• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-WNDR4500v2-V1.0.0.60_1.0.38/src/linux/linux-2.6/arch/powerpc/platforms/pseries/
1/*
2 * eeh_cache.c
3 * PCI address cache; allows the lookup of PCI devices based on I/O address
4 *
5 * Copyright (C) 2004 Linas Vepstas <linas@austin.ibm.com> IBM Corporation
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20 */
21
22#include <linux/list.h>
23#include <linux/pci.h>
24#include <linux/rbtree.h>
25#include <linux/spinlock.h>
26#include <asm/atomic.h>
27#include <asm/pci-bridge.h>
28#include <asm/ppc-pci.h>
29
30#undef DEBUG
31
32/**
33 * The pci address cache subsystem.  This subsystem places
34 * PCI device address resources into a red-black tree, sorted
35 * according to the address range, so that given only an i/o
36 * address, the corresponding PCI device can be **quickly**
37 * found. It is safe to perform an address lookup in an interrupt
38 * context; this ability is an important feature.
39 *
40 * Currently, the only customer of this code is the EEH subsystem;
41 * thus, this code has been somewhat tailored to suit EEH better.
42 * In particular, the cache does *not* hold the addresses of devices
43 * for which EEH is not enabled.
44 *
45 * (Implementation Note: The RB tree seems to be better/faster
46 * than any hash algo I could think of for this problem, even
47 * with the penalty of slow pointer chases for d-cache misses).
48 */
49struct pci_io_addr_range
50{
51	struct rb_node rb_node;
52	unsigned long addr_lo;
53	unsigned long addr_hi;
54	struct pci_dev *pcidev;
55	unsigned int flags;
56};
57
58static struct pci_io_addr_cache
59{
60	struct rb_root rb_root;
61	spinlock_t piar_lock;
62} pci_io_addr_cache_root;
63
64static inline struct pci_dev *__pci_get_device_by_addr(unsigned long addr)
65{
66	struct rb_node *n = pci_io_addr_cache_root.rb_root.rb_node;
67
68	while (n) {
69		struct pci_io_addr_range *piar;
70		piar = rb_entry(n, struct pci_io_addr_range, rb_node);
71
72		if (addr < piar->addr_lo) {
73			n = n->rb_left;
74		} else {
75			if (addr > piar->addr_hi) {
76				n = n->rb_right;
77			} else {
78				pci_dev_get(piar->pcidev);
79				return piar->pcidev;
80			}
81		}
82	}
83
84	return NULL;
85}
86
87/**
88 * pci_get_device_by_addr - Get device, given only address
89 * @addr: mmio (PIO) phys address or i/o port number
90 *
91 * Given an mmio phys address, or a port number, find a pci device
92 * that implements this address.  Be sure to pci_dev_put the device
93 * when finished.  I/O port numbers are assumed to be offset
94 * from zero (that is, they do *not* have pci_io_addr added in).
95 * It is safe to call this function within an interrupt.
96 */
97struct pci_dev *pci_get_device_by_addr(unsigned long addr)
98{
99	struct pci_dev *dev;
100	unsigned long flags;
101
102	spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
103	dev = __pci_get_device_by_addr(addr);
104	spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
105	return dev;
106}
107
108#ifdef DEBUG
109/*
110 * Handy-dandy debug print routine, does nothing more
111 * than print out the contents of our addr cache.
112 */
113static void pci_addr_cache_print(struct pci_io_addr_cache *cache)
114{
115	struct rb_node *n;
116	int cnt = 0;
117
118	n = rb_first(&cache->rb_root);
119	while (n) {
120		struct pci_io_addr_range *piar;
121		piar = rb_entry(n, struct pci_io_addr_range, rb_node);
122		printk(KERN_DEBUG "PCI: %s addr range %d [%lx-%lx]: %s\n",
123		       (piar->flags & IORESOURCE_IO) ? "i/o" : "mem", cnt,
124		       piar->addr_lo, piar->addr_hi, pci_name(piar->pcidev));
125		cnt++;
126		n = rb_next(n);
127	}
128}
129#endif
130
131/* Insert address range into the rb tree. */
132static struct pci_io_addr_range *
133pci_addr_cache_insert(struct pci_dev *dev, unsigned long alo,
134		      unsigned long ahi, unsigned int flags)
135{
136	struct rb_node **p = &pci_io_addr_cache_root.rb_root.rb_node;
137	struct rb_node *parent = NULL;
138	struct pci_io_addr_range *piar;
139
140	/* Walk tree, find a place to insert into tree */
141	while (*p) {
142		parent = *p;
143		piar = rb_entry(parent, struct pci_io_addr_range, rb_node);
144		if (ahi < piar->addr_lo) {
145			p = &parent->rb_left;
146		} else if (alo > piar->addr_hi) {
147			p = &parent->rb_right;
148		} else {
149			if (dev != piar->pcidev ||
150			    alo != piar->addr_lo || ahi != piar->addr_hi) {
151				printk(KERN_WARNING "PIAR: overlapping address range\n");
152			}
153			return piar;
154		}
155	}
156	piar = kmalloc(sizeof(struct pci_io_addr_range), GFP_ATOMIC);
157	if (!piar)
158		return NULL;
159
160	pci_dev_get(dev);
161	piar->addr_lo = alo;
162	piar->addr_hi = ahi;
163	piar->pcidev = dev;
164	piar->flags = flags;
165
166#ifdef DEBUG
167	printk(KERN_DEBUG "PIAR: insert range=[%lx:%lx] dev=%s\n",
168	                  alo, ahi, pci_name (dev));
169#endif
170
171	rb_link_node(&piar->rb_node, parent, p);
172	rb_insert_color(&piar->rb_node, &pci_io_addr_cache_root.rb_root);
173
174	return piar;
175}
176
177static void __pci_addr_cache_insert_device(struct pci_dev *dev)
178{
179	struct device_node *dn;
180	struct pci_dn *pdn;
181	int i;
182
183	dn = pci_device_to_OF_node(dev);
184	if (!dn) {
185		printk(KERN_WARNING "PCI: no pci dn found for dev=%s\n", pci_name(dev));
186		return;
187	}
188
189	/* Skip any devices for which EEH is not enabled. */
190	pdn = PCI_DN(dn);
191	if (!(pdn->eeh_mode & EEH_MODE_SUPPORTED) ||
192	    pdn->eeh_mode & EEH_MODE_NOCHECK) {
193#ifdef DEBUG
194		printk(KERN_INFO "PCI: skip building address cache for=%s - %s\n",
195		       pci_name(dev), pdn->node->full_name);
196#endif
197		return;
198	}
199
200	/* Walk resources on this device, poke them into the tree */
201	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
202		unsigned long start = pci_resource_start(dev,i);
203		unsigned long end = pci_resource_end(dev,i);
204		unsigned int flags = pci_resource_flags(dev,i);
205
206		/* We are interested only bus addresses, not dma or other stuff */
207		if (0 == (flags & (IORESOURCE_IO | IORESOURCE_MEM)))
208			continue;
209		if (start == 0 || ~start == 0 || end == 0 || ~end == 0)
210			 continue;
211		pci_addr_cache_insert(dev, start, end, flags);
212	}
213}
214
215/**
216 * pci_addr_cache_insert_device - Add a device to the address cache
217 * @dev: PCI device whose I/O addresses we are interested in.
218 *
219 * In order to support the fast lookup of devices based on addresses,
220 * we maintain a cache of devices that can be quickly searched.
221 * This routine adds a device to that cache.
222 */
223void pci_addr_cache_insert_device(struct pci_dev *dev)
224{
225	unsigned long flags;
226
227	spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
228	__pci_addr_cache_insert_device(dev);
229	spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
230}
231
232static inline void __pci_addr_cache_remove_device(struct pci_dev *dev)
233{
234	struct rb_node *n;
235
236restart:
237	n = rb_first(&pci_io_addr_cache_root.rb_root);
238	while (n) {
239		struct pci_io_addr_range *piar;
240		piar = rb_entry(n, struct pci_io_addr_range, rb_node);
241
242		if (piar->pcidev == dev) {
243			rb_erase(n, &pci_io_addr_cache_root.rb_root);
244			pci_dev_put(piar->pcidev);
245			kfree(piar);
246			goto restart;
247		}
248		n = rb_next(n);
249	}
250}
251
252/**
253 * pci_addr_cache_remove_device - remove pci device from addr cache
254 * @dev: device to remove
255 *
256 * Remove a device from the addr-cache tree.
257 * This is potentially expensive, since it will walk
258 * the tree multiple times (once per resource).
259 * But so what; device removal doesn't need to be that fast.
260 */
261void pci_addr_cache_remove_device(struct pci_dev *dev)
262{
263	unsigned long flags;
264
265	spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
266	__pci_addr_cache_remove_device(dev);
267	spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
268}
269
270/**
271 * pci_addr_cache_build - Build a cache of I/O addresses
272 *
273 * Build a cache of pci i/o addresses.  This cache will be used to
274 * find the pci device that corresponds to a given address.
275 * This routine scans all pci busses to build the cache.
276 * Must be run late in boot process, after the pci controllers
277 * have been scanned for devices (after all device resources are known).
278 */
279void __init pci_addr_cache_build(void)
280{
281	struct device_node *dn;
282	struct pci_dev *dev = NULL;
283
284	spin_lock_init(&pci_io_addr_cache_root.piar_lock);
285
286	while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
287		/* Ignore PCI bridges */
288		if ((dev->class >> 16) == PCI_BASE_CLASS_BRIDGE)
289			continue;
290
291		pci_addr_cache_insert_device(dev);
292
293		dn = pci_device_to_OF_node(dev);
294		if (!dn)
295			continue;
296		pci_dev_get (dev);  /* matching put is in eeh_remove_device() */
297		PCI_DN(dn)->pcidev = dev;
298	}
299
300#ifdef DEBUG
301	/* Verify tree built up above, echo back the list of addrs. */
302	pci_addr_cache_print(&pci_io_addr_cache_root);
303#endif
304}
305