1/*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> -  July2000
7 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
8 */
9
10/*
11 * This handles all read/write requests to block devices
12 */
13#include <linux/kernel.h>
14#include <linux/module.h>
15#include <linux/backing-dev.h>
16#include <linux/bio.h>
17#include <linux/blkdev.h>
18#include <linux/highmem.h>
19#include <linux/mm.h>
20#include <linux/kernel_stat.h>
21#include <linux/string.h>
22#include <linux/init.h>
23#include <linux/bootmem.h>	/* for max_pfn/max_low_pfn */
24#include <linux/completion.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
28#include <linux/task_io_accounting_ops.h>
29#include <linux/interrupt.h>
30#include <linux/cpu.h>
31#include <linux/blktrace_api.h>
32#include <linux/fault-inject.h>
33
34/*
35 * for max sense size
36 */
37#include <scsi/scsi_cmnd.h>
38
39static void blk_unplug_work(struct work_struct *work);
40static void blk_unplug_timeout(unsigned long data);
41static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io);
42static void init_request_from_bio(struct request *req, struct bio *bio);
43static int __make_request(request_queue_t *q, struct bio *bio);
44static struct io_context *current_io_context(gfp_t gfp_flags, int node);
45
46/*
47 * For the allocated request tables
48 */
49static struct kmem_cache *request_cachep;
50
51/*
52 * For queue allocation
53 */
54static struct kmem_cache *requestq_cachep;
55
56/*
57 * For io context allocations
58 */
59static struct kmem_cache *iocontext_cachep;
60
61/*
62 * Controlling structure to kblockd
63 */
64static struct workqueue_struct *kblockd_workqueue;
65
66unsigned long blk_max_low_pfn, blk_max_pfn;
67
68EXPORT_SYMBOL(blk_max_low_pfn);
69EXPORT_SYMBOL(blk_max_pfn);
70
71static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
72
73/* Amount of time in which a process may batch requests */
74#define BLK_BATCH_TIME	(HZ/50UL)
75
76/* Number of requests a "batching" process may submit */
77#define BLK_BATCH_REQ	32
78
79/*
80 * Return the threshold (number of used requests) at which the queue is
81 * considered to be congested.  It include a little hysteresis to keep the
82 * context switch rate down.
83 */
84static inline int queue_congestion_on_threshold(struct request_queue *q)
85{
86	return q->nr_congestion_on;
87}
88
89/*
90 * The threshold at which a queue is considered to be uncongested
91 */
92static inline int queue_congestion_off_threshold(struct request_queue *q)
93{
94	return q->nr_congestion_off;
95}
96
97static void blk_queue_congestion_threshold(struct request_queue *q)
98{
99	int nr;
100
101	nr = q->nr_requests - (q->nr_requests / 8) + 1;
102	if (nr > q->nr_requests)
103		nr = q->nr_requests;
104	q->nr_congestion_on = nr;
105
106	nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
107	if (nr < 1)
108		nr = 1;
109	q->nr_congestion_off = nr;
110}
111
112/**
113 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
114 * @bdev:	device
115 *
116 * Locates the passed device's request queue and returns the address of its
117 * backing_dev_info
118 *
119 * Will return NULL if the request queue cannot be located.
120 */
121struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
122{
123	struct backing_dev_info *ret = NULL;
124	request_queue_t *q = bdev_get_queue(bdev);
125
126	if (q)
127		ret = &q->backing_dev_info;
128	return ret;
129}
130EXPORT_SYMBOL(blk_get_backing_dev_info);
131
132/**
133 * blk_queue_prep_rq - set a prepare_request function for queue
134 * @q:		queue
135 * @pfn:	prepare_request function
136 *
137 * It's possible for a queue to register a prepare_request callback which
138 * is invoked before the request is handed to the request_fn. The goal of
139 * the function is to prepare a request for I/O, it can be used to build a
140 * cdb from the request data for instance.
141 *
142 */
143void blk_queue_prep_rq(request_queue_t *q, prep_rq_fn *pfn)
144{
145	q->prep_rq_fn = pfn;
146}
147
148EXPORT_SYMBOL(blk_queue_prep_rq);
149
150/**
151 * blk_queue_merge_bvec - set a merge_bvec function for queue
152 * @q:		queue
153 * @mbfn:	merge_bvec_fn
154 *
155 * Usually queues have static limitations on the max sectors or segments that
156 * we can put in a request. Stacking drivers may have some settings that
157 * are dynamic, and thus we have to query the queue whether it is ok to
158 * add a new bio_vec to a bio at a given offset or not. If the block device
159 * has such limitations, it needs to register a merge_bvec_fn to control
160 * the size of bio's sent to it. Note that a block device *must* allow a
161 * single page to be added to an empty bio. The block device driver may want
162 * to use the bio_split() function to deal with these bio's. By default
163 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
164 * honored.
165 */
166void blk_queue_merge_bvec(request_queue_t *q, merge_bvec_fn *mbfn)
167{
168	q->merge_bvec_fn = mbfn;
169}
170
171EXPORT_SYMBOL(blk_queue_merge_bvec);
172
173void blk_queue_softirq_done(request_queue_t *q, softirq_done_fn *fn)
174{
175	q->softirq_done_fn = fn;
176}
177
178EXPORT_SYMBOL(blk_queue_softirq_done);
179
180/**
181 * blk_queue_make_request - define an alternate make_request function for a device
182 * @q:  the request queue for the device to be affected
183 * @mfn: the alternate make_request function
184 *
185 * Description:
186 *    The normal way for &struct bios to be passed to a device
187 *    driver is for them to be collected into requests on a request
188 *    queue, and then to allow the device driver to select requests
189 *    off that queue when it is ready.  This works well for many block
190 *    devices. However some block devices (typically virtual devices
191 *    such as md or lvm) do not benefit from the processing on the
192 *    request queue, and are served best by having the requests passed
193 *    directly to them.  This can be achieved by providing a function
194 *    to blk_queue_make_request().
195 *
196 * Caveat:
197 *    The driver that does this *must* be able to deal appropriately
198 *    with buffers in "highmemory". This can be accomplished by either calling
199 *    __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
200 *    blk_queue_bounce() to create a buffer in normal memory.
201 **/
202void blk_queue_make_request(request_queue_t * q, make_request_fn * mfn)
203{
204	/*
205	 * set defaults
206	 */
207	q->nr_requests = BLKDEV_MAX_RQ;
208	blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
209	blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
210	q->make_request_fn = mfn;
211	q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
212	q->backing_dev_info.state = 0;
213	q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
214	blk_queue_max_sectors(q, SAFE_MAX_SECTORS);
215	blk_queue_hardsect_size(q, 512);
216	blk_queue_dma_alignment(q, 511);
217	blk_queue_congestion_threshold(q);
218	q->nr_batching = BLK_BATCH_REQ;
219
220	q->unplug_thresh = 4;		/* hmm */
221	q->unplug_delay = (3 * HZ) / 1000;	/* 3 milliseconds */
222	if (q->unplug_delay == 0)
223		q->unplug_delay = 1;
224
225	INIT_WORK(&q->unplug_work, blk_unplug_work);
226
227	q->unplug_timer.function = blk_unplug_timeout;
228	q->unplug_timer.data = (unsigned long)q;
229
230	/*
231	 * by default assume old behaviour and bounce for any highmem page
232	 */
233	blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
234}
235
236EXPORT_SYMBOL(blk_queue_make_request);
237
238static void rq_init(request_queue_t *q, struct request *rq)
239{
240	INIT_LIST_HEAD(&rq->queuelist);
241	INIT_LIST_HEAD(&rq->donelist);
242
243	rq->errors = 0;
244	rq->bio = rq->biotail = NULL;
245	INIT_HLIST_NODE(&rq->hash);
246	RB_CLEAR_NODE(&rq->rb_node);
247	rq->ioprio = 0;
248	rq->buffer = NULL;
249	rq->ref_count = 1;
250	rq->q = q;
251	rq->special = NULL;
252	rq->data_len = 0;
253	rq->data = NULL;
254	rq->nr_phys_segments = 0;
255	rq->sense = NULL;
256	rq->end_io = NULL;
257	rq->end_io_data = NULL;
258	rq->completion_data = NULL;
259}
260
261/**
262 * blk_queue_ordered - does this queue support ordered writes
263 * @q:        the request queue
264 * @ordered:  one of QUEUE_ORDERED_*
265 * @prepare_flush_fn: rq setup helper for cache flush ordered writes
266 *
267 * Description:
268 *   For journalled file systems, doing ordered writes on a commit
269 *   block instead of explicitly doing wait_on_buffer (which is bad
270 *   for performance) can be a big win. Block drivers supporting this
271 *   feature should call this function and indicate so.
272 *
273 **/
274int blk_queue_ordered(request_queue_t *q, unsigned ordered,
275		      prepare_flush_fn *prepare_flush_fn)
276{
277	if (ordered & (QUEUE_ORDERED_PREFLUSH | QUEUE_ORDERED_POSTFLUSH) &&
278	    prepare_flush_fn == NULL) {
279		printk(KERN_ERR "blk_queue_ordered: prepare_flush_fn required\n");
280		return -EINVAL;
281	}
282
283	if (ordered != QUEUE_ORDERED_NONE &&
284	    ordered != QUEUE_ORDERED_DRAIN &&
285	    ordered != QUEUE_ORDERED_DRAIN_FLUSH &&
286	    ordered != QUEUE_ORDERED_DRAIN_FUA &&
287	    ordered != QUEUE_ORDERED_TAG &&
288	    ordered != QUEUE_ORDERED_TAG_FLUSH &&
289	    ordered != QUEUE_ORDERED_TAG_FUA) {
290		printk(KERN_ERR "blk_queue_ordered: bad value %d\n", ordered);
291		return -EINVAL;
292	}
293
294	q->ordered = ordered;
295	q->next_ordered = ordered;
296	q->prepare_flush_fn = prepare_flush_fn;
297
298	return 0;
299}
300
301EXPORT_SYMBOL(blk_queue_ordered);
302
303/**
304 * blk_queue_issue_flush_fn - set function for issuing a flush
305 * @q:     the request queue
306 * @iff:   the function to be called issuing the flush
307 *
308 * Description:
309 *   If a driver supports issuing a flush command, the support is notified
310 *   to the block layer by defining it through this call.
311 *
312 **/
313void blk_queue_issue_flush_fn(request_queue_t *q, issue_flush_fn *iff)
314{
315	q->issue_flush_fn = iff;
316}
317
318EXPORT_SYMBOL(blk_queue_issue_flush_fn);
319
320/*
321 * Cache flushing for ordered writes handling
322 */
323inline unsigned blk_ordered_cur_seq(request_queue_t *q)
324{
325	if (!q->ordseq)
326		return 0;
327	return 1 << ffz(q->ordseq);
328}
329
330unsigned blk_ordered_req_seq(struct request *rq)
331{
332	request_queue_t *q = rq->q;
333
334	BUG_ON(q->ordseq == 0);
335
336	if (rq == &q->pre_flush_rq)
337		return QUEUE_ORDSEQ_PREFLUSH;
338	if (rq == &q->bar_rq)
339		return QUEUE_ORDSEQ_BAR;
340	if (rq == &q->post_flush_rq)
341		return QUEUE_ORDSEQ_POSTFLUSH;
342
343	/*
344	 * !fs requests don't need to follow barrier ordering.  Always
345	 * put them at the front.  This fixes the following deadlock.
346	 *
347	 * http://thread.gmane.org/gmane.linux.kernel/537473
348	 */
349	if (!blk_fs_request(rq))
350		return QUEUE_ORDSEQ_DRAIN;
351
352	if ((rq->cmd_flags & REQ_ORDERED_COLOR) ==
353	    (q->orig_bar_rq->cmd_flags & REQ_ORDERED_COLOR))
354		return QUEUE_ORDSEQ_DRAIN;
355	else
356		return QUEUE_ORDSEQ_DONE;
357}
358
359void blk_ordered_complete_seq(request_queue_t *q, unsigned seq, int error)
360{
361	struct request *rq;
362	int uptodate;
363
364	if (error && !q->orderr)
365		q->orderr = error;
366
367	BUG_ON(q->ordseq & seq);
368	q->ordseq |= seq;
369
370	if (blk_ordered_cur_seq(q) != QUEUE_ORDSEQ_DONE)
371		return;
372
373	/*
374	 * Okay, sequence complete.
375	 */
376	rq = q->orig_bar_rq;
377	uptodate = q->orderr ? q->orderr : 1;
378
379	q->ordseq = 0;
380
381	end_that_request_first(rq, uptodate, rq->hard_nr_sectors);
382	end_that_request_last(rq, uptodate);
383}
384
385static void pre_flush_end_io(struct request *rq, int error)
386{
387	elv_completed_request(rq->q, rq);
388	blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_PREFLUSH, error);
389}
390
391static void bar_end_io(struct request *rq, int error)
392{
393	elv_completed_request(rq->q, rq);
394	blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_BAR, error);
395}
396
397static void post_flush_end_io(struct request *rq, int error)
398{
399	elv_completed_request(rq->q, rq);
400	blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_POSTFLUSH, error);
401}
402
403static void queue_flush(request_queue_t *q, unsigned which)
404{
405	struct request *rq;
406	rq_end_io_fn *end_io;
407
408	if (which == QUEUE_ORDERED_PREFLUSH) {
409		rq = &q->pre_flush_rq;
410		end_io = pre_flush_end_io;
411	} else {
412		rq = &q->post_flush_rq;
413		end_io = post_flush_end_io;
414	}
415
416	rq->cmd_flags = REQ_HARDBARRIER;
417	rq_init(q, rq);
418	rq->elevator_private = NULL;
419	rq->elevator_private2 = NULL;
420	rq->rq_disk = q->bar_rq.rq_disk;
421	rq->end_io = end_io;
422	q->prepare_flush_fn(q, rq);
423
424	elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
425}
426
427static inline struct request *start_ordered(request_queue_t *q,
428					    struct request *rq)
429{
430	q->bi_size = 0;
431	q->orderr = 0;
432	q->ordered = q->next_ordered;
433	q->ordseq |= QUEUE_ORDSEQ_STARTED;
434
435	/*
436	 * Prep proxy barrier request.
437	 */
438	blkdev_dequeue_request(rq);
439	q->orig_bar_rq = rq;
440	rq = &q->bar_rq;
441	rq->cmd_flags = 0;
442	rq_init(q, rq);
443	if (bio_data_dir(q->orig_bar_rq->bio) == WRITE)
444		rq->cmd_flags |= REQ_RW;
445	rq->cmd_flags |= q->ordered & QUEUE_ORDERED_FUA ? REQ_FUA : 0;
446	rq->elevator_private = NULL;
447	rq->elevator_private2 = NULL;
448	init_request_from_bio(rq, q->orig_bar_rq->bio);
449	rq->end_io = bar_end_io;
450
451	/*
452	 * Queue ordered sequence.  As we stack them at the head, we
453	 * need to queue in reverse order.  Note that we rely on that
454	 * no fs request uses ELEVATOR_INSERT_FRONT and thus no fs
455	 * request gets inbetween ordered sequence.
456	 */
457	if (q->ordered & QUEUE_ORDERED_POSTFLUSH)
458		queue_flush(q, QUEUE_ORDERED_POSTFLUSH);
459	else
460		q->ordseq |= QUEUE_ORDSEQ_POSTFLUSH;
461
462	elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
463
464	if (q->ordered & QUEUE_ORDERED_PREFLUSH) {
465		queue_flush(q, QUEUE_ORDERED_PREFLUSH);
466		rq = &q->pre_flush_rq;
467	} else
468		q->ordseq |= QUEUE_ORDSEQ_PREFLUSH;
469
470	if ((q->ordered & QUEUE_ORDERED_TAG) || q->in_flight == 0)
471		q->ordseq |= QUEUE_ORDSEQ_DRAIN;
472	else
473		rq = NULL;
474
475	return rq;
476}
477
478int blk_do_ordered(request_queue_t *q, struct request **rqp)
479{
480	struct request *rq = *rqp;
481	int is_barrier = blk_fs_request(rq) && blk_barrier_rq(rq);
482
483	if (!q->ordseq) {
484		if (!is_barrier)
485			return 1;
486
487		if (q->next_ordered != QUEUE_ORDERED_NONE) {
488			*rqp = start_ordered(q, rq);
489			return 1;
490		} else {
491			/*
492			 * This can happen when the queue switches to
493			 * ORDERED_NONE while this request is on it.
494			 */
495			blkdev_dequeue_request(rq);
496			end_that_request_first(rq, -EOPNOTSUPP,
497					       rq->hard_nr_sectors);
498			end_that_request_last(rq, -EOPNOTSUPP);
499			*rqp = NULL;
500			return 0;
501		}
502	}
503
504	/*
505	 * Ordered sequence in progress
506	 */
507
508	/* Special requests are not subject to ordering rules. */
509	if (!blk_fs_request(rq) &&
510	    rq != &q->pre_flush_rq && rq != &q->post_flush_rq)
511		return 1;
512
513	if (q->ordered & QUEUE_ORDERED_TAG) {
514		/* Ordered by tag.  Blocking the next barrier is enough. */
515		if (is_barrier && rq != &q->bar_rq)
516			*rqp = NULL;
517	} else {
518		/* Ordered by draining.  Wait for turn. */
519		WARN_ON(blk_ordered_req_seq(rq) < blk_ordered_cur_seq(q));
520		if (blk_ordered_req_seq(rq) > blk_ordered_cur_seq(q))
521			*rqp = NULL;
522	}
523
524	return 1;
525}
526
527static int flush_dry_bio_endio(struct bio *bio, unsigned int bytes, int error)
528{
529	request_queue_t *q = bio->bi_private;
530	struct bio_vec *bvec;
531	int i;
532
533	/*
534	 * This is dry run, restore bio_sector and size.  We'll finish
535	 * this request again with the original bi_end_io after an
536	 * error occurs or post flush is complete.
537	 */
538	q->bi_size += bytes;
539
540	if (bio->bi_size)
541		return 1;
542
543	/* Rewind bvec's */
544	bio->bi_idx = 0;
545	bio_for_each_segment(bvec, bio, i) {
546		bvec->bv_len += bvec->bv_offset;
547		bvec->bv_offset = 0;
548	}
549
550	/* Reset bio */
551	set_bit(BIO_UPTODATE, &bio->bi_flags);
552	bio->bi_size = q->bi_size;
553	bio->bi_sector -= (q->bi_size >> 9);
554	q->bi_size = 0;
555
556	return 0;
557}
558
559static int ordered_bio_endio(struct request *rq, struct bio *bio,
560			     unsigned int nbytes, int error)
561{
562	request_queue_t *q = rq->q;
563	bio_end_io_t *endio;
564	void *private;
565
566	if (&q->bar_rq != rq)
567		return 0;
568
569	/*
570	 * Okay, this is the barrier request in progress, dry finish it.
571	 */
572	if (error && !q->orderr)
573		q->orderr = error;
574
575	endio = bio->bi_end_io;
576	private = bio->bi_private;
577	bio->bi_end_io = flush_dry_bio_endio;
578	bio->bi_private = q;
579
580	bio_endio(bio, nbytes, error);
581
582	bio->bi_end_io = endio;
583	bio->bi_private = private;
584
585	return 1;
586}
587
588/**
589 * blk_queue_bounce_limit - set bounce buffer limit for queue
590 * @q:  the request queue for the device
591 * @dma_addr:   bus address limit
592 *
593 * Description:
594 *    Different hardware can have different requirements as to what pages
595 *    it can do I/O directly to. A low level driver can call
596 *    blk_queue_bounce_limit to have lower memory pages allocated as bounce
597 *    buffers for doing I/O to pages residing above @page.
598 **/
599void blk_queue_bounce_limit(request_queue_t *q, u64 dma_addr)
600{
601	unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
602	int dma = 0;
603
604	q->bounce_gfp = GFP_NOIO;
605#if BITS_PER_LONG == 64
606	/* Assume anything <= 4GB can be handled by IOMMU.
607	   Actually some IOMMUs can handle everything, but I don't
608	   know of a way to test this here. */
609	if (bounce_pfn < (min_t(u64,0xffffffff,BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
610		dma = 1;
611	q->bounce_pfn = max_low_pfn;
612#else
613	if (bounce_pfn < blk_max_low_pfn)
614		dma = 1;
615	q->bounce_pfn = bounce_pfn;
616#endif
617	if (dma) {
618		init_emergency_isa_pool();
619		q->bounce_gfp = GFP_NOIO | GFP_DMA;
620		q->bounce_pfn = bounce_pfn;
621	}
622}
623
624EXPORT_SYMBOL(blk_queue_bounce_limit);
625
626/**
627 * blk_queue_max_sectors - set max sectors for a request for this queue
628 * @q:  the request queue for the device
629 * @max_sectors:  max sectors in the usual 512b unit
630 *
631 * Description:
632 *    Enables a low level driver to set an upper limit on the size of
633 *    received requests.
634 **/
635void blk_queue_max_sectors(request_queue_t *q, unsigned int max_sectors)
636{
637	if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
638		max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
639		printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
640	}
641
642	if (BLK_DEF_MAX_SECTORS > max_sectors)
643		q->max_hw_sectors = q->max_sectors = max_sectors;
644 	else {
645		q->max_sectors = BLK_DEF_MAX_SECTORS;
646		q->max_hw_sectors = max_sectors;
647	}
648}
649
650EXPORT_SYMBOL(blk_queue_max_sectors);
651
652/**
653 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
654 * @q:  the request queue for the device
655 * @max_segments:  max number of segments
656 *
657 * Description:
658 *    Enables a low level driver to set an upper limit on the number of
659 *    physical data segments in a request.  This would be the largest sized
660 *    scatter list the driver could handle.
661 **/
662void blk_queue_max_phys_segments(request_queue_t *q, unsigned short max_segments)
663{
664	if (!max_segments) {
665		max_segments = 1;
666		printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
667	}
668
669	q->max_phys_segments = max_segments;
670}
671
672EXPORT_SYMBOL(blk_queue_max_phys_segments);
673
674/**
675 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
676 * @q:  the request queue for the device
677 * @max_segments:  max number of segments
678 *
679 * Description:
680 *    Enables a low level driver to set an upper limit on the number of
681 *    hw data segments in a request.  This would be the largest number of
682 *    address/length pairs the host adapter can actually give as once
683 *    to the device.
684 **/
685void blk_queue_max_hw_segments(request_queue_t *q, unsigned short max_segments)
686{
687	if (!max_segments) {
688		max_segments = 1;
689		printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
690	}
691
692	q->max_hw_segments = max_segments;
693}
694
695EXPORT_SYMBOL(blk_queue_max_hw_segments);
696
697/**
698 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
699 * @q:  the request queue for the device
700 * @max_size:  max size of segment in bytes
701 *
702 * Description:
703 *    Enables a low level driver to set an upper limit on the size of a
704 *    coalesced segment
705 **/
706void blk_queue_max_segment_size(request_queue_t *q, unsigned int max_size)
707{
708	if (max_size < PAGE_CACHE_SIZE) {
709		max_size = PAGE_CACHE_SIZE;
710		printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
711	}
712
713	q->max_segment_size = max_size;
714}
715
716EXPORT_SYMBOL(blk_queue_max_segment_size);
717
718/**
719 * blk_queue_hardsect_size - set hardware sector size for the queue
720 * @q:  the request queue for the device
721 * @size:  the hardware sector size, in bytes
722 *
723 * Description:
724 *   This should typically be set to the lowest possible sector size
725 *   that the hardware can operate on (possible without reverting to
726 *   even internal read-modify-write operations). Usually the default
727 *   of 512 covers most hardware.
728 **/
729void blk_queue_hardsect_size(request_queue_t *q, unsigned short size)
730{
731	q->hardsect_size = size;
732}
733
734EXPORT_SYMBOL(blk_queue_hardsect_size);
735
736/*
737 * Returns the minimum that is _not_ zero, unless both are zero.
738 */
739#define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
740
741/**
742 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
743 * @t:	the stacking driver (top)
744 * @b:  the underlying device (bottom)
745 **/
746void blk_queue_stack_limits(request_queue_t *t, request_queue_t *b)
747{
748	/* zero is "infinity" */
749	t->max_sectors = min_not_zero(t->max_sectors,b->max_sectors);
750	t->max_hw_sectors = min_not_zero(t->max_hw_sectors,b->max_hw_sectors);
751
752	t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
753	t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
754	t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
755	t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
756	if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags))
757		clear_bit(QUEUE_FLAG_CLUSTER, &t->queue_flags);
758}
759
760EXPORT_SYMBOL(blk_queue_stack_limits);
761
762/**
763 * blk_queue_segment_boundary - set boundary rules for segment merging
764 * @q:  the request queue for the device
765 * @mask:  the memory boundary mask
766 **/
767void blk_queue_segment_boundary(request_queue_t *q, unsigned long mask)
768{
769	if (mask < PAGE_CACHE_SIZE - 1) {
770		mask = PAGE_CACHE_SIZE - 1;
771		printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
772	}
773
774	q->seg_boundary_mask = mask;
775}
776
777EXPORT_SYMBOL(blk_queue_segment_boundary);
778
779/**
780 * blk_queue_dma_alignment - set dma length and memory alignment
781 * @q:     the request queue for the device
782 * @mask:  alignment mask
783 *
784 * description:
785 *    set required memory and length aligment for direct dma transactions.
786 *    this is used when buiding direct io requests for the queue.
787 *
788 **/
789void blk_queue_dma_alignment(request_queue_t *q, int mask)
790{
791	q->dma_alignment = mask;
792}
793
794EXPORT_SYMBOL(blk_queue_dma_alignment);
795
796/**
797 * blk_queue_find_tag - find a request by its tag and queue
798 * @q:	 The request queue for the device
799 * @tag: The tag of the request
800 *
801 * Notes:
802 *    Should be used when a device returns a tag and you want to match
803 *    it with a request.
804 *
805 *    no locks need be held.
806 **/
807struct request *blk_queue_find_tag(request_queue_t *q, int tag)
808{
809	return blk_map_queue_find_tag(q->queue_tags, tag);
810}
811
812EXPORT_SYMBOL(blk_queue_find_tag);
813
814/**
815 * __blk_free_tags - release a given set of tag maintenance info
816 * @bqt:	the tag map to free
817 *
818 * Tries to free the specified @bqt@.  Returns true if it was
819 * actually freed and false if there are still references using it
820 */
821static int __blk_free_tags(struct blk_queue_tag *bqt)
822{
823	int retval;
824
825	retval = atomic_dec_and_test(&bqt->refcnt);
826	if (retval) {
827		BUG_ON(bqt->busy);
828		BUG_ON(!list_empty(&bqt->busy_list));
829
830		kfree(bqt->tag_index);
831		bqt->tag_index = NULL;
832
833		kfree(bqt->tag_map);
834		bqt->tag_map = NULL;
835
836		kfree(bqt);
837
838	}
839
840	return retval;
841}
842
843/**
844 * __blk_queue_free_tags - release tag maintenance info
845 * @q:  the request queue for the device
846 *
847 *  Notes:
848 *    blk_cleanup_queue() will take care of calling this function, if tagging
849 *    has been used. So there's no need to call this directly.
850 **/
851static void __blk_queue_free_tags(request_queue_t *q)
852{
853	struct blk_queue_tag *bqt = q->queue_tags;
854
855	if (!bqt)
856		return;
857
858	__blk_free_tags(bqt);
859
860	q->queue_tags = NULL;
861	q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
862}
863
864
865/**
866 * blk_free_tags - release a given set of tag maintenance info
867 * @bqt:	the tag map to free
868 *
869 * For externally managed @bqt@ frees the map.  Callers of this
870 * function must guarantee to have released all the queues that
871 * might have been using this tag map.
872 */
873void blk_free_tags(struct blk_queue_tag *bqt)
874{
875	if (unlikely(!__blk_free_tags(bqt)))
876		BUG();
877}
878EXPORT_SYMBOL(blk_free_tags);
879
880/**
881 * blk_queue_free_tags - release tag maintenance info
882 * @q:  the request queue for the device
883 *
884 *  Notes:
885 *	This is used to disabled tagged queuing to a device, yet leave
886 *	queue in function.
887 **/
888void blk_queue_free_tags(request_queue_t *q)
889{
890	clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
891}
892
893EXPORT_SYMBOL(blk_queue_free_tags);
894
895static int
896init_tag_map(request_queue_t *q, struct blk_queue_tag *tags, int depth)
897{
898	struct request **tag_index;
899	unsigned long *tag_map;
900	int nr_ulongs;
901
902	if (q && depth > q->nr_requests * 2) {
903		depth = q->nr_requests * 2;
904		printk(KERN_ERR "%s: adjusted depth to %d\n",
905				__FUNCTION__, depth);
906	}
907
908	tag_index = kzalloc(depth * sizeof(struct request *), GFP_ATOMIC);
909	if (!tag_index)
910		goto fail;
911
912	nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG;
913	tag_map = kzalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC);
914	if (!tag_map)
915		goto fail;
916
917	tags->real_max_depth = depth;
918	tags->max_depth = depth;
919	tags->tag_index = tag_index;
920	tags->tag_map = tag_map;
921
922	return 0;
923fail:
924	kfree(tag_index);
925	return -ENOMEM;
926}
927
928static struct blk_queue_tag *__blk_queue_init_tags(struct request_queue *q,
929						   int depth)
930{
931	struct blk_queue_tag *tags;
932
933	tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
934	if (!tags)
935		goto fail;
936
937	if (init_tag_map(q, tags, depth))
938		goto fail;
939
940	INIT_LIST_HEAD(&tags->busy_list);
941	tags->busy = 0;
942	atomic_set(&tags->refcnt, 1);
943	return tags;
944fail:
945	kfree(tags);
946	return NULL;
947}
948
949/**
950 * blk_init_tags - initialize the tag info for an external tag map
951 * @depth:	the maximum queue depth supported
952 * @tags: the tag to use
953 **/
954struct blk_queue_tag *blk_init_tags(int depth)
955{
956	return __blk_queue_init_tags(NULL, depth);
957}
958EXPORT_SYMBOL(blk_init_tags);
959
960/**
961 * blk_queue_init_tags - initialize the queue tag info
962 * @q:  the request queue for the device
963 * @depth:  the maximum queue depth supported
964 * @tags: the tag to use
965 **/
966int blk_queue_init_tags(request_queue_t *q, int depth,
967			struct blk_queue_tag *tags)
968{
969	int rc;
970
971	BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
972
973	if (!tags && !q->queue_tags) {
974		tags = __blk_queue_init_tags(q, depth);
975
976		if (!tags)
977			goto fail;
978	} else if (q->queue_tags) {
979		if ((rc = blk_queue_resize_tags(q, depth)))
980			return rc;
981		set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
982		return 0;
983	} else
984		atomic_inc(&tags->refcnt);
985
986	/*
987	 * assign it, all done
988	 */
989	q->queue_tags = tags;
990	q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
991	return 0;
992fail:
993	kfree(tags);
994	return -ENOMEM;
995}
996
997EXPORT_SYMBOL(blk_queue_init_tags);
998
999/**
1000 * blk_queue_resize_tags - change the queueing depth
1001 * @q:  the request queue for the device
1002 * @new_depth: the new max command queueing depth
1003 *
1004 *  Notes:
1005 *    Must be called with the queue lock held.
1006 **/
1007int blk_queue_resize_tags(request_queue_t *q, int new_depth)
1008{
1009	struct blk_queue_tag *bqt = q->queue_tags;
1010	struct request **tag_index;
1011	unsigned long *tag_map;
1012	int max_depth, nr_ulongs;
1013
1014	if (!bqt)
1015		return -ENXIO;
1016
1017	/*
1018	 * if we already have large enough real_max_depth.  just
1019	 * adjust max_depth.  *NOTE* as requests with tag value
1020	 * between new_depth and real_max_depth can be in-flight, tag
1021	 * map can not be shrunk blindly here.
1022	 */
1023	if (new_depth <= bqt->real_max_depth) {
1024		bqt->max_depth = new_depth;
1025		return 0;
1026	}
1027
1028	/*
1029	 * Currently cannot replace a shared tag map with a new
1030	 * one, so error out if this is the case
1031	 */
1032	if (atomic_read(&bqt->refcnt) != 1)
1033		return -EBUSY;
1034
1035	/*
1036	 * save the old state info, so we can copy it back
1037	 */
1038	tag_index = bqt->tag_index;
1039	tag_map = bqt->tag_map;
1040	max_depth = bqt->real_max_depth;
1041
1042	if (init_tag_map(q, bqt, new_depth))
1043		return -ENOMEM;
1044
1045	memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
1046	nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG;
1047	memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long));
1048
1049	kfree(tag_index);
1050	kfree(tag_map);
1051	return 0;
1052}
1053
1054EXPORT_SYMBOL(blk_queue_resize_tags);
1055
1056/**
1057 * blk_queue_end_tag - end tag operations for a request
1058 * @q:  the request queue for the device
1059 * @rq: the request that has completed
1060 *
1061 *  Description:
1062 *    Typically called when end_that_request_first() returns 0, meaning
1063 *    all transfers have been done for a request. It's important to call
1064 *    this function before end_that_request_last(), as that will put the
1065 *    request back on the free list thus corrupting the internal tag list.
1066 *
1067 *  Notes:
1068 *   queue lock must be held.
1069 **/
1070void blk_queue_end_tag(request_queue_t *q, struct request *rq)
1071{
1072	struct blk_queue_tag *bqt = q->queue_tags;
1073	int tag = rq->tag;
1074
1075	BUG_ON(tag == -1);
1076
1077	if (unlikely(tag >= bqt->real_max_depth))
1078		return;
1079
1080	if (unlikely(!__test_and_clear_bit(tag, bqt->tag_map))) {
1081		printk(KERN_ERR "%s: attempt to clear non-busy tag (%d)\n",
1082		       __FUNCTION__, tag);
1083		return;
1084	}
1085
1086	list_del_init(&rq->queuelist);
1087	rq->cmd_flags &= ~REQ_QUEUED;
1088	rq->tag = -1;
1089
1090	if (unlikely(bqt->tag_index[tag] == NULL))
1091		printk(KERN_ERR "%s: tag %d is missing\n",
1092		       __FUNCTION__, tag);
1093
1094	bqt->tag_index[tag] = NULL;
1095	bqt->busy--;
1096}
1097
1098EXPORT_SYMBOL(blk_queue_end_tag);
1099
1100/**
1101 * blk_queue_start_tag - find a free tag and assign it
1102 * @q:  the request queue for the device
1103 * @rq:  the block request that needs tagging
1104 *
1105 *  Description:
1106 *    This can either be used as a stand-alone helper, or possibly be
1107 *    assigned as the queue &prep_rq_fn (in which case &struct request
1108 *    automagically gets a tag assigned). Note that this function
1109 *    assumes that any type of request can be queued! if this is not
1110 *    true for your device, you must check the request type before
1111 *    calling this function.  The request will also be removed from
1112 *    the request queue, so it's the drivers responsibility to readd
1113 *    it if it should need to be restarted for some reason.
1114 *
1115 *  Notes:
1116 *   queue lock must be held.
1117 **/
1118int blk_queue_start_tag(request_queue_t *q, struct request *rq)
1119{
1120	struct blk_queue_tag *bqt = q->queue_tags;
1121	int tag;
1122
1123	if (unlikely((rq->cmd_flags & REQ_QUEUED))) {
1124		printk(KERN_ERR
1125		       "%s: request %p for device [%s] already tagged %d",
1126		       __FUNCTION__, rq,
1127		       rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
1128		BUG();
1129	}
1130
1131	/*
1132	 * Protect against shared tag maps, as we may not have exclusive
1133	 * access to the tag map.
1134	 */
1135	do {
1136		tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth);
1137		if (tag >= bqt->max_depth)
1138			return 1;
1139
1140	} while (test_and_set_bit(tag, bqt->tag_map));
1141
1142	rq->cmd_flags |= REQ_QUEUED;
1143	rq->tag = tag;
1144	bqt->tag_index[tag] = rq;
1145	blkdev_dequeue_request(rq);
1146	list_add(&rq->queuelist, &bqt->busy_list);
1147	bqt->busy++;
1148	return 0;
1149}
1150
1151EXPORT_SYMBOL(blk_queue_start_tag);
1152
1153/**
1154 * blk_queue_invalidate_tags - invalidate all pending tags
1155 * @q:  the request queue for the device
1156 *
1157 *  Description:
1158 *   Hardware conditions may dictate a need to stop all pending requests.
1159 *   In this case, we will safely clear the block side of the tag queue and
1160 *   readd all requests to the request queue in the right order.
1161 *
1162 *  Notes:
1163 *   queue lock must be held.
1164 **/
1165void blk_queue_invalidate_tags(request_queue_t *q)
1166{
1167	struct blk_queue_tag *bqt = q->queue_tags;
1168	struct list_head *tmp, *n;
1169	struct request *rq;
1170
1171	list_for_each_safe(tmp, n, &bqt->busy_list) {
1172		rq = list_entry_rq(tmp);
1173
1174		if (rq->tag == -1) {
1175			printk(KERN_ERR
1176			       "%s: bad tag found on list\n", __FUNCTION__);
1177			list_del_init(&rq->queuelist);
1178			rq->cmd_flags &= ~REQ_QUEUED;
1179		} else
1180			blk_queue_end_tag(q, rq);
1181
1182		rq->cmd_flags &= ~REQ_STARTED;
1183		__elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1184	}
1185}
1186
1187EXPORT_SYMBOL(blk_queue_invalidate_tags);
1188
1189void blk_dump_rq_flags(struct request *rq, char *msg)
1190{
1191	int bit;
1192
1193	printk("%s: dev %s: type=%x, flags=%x\n", msg,
1194		rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
1195		rq->cmd_flags);
1196
1197	printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
1198						       rq->nr_sectors,
1199						       rq->current_nr_sectors);
1200	printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
1201
1202	if (blk_pc_request(rq)) {
1203		printk("cdb: ");
1204		for (bit = 0; bit < sizeof(rq->cmd); bit++)
1205			printk("%02x ", rq->cmd[bit]);
1206		printk("\n");
1207	}
1208}
1209
1210EXPORT_SYMBOL(blk_dump_rq_flags);
1211
1212void blk_recount_segments(request_queue_t *q, struct bio *bio)
1213{
1214	struct bio_vec *bv, *bvprv = NULL;
1215	int i, nr_phys_segs, nr_hw_segs, seg_size, hw_seg_size, cluster;
1216	int high, highprv = 1;
1217
1218	if (unlikely(!bio->bi_io_vec))
1219		return;
1220
1221	cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1222	hw_seg_size = seg_size = nr_phys_segs = nr_hw_segs = 0;
1223	bio_for_each_segment(bv, bio, i) {
1224		/*
1225		 * the trick here is making sure that a high page is never
1226		 * considered part of another segment, since that might
1227		 * change with the bounce page.
1228		 */
1229		high = page_to_pfn(bv->bv_page) > q->bounce_pfn;
1230		if (high || highprv)
1231			goto new_hw_segment;
1232		if (cluster) {
1233			if (seg_size + bv->bv_len > q->max_segment_size)
1234				goto new_segment;
1235			if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
1236				goto new_segment;
1237			if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
1238				goto new_segment;
1239			if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1240				goto new_hw_segment;
1241
1242			seg_size += bv->bv_len;
1243			hw_seg_size += bv->bv_len;
1244			bvprv = bv;
1245			continue;
1246		}
1247new_segment:
1248		if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
1249		    !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len)) {
1250			hw_seg_size += bv->bv_len;
1251		} else {
1252new_hw_segment:
1253			if (hw_seg_size > bio->bi_hw_front_size)
1254				bio->bi_hw_front_size = hw_seg_size;
1255			hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
1256			nr_hw_segs++;
1257		}
1258
1259		nr_phys_segs++;
1260		bvprv = bv;
1261		seg_size = bv->bv_len;
1262		highprv = high;
1263	}
1264	if (hw_seg_size > bio->bi_hw_back_size)
1265		bio->bi_hw_back_size = hw_seg_size;
1266	if (nr_hw_segs == 1 && hw_seg_size > bio->bi_hw_front_size)
1267		bio->bi_hw_front_size = hw_seg_size;
1268	bio->bi_phys_segments = nr_phys_segs;
1269	bio->bi_hw_segments = nr_hw_segs;
1270	bio->bi_flags |= (1 << BIO_SEG_VALID);
1271}
1272EXPORT_SYMBOL(blk_recount_segments);
1273
1274static int blk_phys_contig_segment(request_queue_t *q, struct bio *bio,
1275				   struct bio *nxt)
1276{
1277	if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
1278		return 0;
1279
1280	if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
1281		return 0;
1282	if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1283		return 0;
1284
1285	/*
1286	 * bio and nxt are contigous in memory, check if the queue allows
1287	 * these two to be merged into one
1288	 */
1289	if (BIO_SEG_BOUNDARY(q, bio, nxt))
1290		return 1;
1291
1292	return 0;
1293}
1294
1295static int blk_hw_contig_segment(request_queue_t *q, struct bio *bio,
1296				 struct bio *nxt)
1297{
1298	if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1299		blk_recount_segments(q, bio);
1300	if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
1301		blk_recount_segments(q, nxt);
1302	if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
1303	    BIOVEC_VIRT_OVERSIZE(bio->bi_hw_front_size + bio->bi_hw_back_size))
1304		return 0;
1305	if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1306		return 0;
1307
1308	return 1;
1309}
1310
1311/*
1312 * map a request to scatterlist, return number of sg entries setup. Caller
1313 * must make sure sg can hold rq->nr_phys_segments entries
1314 */
1315int blk_rq_map_sg(request_queue_t *q, struct request *rq, struct scatterlist *sg)
1316{
1317	struct bio_vec *bvec, *bvprv;
1318	struct bio *bio;
1319	int nsegs, i, cluster;
1320
1321	nsegs = 0;
1322	cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1323
1324	/*
1325	 * for each bio in rq
1326	 */
1327	bvprv = NULL;
1328	rq_for_each_bio(bio, rq) {
1329		/*
1330		 * for each segment in bio
1331		 */
1332		bio_for_each_segment(bvec, bio, i) {
1333
1334			/* Foxconn modified start pling 07/31/2012 */
1335			/* WNDR4500v2 Mantis 2704: fix a potential null pointer bug */
1336			/* int nbytes = bvec->bv_len; */
1337			int nbytes;
1338			if (!bvec)
1339				continue;
1340			else
1341				nbytes = bvec->bv_len;
1342			/* Foxconn modified end pling 07/31/2012 */
1343
1344			if (bvprv && cluster) {
1345				if (sg[nsegs - 1].length + nbytes > q->max_segment_size)
1346					goto new_segment;
1347
1348				if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
1349					goto new_segment;
1350				if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
1351					goto new_segment;
1352
1353				sg[nsegs - 1].length += nbytes;
1354			} else {
1355new_segment:
1356				memset(&sg[nsegs],0,sizeof(struct scatterlist));
1357				sg[nsegs].page = bvec->bv_page;
1358				sg[nsegs].length = nbytes;
1359				sg[nsegs].offset = bvec->bv_offset;
1360
1361				nsegs++;
1362			}
1363			bvprv = bvec;
1364		} /* segments in bio */
1365	} /* bios in rq */
1366
1367	return nsegs;
1368}
1369
1370EXPORT_SYMBOL(blk_rq_map_sg);
1371
1372/*
1373 * the standard queue merge functions, can be overridden with device
1374 * specific ones if so desired
1375 */
1376
1377static inline int ll_new_mergeable(request_queue_t *q,
1378				   struct request *req,
1379				   struct bio *bio)
1380{
1381	int nr_phys_segs = bio_phys_segments(q, bio);
1382
1383	if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1384		req->cmd_flags |= REQ_NOMERGE;
1385		if (req == q->last_merge)
1386			q->last_merge = NULL;
1387		return 0;
1388	}
1389
1390	/*
1391	 * A hw segment is just getting larger, bump just the phys
1392	 * counter.
1393	 */
1394	req->nr_phys_segments += nr_phys_segs;
1395	return 1;
1396}
1397
1398static inline int ll_new_hw_segment(request_queue_t *q,
1399				    struct request *req,
1400				    struct bio *bio)
1401{
1402	int nr_hw_segs = bio_hw_segments(q, bio);
1403	int nr_phys_segs = bio_phys_segments(q, bio);
1404
1405	if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
1406	    || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1407		req->cmd_flags |= REQ_NOMERGE;
1408		if (req == q->last_merge)
1409			q->last_merge = NULL;
1410		return 0;
1411	}
1412
1413	/*
1414	 * This will form the start of a new hw segment.  Bump both
1415	 * counters.
1416	 */
1417	req->nr_hw_segments += nr_hw_segs;
1418	req->nr_phys_segments += nr_phys_segs;
1419	return 1;
1420}
1421
1422int ll_back_merge_fn(request_queue_t *q, struct request *req, struct bio *bio)
1423{
1424	unsigned short max_sectors;
1425	int len;
1426
1427	if (unlikely(blk_pc_request(req)))
1428		max_sectors = q->max_hw_sectors;
1429	else
1430		max_sectors = q->max_sectors;
1431
1432	if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
1433		req->cmd_flags |= REQ_NOMERGE;
1434		if (req == q->last_merge)
1435			q->last_merge = NULL;
1436		return 0;
1437	}
1438	if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
1439		blk_recount_segments(q, req->biotail);
1440	if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1441		blk_recount_segments(q, bio);
1442	len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
1443	if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
1444	    !BIOVEC_VIRT_OVERSIZE(len)) {
1445		int mergeable =  ll_new_mergeable(q, req, bio);
1446
1447		if (mergeable) {
1448			if (req->nr_hw_segments == 1)
1449				req->bio->bi_hw_front_size = len;
1450			if (bio->bi_hw_segments == 1)
1451				bio->bi_hw_back_size = len;
1452		}
1453		return mergeable;
1454	}
1455
1456	return ll_new_hw_segment(q, req, bio);
1457}
1458EXPORT_SYMBOL(ll_back_merge_fn);
1459
1460static int ll_front_merge_fn(request_queue_t *q, struct request *req,
1461			     struct bio *bio)
1462{
1463	unsigned short max_sectors;
1464	int len;
1465
1466	if (unlikely(blk_pc_request(req)))
1467		max_sectors = q->max_hw_sectors;
1468	else
1469		max_sectors = q->max_sectors;
1470
1471
1472	if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
1473		req->cmd_flags |= REQ_NOMERGE;
1474		if (req == q->last_merge)
1475			q->last_merge = NULL;
1476		return 0;
1477	}
1478	len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
1479	if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1480		blk_recount_segments(q, bio);
1481	if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
1482		blk_recount_segments(q, req->bio);
1483	if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
1484	    !BIOVEC_VIRT_OVERSIZE(len)) {
1485		int mergeable =  ll_new_mergeable(q, req, bio);
1486
1487		if (mergeable) {
1488			if (bio->bi_hw_segments == 1)
1489				bio->bi_hw_front_size = len;
1490			if (req->nr_hw_segments == 1)
1491				req->biotail->bi_hw_back_size = len;
1492		}
1493		return mergeable;
1494	}
1495
1496	return ll_new_hw_segment(q, req, bio);
1497}
1498
1499static int ll_merge_requests_fn(request_queue_t *q, struct request *req,
1500				struct request *next)
1501{
1502	int total_phys_segments;
1503	int total_hw_segments;
1504
1505	/*
1506	 * First check if the either of the requests are re-queued
1507	 * requests.  Can't merge them if they are.
1508	 */
1509	if (req->special || next->special)
1510		return 0;
1511
1512	/*
1513	 * Will it become too large?
1514	 */
1515	if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
1516		return 0;
1517
1518	total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
1519	if (blk_phys_contig_segment(q, req->biotail, next->bio))
1520		total_phys_segments--;
1521
1522	if (total_phys_segments > q->max_phys_segments)
1523		return 0;
1524
1525	total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
1526	if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
1527		int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
1528		/*
1529		 * propagate the combined length to the end of the requests
1530		 */
1531		if (req->nr_hw_segments == 1)
1532			req->bio->bi_hw_front_size = len;
1533		if (next->nr_hw_segments == 1)
1534			next->biotail->bi_hw_back_size = len;
1535		total_hw_segments--;
1536	}
1537
1538	if (total_hw_segments > q->max_hw_segments)
1539		return 0;
1540
1541	/* Merge is OK... */
1542	req->nr_phys_segments = total_phys_segments;
1543	req->nr_hw_segments = total_hw_segments;
1544	return 1;
1545}
1546
1547/*
1548 * "plug" the device if there are no outstanding requests: this will
1549 * force the transfer to start only after we have put all the requests
1550 * on the list.
1551 *
1552 * This is called with interrupts off and no requests on the queue and
1553 * with the queue lock held.
1554 */
1555void blk_plug_device(request_queue_t *q)
1556{
1557	WARN_ON(!irqs_disabled());
1558
1559	/*
1560	 * don't plug a stopped queue, it must be paired with blk_start_queue()
1561	 * which will restart the queueing
1562	 */
1563	if (blk_queue_stopped(q))
1564		return;
1565
1566	if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags)) {
1567		mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
1568		blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
1569	}
1570}
1571
1572EXPORT_SYMBOL(blk_plug_device);
1573
1574/*
1575 * remove the queue from the plugged list, if present. called with
1576 * queue lock held and interrupts disabled.
1577 */
1578int blk_remove_plug(request_queue_t *q)
1579{
1580	WARN_ON(!irqs_disabled());
1581
1582	if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1583		return 0;
1584
1585	del_timer(&q->unplug_timer);
1586	return 1;
1587}
1588
1589EXPORT_SYMBOL(blk_remove_plug);
1590
1591/*
1592 * remove the plug and let it rip..
1593 */
1594void __generic_unplug_device(request_queue_t *q)
1595{
1596	if (unlikely(blk_queue_stopped(q)))
1597		return;
1598
1599	if (!blk_remove_plug(q))
1600		return;
1601
1602	q->request_fn(q);
1603}
1604EXPORT_SYMBOL(__generic_unplug_device);
1605
1606/**
1607 * generic_unplug_device - fire a request queue
1608 * @q:    The &request_queue_t in question
1609 *
1610 * Description:
1611 *   Linux uses plugging to build bigger requests queues before letting
1612 *   the device have at them. If a queue is plugged, the I/O scheduler
1613 *   is still adding and merging requests on the queue. Once the queue
1614 *   gets unplugged, the request_fn defined for the queue is invoked and
1615 *   transfers started.
1616 **/
1617void generic_unplug_device(request_queue_t *q)
1618{
1619	spin_lock_irq(q->queue_lock);
1620	__generic_unplug_device(q);
1621	spin_unlock_irq(q->queue_lock);
1622}
1623EXPORT_SYMBOL(generic_unplug_device);
1624
1625static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
1626				   struct page *page)
1627{
1628	request_queue_t *q = bdi->unplug_io_data;
1629
1630	/*
1631	 * devices don't necessarily have an ->unplug_fn defined
1632	 */
1633	if (q->unplug_fn) {
1634		blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1635					q->rq.count[READ] + q->rq.count[WRITE]);
1636
1637		q->unplug_fn(q);
1638	}
1639}
1640
1641static void blk_unplug_work(struct work_struct *work)
1642{
1643	request_queue_t *q = container_of(work, request_queue_t, unplug_work);
1644
1645	blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1646				q->rq.count[READ] + q->rq.count[WRITE]);
1647
1648	q->unplug_fn(q);
1649}
1650
1651static void blk_unplug_timeout(unsigned long data)
1652{
1653	request_queue_t *q = (request_queue_t *)data;
1654
1655	blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
1656				q->rq.count[READ] + q->rq.count[WRITE]);
1657
1658	kblockd_schedule_work(&q->unplug_work);
1659}
1660
1661/**
1662 * blk_start_queue - restart a previously stopped queue
1663 * @q:    The &request_queue_t in question
1664 *
1665 * Description:
1666 *   blk_start_queue() will clear the stop flag on the queue, and call
1667 *   the request_fn for the queue if it was in a stopped state when
1668 *   entered. Also see blk_stop_queue(). Queue lock must be held.
1669 **/
1670void blk_start_queue(request_queue_t *q)
1671{
1672	WARN_ON(!irqs_disabled());
1673
1674	clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1675
1676	/*
1677	 * one level of recursion is ok and is much faster than kicking
1678	 * the unplug handling
1679	 */
1680	if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1681		q->request_fn(q);
1682		clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1683	} else {
1684		blk_plug_device(q);
1685		kblockd_schedule_work(&q->unplug_work);
1686	}
1687}
1688
1689EXPORT_SYMBOL(blk_start_queue);
1690
1691/**
1692 * blk_stop_queue - stop a queue
1693 * @q:    The &request_queue_t in question
1694 *
1695 * Description:
1696 *   The Linux block layer assumes that a block driver will consume all
1697 *   entries on the request queue when the request_fn strategy is called.
1698 *   Often this will not happen, because of hardware limitations (queue
1699 *   depth settings). If a device driver gets a 'queue full' response,
1700 *   or if it simply chooses not to queue more I/O at one point, it can
1701 *   call this function to prevent the request_fn from being called until
1702 *   the driver has signalled it's ready to go again. This happens by calling
1703 *   blk_start_queue() to restart queue operations. Queue lock must be held.
1704 **/
1705void blk_stop_queue(request_queue_t *q)
1706{
1707	blk_remove_plug(q);
1708	set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1709}
1710EXPORT_SYMBOL(blk_stop_queue);
1711
1712/**
1713 * blk_sync_queue - cancel any pending callbacks on a queue
1714 * @q: the queue
1715 *
1716 * Description:
1717 *     The block layer may perform asynchronous callback activity
1718 *     on a queue, such as calling the unplug function after a timeout.
1719 *     A block device may call blk_sync_queue to ensure that any
1720 *     such activity is cancelled, thus allowing it to release resources
1721 *     that the callbacks might use. The caller must already have made sure
1722 *     that its ->make_request_fn will not re-add plugging prior to calling
1723 *     this function.
1724 *
1725 */
1726void blk_sync_queue(struct request_queue *q)
1727{
1728	del_timer_sync(&q->unplug_timer);
1729}
1730EXPORT_SYMBOL(blk_sync_queue);
1731
1732/**
1733 * blk_run_queue - run a single device queue
1734 * @q:	The queue to run
1735 */
1736void blk_run_queue(struct request_queue *q)
1737{
1738	unsigned long flags;
1739
1740	spin_lock_irqsave(q->queue_lock, flags);
1741	blk_remove_plug(q);
1742
1743	/*
1744	 * Only recurse once to avoid overrunning the stack, let the unplug
1745	 * handling reinvoke the handler shortly if we already got there.
1746	 */
1747	if (!elv_queue_empty(q)) {
1748		if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1749			q->request_fn(q);
1750			clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1751		} else {
1752			blk_plug_device(q);
1753			kblockd_schedule_work(&q->unplug_work);
1754		}
1755	}
1756
1757	spin_unlock_irqrestore(q->queue_lock, flags);
1758}
1759EXPORT_SYMBOL(blk_run_queue);
1760
1761/**
1762 * blk_cleanup_queue: - release a &request_queue_t when it is no longer needed
1763 * @kobj:    the kobj belonging of the request queue to be released
1764 *
1765 * Description:
1766 *     blk_cleanup_queue is the pair to blk_init_queue() or
1767 *     blk_queue_make_request().  It should be called when a request queue is
1768 *     being released; typically when a block device is being de-registered.
1769 *     Currently, its primary task it to free all the &struct request
1770 *     structures that were allocated to the queue and the queue itself.
1771 *
1772 * Caveat:
1773 *     Hopefully the low level driver will have finished any
1774 *     outstanding requests first...
1775 **/
1776static void blk_release_queue(struct kobject *kobj)
1777{
1778	request_queue_t *q = container_of(kobj, struct request_queue, kobj);
1779	struct request_list *rl = &q->rq;
1780
1781	blk_sync_queue(q);
1782
1783	if (rl->rq_pool)
1784		mempool_destroy(rl->rq_pool);
1785
1786	if (q->queue_tags)
1787		__blk_queue_free_tags(q);
1788
1789	blk_trace_shutdown(q);
1790
1791	kmem_cache_free(requestq_cachep, q);
1792}
1793
1794void blk_put_queue(request_queue_t *q)
1795{
1796	kobject_put(&q->kobj);
1797}
1798EXPORT_SYMBOL(blk_put_queue);
1799
1800void blk_cleanup_queue(request_queue_t * q)
1801{
1802	mutex_lock(&q->sysfs_lock);
1803	set_bit(QUEUE_FLAG_DEAD, &q->queue_flags);
1804	mutex_unlock(&q->sysfs_lock);
1805
1806	if (q->elevator)
1807		elevator_exit(q->elevator);
1808
1809	blk_put_queue(q);
1810}
1811
1812EXPORT_SYMBOL(blk_cleanup_queue);
1813
1814static int blk_init_free_list(request_queue_t *q)
1815{
1816	struct request_list *rl = &q->rq;
1817
1818	rl->count[READ] = rl->count[WRITE] = 0;
1819	rl->starved[READ] = rl->starved[WRITE] = 0;
1820	rl->elvpriv = 0;
1821	init_waitqueue_head(&rl->wait[READ]);
1822	init_waitqueue_head(&rl->wait[WRITE]);
1823
1824	rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
1825				mempool_free_slab, request_cachep, q->node);
1826
1827	if (!rl->rq_pool)
1828		return -ENOMEM;
1829
1830	return 0;
1831}
1832
1833request_queue_t *blk_alloc_queue(gfp_t gfp_mask)
1834{
1835	return blk_alloc_queue_node(gfp_mask, -1);
1836}
1837EXPORT_SYMBOL(blk_alloc_queue);
1838
1839static struct kobj_type queue_ktype;
1840
1841request_queue_t *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1842{
1843	request_queue_t *q;
1844
1845	q = kmem_cache_alloc_node(requestq_cachep, gfp_mask, node_id);
1846	if (!q)
1847		return NULL;
1848
1849	memset(q, 0, sizeof(*q));
1850	init_timer(&q->unplug_timer);
1851
1852	snprintf(q->kobj.name, KOBJ_NAME_LEN, "%s", "queue");
1853	q->kobj.ktype = &queue_ktype;
1854	kobject_init(&q->kobj);
1855
1856	q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
1857	q->backing_dev_info.unplug_io_data = q;
1858
1859	mutex_init(&q->sysfs_lock);
1860
1861	return q;
1862}
1863EXPORT_SYMBOL(blk_alloc_queue_node);
1864
1865/**
1866 * blk_init_queue  - prepare a request queue for use with a block device
1867 * @rfn:  The function to be called to process requests that have been
1868 *        placed on the queue.
1869 * @lock: Request queue spin lock
1870 *
1871 * Description:
1872 *    If a block device wishes to use the standard request handling procedures,
1873 *    which sorts requests and coalesces adjacent requests, then it must
1874 *    call blk_init_queue().  The function @rfn will be called when there
1875 *    are requests on the queue that need to be processed.  If the device
1876 *    supports plugging, then @rfn may not be called immediately when requests
1877 *    are available on the queue, but may be called at some time later instead.
1878 *    Plugged queues are generally unplugged when a buffer belonging to one
1879 *    of the requests on the queue is needed, or due to memory pressure.
1880 *
1881 *    @rfn is not required, or even expected, to remove all requests off the
1882 *    queue, but only as many as it can handle at a time.  If it does leave
1883 *    requests on the queue, it is responsible for arranging that the requests
1884 *    get dealt with eventually.
1885 *
1886 *    The queue spin lock must be held while manipulating the requests on the
1887 *    request queue; this lock will be taken also from interrupt context, so irq
1888 *    disabling is needed for it.
1889 *
1890 *    Function returns a pointer to the initialized request queue, or NULL if
1891 *    it didn't succeed.
1892 *
1893 * Note:
1894 *    blk_init_queue() must be paired with a blk_cleanup_queue() call
1895 *    when the block device is deactivated (such as at module unload).
1896 **/
1897
1898request_queue_t *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1899{
1900	return blk_init_queue_node(rfn, lock, -1);
1901}
1902EXPORT_SYMBOL(blk_init_queue);
1903
1904request_queue_t *
1905blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1906{
1907	request_queue_t *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1908
1909	if (!q)
1910		return NULL;
1911
1912	q->node = node_id;
1913	if (blk_init_free_list(q)) {
1914		kmem_cache_free(requestq_cachep, q);
1915		return NULL;
1916	}
1917
1918	/*
1919	 * if caller didn't supply a lock, they get per-queue locking with
1920	 * our embedded lock
1921	 */
1922	if (!lock) {
1923		spin_lock_init(&q->__queue_lock);
1924		lock = &q->__queue_lock;
1925	}
1926
1927	q->request_fn		= rfn;
1928	q->prep_rq_fn		= NULL;
1929	q->unplug_fn		= generic_unplug_device;
1930	q->queue_flags		= (1 << QUEUE_FLAG_CLUSTER);
1931	q->queue_lock		= lock;
1932
1933	blk_queue_segment_boundary(q, 0xffffffff);
1934
1935	blk_queue_make_request(q, __make_request);
1936	blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
1937
1938	blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
1939	blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
1940
1941	q->sg_reserved_size = INT_MAX;
1942
1943	/*
1944	 * all done
1945	 */
1946	if (!elevator_init(q, NULL)) {
1947		blk_queue_congestion_threshold(q);
1948		return q;
1949	}
1950
1951	blk_put_queue(q);
1952	return NULL;
1953}
1954EXPORT_SYMBOL(blk_init_queue_node);
1955
1956int blk_get_queue(request_queue_t *q)
1957{
1958	if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
1959		kobject_get(&q->kobj);
1960		return 0;
1961	}
1962
1963	return 1;
1964}
1965
1966EXPORT_SYMBOL(blk_get_queue);
1967
1968static inline void blk_free_request(request_queue_t *q, struct request *rq)
1969{
1970	if (rq->cmd_flags & REQ_ELVPRIV)
1971		elv_put_request(q, rq);
1972	mempool_free(rq, q->rq.rq_pool);
1973}
1974
1975static struct request *
1976blk_alloc_request(request_queue_t *q, int rw, int priv, gfp_t gfp_mask)
1977{
1978	struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
1979
1980	if (!rq)
1981		return NULL;
1982
1983	/*
1984	 * first three bits are identical in rq->cmd_flags and bio->bi_rw,
1985	 * see bio.h and blkdev.h
1986	 */
1987	rq->cmd_flags = rw | REQ_ALLOCED;
1988
1989	if (priv) {
1990		if (unlikely(elv_set_request(q, rq, gfp_mask))) {
1991			mempool_free(rq, q->rq.rq_pool);
1992			return NULL;
1993		}
1994		rq->cmd_flags |= REQ_ELVPRIV;
1995	}
1996
1997	return rq;
1998}
1999
2000/*
2001 * ioc_batching returns true if the ioc is a valid batching request and
2002 * should be given priority access to a request.
2003 */
2004static inline int ioc_batching(request_queue_t *q, struct io_context *ioc)
2005{
2006	if (!ioc)
2007		return 0;
2008
2009	/*
2010	 * Make sure the process is able to allocate at least 1 request
2011	 * even if the batch times out, otherwise we could theoretically
2012	 * lose wakeups.
2013	 */
2014	return ioc->nr_batch_requests == q->nr_batching ||
2015		(ioc->nr_batch_requests > 0
2016		&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
2017}
2018
2019/*
2020 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
2021 * will cause the process to be a "batcher" on all queues in the system. This
2022 * is the behaviour we want though - once it gets a wakeup it should be given
2023 * a nice run.
2024 */
2025static void ioc_set_batching(request_queue_t *q, struct io_context *ioc)
2026{
2027	if (!ioc || ioc_batching(q, ioc))
2028		return;
2029
2030	ioc->nr_batch_requests = q->nr_batching;
2031	ioc->last_waited = jiffies;
2032}
2033
2034static void __freed_request(request_queue_t *q, int rw)
2035{
2036	struct request_list *rl = &q->rq;
2037
2038	if (rl->count[rw] < queue_congestion_off_threshold(q))
2039		blk_clear_queue_congested(q, rw);
2040
2041	if (rl->count[rw] + 1 <= q->nr_requests) {
2042		if (waitqueue_active(&rl->wait[rw]))
2043			wake_up(&rl->wait[rw]);
2044
2045		blk_clear_queue_full(q, rw);
2046	}
2047}
2048
2049/*
2050 * A request has just been released.  Account for it, update the full and
2051 * congestion status, wake up any waiters.   Called under q->queue_lock.
2052 */
2053static void freed_request(request_queue_t *q, int rw, int priv)
2054{
2055	struct request_list *rl = &q->rq;
2056
2057	rl->count[rw]--;
2058	if (priv)
2059		rl->elvpriv--;
2060
2061	__freed_request(q, rw);
2062
2063	if (unlikely(rl->starved[rw ^ 1]))
2064		__freed_request(q, rw ^ 1);
2065}
2066
2067#define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
2068/*
2069 * Get a free request, queue_lock must be held.
2070 * Returns NULL on failure, with queue_lock held.
2071 * Returns !NULL on success, with queue_lock *not held*.
2072 */
2073static struct request *get_request(request_queue_t *q, int rw_flags,
2074				   struct bio *bio, gfp_t gfp_mask)
2075{
2076	struct request *rq = NULL;
2077	struct request_list *rl = &q->rq;
2078	struct io_context *ioc = NULL;
2079	const int rw = rw_flags & 0x01;
2080	int may_queue, priv;
2081
2082	may_queue = elv_may_queue(q, rw_flags);
2083	if (may_queue == ELV_MQUEUE_NO)
2084		goto rq_starved;
2085
2086	if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
2087		if (rl->count[rw]+1 >= q->nr_requests) {
2088			ioc = current_io_context(GFP_ATOMIC, q->node);
2089			/*
2090			 * The queue will fill after this allocation, so set
2091			 * it as full, and mark this process as "batching".
2092			 * This process will be allowed to complete a batch of
2093			 * requests, others will be blocked.
2094			 */
2095			if (!blk_queue_full(q, rw)) {
2096				ioc_set_batching(q, ioc);
2097				blk_set_queue_full(q, rw);
2098			} else {
2099				if (may_queue != ELV_MQUEUE_MUST
2100						&& !ioc_batching(q, ioc)) {
2101					/*
2102					 * The queue is full and the allocating
2103					 * process is not a "batcher", and not
2104					 * exempted by the IO scheduler
2105					 */
2106					goto out;
2107				}
2108			}
2109		}
2110		blk_set_queue_congested(q, rw);
2111	}
2112
2113	/*
2114	 * Only allow batching queuers to allocate up to 50% over the defined
2115	 * limit of requests, otherwise we could have thousands of requests
2116	 * allocated with any setting of ->nr_requests
2117	 */
2118	if (rl->count[rw] >= (3 * q->nr_requests / 2))
2119		goto out;
2120
2121	rl->count[rw]++;
2122	rl->starved[rw] = 0;
2123
2124	priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
2125	if (priv)
2126		rl->elvpriv++;
2127
2128	spin_unlock_irq(q->queue_lock);
2129
2130	rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
2131	if (unlikely(!rq)) {
2132		/*
2133		 * Allocation failed presumably due to memory. Undo anything
2134		 * we might have messed up.
2135		 *
2136		 * Allocating task should really be put onto the front of the
2137		 * wait queue, but this is pretty rare.
2138		 */
2139		spin_lock_irq(q->queue_lock);
2140		freed_request(q, rw, priv);
2141
2142		/*
2143		 * in the very unlikely event that allocation failed and no
2144		 * requests for this direction was pending, mark us starved
2145		 * so that freeing of a request in the other direction will
2146		 * notice us. another possible fix would be to split the
2147		 * rq mempool into READ and WRITE
2148		 */
2149rq_starved:
2150		if (unlikely(rl->count[rw] == 0))
2151			rl->starved[rw] = 1;
2152
2153		goto out;
2154	}
2155
2156	/*
2157	 * ioc may be NULL here, and ioc_batching will be false. That's
2158	 * OK, if the queue is under the request limit then requests need
2159	 * not count toward the nr_batch_requests limit. There will always
2160	 * be some limit enforced by BLK_BATCH_TIME.
2161	 */
2162	if (ioc_batching(q, ioc))
2163		ioc->nr_batch_requests--;
2164
2165	rq_init(q, rq);
2166
2167	blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
2168out:
2169	return rq;
2170}
2171
2172/*
2173 * No available requests for this queue, unplug the device and wait for some
2174 * requests to become available.
2175 *
2176 * Called with q->queue_lock held, and returns with it unlocked.
2177 */
2178static struct request *get_request_wait(request_queue_t *q, int rw_flags,
2179					struct bio *bio)
2180{
2181	const int rw = rw_flags & 0x01;
2182	struct request *rq;
2183
2184	rq = get_request(q, rw_flags, bio, GFP_NOIO);
2185	while (!rq) {
2186		DEFINE_WAIT(wait);
2187		struct request_list *rl = &q->rq;
2188
2189		prepare_to_wait_exclusive(&rl->wait[rw], &wait,
2190				TASK_UNINTERRUPTIBLE);
2191
2192		rq = get_request(q, rw_flags, bio, GFP_NOIO);
2193
2194		if (!rq) {
2195			struct io_context *ioc;
2196
2197			blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
2198
2199			__generic_unplug_device(q);
2200			spin_unlock_irq(q->queue_lock);
2201			io_schedule();
2202
2203			/*
2204			 * After sleeping, we become a "batching" process and
2205			 * will be able to allocate at least one request, and
2206			 * up to a big batch of them for a small period time.
2207			 * See ioc_batching, ioc_set_batching
2208			 */
2209			ioc = current_io_context(GFP_NOIO, q->node);
2210			ioc_set_batching(q, ioc);
2211
2212			spin_lock_irq(q->queue_lock);
2213		}
2214		finish_wait(&rl->wait[rw], &wait);
2215	}
2216
2217	return rq;
2218}
2219
2220struct request *blk_get_request(request_queue_t *q, int rw, gfp_t gfp_mask)
2221{
2222	struct request *rq;
2223
2224	BUG_ON(rw != READ && rw != WRITE);
2225
2226	spin_lock_irq(q->queue_lock);
2227	if (gfp_mask & __GFP_WAIT) {
2228		rq = get_request_wait(q, rw, NULL);
2229	} else {
2230		rq = get_request(q, rw, NULL, gfp_mask);
2231		if (!rq)
2232			spin_unlock_irq(q->queue_lock);
2233	}
2234	/* q->queue_lock is unlocked at this point */
2235
2236	return rq;
2237}
2238EXPORT_SYMBOL(blk_get_request);
2239
2240/**
2241 * blk_start_queueing - initiate dispatch of requests to device
2242 * @q:		request queue to kick into gear
2243 *
2244 * This is basically a helper to remove the need to know whether a queue
2245 * is plugged or not if someone just wants to initiate dispatch of requests
2246 * for this queue.
2247 *
2248 * The queue lock must be held with interrupts disabled.
2249 */
2250void blk_start_queueing(request_queue_t *q)
2251{
2252	if (!blk_queue_plugged(q))
2253		q->request_fn(q);
2254	else
2255		__generic_unplug_device(q);
2256}
2257EXPORT_SYMBOL(blk_start_queueing);
2258
2259/**
2260 * blk_requeue_request - put a request back on queue
2261 * @q:		request queue where request should be inserted
2262 * @rq:		request to be inserted
2263 *
2264 * Description:
2265 *    Drivers often keep queueing requests until the hardware cannot accept
2266 *    more, when that condition happens we need to put the request back
2267 *    on the queue. Must be called with queue lock held.
2268 */
2269void blk_requeue_request(request_queue_t *q, struct request *rq)
2270{
2271	blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
2272
2273	if (blk_rq_tagged(rq))
2274		blk_queue_end_tag(q, rq);
2275
2276	elv_requeue_request(q, rq);
2277}
2278
2279EXPORT_SYMBOL(blk_requeue_request);
2280
2281/**
2282 * blk_insert_request - insert a special request in to a request queue
2283 * @q:		request queue where request should be inserted
2284 * @rq:		request to be inserted
2285 * @at_head:	insert request at head or tail of queue
2286 * @data:	private data
2287 *
2288 * Description:
2289 *    Many block devices need to execute commands asynchronously, so they don't
2290 *    block the whole kernel from preemption during request execution.  This is
2291 *    accomplished normally by inserting aritficial requests tagged as
2292 *    REQ_SPECIAL in to the corresponding request queue, and letting them be
2293 *    scheduled for actual execution by the request queue.
2294 *
2295 *    We have the option of inserting the head or the tail of the queue.
2296 *    Typically we use the tail for new ioctls and so forth.  We use the head
2297 *    of the queue for things like a QUEUE_FULL message from a device, or a
2298 *    host that is unable to accept a particular command.
2299 */
2300void blk_insert_request(request_queue_t *q, struct request *rq,
2301			int at_head, void *data)
2302{
2303	int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2304	unsigned long flags;
2305
2306	/*
2307	 * tell I/O scheduler that this isn't a regular read/write (ie it
2308	 * must not attempt merges on this) and that it acts as a soft
2309	 * barrier
2310	 */
2311	rq->cmd_type = REQ_TYPE_SPECIAL;
2312	rq->cmd_flags |= REQ_SOFTBARRIER;
2313
2314	rq->special = data;
2315
2316	spin_lock_irqsave(q->queue_lock, flags);
2317
2318	/*
2319	 * If command is tagged, release the tag
2320	 */
2321	if (blk_rq_tagged(rq))
2322		blk_queue_end_tag(q, rq);
2323
2324	drive_stat_acct(rq, rq->nr_sectors, 1);
2325	__elv_add_request(q, rq, where, 0);
2326	blk_start_queueing(q);
2327	spin_unlock_irqrestore(q->queue_lock, flags);
2328}
2329
2330EXPORT_SYMBOL(blk_insert_request);
2331
2332static int __blk_rq_unmap_user(struct bio *bio)
2333{
2334	int ret = 0;
2335
2336	if (bio) {
2337		if (bio_flagged(bio, BIO_USER_MAPPED))
2338			bio_unmap_user(bio);
2339		else
2340			ret = bio_uncopy_user(bio);
2341	}
2342
2343	return ret;
2344}
2345
2346static int __blk_rq_map_user(request_queue_t *q, struct request *rq,
2347			     void __user *ubuf, unsigned int len)
2348{
2349	unsigned long uaddr;
2350	struct bio *bio, *orig_bio;
2351	int reading, ret;
2352
2353	reading = rq_data_dir(rq) == READ;
2354
2355	/*
2356	 * if alignment requirement is satisfied, map in user pages for
2357	 * direct dma. else, set up kernel bounce buffers
2358	 */
2359	uaddr = (unsigned long) ubuf;
2360	if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
2361		bio = bio_map_user(q, NULL, uaddr, len, reading);
2362	else
2363		bio = bio_copy_user(q, uaddr, len, reading);
2364
2365	if (IS_ERR(bio))
2366		return PTR_ERR(bio);
2367
2368	orig_bio = bio;
2369	blk_queue_bounce(q, &bio);
2370
2371	/*
2372	 * We link the bounce buffer in and could have to traverse it
2373	 * later so we have to get a ref to prevent it from being freed
2374	 */
2375	bio_get(bio);
2376
2377	if (!rq->bio)
2378		blk_rq_bio_prep(q, rq, bio);
2379	else if (!ll_back_merge_fn(q, rq, bio)) {
2380		ret = -EINVAL;
2381		goto unmap_bio;
2382	} else {
2383		rq->biotail->bi_next = bio;
2384		rq->biotail = bio;
2385
2386		rq->data_len += bio->bi_size;
2387	}
2388
2389	return bio->bi_size;
2390
2391unmap_bio:
2392	/* if it was boucned we must call the end io function */
2393	bio_endio(bio, bio->bi_size, 0);
2394	__blk_rq_unmap_user(orig_bio);
2395	bio_put(bio);
2396	return ret;
2397}
2398
2399/**
2400 * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
2401 * @q:		request queue where request should be inserted
2402 * @rq:		request structure to fill
2403 * @ubuf:	the user buffer
2404 * @len:	length of user data
2405 *
2406 * Description:
2407 *    Data will be mapped directly for zero copy io, if possible. Otherwise
2408 *    a kernel bounce buffer is used.
2409 *
2410 *    A matching blk_rq_unmap_user() must be issued at the end of io, while
2411 *    still in process context.
2412 *
2413 *    Note: The mapped bio may need to be bounced through blk_queue_bounce()
2414 *    before being submitted to the device, as pages mapped may be out of
2415 *    reach. It's the callers responsibility to make sure this happens. The
2416 *    original bio must be passed back in to blk_rq_unmap_user() for proper
2417 *    unmapping.
2418 */
2419int blk_rq_map_user(request_queue_t *q, struct request *rq, void __user *ubuf,
2420		    unsigned long len)
2421{
2422	unsigned long bytes_read = 0;
2423	struct bio *bio = NULL;
2424	int ret;
2425
2426	if (len > (q->max_hw_sectors << 9))
2427		return -EINVAL;
2428	if (!len || !ubuf)
2429		return -EINVAL;
2430
2431	while (bytes_read != len) {
2432		unsigned long map_len, end, start;
2433
2434		map_len = min_t(unsigned long, len - bytes_read, BIO_MAX_SIZE);
2435		end = ((unsigned long)ubuf + map_len + PAGE_SIZE - 1)
2436								>> PAGE_SHIFT;
2437		start = (unsigned long)ubuf >> PAGE_SHIFT;
2438
2439		/*
2440		 * A bad offset could cause us to require BIO_MAX_PAGES + 1
2441		 * pages. If this happens we just lower the requested
2442		 * mapping len by a page so that we can fit
2443		 */
2444		if (end - start > BIO_MAX_PAGES)
2445			map_len -= PAGE_SIZE;
2446
2447		ret = __blk_rq_map_user(q, rq, ubuf, map_len);
2448		if (ret < 0)
2449			goto unmap_rq;
2450		if (!bio)
2451			bio = rq->bio;
2452		bytes_read += ret;
2453		ubuf += ret;
2454	}
2455
2456	rq->buffer = rq->data = NULL;
2457	return 0;
2458unmap_rq:
2459	blk_rq_unmap_user(bio);
2460	return ret;
2461}
2462
2463EXPORT_SYMBOL(blk_rq_map_user);
2464
2465/**
2466 * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
2467 * @q:		request queue where request should be inserted
2468 * @rq:		request to map data to
2469 * @iov:	pointer to the iovec
2470 * @iov_count:	number of elements in the iovec
2471 * @len:	I/O byte count
2472 *
2473 * Description:
2474 *    Data will be mapped directly for zero copy io, if possible. Otherwise
2475 *    a kernel bounce buffer is used.
2476 *
2477 *    A matching blk_rq_unmap_user() must be issued at the end of io, while
2478 *    still in process context.
2479 *
2480 *    Note: The mapped bio may need to be bounced through blk_queue_bounce()
2481 *    before being submitted to the device, as pages mapped may be out of
2482 *    reach. It's the callers responsibility to make sure this happens. The
2483 *    original bio must be passed back in to blk_rq_unmap_user() for proper
2484 *    unmapping.
2485 */
2486int blk_rq_map_user_iov(request_queue_t *q, struct request *rq,
2487			struct sg_iovec *iov, int iov_count, unsigned int len)
2488{
2489	struct bio *bio;
2490
2491	if (!iov || iov_count <= 0)
2492		return -EINVAL;
2493
2494	/* we don't allow misaligned data like bio_map_user() does.  If the
2495	 * user is using sg, they're expected to know the alignment constraints
2496	 * and respect them accordingly */
2497	bio = bio_map_user_iov(q, NULL, iov, iov_count, rq_data_dir(rq)== READ);
2498	if (IS_ERR(bio))
2499		return PTR_ERR(bio);
2500
2501	if (bio->bi_size != len) {
2502		bio_endio(bio, bio->bi_size, 0);
2503		bio_unmap_user(bio);
2504		return -EINVAL;
2505	}
2506
2507	bio_get(bio);
2508	blk_rq_bio_prep(q, rq, bio);
2509	rq->buffer = rq->data = NULL;
2510	return 0;
2511}
2512
2513EXPORT_SYMBOL(blk_rq_map_user_iov);
2514
2515/**
2516 * blk_rq_unmap_user - unmap a request with user data
2517 * @bio:	       start of bio list
2518 *
2519 * Description:
2520 *    Unmap a rq previously mapped by blk_rq_map_user(). The caller must
2521 *    supply the original rq->bio from the blk_rq_map_user() return, since
2522 *    the io completion may have changed rq->bio.
2523 */
2524int blk_rq_unmap_user(struct bio *bio)
2525{
2526	struct bio *mapped_bio;
2527	int ret = 0, ret2;
2528
2529	while (bio) {
2530		mapped_bio = bio;
2531		if (unlikely(bio_flagged(bio, BIO_BOUNCED)))
2532			mapped_bio = bio->bi_private;
2533
2534		ret2 = __blk_rq_unmap_user(mapped_bio);
2535		if (ret2 && !ret)
2536			ret = ret2;
2537
2538		mapped_bio = bio;
2539		bio = bio->bi_next;
2540		bio_put(mapped_bio);
2541	}
2542
2543	return ret;
2544}
2545
2546EXPORT_SYMBOL(blk_rq_unmap_user);
2547
2548/**
2549 * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
2550 * @q:		request queue where request should be inserted
2551 * @rq:		request to fill
2552 * @kbuf:	the kernel buffer
2553 * @len:	length of user data
2554 * @gfp_mask:	memory allocation flags
2555 */
2556int blk_rq_map_kern(request_queue_t *q, struct request *rq, void *kbuf,
2557		    unsigned int len, gfp_t gfp_mask)
2558{
2559	struct bio *bio;
2560
2561	if (len > (q->max_hw_sectors << 9))
2562		return -EINVAL;
2563	if (!len || !kbuf)
2564		return -EINVAL;
2565
2566	bio = bio_map_kern(q, kbuf, len, gfp_mask);
2567	if (IS_ERR(bio))
2568		return PTR_ERR(bio);
2569
2570	if (rq_data_dir(rq) == WRITE)
2571		bio->bi_rw |= (1 << BIO_RW);
2572
2573	blk_rq_bio_prep(q, rq, bio);
2574	blk_queue_bounce(q, &rq->bio);
2575	rq->buffer = rq->data = NULL;
2576	return 0;
2577}
2578
2579EXPORT_SYMBOL(blk_rq_map_kern);
2580
2581/**
2582 * blk_execute_rq_nowait - insert a request into queue for execution
2583 * @q:		queue to insert the request in
2584 * @bd_disk:	matching gendisk
2585 * @rq:		request to insert
2586 * @at_head:    insert request at head or tail of queue
2587 * @done:	I/O completion handler
2588 *
2589 * Description:
2590 *    Insert a fully prepared request at the back of the io scheduler queue
2591 *    for execution.  Don't wait for completion.
2592 */
2593void blk_execute_rq_nowait(request_queue_t *q, struct gendisk *bd_disk,
2594			   struct request *rq, int at_head,
2595			   rq_end_io_fn *done)
2596{
2597	int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2598
2599	rq->rq_disk = bd_disk;
2600	rq->cmd_flags |= REQ_NOMERGE;
2601	rq->end_io = done;
2602	WARN_ON(irqs_disabled());
2603	spin_lock_irq(q->queue_lock);
2604	__elv_add_request(q, rq, where, 1);
2605	__generic_unplug_device(q);
2606	spin_unlock_irq(q->queue_lock);
2607}
2608EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
2609
2610/**
2611 * blk_execute_rq - insert a request into queue for execution
2612 * @q:		queue to insert the request in
2613 * @bd_disk:	matching gendisk
2614 * @rq:		request to insert
2615 * @at_head:    insert request at head or tail of queue
2616 *
2617 * Description:
2618 *    Insert a fully prepared request at the back of the io scheduler queue
2619 *    for execution and wait for completion.
2620 */
2621int blk_execute_rq(request_queue_t *q, struct gendisk *bd_disk,
2622		   struct request *rq, int at_head)
2623{
2624	DECLARE_COMPLETION_ONSTACK(wait);
2625	char sense[SCSI_SENSE_BUFFERSIZE];
2626	int err = 0;
2627
2628	/*
2629	 * we need an extra reference to the request, so we can look at
2630	 * it after io completion
2631	 */
2632	rq->ref_count++;
2633
2634	if (!rq->sense) {
2635		memset(sense, 0, sizeof(sense));
2636		rq->sense = sense;
2637		rq->sense_len = 0;
2638	}
2639
2640	rq->end_io_data = &wait;
2641	blk_execute_rq_nowait(q, bd_disk, rq, at_head, blk_end_sync_rq);
2642	wait_for_completion(&wait);
2643
2644	if (rq->errors)
2645		err = -EIO;
2646
2647	return err;
2648}
2649
2650EXPORT_SYMBOL(blk_execute_rq);
2651
2652/**
2653 * blkdev_issue_flush - queue a flush
2654 * @bdev:	blockdev to issue flush for
2655 * @error_sector:	error sector
2656 *
2657 * Description:
2658 *    Issue a flush for the block device in question. Caller can supply
2659 *    room for storing the error offset in case of a flush error, if they
2660 *    wish to.  Caller must run wait_for_completion() on its own.
2661 */
2662int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
2663{
2664	request_queue_t *q;
2665
2666	if (bdev->bd_disk == NULL)
2667		return -ENXIO;
2668
2669	q = bdev_get_queue(bdev);
2670	if (!q)
2671		return -ENXIO;
2672	if (!q->issue_flush_fn)
2673		return -EOPNOTSUPP;
2674
2675	return q->issue_flush_fn(q, bdev->bd_disk, error_sector);
2676}
2677
2678EXPORT_SYMBOL(blkdev_issue_flush);
2679
2680static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io)
2681{
2682	int rw = rq_data_dir(rq);
2683
2684	if (!blk_fs_request(rq) || !rq->rq_disk)
2685		return;
2686
2687	if (!new_io) {
2688		__disk_stat_inc(rq->rq_disk, merges[rw]);
2689	} else {
2690		disk_round_stats(rq->rq_disk);
2691		rq->rq_disk->in_flight++;
2692	}
2693}
2694
2695/*
2696 * add-request adds a request to the linked list.
2697 * queue lock is held and interrupts disabled, as we muck with the
2698 * request queue list.
2699 */
2700static inline void add_request(request_queue_t * q, struct request * req)
2701{
2702	drive_stat_acct(req, req->nr_sectors, 1);
2703
2704	/*
2705	 * elevator indicated where it wants this request to be
2706	 * inserted at elevator_merge time
2707	 */
2708	__elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
2709}
2710
2711/*
2712 * disk_round_stats()	- Round off the performance stats on a struct
2713 * disk_stats.
2714 *
2715 * The average IO queue length and utilisation statistics are maintained
2716 * by observing the current state of the queue length and the amount of
2717 * time it has been in this state for.
2718 *
2719 * Normally, that accounting is done on IO completion, but that can result
2720 * in more than a second's worth of IO being accounted for within any one
2721 * second, leading to >100% utilisation.  To deal with that, we call this
2722 * function to do a round-off before returning the results when reading
2723 * /proc/diskstats.  This accounts immediately for all queue usage up to
2724 * the current jiffies and restarts the counters again.
2725 */
2726void disk_round_stats(struct gendisk *disk)
2727{
2728	unsigned long now = jiffies;
2729
2730	if (now == disk->stamp)
2731		return;
2732
2733	if (disk->in_flight) {
2734		__disk_stat_add(disk, time_in_queue,
2735				disk->in_flight * (now - disk->stamp));
2736		__disk_stat_add(disk, io_ticks, (now - disk->stamp));
2737	}
2738	disk->stamp = now;
2739}
2740
2741EXPORT_SYMBOL_GPL(disk_round_stats);
2742
2743/*
2744 * queue lock must be held
2745 */
2746void __blk_put_request(request_queue_t *q, struct request *req)
2747{
2748	if (unlikely(!q))
2749		return;
2750	if (unlikely(--req->ref_count))
2751		return;
2752
2753	elv_completed_request(q, req);
2754
2755	/*
2756	 * Request may not have originated from ll_rw_blk. if not,
2757	 * it didn't come out of our reserved rq pools
2758	 */
2759	if (req->cmd_flags & REQ_ALLOCED) {
2760		int rw = rq_data_dir(req);
2761		int priv = req->cmd_flags & REQ_ELVPRIV;
2762
2763		BUG_ON(!list_empty(&req->queuelist));
2764		BUG_ON(!hlist_unhashed(&req->hash));
2765
2766		blk_free_request(q, req);
2767		freed_request(q, rw, priv);
2768	}
2769}
2770
2771EXPORT_SYMBOL_GPL(__blk_put_request);
2772
2773void blk_put_request(struct request *req)
2774{
2775	unsigned long flags;
2776	request_queue_t *q = req->q;
2777
2778	/*
2779	 * Gee, IDE calls in w/ NULL q.  Fix IDE and remove the
2780	 * following if (q) test.
2781	 */
2782	if (q) {
2783		spin_lock_irqsave(q->queue_lock, flags);
2784		__blk_put_request(q, req);
2785		spin_unlock_irqrestore(q->queue_lock, flags);
2786	}
2787}
2788
2789EXPORT_SYMBOL(blk_put_request);
2790
2791/**
2792 * blk_end_sync_rq - executes a completion event on a request
2793 * @rq: request to complete
2794 * @error: end io status of the request
2795 */
2796void blk_end_sync_rq(struct request *rq, int error)
2797{
2798	struct completion *waiting = rq->end_io_data;
2799
2800	rq->end_io_data = NULL;
2801	__blk_put_request(rq->q, rq);
2802
2803	/*
2804	 * complete last, if this is a stack request the process (and thus
2805	 * the rq pointer) could be invalid right after this complete()
2806	 */
2807	complete(waiting);
2808}
2809EXPORT_SYMBOL(blk_end_sync_rq);
2810
2811/*
2812 * Has to be called with the request spinlock acquired
2813 */
2814static int attempt_merge(request_queue_t *q, struct request *req,
2815			  struct request *next)
2816{
2817	if (!rq_mergeable(req) || !rq_mergeable(next))
2818		return 0;
2819
2820	/*
2821	 * not contiguous
2822	 */
2823	if (req->sector + req->nr_sectors != next->sector)
2824		return 0;
2825
2826	if (rq_data_dir(req) != rq_data_dir(next)
2827	    || req->rq_disk != next->rq_disk
2828	    || next->special)
2829		return 0;
2830
2831	/*
2832	 * If we are allowed to merge, then append bio list
2833	 * from next to rq and release next. merge_requests_fn
2834	 * will have updated segment counts, update sector
2835	 * counts here.
2836	 */
2837	if (!ll_merge_requests_fn(q, req, next))
2838		return 0;
2839
2840	/*
2841	 * At this point we have either done a back merge
2842	 * or front merge. We need the smaller start_time of
2843	 * the merged requests to be the current request
2844	 * for accounting purposes.
2845	 */
2846	if (time_after(req->start_time, next->start_time))
2847		req->start_time = next->start_time;
2848
2849	req->biotail->bi_next = next->bio;
2850	req->biotail = next->biotail;
2851
2852	req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
2853
2854	elv_merge_requests(q, req, next);
2855
2856	if (req->rq_disk) {
2857		disk_round_stats(req->rq_disk);
2858		req->rq_disk->in_flight--;
2859	}
2860
2861	req->ioprio = ioprio_best(req->ioprio, next->ioprio);
2862
2863	__blk_put_request(q, next);
2864	return 1;
2865}
2866
2867static inline int attempt_back_merge(request_queue_t *q, struct request *rq)
2868{
2869	struct request *next = elv_latter_request(q, rq);
2870
2871	if (next)
2872		return attempt_merge(q, rq, next);
2873
2874	return 0;
2875}
2876
2877static inline int attempt_front_merge(request_queue_t *q, struct request *rq)
2878{
2879	struct request *prev = elv_former_request(q, rq);
2880
2881	if (prev)
2882		return attempt_merge(q, prev, rq);
2883
2884	return 0;
2885}
2886
2887static void init_request_from_bio(struct request *req, struct bio *bio)
2888{
2889	req->cmd_type = REQ_TYPE_FS;
2890
2891	/*
2892	 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
2893	 */
2894	if (bio_rw_ahead(bio) || bio_failfast(bio))
2895		req->cmd_flags |= REQ_FAILFAST;
2896
2897	/*
2898	 * REQ_BARRIER implies no merging, but lets make it explicit
2899	 */
2900	if (unlikely(bio_barrier(bio)))
2901		req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
2902
2903	if (bio_sync(bio))
2904		req->cmd_flags |= REQ_RW_SYNC;
2905	if (bio_rw_meta(bio))
2906		req->cmd_flags |= REQ_RW_META;
2907
2908	req->errors = 0;
2909	req->hard_sector = req->sector = bio->bi_sector;
2910	req->hard_nr_sectors = req->nr_sectors = bio_sectors(bio);
2911	req->current_nr_sectors = req->hard_cur_sectors = bio_cur_sectors(bio);
2912	req->nr_phys_segments = bio_phys_segments(req->q, bio);
2913	req->nr_hw_segments = bio_hw_segments(req->q, bio);
2914	req->buffer = bio_data(bio);	/* see ->buffer comment above */
2915	req->bio = req->biotail = bio;
2916	req->ioprio = bio_prio(bio);
2917	req->rq_disk = bio->bi_bdev->bd_disk;
2918	req->start_time = jiffies;
2919}
2920
2921static int __make_request(request_queue_t *q, struct bio *bio)
2922{
2923	struct request *req;
2924	int el_ret, nr_sectors, barrier, err;
2925	const unsigned short prio = bio_prio(bio);
2926	const int sync = bio_sync(bio);
2927	int rw_flags;
2928
2929	nr_sectors = bio_sectors(bio);
2930
2931	/*
2932	 * low level driver can indicate that it wants pages above a
2933	 * certain limit bounced to low memory (ie for highmem, or even
2934	 * ISA dma in theory)
2935	 */
2936	blk_queue_bounce(q, &bio);
2937
2938	barrier = bio_barrier(bio);
2939	if (unlikely(barrier) && (q->next_ordered == QUEUE_ORDERED_NONE)) {
2940		err = -EOPNOTSUPP;
2941		goto end_io;
2942	}
2943
2944	spin_lock_irq(q->queue_lock);
2945
2946	if (unlikely(barrier) || elv_queue_empty(q))
2947		goto get_rq;
2948
2949	el_ret = elv_merge(q, &req, bio);
2950	switch (el_ret) {
2951		case ELEVATOR_BACK_MERGE:
2952			BUG_ON(!rq_mergeable(req));
2953
2954			if (!ll_back_merge_fn(q, req, bio))
2955				break;
2956
2957			blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
2958
2959			req->biotail->bi_next = bio;
2960			req->biotail = bio;
2961			req->nr_sectors = req->hard_nr_sectors += nr_sectors;
2962			req->ioprio = ioprio_best(req->ioprio, prio);
2963			drive_stat_acct(req, nr_sectors, 0);
2964			if (!attempt_back_merge(q, req))
2965				elv_merged_request(q, req, el_ret);
2966			goto out;
2967
2968		case ELEVATOR_FRONT_MERGE:
2969			BUG_ON(!rq_mergeable(req));
2970
2971			if (!ll_front_merge_fn(q, req, bio))
2972				break;
2973
2974			blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
2975
2976			bio->bi_next = req->bio;
2977			req->bio = bio;
2978
2979			/*
2980			 * may not be valid. if the low level driver said
2981			 * it didn't need a bounce buffer then it better
2982			 * not touch req->buffer either...
2983			 */
2984			req->buffer = bio_data(bio);
2985			req->current_nr_sectors = bio_cur_sectors(bio);
2986			req->hard_cur_sectors = req->current_nr_sectors;
2987			req->sector = req->hard_sector = bio->bi_sector;
2988			req->nr_sectors = req->hard_nr_sectors += nr_sectors;
2989			req->ioprio = ioprio_best(req->ioprio, prio);
2990			drive_stat_acct(req, nr_sectors, 0);
2991			if (!attempt_front_merge(q, req))
2992				elv_merged_request(q, req, el_ret);
2993			goto out;
2994
2995		/* ELV_NO_MERGE: elevator says don't/can't merge. */
2996		default:
2997			;
2998	}
2999
3000get_rq:
3001	/*
3002	 * This sync check and mask will be re-done in init_request_from_bio(),
3003	 * but we need to set it earlier to expose the sync flag to the
3004	 * rq allocator and io schedulers.
3005	 */
3006	rw_flags = bio_data_dir(bio);
3007	if (sync)
3008		rw_flags |= REQ_RW_SYNC;
3009
3010	/*
3011	 * Grab a free request. This is might sleep but can not fail.
3012	 * Returns with the queue unlocked.
3013	 */
3014	req = get_request_wait(q, rw_flags, bio);
3015
3016	/*
3017	 * After dropping the lock and possibly sleeping here, our request
3018	 * may now be mergeable after it had proven unmergeable (above).
3019	 * We don't worry about that case for efficiency. It won't happen
3020	 * often, and the elevators are able to handle it.
3021	 */
3022	init_request_from_bio(req, bio);
3023
3024	spin_lock_irq(q->queue_lock);
3025	if (elv_queue_empty(q))
3026		blk_plug_device(q);
3027	add_request(q, req);
3028out:
3029	if (sync)
3030		__generic_unplug_device(q);
3031
3032	spin_unlock_irq(q->queue_lock);
3033	return 0;
3034
3035end_io:
3036	bio_endio(bio, nr_sectors << 9, err);
3037	return 0;
3038}
3039
3040/*
3041 * If bio->bi_dev is a partition, remap the location
3042 */
3043static inline void blk_partition_remap(struct bio *bio)
3044{
3045	struct block_device *bdev = bio->bi_bdev;
3046
3047	if (bdev != bdev->bd_contains) {
3048		struct hd_struct *p = bdev->bd_part;
3049		const int rw = bio_data_dir(bio);
3050
3051		p->sectors[rw] += bio_sectors(bio);
3052		p->ios[rw]++;
3053
3054		bio->bi_sector += p->start_sect;
3055		bio->bi_bdev = bdev->bd_contains;
3056	}
3057}
3058
3059static void handle_bad_sector(struct bio *bio)
3060{
3061	char b[BDEVNAME_SIZE];
3062
3063	printk(KERN_INFO "attempt to access beyond end of device\n");
3064	printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
3065			bdevname(bio->bi_bdev, b),
3066			bio->bi_rw,
3067			(unsigned long long)bio->bi_sector + bio_sectors(bio),
3068			(long long)(bio->bi_bdev->bd_inode->i_size >> 9));
3069
3070	set_bit(BIO_EOF, &bio->bi_flags);
3071}
3072
3073#ifdef CONFIG_FAIL_MAKE_REQUEST
3074
3075static DECLARE_FAULT_ATTR(fail_make_request);
3076
3077static int __init setup_fail_make_request(char *str)
3078{
3079	return setup_fault_attr(&fail_make_request, str);
3080}
3081__setup("fail_make_request=", setup_fail_make_request);
3082
3083static int should_fail_request(struct bio *bio)
3084{
3085	if ((bio->bi_bdev->bd_disk->flags & GENHD_FL_FAIL) ||
3086	    (bio->bi_bdev->bd_part && bio->bi_bdev->bd_part->make_it_fail))
3087		return should_fail(&fail_make_request, bio->bi_size);
3088
3089	return 0;
3090}
3091
3092static int __init fail_make_request_debugfs(void)
3093{
3094	return init_fault_attr_dentries(&fail_make_request,
3095					"fail_make_request");
3096}
3097
3098late_initcall(fail_make_request_debugfs);
3099
3100#else /* CONFIG_FAIL_MAKE_REQUEST */
3101
3102static inline int should_fail_request(struct bio *bio)
3103{
3104	return 0;
3105}
3106
3107#endif /* CONFIG_FAIL_MAKE_REQUEST */
3108
3109/**
3110 * generic_make_request: hand a buffer to its device driver for I/O
3111 * @bio:  The bio describing the location in memory and on the device.
3112 *
3113 * generic_make_request() is used to make I/O requests of block
3114 * devices. It is passed a &struct bio, which describes the I/O that needs
3115 * to be done.
3116 *
3117 * generic_make_request() does not return any status.  The
3118 * success/failure status of the request, along with notification of
3119 * completion, is delivered asynchronously through the bio->bi_end_io
3120 * function described (one day) else where.
3121 *
3122 * The caller of generic_make_request must make sure that bi_io_vec
3123 * are set to describe the memory buffer, and that bi_dev and bi_sector are
3124 * set to describe the device address, and the
3125 * bi_end_io and optionally bi_private are set to describe how
3126 * completion notification should be signaled.
3127 *
3128 * generic_make_request and the drivers it calls may use bi_next if this
3129 * bio happens to be merged with someone else, and may change bi_dev and
3130 * bi_sector for remaps as it sees fit.  So the values of these fields
3131 * should NOT be depended on after the call to generic_make_request.
3132 */
3133static inline void __generic_make_request(struct bio *bio)
3134{
3135	request_queue_t *q;
3136	sector_t maxsector;
3137	sector_t old_sector;
3138	int ret, nr_sectors = bio_sectors(bio);
3139	dev_t old_dev;
3140
3141	might_sleep();
3142	/* Test device or partition size, when known. */
3143	maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
3144	if (maxsector) {
3145		sector_t sector = bio->bi_sector;
3146
3147		if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
3148			/*
3149			 * This may well happen - the kernel calls bread()
3150			 * without checking the size of the device, e.g., when
3151			 * mounting a device.
3152			 */
3153			handle_bad_sector(bio);
3154			goto end_io;
3155		}
3156	}
3157
3158	/*
3159	 * Resolve the mapping until finished. (drivers are
3160	 * still free to implement/resolve their own stacking
3161	 * by explicitly returning 0)
3162	 *
3163	 * NOTE: we don't repeat the blk_size check for each new device.
3164	 * Stacking drivers are expected to know what they are doing.
3165	 */
3166	old_sector = -1;
3167	old_dev = 0;
3168	do {
3169		char b[BDEVNAME_SIZE];
3170
3171		q = bdev_get_queue(bio->bi_bdev);
3172		if (!q) {
3173			printk(KERN_ERR
3174			       "generic_make_request: Trying to access "
3175				"nonexistent block-device %s (%Lu)\n",
3176				bdevname(bio->bi_bdev, b),
3177				(long long) bio->bi_sector);
3178end_io:
3179			bio_endio(bio, bio->bi_size, -EIO);
3180			break;
3181		}
3182
3183		if (unlikely(bio_sectors(bio) > q->max_hw_sectors)) {
3184			printk("bio too big device %s (%u > %u)\n",
3185				bdevname(bio->bi_bdev, b),
3186				bio_sectors(bio),
3187				q->max_hw_sectors);
3188			goto end_io;
3189		}
3190
3191		if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
3192			goto end_io;
3193
3194		if (should_fail_request(bio))
3195			goto end_io;
3196
3197		/*
3198		 * If this device has partitions, remap block n
3199		 * of partition p to block n+start(p) of the disk.
3200		 */
3201		blk_partition_remap(bio);
3202
3203		if (old_sector != -1)
3204			blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
3205					    old_sector);
3206
3207		blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
3208
3209		old_sector = bio->bi_sector;
3210		old_dev = bio->bi_bdev->bd_dev;
3211
3212		maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
3213		if (maxsector) {
3214			sector_t sector = bio->bi_sector;
3215
3216			if (maxsector < nr_sectors ||
3217					maxsector - nr_sectors < sector) {
3218				/*
3219				 * This may well happen - partitions are not
3220				 * checked to make sure they are within the size
3221				 * of the whole device.
3222				 */
3223				handle_bad_sector(bio);
3224				goto end_io;
3225			}
3226		}
3227
3228		ret = q->make_request_fn(q, bio);
3229	} while (ret);
3230}
3231
3232/*
3233 * We only want one ->make_request_fn to be active at a time,
3234 * else stack usage with stacked devices could be a problem.
3235 * So use current->bio_{list,tail} to keep a list of requests
3236 * submited by a make_request_fn function.
3237 * current->bio_tail is also used as a flag to say if
3238 * generic_make_request is currently active in this task or not.
3239 * If it is NULL, then no make_request is active.  If it is non-NULL,
3240 * then a make_request is active, and new requests should be added
3241 * at the tail
3242 */
3243void generic_make_request(struct bio *bio)
3244{
3245	if (current->bio_tail) {
3246		/* make_request is active */
3247		*(current->bio_tail) = bio;
3248		bio->bi_next = NULL;
3249		current->bio_tail = &bio->bi_next;
3250		return;
3251	}
3252	/* following loop may be a bit non-obvious, and so deserves some
3253	 * explanation.
3254	 * Before entering the loop, bio->bi_next is NULL (as all callers
3255	 * ensure that) so we have a list with a single bio.
3256	 * We pretend that we have just taken it off a longer list, so
3257	 * we assign bio_list to the next (which is NULL) and bio_tail
3258	 * to &bio_list, thus initialising the bio_list of new bios to be
3259	 * added.  __generic_make_request may indeed add some more bios
3260	 * through a recursive call to generic_make_request.  If it
3261	 * did, we find a non-NULL value in bio_list and re-enter the loop
3262	 * from the top.  In this case we really did just take the bio
3263	 * of the top of the list (no pretending) and so fixup bio_list and
3264	 * bio_tail or bi_next, and call into __generic_make_request again.
3265	 *
3266	 * The loop was structured like this to make only one call to
3267	 * __generic_make_request (which is important as it is large and
3268	 * inlined) and to keep the structure simple.
3269	 */
3270	BUG_ON(bio->bi_next);
3271	do {
3272		current->bio_list = bio->bi_next;
3273		if (bio->bi_next == NULL)
3274			current->bio_tail = &current->bio_list;
3275		else
3276			bio->bi_next = NULL;
3277		__generic_make_request(bio);
3278		bio = current->bio_list;
3279	} while (bio);
3280	current->bio_tail = NULL; /* deactivate */
3281}
3282
3283EXPORT_SYMBOL(generic_make_request);
3284
3285/**
3286 * submit_bio: submit a bio to the block device layer for I/O
3287 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
3288 * @bio: The &struct bio which describes the I/O
3289 *
3290 * submit_bio() is very similar in purpose to generic_make_request(), and
3291 * uses that function to do most of the work. Both are fairly rough
3292 * interfaces, @bio must be presetup and ready for I/O.
3293 *
3294 */
3295void submit_bio(int rw, struct bio *bio)
3296{
3297	int count = bio_sectors(bio);
3298
3299	BIO_BUG_ON(!bio->bi_size);
3300	BIO_BUG_ON(!bio->bi_io_vec);
3301	bio->bi_rw |= rw;
3302	if (rw & WRITE) {
3303		count_vm_events(PGPGOUT, count);
3304	} else {
3305		task_io_account_read(bio->bi_size);
3306		count_vm_events(PGPGIN, count);
3307	}
3308
3309	if (unlikely(block_dump)) {
3310		char b[BDEVNAME_SIZE];
3311		printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
3312			current->comm, current->pid,
3313			(rw & WRITE) ? "WRITE" : "READ",
3314			(unsigned long long)bio->bi_sector,
3315			bdevname(bio->bi_bdev,b));
3316	}
3317
3318	generic_make_request(bio);
3319}
3320
3321EXPORT_SYMBOL(submit_bio);
3322
3323static void blk_recalc_rq_segments(struct request *rq)
3324{
3325	struct bio *bio, *prevbio = NULL;
3326	int nr_phys_segs, nr_hw_segs;
3327	unsigned int phys_size, hw_size;
3328	request_queue_t *q = rq->q;
3329
3330	if (!rq->bio)
3331		return;
3332
3333	phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
3334	rq_for_each_bio(bio, rq) {
3335		/* Force bio hw/phys segs to be recalculated. */
3336		bio->bi_flags &= ~(1 << BIO_SEG_VALID);
3337
3338		nr_phys_segs += bio_phys_segments(q, bio);
3339		nr_hw_segs += bio_hw_segments(q, bio);
3340		if (prevbio) {
3341			int pseg = phys_size + prevbio->bi_size + bio->bi_size;
3342			int hseg = hw_size + prevbio->bi_size + bio->bi_size;
3343
3344			if (blk_phys_contig_segment(q, prevbio, bio) &&
3345			    pseg <= q->max_segment_size) {
3346				nr_phys_segs--;
3347				phys_size += prevbio->bi_size + bio->bi_size;
3348			} else
3349				phys_size = 0;
3350
3351			if (blk_hw_contig_segment(q, prevbio, bio) &&
3352			    hseg <= q->max_segment_size) {
3353				nr_hw_segs--;
3354				hw_size += prevbio->bi_size + bio->bi_size;
3355			} else
3356				hw_size = 0;
3357		}
3358		prevbio = bio;
3359	}
3360
3361	rq->nr_phys_segments = nr_phys_segs;
3362	rq->nr_hw_segments = nr_hw_segs;
3363}
3364
3365static void blk_recalc_rq_sectors(struct request *rq, int nsect)
3366{
3367	if (blk_fs_request(rq)) {
3368		rq->hard_sector += nsect;
3369		rq->hard_nr_sectors -= nsect;
3370
3371		/*
3372		 * Move the I/O submission pointers ahead if required.
3373		 */
3374		if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
3375		    (rq->sector <= rq->hard_sector)) {
3376			rq->sector = rq->hard_sector;
3377			rq->nr_sectors = rq->hard_nr_sectors;
3378			rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
3379			rq->current_nr_sectors = rq->hard_cur_sectors;
3380			rq->buffer = bio_data(rq->bio);
3381		}
3382
3383		/*
3384		 * if total number of sectors is less than the first segment
3385		 * size, something has gone terribly wrong
3386		 */
3387		if (rq->nr_sectors < rq->current_nr_sectors) {
3388			printk("blk: request botched\n");
3389			rq->nr_sectors = rq->current_nr_sectors;
3390		}
3391	}
3392}
3393
3394static int __end_that_request_first(struct request *req, int uptodate,
3395				    int nr_bytes)
3396{
3397	int total_bytes, bio_nbytes, error, next_idx = 0;
3398	struct bio *bio;
3399
3400	blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
3401
3402	/*
3403	 * extend uptodate bool to allow < 0 value to be direct io error
3404	 */
3405	error = 0;
3406	if (end_io_error(uptodate))
3407		error = !uptodate ? -EIO : uptodate;
3408
3409	/*
3410	 * for a REQ_BLOCK_PC request, we want to carry any eventual
3411	 * sense key with us all the way through
3412	 */
3413	if (!blk_pc_request(req))
3414		req->errors = 0;
3415
3416	if (!uptodate) {
3417		if (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))
3418			printk("end_request: I/O error, dev %s, sector %llu\n",
3419				req->rq_disk ? req->rq_disk->disk_name : "?",
3420				(unsigned long long)req->sector);
3421	}
3422
3423	if (blk_fs_request(req) && req->rq_disk) {
3424		const int rw = rq_data_dir(req);
3425
3426		disk_stat_add(req->rq_disk, sectors[rw], nr_bytes >> 9);
3427	}
3428
3429	total_bytes = bio_nbytes = 0;
3430	while ((bio = req->bio) != NULL) {
3431		int nbytes;
3432
3433		if (nr_bytes >= bio->bi_size) {
3434			req->bio = bio->bi_next;
3435			nbytes = bio->bi_size;
3436			if (!ordered_bio_endio(req, bio, nbytes, error))
3437				bio_endio(bio, nbytes, error);
3438			next_idx = 0;
3439			bio_nbytes = 0;
3440		} else {
3441			int idx = bio->bi_idx + next_idx;
3442
3443			if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
3444				blk_dump_rq_flags(req, "__end_that");
3445				printk("%s: bio idx %d >= vcnt %d\n",
3446						__FUNCTION__,
3447						bio->bi_idx, bio->bi_vcnt);
3448				break;
3449			}
3450
3451			nbytes = bio_iovec_idx(bio, idx)->bv_len;
3452			BIO_BUG_ON(nbytes > bio->bi_size);
3453
3454			/*
3455			 * not a complete bvec done
3456			 */
3457			if (unlikely(nbytes > nr_bytes)) {
3458				bio_nbytes += nr_bytes;
3459				total_bytes += nr_bytes;
3460				break;
3461			}
3462
3463			/*
3464			 * advance to the next vector
3465			 */
3466			next_idx++;
3467			bio_nbytes += nbytes;
3468		}
3469
3470		total_bytes += nbytes;
3471		nr_bytes -= nbytes;
3472
3473		if ((bio = req->bio)) {
3474			/*
3475			 * end more in this run, or just return 'not-done'
3476			 */
3477			if (unlikely(nr_bytes <= 0))
3478				break;
3479		}
3480	}
3481
3482	/*
3483	 * completely done
3484	 */
3485	if (!req->bio)
3486		return 0;
3487
3488	/*
3489	 * if the request wasn't completed, update state
3490	 */
3491	if (bio_nbytes) {
3492		if (!ordered_bio_endio(req, bio, bio_nbytes, error))
3493			bio_endio(bio, bio_nbytes, error);
3494		bio->bi_idx += next_idx;
3495		bio_iovec(bio)->bv_offset += nr_bytes;
3496		bio_iovec(bio)->bv_len -= nr_bytes;
3497	}
3498
3499	blk_recalc_rq_sectors(req, total_bytes >> 9);
3500	blk_recalc_rq_segments(req);
3501	return 1;
3502}
3503
3504/**
3505 * end_that_request_first - end I/O on a request
3506 * @req:      the request being processed
3507 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3508 * @nr_sectors: number of sectors to end I/O on
3509 *
3510 * Description:
3511 *     Ends I/O on a number of sectors attached to @req, and sets it up
3512 *     for the next range of segments (if any) in the cluster.
3513 *
3514 * Return:
3515 *     0 - we are done with this request, call end_that_request_last()
3516 *     1 - still buffers pending for this request
3517 **/
3518int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
3519{
3520	return __end_that_request_first(req, uptodate, nr_sectors << 9);
3521}
3522
3523EXPORT_SYMBOL(end_that_request_first);
3524
3525/**
3526 * end_that_request_chunk - end I/O on a request
3527 * @req:      the request being processed
3528 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3529 * @nr_bytes: number of bytes to complete
3530 *
3531 * Description:
3532 *     Ends I/O on a number of bytes attached to @req, and sets it up
3533 *     for the next range of segments (if any). Like end_that_request_first(),
3534 *     but deals with bytes instead of sectors.
3535 *
3536 * Return:
3537 *     0 - we are done with this request, call end_that_request_last()
3538 *     1 - still buffers pending for this request
3539 **/
3540int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
3541{
3542	return __end_that_request_first(req, uptodate, nr_bytes);
3543}
3544
3545EXPORT_SYMBOL(end_that_request_chunk);
3546
3547/*
3548 * splice the completion data to a local structure and hand off to
3549 * process_completion_queue() to complete the requests
3550 */
3551static void blk_done_softirq(struct softirq_action *h)
3552{
3553	struct list_head *cpu_list, local_list;
3554
3555	local_irq_disable();
3556	cpu_list = &__get_cpu_var(blk_cpu_done);
3557	list_replace_init(cpu_list, &local_list);
3558	local_irq_enable();
3559
3560	while (!list_empty(&local_list)) {
3561		struct request *rq = list_entry(local_list.next, struct request, donelist);
3562
3563		list_del_init(&rq->donelist);
3564		rq->q->softirq_done_fn(rq);
3565	}
3566}
3567
3568static int blk_cpu_notify(struct notifier_block *self, unsigned long action,
3569			  void *hcpu)
3570{
3571	/*
3572	 * If a CPU goes away, splice its entries to the current CPU
3573	 * and trigger a run of the softirq
3574	 */
3575	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
3576		int cpu = (unsigned long) hcpu;
3577
3578		local_irq_disable();
3579		list_splice_init(&per_cpu(blk_cpu_done, cpu),
3580				 &__get_cpu_var(blk_cpu_done));
3581		raise_softirq_irqoff(BLOCK_SOFTIRQ);
3582		local_irq_enable();
3583	}
3584
3585	return NOTIFY_OK;
3586}
3587
3588
3589static struct notifier_block __devinitdata blk_cpu_notifier = {
3590	.notifier_call	= blk_cpu_notify,
3591};
3592
3593/**
3594 * blk_complete_request - end I/O on a request
3595 * @req:      the request being processed
3596 *
3597 * Description:
3598 *     Ends all I/O on a request. It does not handle partial completions,
3599 *     unless the driver actually implements this in its completion callback
3600 *     through requeueing. Theh actual completion happens out-of-order,
3601 *     through a softirq handler. The user must have registered a completion
3602 *     callback through blk_queue_softirq_done().
3603 **/
3604
3605void blk_complete_request(struct request *req)
3606{
3607	struct list_head *cpu_list;
3608	unsigned long flags;
3609
3610	BUG_ON(!req->q->softirq_done_fn);
3611
3612	local_irq_save(flags);
3613
3614	cpu_list = &__get_cpu_var(blk_cpu_done);
3615	list_add_tail(&req->donelist, cpu_list);
3616	raise_softirq_irqoff(BLOCK_SOFTIRQ);
3617
3618	local_irq_restore(flags);
3619}
3620
3621EXPORT_SYMBOL(blk_complete_request);
3622
3623/*
3624 * queue lock must be held
3625 */
3626void end_that_request_last(struct request *req, int uptodate)
3627{
3628	struct gendisk *disk = req->rq_disk;
3629	int error;
3630
3631	/*
3632	 * extend uptodate bool to allow < 0 value to be direct io error
3633	 */
3634	error = 0;
3635	if (end_io_error(uptodate))
3636		error = !uptodate ? -EIO : uptodate;
3637
3638	if (unlikely(laptop_mode) && blk_fs_request(req))
3639		laptop_io_completion();
3640
3641	/*
3642	 * Account IO completion.  bar_rq isn't accounted as a normal
3643	 * IO on queueing nor completion.  Accounting the containing
3644	 * request is enough.
3645	 */
3646	if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
3647		unsigned long duration = jiffies - req->start_time;
3648		const int rw = rq_data_dir(req);
3649
3650		__disk_stat_inc(disk, ios[rw]);
3651		__disk_stat_add(disk, ticks[rw], duration);
3652		disk_round_stats(disk);
3653		disk->in_flight--;
3654	}
3655	if (req->end_io)
3656		req->end_io(req, error);
3657	else
3658		__blk_put_request(req->q, req);
3659}
3660
3661EXPORT_SYMBOL(end_that_request_last);
3662
3663void end_request(struct request *req, int uptodate)
3664{
3665	if (!end_that_request_first(req, uptodate, req->hard_cur_sectors)) {
3666		add_disk_randomness(req->rq_disk);
3667		blkdev_dequeue_request(req);
3668		end_that_request_last(req, uptodate);
3669	}
3670}
3671
3672EXPORT_SYMBOL(end_request);
3673
3674void blk_rq_bio_prep(request_queue_t *q, struct request *rq, struct bio *bio)
3675{
3676	/* first two bits are identical in rq->cmd_flags and bio->bi_rw */
3677	rq->cmd_flags |= (bio->bi_rw & 3);
3678
3679	rq->nr_phys_segments = bio_phys_segments(q, bio);
3680	rq->nr_hw_segments = bio_hw_segments(q, bio);
3681	rq->current_nr_sectors = bio_cur_sectors(bio);
3682	rq->hard_cur_sectors = rq->current_nr_sectors;
3683	rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
3684	rq->buffer = bio_data(bio);
3685	rq->data_len = bio->bi_size;
3686
3687	rq->bio = rq->biotail = bio;
3688}
3689
3690EXPORT_SYMBOL(blk_rq_bio_prep);
3691
3692int kblockd_schedule_work(struct work_struct *work)
3693{
3694	return queue_work(kblockd_workqueue, work);
3695}
3696
3697EXPORT_SYMBOL(kblockd_schedule_work);
3698
3699void kblockd_flush_work(struct work_struct *work)
3700{
3701	cancel_work_sync(work);
3702}
3703EXPORT_SYMBOL(kblockd_flush_work);
3704
3705int __init blk_dev_init(void)
3706{
3707	int i;
3708
3709	kblockd_workqueue = create_workqueue("kblockd");
3710	if (!kblockd_workqueue)
3711		panic("Failed to create kblockd\n");
3712
3713	request_cachep = kmem_cache_create("blkdev_requests",
3714			sizeof(struct request), 0, SLAB_PANIC, NULL, NULL);
3715
3716	requestq_cachep = kmem_cache_create("blkdev_queue",
3717			sizeof(request_queue_t), 0, SLAB_PANIC, NULL, NULL);
3718
3719	iocontext_cachep = kmem_cache_create("blkdev_ioc",
3720			sizeof(struct io_context), 0, SLAB_PANIC, NULL, NULL);
3721
3722	for_each_possible_cpu(i)
3723		INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
3724
3725	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq, NULL);
3726	register_hotcpu_notifier(&blk_cpu_notifier);
3727
3728	blk_max_low_pfn = max_low_pfn - 1;
3729	blk_max_pfn = max_pfn - 1;
3730
3731	return 0;
3732}
3733
3734/*
3735 * IO Context helper functions
3736 */
3737void put_io_context(struct io_context *ioc)
3738{
3739	if (ioc == NULL)
3740		return;
3741
3742	BUG_ON(atomic_read(&ioc->refcount) == 0);
3743
3744	if (atomic_dec_and_test(&ioc->refcount)) {
3745		struct cfq_io_context *cic;
3746
3747		rcu_read_lock();
3748		if (ioc->aic && ioc->aic->dtor)
3749			ioc->aic->dtor(ioc->aic);
3750		if (ioc->cic_root.rb_node != NULL) {
3751			struct rb_node *n = rb_first(&ioc->cic_root);
3752
3753			cic = rb_entry(n, struct cfq_io_context, rb_node);
3754			cic->dtor(ioc);
3755		}
3756		rcu_read_unlock();
3757
3758		kmem_cache_free(iocontext_cachep, ioc);
3759	}
3760}
3761EXPORT_SYMBOL(put_io_context);
3762
3763/* Called by the exitting task */
3764void exit_io_context(void)
3765{
3766	struct io_context *ioc;
3767	struct cfq_io_context *cic;
3768
3769	task_lock(current);
3770	ioc = current->io_context;
3771	current->io_context = NULL;
3772	task_unlock(current);
3773
3774	ioc->task = NULL;
3775	if (ioc->aic && ioc->aic->exit)
3776		ioc->aic->exit(ioc->aic);
3777	if (ioc->cic_root.rb_node != NULL) {
3778		cic = rb_entry(rb_first(&ioc->cic_root), struct cfq_io_context, rb_node);
3779		cic->exit(ioc);
3780	}
3781
3782	put_io_context(ioc);
3783}
3784
3785/*
3786 * If the current task has no IO context then create one and initialise it.
3787 * Otherwise, return its existing IO context.
3788 *
3789 * This returned IO context doesn't have a specifically elevated refcount,
3790 * but since the current task itself holds a reference, the context can be
3791 * used in general code, so long as it stays within `current` context.
3792 */
3793static struct io_context *current_io_context(gfp_t gfp_flags, int node)
3794{
3795	struct task_struct *tsk = current;
3796	struct io_context *ret;
3797
3798	ret = tsk->io_context;
3799	if (likely(ret))
3800		return ret;
3801
3802	ret = kmem_cache_alloc_node(iocontext_cachep, gfp_flags, node);
3803	if (ret) {
3804		atomic_set(&ret->refcount, 1);
3805		ret->task = current;
3806		ret->ioprio_changed = 0;
3807		ret->last_waited = jiffies; /* doesn't matter... */
3808		ret->nr_batch_requests = 0; /* because this is 0 */
3809		ret->aic = NULL;
3810		ret->cic_root.rb_node = NULL;
3811		ret->ioc_data = NULL;
3812		/* make sure set_task_ioprio() sees the settings above */
3813		smp_wmb();
3814		tsk->io_context = ret;
3815	}
3816
3817	return ret;
3818}
3819
3820/*
3821 * If the current task has no IO context then create one and initialise it.
3822 * If it does have a context, take a ref on it.
3823 *
3824 * This is always called in the context of the task which submitted the I/O.
3825 */
3826struct io_context *get_io_context(gfp_t gfp_flags, int node)
3827{
3828	struct io_context *ret;
3829	ret = current_io_context(gfp_flags, node);
3830	if (likely(ret))
3831		atomic_inc(&ret->refcount);
3832	return ret;
3833}
3834EXPORT_SYMBOL(get_io_context);
3835
3836void copy_io_context(struct io_context **pdst, struct io_context **psrc)
3837{
3838	struct io_context *src = *psrc;
3839	struct io_context *dst = *pdst;
3840
3841	if (src) {
3842		BUG_ON(atomic_read(&src->refcount) == 0);
3843		atomic_inc(&src->refcount);
3844		put_io_context(dst);
3845		*pdst = src;
3846	}
3847}
3848EXPORT_SYMBOL(copy_io_context);
3849
3850void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
3851{
3852	struct io_context *temp;
3853	temp = *ioc1;
3854	*ioc1 = *ioc2;
3855	*ioc2 = temp;
3856}
3857EXPORT_SYMBOL(swap_io_context);
3858
3859/*
3860 * sysfs parts below
3861 */
3862struct queue_sysfs_entry {
3863	struct attribute attr;
3864	ssize_t (*show)(struct request_queue *, char *);
3865	ssize_t (*store)(struct request_queue *, const char *, size_t);
3866};
3867
3868static ssize_t
3869queue_var_show(unsigned int var, char *page)
3870{
3871	return sprintf(page, "%d\n", var);
3872}
3873
3874static ssize_t
3875queue_var_store(unsigned long *var, const char *page, size_t count)
3876{
3877	char *p = (char *) page;
3878
3879	*var = simple_strtoul(p, &p, 10);
3880	return count;
3881}
3882
3883static ssize_t queue_requests_show(struct request_queue *q, char *page)
3884{
3885	return queue_var_show(q->nr_requests, (page));
3886}
3887
3888static ssize_t
3889queue_requests_store(struct request_queue *q, const char *page, size_t count)
3890{
3891	struct request_list *rl = &q->rq;
3892	unsigned long nr;
3893	int ret = queue_var_store(&nr, page, count);
3894	if (nr < BLKDEV_MIN_RQ)
3895		nr = BLKDEV_MIN_RQ;
3896
3897	spin_lock_irq(q->queue_lock);
3898	q->nr_requests = nr;
3899	blk_queue_congestion_threshold(q);
3900
3901	if (rl->count[READ] >= queue_congestion_on_threshold(q))
3902		blk_set_queue_congested(q, READ);
3903	else if (rl->count[READ] < queue_congestion_off_threshold(q))
3904		blk_clear_queue_congested(q, READ);
3905
3906	if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
3907		blk_set_queue_congested(q, WRITE);
3908	else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
3909		blk_clear_queue_congested(q, WRITE);
3910
3911	if (rl->count[READ] >= q->nr_requests) {
3912		blk_set_queue_full(q, READ);
3913	} else if (rl->count[READ]+1 <= q->nr_requests) {
3914		blk_clear_queue_full(q, READ);
3915		wake_up(&rl->wait[READ]);
3916	}
3917
3918	if (rl->count[WRITE] >= q->nr_requests) {
3919		blk_set_queue_full(q, WRITE);
3920	} else if (rl->count[WRITE]+1 <= q->nr_requests) {
3921		blk_clear_queue_full(q, WRITE);
3922		wake_up(&rl->wait[WRITE]);
3923	}
3924	spin_unlock_irq(q->queue_lock);
3925	return ret;
3926}
3927
3928static ssize_t queue_ra_show(struct request_queue *q, char *page)
3929{
3930	int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3931
3932	return queue_var_show(ra_kb, (page));
3933}
3934
3935static ssize_t
3936queue_ra_store(struct request_queue *q, const char *page, size_t count)
3937{
3938	unsigned long ra_kb;
3939	ssize_t ret = queue_var_store(&ra_kb, page, count);
3940
3941	spin_lock_irq(q->queue_lock);
3942	q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
3943	spin_unlock_irq(q->queue_lock);
3944
3945	return ret;
3946}
3947
3948static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
3949{
3950	int max_sectors_kb = q->max_sectors >> 1;
3951
3952	return queue_var_show(max_sectors_kb, (page));
3953}
3954
3955static ssize_t
3956queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
3957{
3958	unsigned long max_sectors_kb,
3959			max_hw_sectors_kb = q->max_hw_sectors >> 1,
3960			page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
3961	ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
3962	int ra_kb;
3963
3964	if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
3965		return -EINVAL;
3966	/*
3967	 * Take the queue lock to update the readahead and max_sectors
3968	 * values synchronously:
3969	 */
3970	spin_lock_irq(q->queue_lock);
3971	/*
3972	 * Trim readahead window as well, if necessary:
3973	 */
3974	ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3975	if (ra_kb > max_sectors_kb)
3976		q->backing_dev_info.ra_pages =
3977				max_sectors_kb >> (PAGE_CACHE_SHIFT - 10);
3978
3979	q->max_sectors = max_sectors_kb << 1;
3980	spin_unlock_irq(q->queue_lock);
3981
3982	return ret;
3983}
3984
3985static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
3986{
3987	int max_hw_sectors_kb = q->max_hw_sectors >> 1;
3988
3989	return queue_var_show(max_hw_sectors_kb, (page));
3990}
3991
3992
3993static struct queue_sysfs_entry queue_requests_entry = {
3994	.attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
3995	.show = queue_requests_show,
3996	.store = queue_requests_store,
3997};
3998
3999static struct queue_sysfs_entry queue_ra_entry = {
4000	.attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
4001	.show = queue_ra_show,
4002	.store = queue_ra_store,
4003};
4004
4005static struct queue_sysfs_entry queue_max_sectors_entry = {
4006	.attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
4007	.show = queue_max_sectors_show,
4008	.store = queue_max_sectors_store,
4009};
4010
4011static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
4012	.attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
4013	.show = queue_max_hw_sectors_show,
4014};
4015
4016static struct queue_sysfs_entry queue_iosched_entry = {
4017	.attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
4018	.show = elv_iosched_show,
4019	.store = elv_iosched_store,
4020};
4021
4022static struct attribute *default_attrs[] = {
4023	&queue_requests_entry.attr,
4024	&queue_ra_entry.attr,
4025	&queue_max_hw_sectors_entry.attr,
4026	&queue_max_sectors_entry.attr,
4027	&queue_iosched_entry.attr,
4028	NULL,
4029};
4030
4031#define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
4032
4033static ssize_t
4034queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4035{
4036	struct queue_sysfs_entry *entry = to_queue(attr);
4037	request_queue_t *q = container_of(kobj, struct request_queue, kobj);
4038	ssize_t res;
4039
4040	if (!entry->show)
4041		return -EIO;
4042	mutex_lock(&q->sysfs_lock);
4043	if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
4044		mutex_unlock(&q->sysfs_lock);
4045		return -ENOENT;
4046	}
4047	res = entry->show(q, page);
4048	mutex_unlock(&q->sysfs_lock);
4049	return res;
4050}
4051
4052static ssize_t
4053queue_attr_store(struct kobject *kobj, struct attribute *attr,
4054		    const char *page, size_t length)
4055{
4056	struct queue_sysfs_entry *entry = to_queue(attr);
4057	request_queue_t *q = container_of(kobj, struct request_queue, kobj);
4058
4059	ssize_t res;
4060
4061	if (!entry->store)
4062		return -EIO;
4063	mutex_lock(&q->sysfs_lock);
4064	if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
4065		mutex_unlock(&q->sysfs_lock);
4066		return -ENOENT;
4067	}
4068	res = entry->store(q, page, length);
4069	mutex_unlock(&q->sysfs_lock);
4070	return res;
4071}
4072
4073static struct sysfs_ops queue_sysfs_ops = {
4074	.show	= queue_attr_show,
4075	.store	= queue_attr_store,
4076};
4077
4078static struct kobj_type queue_ktype = {
4079	.sysfs_ops	= &queue_sysfs_ops,
4080	.default_attrs	= default_attrs,
4081	.release	= blk_release_queue,
4082};
4083
4084int blk_register_queue(struct gendisk *disk)
4085{
4086	int ret;
4087
4088	request_queue_t *q = disk->queue;
4089
4090	if (!q || !q->request_fn)
4091		return -ENXIO;
4092
4093	q->kobj.parent = kobject_get(&disk->kobj);
4094
4095	ret = kobject_add(&q->kobj);
4096	if (ret < 0)
4097		return ret;
4098
4099	kobject_uevent(&q->kobj, KOBJ_ADD);
4100
4101	ret = elv_register_queue(q);
4102	if (ret) {
4103		kobject_uevent(&q->kobj, KOBJ_REMOVE);
4104		kobject_del(&q->kobj);
4105		return ret;
4106	}
4107
4108	return 0;
4109}
4110
4111void blk_unregister_queue(struct gendisk *disk)
4112{
4113	request_queue_t *q = disk->queue;
4114
4115	if (q && q->request_fn) {
4116		elv_unregister_queue(q);
4117
4118		kobject_uevent(&q->kobj, KOBJ_REMOVE);
4119		kobject_del(&q->kobj);
4120		kobject_put(&disk->kobj);
4121	}
4122}
4123