1/*
2 * processor_idle - idle state submodule to the ACPI processor driver
3 *
4 *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7 *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8 *  			- Added processor hotplug support
9 *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10 *  			- Added support for C3 on SMP
11 *
12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13 *
14 *  This program is free software; you can redistribute it and/or modify
15 *  it under the terms of the GNU General Public License as published by
16 *  the Free Software Foundation; either version 2 of the License, or (at
17 *  your option) any later version.
18 *
19 *  This program is distributed in the hope that it will be useful, but
20 *  WITHOUT ANY WARRANTY; without even the implied warranty of
21 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
22 *  General Public License for more details.
23 *
24 *  You should have received a copy of the GNU General Public License along
25 *  with this program; if not, write to the Free Software Foundation, Inc.,
26 *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
27 *
28 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29 */
30
31#include <linux/kernel.h>
32#include <linux/module.h>
33#include <linux/init.h>
34#include <linux/cpufreq.h>
35#include <linux/proc_fs.h>
36#include <linux/seq_file.h>
37#include <linux/acpi.h>
38#include <linux/dmi.h>
39#include <linux/moduleparam.h>
40#include <linux/sched.h>	/* need_resched() */
41#include <linux/latency.h>
42#include <linux/clockchips.h>
43
44/*
45 * Include the apic definitions for x86 to have the APIC timer related defines
46 * available also for UP (on SMP it gets magically included via linux/smp.h).
47 * asm/acpi.h is not an option, as it would require more include magic. Also
48 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
49 */
50#ifdef CONFIG_X86
51#include <asm/apic.h>
52#endif
53
54#include <asm/io.h>
55#include <asm/uaccess.h>
56
57#include <acpi/acpi_bus.h>
58#include <acpi/processor.h>
59
60#define ACPI_PROCESSOR_COMPONENT        0x01000000
61#define ACPI_PROCESSOR_CLASS            "processor"
62#define _COMPONENT              ACPI_PROCESSOR_COMPONENT
63ACPI_MODULE_NAME("processor_idle");
64#define ACPI_PROCESSOR_FILE_POWER	"power"
65#define US_TO_PM_TIMER_TICKS(t)		((t * (PM_TIMER_FREQUENCY/1000)) / 1000)
66#define PM_TIMER_TICK_NS		(1000000000ULL/PM_TIMER_FREQUENCY)
67#define C2_OVERHEAD			4	/* 1us (3.579 ticks per us) */
68#define C3_OVERHEAD			4	/* 1us (3.579 ticks per us) */
69static void (*pm_idle_save) (void) __read_mostly;
70module_param(max_cstate, uint, 0644);
71
72static unsigned int nocst __read_mostly;
73module_param(nocst, uint, 0000);
74
75/*
76 * bm_history -- bit-mask with a bit per jiffy of bus-master activity
77 * 1000 HZ: 0xFFFFFFFF: 32 jiffies = 32ms
78 * 800 HZ: 0xFFFFFFFF: 32 jiffies = 40ms
79 * 100 HZ: 0x0000000F: 4 jiffies = 40ms
80 * reduce history for more aggressive entry into C3
81 */
82static unsigned int bm_history __read_mostly =
83    (HZ >= 800 ? 0xFFFFFFFF : ((1U << (HZ / 25)) - 1));
84module_param(bm_history, uint, 0644);
85/* --------------------------------------------------------------------------
86                                Power Management
87   -------------------------------------------------------------------------- */
88
89/*
90 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
91 * For now disable this. Probably a bug somewhere else.
92 *
93 * To skip this limit, boot/load with a large max_cstate limit.
94 */
95static int set_max_cstate(struct dmi_system_id *id)
96{
97	if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
98		return 0;
99
100	printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
101	       " Override with \"processor.max_cstate=%d\"\n", id->ident,
102	       (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
103
104	max_cstate = (long)id->driver_data;
105
106	return 0;
107}
108
109/* Actually this shouldn't be __cpuinitdata, would be better to fix the
110   callers to only run once -AK */
111static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
112	{ set_max_cstate, "IBM ThinkPad R40e", {
113	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
114	  DMI_MATCH(DMI_BIOS_VERSION,"1SET70WW")}, (void *)1},
115	{ set_max_cstate, "IBM ThinkPad R40e", {
116	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
117	  DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW")}, (void *)1},
118	{ set_max_cstate, "IBM ThinkPad R40e", {
119	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
120	  DMI_MATCH(DMI_BIOS_VERSION,"1SET43WW") }, (void*)1},
121	{ set_max_cstate, "IBM ThinkPad R40e", {
122	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
123	  DMI_MATCH(DMI_BIOS_VERSION,"1SET45WW") }, (void*)1},
124	{ set_max_cstate, "IBM ThinkPad R40e", {
125	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
126	  DMI_MATCH(DMI_BIOS_VERSION,"1SET47WW") }, (void*)1},
127	{ set_max_cstate, "IBM ThinkPad R40e", {
128	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
129	  DMI_MATCH(DMI_BIOS_VERSION,"1SET50WW") }, (void*)1},
130	{ set_max_cstate, "IBM ThinkPad R40e", {
131	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
132	  DMI_MATCH(DMI_BIOS_VERSION,"1SET52WW") }, (void*)1},
133	{ set_max_cstate, "IBM ThinkPad R40e", {
134	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
135	  DMI_MATCH(DMI_BIOS_VERSION,"1SET55WW") }, (void*)1},
136	{ set_max_cstate, "IBM ThinkPad R40e", {
137	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
138	  DMI_MATCH(DMI_BIOS_VERSION,"1SET56WW") }, (void*)1},
139	{ set_max_cstate, "IBM ThinkPad R40e", {
140	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
141	  DMI_MATCH(DMI_BIOS_VERSION,"1SET59WW") }, (void*)1},
142	{ set_max_cstate, "IBM ThinkPad R40e", {
143	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
144	  DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW") }, (void*)1},
145	{ set_max_cstate, "IBM ThinkPad R40e", {
146	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
147	  DMI_MATCH(DMI_BIOS_VERSION,"1SET61WW") }, (void*)1},
148	{ set_max_cstate, "IBM ThinkPad R40e", {
149	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
150	  DMI_MATCH(DMI_BIOS_VERSION,"1SET62WW") }, (void*)1},
151	{ set_max_cstate, "IBM ThinkPad R40e", {
152	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
153	  DMI_MATCH(DMI_BIOS_VERSION,"1SET64WW") }, (void*)1},
154	{ set_max_cstate, "IBM ThinkPad R40e", {
155	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
156	  DMI_MATCH(DMI_BIOS_VERSION,"1SET65WW") }, (void*)1},
157	{ set_max_cstate, "IBM ThinkPad R40e", {
158	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
159	  DMI_MATCH(DMI_BIOS_VERSION,"1SET68WW") }, (void*)1},
160	{ set_max_cstate, "Medion 41700", {
161	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
162	  DMI_MATCH(DMI_BIOS_VERSION,"R01-A1J")}, (void *)1},
163	{ set_max_cstate, "Clevo 5600D", {
164	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
165	  DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
166	 (void *)2},
167	{},
168};
169
170static inline u32 ticks_elapsed(u32 t1, u32 t2)
171{
172	if (t2 >= t1)
173		return (t2 - t1);
174	else if (!(acpi_gbl_FADT.flags & ACPI_FADT_32BIT_TIMER))
175		return (((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
176	else
177		return ((0xFFFFFFFF - t1) + t2);
178}
179
180static void
181acpi_processor_power_activate(struct acpi_processor *pr,
182			      struct acpi_processor_cx *new)
183{
184	struct acpi_processor_cx *old;
185
186	if (!pr || !new)
187		return;
188
189	old = pr->power.state;
190
191	if (old)
192		old->promotion.count = 0;
193	new->demotion.count = 0;
194
195	/* Cleanup from old state. */
196	if (old) {
197		switch (old->type) {
198		case ACPI_STATE_C3:
199			/* Disable bus master reload */
200			if (new->type != ACPI_STATE_C3 && pr->flags.bm_check)
201				acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
202			break;
203		}
204	}
205
206	/* Prepare to use new state. */
207	switch (new->type) {
208	case ACPI_STATE_C3:
209		/* Enable bus master reload */
210		if (old->type != ACPI_STATE_C3 && pr->flags.bm_check)
211			acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
212		break;
213	}
214
215	pr->power.state = new;
216
217	return;
218}
219
220static void acpi_safe_halt(void)
221{
222	current_thread_info()->status &= ~TS_POLLING;
223	/*
224	 * TS_POLLING-cleared state must be visible before we
225	 * test NEED_RESCHED:
226	 */
227	smp_mb();
228	if (!need_resched())
229		safe_halt();
230	current_thread_info()->status |= TS_POLLING;
231}
232
233static atomic_t c3_cpu_count;
234
235/* Common C-state entry for C2, C3, .. */
236static void acpi_cstate_enter(struct acpi_processor_cx *cstate)
237{
238	if (cstate->space_id == ACPI_CSTATE_FFH) {
239		/* Call into architectural FFH based C-state */
240		acpi_processor_ffh_cstate_enter(cstate);
241	} else {
242		int unused;
243		/* IO port based C-state */
244		inb(cstate->address);
245		/* Dummy wait op - must do something useless after P_LVL2 read
246		   because chipsets cannot guarantee that STPCLK# signal
247		   gets asserted in time to freeze execution properly. */
248		unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
249	}
250}
251
252#ifdef ARCH_APICTIMER_STOPS_ON_C3
253
254/*
255 * Some BIOS implementations switch to C3 in the published C2 state.
256 * This seems to be a common problem on AMD boxen, but other vendors
257 * are affected too. We pick the most conservative approach: we assume
258 * that the local APIC stops in both C2 and C3.
259 */
260static void acpi_timer_check_state(int state, struct acpi_processor *pr,
261				   struct acpi_processor_cx *cx)
262{
263	struct acpi_processor_power *pwr = &pr->power;
264	u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
265
266	/*
267	 * Check, if one of the previous states already marked the lapic
268	 * unstable
269	 */
270	if (pwr->timer_broadcast_on_state < state)
271		return;
272
273	if (cx->type >= type)
274		pr->power.timer_broadcast_on_state = state;
275}
276
277static void acpi_propagate_timer_broadcast(struct acpi_processor *pr)
278{
279#ifdef CONFIG_GENERIC_CLOCKEVENTS
280	unsigned long reason;
281
282	reason = pr->power.timer_broadcast_on_state < INT_MAX ?
283		CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
284
285	clockevents_notify(reason, &pr->id);
286#else
287	cpumask_t mask = cpumask_of_cpu(pr->id);
288
289	if (pr->power.timer_broadcast_on_state < INT_MAX)
290		on_each_cpu(switch_APIC_timer_to_ipi, &mask, 1, 1);
291	else
292		on_each_cpu(switch_ipi_to_APIC_timer, &mask, 1, 1);
293#endif
294}
295
296/* Power(C) State timer broadcast control */
297static void acpi_state_timer_broadcast(struct acpi_processor *pr,
298				       struct acpi_processor_cx *cx,
299				       int broadcast)
300{
301#ifdef CONFIG_GENERIC_CLOCKEVENTS
302
303	int state = cx - pr->power.states;
304
305	if (state >= pr->power.timer_broadcast_on_state) {
306		unsigned long reason;
307
308		reason = broadcast ?  CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
309			CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
310		clockevents_notify(reason, &pr->id);
311	}
312#endif
313}
314
315#else
316
317static void acpi_timer_check_state(int state, struct acpi_processor *pr,
318				   struct acpi_processor_cx *cstate) { }
319static void acpi_propagate_timer_broadcast(struct acpi_processor *pr) { }
320static void acpi_state_timer_broadcast(struct acpi_processor *pr,
321				       struct acpi_processor_cx *cx,
322				       int broadcast)
323{
324}
325
326#endif
327
328static void acpi_processor_idle(void)
329{
330	struct acpi_processor *pr = NULL;
331	struct acpi_processor_cx *cx = NULL;
332	struct acpi_processor_cx *next_state = NULL;
333	int sleep_ticks = 0;
334	u32 t1, t2 = 0;
335
336	/*
337	 * Interrupts must be disabled during bus mastering calculations and
338	 * for C2/C3 transitions.
339	 */
340	local_irq_disable();
341
342	pr = processors[smp_processor_id()];
343	if (!pr) {
344		local_irq_enable();
345		return;
346	}
347
348	/*
349	 * Check whether we truly need to go idle, or should
350	 * reschedule:
351	 */
352	if (unlikely(need_resched())) {
353		local_irq_enable();
354		return;
355	}
356
357	cx = pr->power.state;
358	if (!cx) {
359		if (pm_idle_save)
360			pm_idle_save();
361		else
362			acpi_safe_halt();
363		return;
364	}
365
366	/*
367	 * Check BM Activity
368	 * -----------------
369	 * Check for bus mastering activity (if required), record, and check
370	 * for demotion.
371	 */
372	if (pr->flags.bm_check) {
373		u32 bm_status = 0;
374		unsigned long diff = jiffies - pr->power.bm_check_timestamp;
375
376		if (diff > 31)
377			diff = 31;
378
379		pr->power.bm_activity <<= diff;
380
381		acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
382		if (bm_status) {
383			pr->power.bm_activity |= 0x1;
384			acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
385		}
386		/*
387		 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
388		 * the true state of bus mastering activity; forcing us to
389		 * manually check the BMIDEA bit of each IDE channel.
390		 */
391		else if (errata.piix4.bmisx) {
392			if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
393			    || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
394				pr->power.bm_activity |= 0x1;
395		}
396
397		pr->power.bm_check_timestamp = jiffies;
398
399		/*
400		 * If bus mastering is or was active this jiffy, demote
401		 * to avoid a faulty transition.  Note that the processor
402		 * won't enter a low-power state during this call (to this
403		 * function) but should upon the next.
404		 *
405		 * TBD: A better policy might be to fallback to the demotion
406		 *      state (use it for this quantum only) istead of
407		 *      demoting -- and rely on duration as our sole demotion
408		 *      qualification.  This may, however, introduce DMA
409		 *      issues (e.g. floppy DMA transfer overrun/underrun).
410		 */
411		if ((pr->power.bm_activity & 0x1) &&
412		    cx->demotion.threshold.bm) {
413			local_irq_enable();
414			next_state = cx->demotion.state;
415			goto end;
416		}
417	}
418
419#ifdef CONFIG_HOTPLUG_CPU
420	/*
421	 * Check for P_LVL2_UP flag before entering C2 and above on
422	 * an SMP system. We do it here instead of doing it at _CST/P_LVL
423	 * detection phase, to work cleanly with logical CPU hotplug.
424	 */
425	if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
426	    !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
427		cx = &pr->power.states[ACPI_STATE_C1];
428#endif
429
430	/*
431	 * Sleep:
432	 * ------
433	 * Invoke the current Cx state to put the processor to sleep.
434	 */
435	if (cx->type == ACPI_STATE_C2 || cx->type == ACPI_STATE_C3) {
436		current_thread_info()->status &= ~TS_POLLING;
437		/*
438		 * TS_POLLING-cleared state must be visible before we
439		 * test NEED_RESCHED:
440		 */
441		smp_mb();
442		if (need_resched()) {
443			current_thread_info()->status |= TS_POLLING;
444			local_irq_enable();
445			return;
446		}
447	}
448
449	switch (cx->type) {
450
451	case ACPI_STATE_C1:
452		/*
453		 * Invoke C1.
454		 * Use the appropriate idle routine, the one that would
455		 * be used without acpi C-states.
456		 */
457		if (pm_idle_save)
458			pm_idle_save();
459		else
460			acpi_safe_halt();
461
462		/*
463		 * TBD: Can't get time duration while in C1, as resumes
464		 *      go to an ISR rather than here.  Need to instrument
465		 *      base interrupt handler.
466		 *
467		 * Note: the TSC better not stop in C1, sched_clock() will
468		 *       skew otherwise.
469		 */
470		sleep_ticks = 0xFFFFFFFF;
471		break;
472
473	case ACPI_STATE_C2:
474		/* Get start time (ticks) */
475		t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
476		/* Tell the scheduler that we are going deep-idle: */
477		sched_clock_idle_sleep_event();
478		/* Invoke C2 */
479		acpi_state_timer_broadcast(pr, cx, 1);
480		acpi_cstate_enter(cx);
481		/* Get end time (ticks) */
482		t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
483
484#ifdef CONFIG_GENERIC_TIME
485		/* TSC halts in C2, so notify users */
486		mark_tsc_unstable("possible TSC halt in C2");
487#endif
488		/* Compute time (ticks) that we were actually asleep */
489		sleep_ticks = ticks_elapsed(t1, t2);
490
491		/* Tell the scheduler how much we idled: */
492		sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
493
494		/* Re-enable interrupts */
495		local_irq_enable();
496		/* Do not account our idle-switching overhead: */
497		sleep_ticks -= cx->latency_ticks + C2_OVERHEAD;
498
499		current_thread_info()->status |= TS_POLLING;
500		acpi_state_timer_broadcast(pr, cx, 0);
501		break;
502
503	case ACPI_STATE_C3:
504		if (pr->flags.bm_check) {
505			if (atomic_inc_return(&c3_cpu_count) ==
506			    num_online_cpus()) {
507				/*
508				 * All CPUs are trying to go to C3
509				 * Disable bus master arbitration
510				 */
511				acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1);
512			}
513		} else {
514			/* SMP with no shared cache... Invalidate cache  */
515			ACPI_FLUSH_CPU_CACHE();
516		}
517
518		/* Get start time (ticks) */
519		t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
520		/* Invoke C3 */
521		acpi_state_timer_broadcast(pr, cx, 1);
522		/* Tell the scheduler that we are going deep-idle: */
523		sched_clock_idle_sleep_event();
524		acpi_cstate_enter(cx);
525		/* Get end time (ticks) */
526		t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
527		if (pr->flags.bm_check) {
528			/* Enable bus master arbitration */
529			atomic_dec(&c3_cpu_count);
530			acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0);
531		}
532
533#ifdef CONFIG_GENERIC_TIME
534		/* TSC halts in C3, so notify users */
535		mark_tsc_unstable("TSC halts in C3");
536#endif
537		/* Compute time (ticks) that we were actually asleep */
538		sleep_ticks = ticks_elapsed(t1, t2);
539		/* Tell the scheduler how much we idled: */
540		sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
541
542		/* Re-enable interrupts */
543		local_irq_enable();
544		/* Do not account our idle-switching overhead: */
545		sleep_ticks -= cx->latency_ticks + C3_OVERHEAD;
546
547		current_thread_info()->status |= TS_POLLING;
548		acpi_state_timer_broadcast(pr, cx, 0);
549		break;
550
551	default:
552		local_irq_enable();
553		return;
554	}
555	cx->usage++;
556	if ((cx->type != ACPI_STATE_C1) && (sleep_ticks > 0))
557		cx->time += sleep_ticks;
558
559	next_state = pr->power.state;
560
561#ifdef CONFIG_HOTPLUG_CPU
562	/* Don't do promotion/demotion */
563	if ((cx->type == ACPI_STATE_C1) && (num_online_cpus() > 1) &&
564	    !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED)) {
565		next_state = cx;
566		goto end;
567	}
568#endif
569
570	/*
571	 * Promotion?
572	 * ----------
573	 * Track the number of longs (time asleep is greater than threshold)
574	 * and promote when the count threshold is reached.  Note that bus
575	 * mastering activity may prevent promotions.
576	 * Do not promote above max_cstate.
577	 */
578	if (cx->promotion.state &&
579	    ((cx->promotion.state - pr->power.states) <= max_cstate)) {
580		if (sleep_ticks > cx->promotion.threshold.ticks &&
581		  cx->promotion.state->latency <= system_latency_constraint()) {
582			cx->promotion.count++;
583			cx->demotion.count = 0;
584			if (cx->promotion.count >=
585			    cx->promotion.threshold.count) {
586				if (pr->flags.bm_check) {
587					if (!
588					    (pr->power.bm_activity & cx->
589					     promotion.threshold.bm)) {
590						next_state =
591						    cx->promotion.state;
592						goto end;
593					}
594				} else {
595					next_state = cx->promotion.state;
596					goto end;
597				}
598			}
599		}
600	}
601
602	/*
603	 * Demotion?
604	 * ---------
605	 * Track the number of shorts (time asleep is less than time threshold)
606	 * and demote when the usage threshold is reached.
607	 */
608	if (cx->demotion.state) {
609		if (sleep_ticks < cx->demotion.threshold.ticks) {
610			cx->demotion.count++;
611			cx->promotion.count = 0;
612			if (cx->demotion.count >= cx->demotion.threshold.count) {
613				next_state = cx->demotion.state;
614				goto end;
615			}
616		}
617	}
618
619      end:
620	/*
621	 * Demote if current state exceeds max_cstate
622	 * or if the latency of the current state is unacceptable
623	 */
624	if ((pr->power.state - pr->power.states) > max_cstate ||
625		pr->power.state->latency > system_latency_constraint()) {
626		if (cx->demotion.state)
627			next_state = cx->demotion.state;
628	}
629
630	/*
631	 * New Cx State?
632	 * -------------
633	 * If we're going to start using a new Cx state we must clean up
634	 * from the previous and prepare to use the new.
635	 */
636	if (next_state != pr->power.state)
637		acpi_processor_power_activate(pr, next_state);
638}
639
640static int acpi_processor_set_power_policy(struct acpi_processor *pr)
641{
642	unsigned int i;
643	unsigned int state_is_set = 0;
644	struct acpi_processor_cx *lower = NULL;
645	struct acpi_processor_cx *higher = NULL;
646	struct acpi_processor_cx *cx;
647
648
649	if (!pr)
650		return -EINVAL;
651
652	/*
653	 * This function sets the default Cx state policy (OS idle handler).
654	 * Our scheme is to promote quickly to C2 but more conservatively
655	 * to C3.  We're favoring C2  for its characteristics of low latency
656	 * (quick response), good power savings, and ability to allow bus
657	 * mastering activity.  Note that the Cx state policy is completely
658	 * customizable and can be altered dynamically.
659	 */
660
661	/* startup state */
662	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
663		cx = &pr->power.states[i];
664		if (!cx->valid)
665			continue;
666
667		if (!state_is_set)
668			pr->power.state = cx;
669		state_is_set++;
670		break;
671	}
672
673	if (!state_is_set)
674		return -ENODEV;
675
676	/* demotion */
677	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
678		cx = &pr->power.states[i];
679		if (!cx->valid)
680			continue;
681
682		if (lower) {
683			cx->demotion.state = lower;
684			cx->demotion.threshold.ticks = cx->latency_ticks;
685			cx->demotion.threshold.count = 1;
686			if (cx->type == ACPI_STATE_C3)
687				cx->demotion.threshold.bm = bm_history;
688		}
689
690		lower = cx;
691	}
692
693	/* promotion */
694	for (i = (ACPI_PROCESSOR_MAX_POWER - 1); i > 0; i--) {
695		cx = &pr->power.states[i];
696		if (!cx->valid)
697			continue;
698
699		if (higher) {
700			cx->promotion.state = higher;
701			cx->promotion.threshold.ticks = cx->latency_ticks;
702			if (cx->type >= ACPI_STATE_C2)
703				cx->promotion.threshold.count = 4;
704			else
705				cx->promotion.threshold.count = 10;
706			if (higher->type == ACPI_STATE_C3)
707				cx->promotion.threshold.bm = bm_history;
708		}
709
710		higher = cx;
711	}
712
713	return 0;
714}
715
716static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
717{
718
719	if (!pr)
720		return -EINVAL;
721
722	if (!pr->pblk)
723		return -ENODEV;
724
725	/* if info is obtained from pblk/fadt, type equals state */
726	pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
727	pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
728
729#ifndef CONFIG_HOTPLUG_CPU
730	/*
731	 * Check for P_LVL2_UP flag before entering C2 and above on
732	 * an SMP system.
733	 */
734	if ((num_online_cpus() > 1) &&
735	    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
736		return -ENODEV;
737#endif
738
739	/* determine C2 and C3 address from pblk */
740	pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
741	pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
742
743	/* determine latencies from FADT */
744	pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency;
745	pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency;
746
747	ACPI_DEBUG_PRINT((ACPI_DB_INFO,
748			  "lvl2[0x%08x] lvl3[0x%08x]\n",
749			  pr->power.states[ACPI_STATE_C2].address,
750			  pr->power.states[ACPI_STATE_C3].address));
751
752	return 0;
753}
754
755static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
756{
757	if (!pr->power.states[ACPI_STATE_C1].valid) {
758		/* set the first C-State to C1 */
759		/* all processors need to support C1 */
760		pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
761		pr->power.states[ACPI_STATE_C1].valid = 1;
762	}
763	/* the C0 state only exists as a filler in our array */
764	pr->power.states[ACPI_STATE_C0].valid = 1;
765	return 0;
766}
767
768static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
769{
770	acpi_status status = 0;
771	acpi_integer count;
772	int current_count;
773	int i;
774	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
775	union acpi_object *cst;
776
777
778	if (nocst)
779		return -ENODEV;
780
781	current_count = 0;
782
783	status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
784	if (ACPI_FAILURE(status)) {
785		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
786		return -ENODEV;
787	}
788
789	cst = buffer.pointer;
790
791	/* There must be at least 2 elements */
792	if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
793		printk(KERN_ERR PREFIX "not enough elements in _CST\n");
794		status = -EFAULT;
795		goto end;
796	}
797
798	count = cst->package.elements[0].integer.value;
799
800	/* Validate number of power states. */
801	if (count < 1 || count != cst->package.count - 1) {
802		printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
803		status = -EFAULT;
804		goto end;
805	}
806
807	/* Tell driver that at least _CST is supported. */
808	pr->flags.has_cst = 1;
809
810	for (i = 1; i <= count; i++) {
811		union acpi_object *element;
812		union acpi_object *obj;
813		struct acpi_power_register *reg;
814		struct acpi_processor_cx cx;
815
816		memset(&cx, 0, sizeof(cx));
817
818		element = &(cst->package.elements[i]);
819		if (element->type != ACPI_TYPE_PACKAGE)
820			continue;
821
822		if (element->package.count != 4)
823			continue;
824
825		obj = &(element->package.elements[0]);
826
827		if (obj->type != ACPI_TYPE_BUFFER)
828			continue;
829
830		reg = (struct acpi_power_register *)obj->buffer.pointer;
831
832		if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
833		    (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
834			continue;
835
836		/* There should be an easy way to extract an integer... */
837		obj = &(element->package.elements[1]);
838		if (obj->type != ACPI_TYPE_INTEGER)
839			continue;
840
841		cx.type = obj->integer.value;
842		/*
843		 * Some buggy BIOSes won't list C1 in _CST -
844		 * Let acpi_processor_get_power_info_default() handle them later
845		 */
846		if (i == 1 && cx.type != ACPI_STATE_C1)
847			current_count++;
848
849		cx.address = reg->address;
850		cx.index = current_count + 1;
851
852		cx.space_id = ACPI_CSTATE_SYSTEMIO;
853		if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
854			if (acpi_processor_ffh_cstate_probe
855					(pr->id, &cx, reg) == 0) {
856				cx.space_id = ACPI_CSTATE_FFH;
857			} else if (cx.type != ACPI_STATE_C1) {
858				/*
859				 * C1 is a special case where FIXED_HARDWARE
860				 * can be handled in non-MWAIT way as well.
861				 * In that case, save this _CST entry info.
862				 * That is, we retain space_id of SYSTEM_IO for
863				 * halt based C1.
864				 * Otherwise, ignore this info and continue.
865				 */
866				continue;
867			}
868		}
869
870		obj = &(element->package.elements[2]);
871		if (obj->type != ACPI_TYPE_INTEGER)
872			continue;
873
874		cx.latency = obj->integer.value;
875
876		obj = &(element->package.elements[3]);
877		if (obj->type != ACPI_TYPE_INTEGER)
878			continue;
879
880		cx.power = obj->integer.value;
881
882		current_count++;
883		memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
884
885		/*
886		 * We support total ACPI_PROCESSOR_MAX_POWER - 1
887		 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
888		 */
889		if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
890			printk(KERN_WARNING
891			       "Limiting number of power states to max (%d)\n",
892			       ACPI_PROCESSOR_MAX_POWER);
893			printk(KERN_WARNING
894			       "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
895			break;
896		}
897	}
898
899	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
900			  current_count));
901
902	/* Validate number of power states discovered */
903	if (current_count < 2)
904		status = -EFAULT;
905
906      end:
907	kfree(buffer.pointer);
908
909	return status;
910}
911
912static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx)
913{
914
915	if (!cx->address)
916		return;
917
918	/*
919	 * C2 latency must be less than or equal to 100
920	 * microseconds.
921	 */
922	else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
923		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
924				  "latency too large [%d]\n", cx->latency));
925		return;
926	}
927
928	/*
929	 * Otherwise we've met all of our C2 requirements.
930	 * Normalize the C2 latency to expidite policy
931	 */
932	cx->valid = 1;
933	cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
934
935	return;
936}
937
938static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
939					   struct acpi_processor_cx *cx)
940{
941	static int bm_check_flag;
942
943
944	if (!cx->address)
945		return;
946
947	/*
948	 * C3 latency must be less than or equal to 1000
949	 * microseconds.
950	 */
951	else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
952		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
953				  "latency too large [%d]\n", cx->latency));
954		return;
955	}
956
957	/*
958	 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
959	 * DMA transfers are used by any ISA device to avoid livelock.
960	 * Note that we could disable Type-F DMA (as recommended by
961	 * the erratum), but this is known to disrupt certain ISA
962	 * devices thus we take the conservative approach.
963	 */
964	else if (errata.piix4.fdma) {
965		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
966				  "C3 not supported on PIIX4 with Type-F DMA\n"));
967		return;
968	}
969
970	/* All the logic here assumes flags.bm_check is same across all CPUs */
971	if (!bm_check_flag) {
972		/* Determine whether bm_check is needed based on CPU  */
973		acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
974		bm_check_flag = pr->flags.bm_check;
975	} else {
976		pr->flags.bm_check = bm_check_flag;
977	}
978
979	if (pr->flags.bm_check) {
980		/* bus mastering control is necessary */
981		if (!pr->flags.bm_control) {
982			ACPI_DEBUG_PRINT((ACPI_DB_INFO,
983					  "C3 support requires bus mastering control\n"));
984			return;
985		}
986	} else {
987		/*
988		 * WBINVD should be set in fadt, for C3 state to be
989		 * supported on when bm_check is not required.
990		 */
991		if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
992			ACPI_DEBUG_PRINT((ACPI_DB_INFO,
993					  "Cache invalidation should work properly"
994					  " for C3 to be enabled on SMP systems\n"));
995			return;
996		}
997		acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
998	}
999
1000	/*
1001	 * Otherwise we've met all of our C3 requirements.
1002	 * Normalize the C3 latency to expidite policy.  Enable
1003	 * checking of bus mastering status (bm_check) so we can
1004	 * use this in our C3 policy
1005	 */
1006	cx->valid = 1;
1007	cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
1008
1009	return;
1010}
1011
1012static int acpi_processor_power_verify(struct acpi_processor *pr)
1013{
1014	unsigned int i;
1015	unsigned int working = 0;
1016
1017	pr->power.timer_broadcast_on_state = INT_MAX;
1018
1019	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
1020		struct acpi_processor_cx *cx = &pr->power.states[i];
1021
1022		switch (cx->type) {
1023		case ACPI_STATE_C1:
1024			cx->valid = 1;
1025			break;
1026
1027		case ACPI_STATE_C2:
1028			acpi_processor_power_verify_c2(cx);
1029			if (cx->valid)
1030				acpi_timer_check_state(i, pr, cx);
1031			break;
1032
1033		case ACPI_STATE_C3:
1034			acpi_processor_power_verify_c3(pr, cx);
1035			if (cx->valid)
1036				acpi_timer_check_state(i, pr, cx);
1037			break;
1038		}
1039
1040		if (cx->valid)
1041			working++;
1042	}
1043
1044	acpi_propagate_timer_broadcast(pr);
1045
1046	return (working);
1047}
1048
1049static int acpi_processor_get_power_info(struct acpi_processor *pr)
1050{
1051	unsigned int i;
1052	int result;
1053
1054
1055	/* NOTE: the idle thread may not be running while calling
1056	 * this function */
1057
1058	/* Zero initialize all the C-states info. */
1059	memset(pr->power.states, 0, sizeof(pr->power.states));
1060
1061	result = acpi_processor_get_power_info_cst(pr);
1062	if (result == -ENODEV)
1063		result = acpi_processor_get_power_info_fadt(pr);
1064
1065	if (result)
1066		return result;
1067
1068	acpi_processor_get_power_info_default(pr);
1069
1070	pr->power.count = acpi_processor_power_verify(pr);
1071
1072	/*
1073	 * Set Default Policy
1074	 * ------------------
1075	 * Now that we know which states are supported, set the default
1076	 * policy.  Note that this policy can be changed dynamically
1077	 * (e.g. encourage deeper sleeps to conserve battery life when
1078	 * not on AC).
1079	 */
1080	result = acpi_processor_set_power_policy(pr);
1081	if (result)
1082		return result;
1083
1084	/*
1085	 * if one state of type C2 or C3 is available, mark this
1086	 * CPU as being "idle manageable"
1087	 */
1088	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
1089		if (pr->power.states[i].valid) {
1090			pr->power.count = i;
1091			if (pr->power.states[i].type >= ACPI_STATE_C2)
1092				pr->flags.power = 1;
1093		}
1094	}
1095
1096	return 0;
1097}
1098
1099int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1100{
1101	int result = 0;
1102
1103
1104	if (!pr)
1105		return -EINVAL;
1106
1107	if (nocst) {
1108		return -ENODEV;
1109	}
1110
1111	if (!pr->flags.power_setup_done)
1112		return -ENODEV;
1113
1114	/* Fall back to the default idle loop */
1115	pm_idle = pm_idle_save;
1116	synchronize_sched();	/* Relies on interrupts forcing exit from idle. */
1117
1118	pr->flags.power = 0;
1119	result = acpi_processor_get_power_info(pr);
1120	if ((pr->flags.power == 1) && (pr->flags.power_setup_done))
1121		pm_idle = acpi_processor_idle;
1122
1123	return result;
1124}
1125
1126/* proc interface */
1127
1128static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
1129{
1130	struct acpi_processor *pr = seq->private;
1131	unsigned int i;
1132
1133
1134	if (!pr)
1135		goto end;
1136
1137	seq_printf(seq, "active state:            C%zd\n"
1138		   "max_cstate:              C%d\n"
1139		   "bus master activity:     %08x\n"
1140		   "maximum allowed latency: %d usec\n",
1141		   pr->power.state ? pr->power.state - pr->power.states : 0,
1142		   max_cstate, (unsigned)pr->power.bm_activity,
1143		   system_latency_constraint());
1144
1145	seq_puts(seq, "states:\n");
1146
1147	for (i = 1; i <= pr->power.count; i++) {
1148		seq_printf(seq, "   %cC%d:                  ",
1149			   (&pr->power.states[i] ==
1150			    pr->power.state ? '*' : ' '), i);
1151
1152		if (!pr->power.states[i].valid) {
1153			seq_puts(seq, "<not supported>\n");
1154			continue;
1155		}
1156
1157		switch (pr->power.states[i].type) {
1158		case ACPI_STATE_C1:
1159			seq_printf(seq, "type[C1] ");
1160			break;
1161		case ACPI_STATE_C2:
1162			seq_printf(seq, "type[C2] ");
1163			break;
1164		case ACPI_STATE_C3:
1165			seq_printf(seq, "type[C3] ");
1166			break;
1167		default:
1168			seq_printf(seq, "type[--] ");
1169			break;
1170		}
1171
1172		if (pr->power.states[i].promotion.state)
1173			seq_printf(seq, "promotion[C%zd] ",
1174				   (pr->power.states[i].promotion.state -
1175				    pr->power.states));
1176		else
1177			seq_puts(seq, "promotion[--] ");
1178
1179		if (pr->power.states[i].demotion.state)
1180			seq_printf(seq, "demotion[C%zd] ",
1181				   (pr->power.states[i].demotion.state -
1182				    pr->power.states));
1183		else
1184			seq_puts(seq, "demotion[--] ");
1185
1186		seq_printf(seq, "latency[%03d] usage[%08d] duration[%020llu]\n",
1187			   pr->power.states[i].latency,
1188			   pr->power.states[i].usage,
1189			   (unsigned long long)pr->power.states[i].time);
1190	}
1191
1192      end:
1193	return 0;
1194}
1195
1196static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
1197{
1198	return single_open(file, acpi_processor_power_seq_show,
1199			   PDE(inode)->data);
1200}
1201
1202static const struct file_operations acpi_processor_power_fops = {
1203	.open = acpi_processor_power_open_fs,
1204	.read = seq_read,
1205	.llseek = seq_lseek,
1206	.release = single_release,
1207};
1208
1209#ifdef CONFIG_SMP
1210static void smp_callback(void *v)
1211{
1212	/* we already woke the CPU up, nothing more to do */
1213}
1214
1215/*
1216 * This function gets called when a part of the kernel has a new latency
1217 * requirement.  This means we need to get all processors out of their C-state,
1218 * and then recalculate a new suitable C-state. Just do a cross-cpu IPI; that
1219 * wakes them all right up.
1220 */
1221static int acpi_processor_latency_notify(struct notifier_block *b,
1222		unsigned long l, void *v)
1223{
1224	smp_call_function(smp_callback, NULL, 0, 1);
1225	return NOTIFY_OK;
1226}
1227
1228static struct notifier_block acpi_processor_latency_notifier = {
1229	.notifier_call = acpi_processor_latency_notify,
1230};
1231#endif
1232
1233int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
1234			      struct acpi_device *device)
1235{
1236	acpi_status status = 0;
1237	static int first_run;
1238	struct proc_dir_entry *entry = NULL;
1239	unsigned int i;
1240
1241
1242	if (!first_run) {
1243		dmi_check_system(processor_power_dmi_table);
1244		if (max_cstate < ACPI_C_STATES_MAX)
1245			printk(KERN_NOTICE
1246			       "ACPI: processor limited to max C-state %d\n",
1247			       max_cstate);
1248		first_run++;
1249#ifdef CONFIG_SMP
1250		register_latency_notifier(&acpi_processor_latency_notifier);
1251#endif
1252	}
1253
1254	if (!pr)
1255		return -EINVAL;
1256
1257	if (acpi_gbl_FADT.cst_control && !nocst) {
1258		status =
1259		    acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1260		if (ACPI_FAILURE(status)) {
1261			ACPI_EXCEPTION((AE_INFO, status,
1262					"Notifying BIOS of _CST ability failed"));
1263		}
1264	}
1265
1266	acpi_processor_get_power_info(pr);
1267
1268	/*
1269	 * Install the idle handler if processor power management is supported.
1270	 * Note that we use previously set idle handler will be used on
1271	 * platforms that only support C1.
1272	 */
1273	if ((pr->flags.power) && (!boot_option_idle_override)) {
1274		printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id);
1275		for (i = 1; i <= pr->power.count; i++)
1276			if (pr->power.states[i].valid)
1277				printk(" C%d[C%d]", i,
1278				       pr->power.states[i].type);
1279		printk(")\n");
1280
1281		if (pr->id == 0) {
1282			pm_idle_save = pm_idle;
1283			pm_idle = acpi_processor_idle;
1284		}
1285	}
1286
1287	/* 'power' [R] */
1288	entry = create_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1289				  S_IRUGO, acpi_device_dir(device));
1290	if (!entry)
1291		return -EIO;
1292	else {
1293		entry->proc_fops = &acpi_processor_power_fops;
1294		entry->data = acpi_driver_data(device);
1295		entry->owner = THIS_MODULE;
1296	}
1297
1298	pr->flags.power_setup_done = 1;
1299
1300	return 0;
1301}
1302
1303int acpi_processor_power_exit(struct acpi_processor *pr,
1304			      struct acpi_device *device)
1305{
1306
1307	pr->flags.power_setup_done = 0;
1308
1309	if (acpi_device_dir(device))
1310		remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1311				  acpi_device_dir(device));
1312
1313	/* Unregister the idle handler when processor #0 is removed. */
1314	if (pr->id == 0) {
1315		pm_idle = pm_idle_save;
1316
1317		/*
1318		 * We are about to unload the current idle thread pm callback
1319		 * (pm_idle), Wait for all processors to update cached/local
1320		 * copies of pm_idle before proceeding.
1321		 */
1322		cpu_idle_wait();
1323#ifdef CONFIG_SMP
1324		unregister_latency_notifier(&acpi_processor_latency_notifier);
1325#endif
1326	}
1327
1328	return 0;
1329}
1330