	union uint64_overlay divisor;
134	union uint64_overlay quotient;
135	union uint64_overlay remainder;
136	union uint64_overlay normalized_dividend;
137	union uint64_overlay normalized_divisor;
138	u32 partial1;
139	union uint64_overlay partial2;
140	union uint64_overlay partial3;
141
142	ACPI_FUNCTION_TRACE(ut_divide);
143
144	/* Always check for a zero divisor */
145
146	if (in_divisor == 0) {
147		ACPI_ERROR((AE_INFO, "Divide by zero"));
148		return_ACPI_STATUS(AE_AML_DIVIDE_BY_ZERO);
149	}
150
151	divisor.full = in_divisor;
152	dividend.full = in_dividend;
153	if (divisor.part.hi == 0) {
154		/*
155		 * 1) Simplest case is where the divisor is 32 bits, we can
156		 * just do two divides
157		 */
158		remainder.part.hi = 0;
159
160		/*
161		 * The quotient is 64 bits, the remainder is always 32 bits,
162		 * and is generated by the second divide.
163		 */
164		ACPI_DIV_64_BY_32(0, dividend.part.hi, divisor.part.lo,
165				  quotient.part.hi, partial1);
166		ACPI_DIV_64_BY_32(partial1, dividend.part.lo, divisor.part.lo,
167				  quotient.part.lo, remainder.part.lo);
168	}
169
170	else {
171		/*
172		 * 2) The general case where the divisor is a full 64 bits
173		 * is more difficult
174		 */
175		quotient.part.hi = 0;
176		normalized_dividend = dividend;
177		normalized_divisor = divisor;
178
179		/* Normalize the operands (shift until the divisor is < 32 bits) */
180
181		do {
182			ACPI_SHIFT_RIGHT_64(normalized_divisor.part.hi,
183					    normalized_divisor.part.lo);
184			ACPI_SHIFT_RIGHT_64(normalized_dividend.part.hi,
185					    normalized_dividend.part.lo);
186
187		} while (normalized_divisor.part.hi != 0);
188
189		/* Partial divide */
190
191		ACPI_DIV_64_BY_32(normalized_dividend.part.hi,
192				  normalized_dividend.part.lo,
193				  normalized_divisor.part.lo,
194				  quotient.part.lo, partial1);
195
196		/*
197		 * The quotient is always 32 bits, and simply requires adjustment.
198		 * The 64-bit remainder must be generated.
199		 */
200		partial1 = quotient.part.lo * divisor.part.hi;
201		partial2.full =
202		    (acpi_integer) quotient.part.lo * divisor.part.lo;
203		partial3.full = (acpi_integer) partial2.part.hi + partial1;
204
205		remainder.part.hi = partial3.part.lo;
206		remainder.part.lo = partial2.part.lo;
207
208		if (partial3.part.hi == 0) {
209			if (partial3.part.lo >= dividend.part.hi) {
210				if (partial3.part.lo == dividend.part.hi) {
211					if (partial2.part.lo > dividend.part.lo) {
212						quotient.part.lo--;
213						remainder.full -= divisor.full;
214					}
215				} else {
216					quotient.part.lo--;
217					remainder.full -= divisor.full;
218				}
219			}
220
221			remainder.full = remainder.full - dividend.full;
222			remainder.part.hi = (u32) - ((s32) remainder.part.hi);
223			remainder.part.lo = (u32) - ((s32) remainder.part.lo);
224
225			if (remainder.part.lo) {
226				remainder.part.hi--;
227			}
228		}
229	}
230
231	/* Return only what was requested */
232
233	if (out_quotient) {
234		*out_quotient = quotient.full;
235	}
236	if (out_remainder) {
237		*out_remainder = remainder.full;
238	}
239
240	return_ACPI_STATUS(AE_OK);
241}
242
243#else
244/*******************************************************************************
245 *
246 * FUNCTION:    acpi_ut_short_divide, acpi_ut_divide
247 *
248 * PARAMETERS:  See function headers above
249 *
250 * DESCRIPTION: Native versions of the ut_divide functions. Use these if either
251 *              1) The target is a 64-bit platform and therefore 64-bit
252 *                 integer math is supported directly by the machine.
253 *              2) The target is a 32-bit or 16-bit platform, and the
254 *                 double-precision integer math library is available to
255 *                 perform the divide.
256 *
257 ******************************************************************************/
258acpi_status
259acpi_ut_short_divide(acpi_integer in_dividend,
260		     u32 divisor,
261		     acpi_integer * out_quotient, u32 * out_remainder)
262{
263
264	ACPI_FUNCTION_TRACE(ut_short_divide);
265
266	/* Always check for a zero divisor */
267
268	if (divisor == 0) {
269		ACPI_ERROR((AE_INFO, "Divide by zero"));
270		return_ACPI_STATUS(AE_AML_DIVIDE_BY_ZERO);
271	}
272
273	/* Return only what was requested */
274
275	if (out_quotient) {
276		*out_quotient = in_dividend / divisor;
277	}
278	if (out_remainder) {
279		*out_remainder = (u32) in_dividend % divisor;
280	}
281
282	return_ACPI_STATUS(AE_OK);
283}
284
285acpi_status
286acpi_ut_divide(acpi_integer in_dividend,
287	       acpi_integer in_divisor,
288	       acpi_integer * out_quotient, acpi_integer * out_remainder)
289{
290	ACPI_FUNCTION_TRACE(ut_divide);
291
292	/* Always check for a zero divisor */
293
294	if (in_divisor == 0) {
295		ACPI_ERROR((AE_INFO, "Divide by zero"));
296		return_ACPI_STATUS(AE_AML_DIVIDE_BY_ZERO);
297	}
298
299	/* Return only what was requested */
300
301	if (out_quotient) {
302		*out_quotient = in_dividend / in_divisor;
303	}
304	if (out_remainder) {
305		*out_remainder = in_dividend % in_divisor;
306	}
307
308	return_ACPI_STATUS(AE_OK);
309}
310
311#endif
312