1/*
2 * address space "slices" (meta-segments) support
3 *
4 * Copyright (C) 2007 Benjamin Herrenschmidt, IBM Corporation.
5 *
6 * Based on hugetlb implementation
7 *
8 * Copyright (C) 2003 David Gibson, IBM Corporation.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
23 */
24
25#undef DEBUG
26
27#include <linux/kernel.h>
28#include <linux/mm.h>
29#include <linux/pagemap.h>
30#include <linux/err.h>
31#include <linux/spinlock.h>
32#include <linux/module.h>
33#include <asm/mman.h>
34#include <asm/mmu.h>
35#include <asm/spu.h>
36
37static spinlock_t slice_convert_lock = SPIN_LOCK_UNLOCKED;
38
39
40#ifdef DEBUG
41int _slice_debug = 1;
42
43static void slice_print_mask(const char *label, struct slice_mask mask)
44{
45	char	*p, buf[16 + 3 + 16 + 1];
46	int	i;
47
48	if (!_slice_debug)
49		return;
50	p = buf;
51	for (i = 0; i < SLICE_NUM_LOW; i++)
52		*(p++) = (mask.low_slices & (1 << i)) ? '1' : '0';
53	*(p++) = ' ';
54	*(p++) = '-';
55	*(p++) = ' ';
56	for (i = 0; i < SLICE_NUM_HIGH; i++)
57		*(p++) = (mask.high_slices & (1 << i)) ? '1' : '0';
58	*(p++) = 0;
59
60	printk(KERN_DEBUG "%s:%s\n", label, buf);
61}
62
63#define slice_dbg(fmt...) do { if (_slice_debug) pr_debug(fmt); } while(0)
64
65#else
66
67static void slice_print_mask(const char *label, struct slice_mask mask) {}
68#define slice_dbg(fmt...)
69
70#endif
71
72static struct slice_mask slice_range_to_mask(unsigned long start,
73					     unsigned long len)
74{
75	unsigned long end = start + len - 1;
76	struct slice_mask ret = { 0, 0 };
77
78	if (start < SLICE_LOW_TOP) {
79		unsigned long mend = min(end, SLICE_LOW_TOP);
80		unsigned long mstart = min(start, SLICE_LOW_TOP);
81
82		ret.low_slices = (1u << (GET_LOW_SLICE_INDEX(mend) + 1))
83			- (1u << GET_LOW_SLICE_INDEX(mstart));
84	}
85
86	if ((start + len) > SLICE_LOW_TOP)
87		ret.high_slices = (1u << (GET_HIGH_SLICE_INDEX(end) + 1))
88			- (1u << GET_HIGH_SLICE_INDEX(start));
89
90	return ret;
91}
92
93static int slice_area_is_free(struct mm_struct *mm, unsigned long addr,
94			      unsigned long len)
95{
96	struct vm_area_struct *vma;
97
98	if ((mm->task_size - len) < addr)
99		return 0;
100	vma = find_vma(mm, addr);
101	return (!vma || (addr + len) <= vma->vm_start);
102}
103
104static int slice_low_has_vma(struct mm_struct *mm, unsigned long slice)
105{
106	return !slice_area_is_free(mm, slice << SLICE_LOW_SHIFT,
107				   1ul << SLICE_LOW_SHIFT);
108}
109
110static int slice_high_has_vma(struct mm_struct *mm, unsigned long slice)
111{
112	unsigned long start = slice << SLICE_HIGH_SHIFT;
113	unsigned long end = start + (1ul << SLICE_HIGH_SHIFT);
114
115	/* Hack, so that each addresses is controlled by exactly one
116	 * of the high or low area bitmaps, the first high area starts
117	 * at 4GB, not 0 */
118	if (start == 0)
119		start = SLICE_LOW_TOP;
120
121	return !slice_area_is_free(mm, start, end - start);
122}
123
124static struct slice_mask slice_mask_for_free(struct mm_struct *mm)
125{
126	struct slice_mask ret = { 0, 0 };
127	unsigned long i;
128
129	for (i = 0; i < SLICE_NUM_LOW; i++)
130		if (!slice_low_has_vma(mm, i))
131			ret.low_slices |= 1u << i;
132
133	if (mm->task_size <= SLICE_LOW_TOP)
134		return ret;
135
136	for (i = 0; i < SLICE_NUM_HIGH; i++)
137		if (!slice_high_has_vma(mm, i))
138			ret.high_slices |= 1u << i;
139
140	return ret;
141}
142
143static struct slice_mask slice_mask_for_size(struct mm_struct *mm, int psize)
144{
145	struct slice_mask ret = { 0, 0 };
146	unsigned long i;
147	u64 psizes;
148
149	psizes = mm->context.low_slices_psize;
150	for (i = 0; i < SLICE_NUM_LOW; i++)
151		if (((psizes >> (i * 4)) & 0xf) == psize)
152			ret.low_slices |= 1u << i;
153
154	psizes = mm->context.high_slices_psize;
155	for (i = 0; i < SLICE_NUM_HIGH; i++)
156		if (((psizes >> (i * 4)) & 0xf) == psize)
157			ret.high_slices |= 1u << i;
158
159	return ret;
160}
161
162static int slice_check_fit(struct slice_mask mask, struct slice_mask available)
163{
164	return (mask.low_slices & available.low_slices) == mask.low_slices &&
165		(mask.high_slices & available.high_slices) == mask.high_slices;
166}
167
168static void slice_flush_segments(void *parm)
169{
170	struct mm_struct *mm = parm;
171	unsigned long flags;
172
173	if (mm != current->active_mm)
174		return;
175
176	/* update the paca copy of the context struct */
177	get_paca()->context = current->active_mm->context;
178
179	local_irq_save(flags);
180	slb_flush_and_rebolt();
181	local_irq_restore(flags);
182}
183
184static void slice_convert(struct mm_struct *mm, struct slice_mask mask, int psize)
185{
186	/* Write the new slice psize bits */
187	u64 lpsizes, hpsizes;
188	unsigned long i, flags;
189
190	slice_dbg("slice_convert(mm=%p, psize=%d)\n", mm, psize);
191	slice_print_mask(" mask", mask);
192
193	/* We need to use a spinlock here to protect against
194	 * concurrent 64k -> 4k demotion ...
195	 */
196	spin_lock_irqsave(&slice_convert_lock, flags);
197
198	lpsizes = mm->context.low_slices_psize;
199	for (i = 0; i < SLICE_NUM_LOW; i++)
200		if (mask.low_slices & (1u << i))
201			lpsizes = (lpsizes & ~(0xful << (i * 4))) |
202				(((unsigned long)psize) << (i * 4));
203
204	hpsizes = mm->context.high_slices_psize;
205	for (i = 0; i < SLICE_NUM_HIGH; i++)
206		if (mask.high_slices & (1u << i))
207			hpsizes = (hpsizes & ~(0xful << (i * 4))) |
208				(((unsigned long)psize) << (i * 4));
209
210	mm->context.low_slices_psize = lpsizes;
211	mm->context.high_slices_psize = hpsizes;
212
213	slice_dbg(" lsps=%lx, hsps=%lx\n",
214		  mm->context.low_slices_psize,
215		  mm->context.high_slices_psize);
216
217	spin_unlock_irqrestore(&slice_convert_lock, flags);
218	mb();
219
220	on_each_cpu(slice_flush_segments, mm, 0, 1);
221#ifdef CONFIG_SPU_BASE
222	spu_flush_all_slbs(mm);
223#endif
224}
225
226static unsigned long slice_find_area_bottomup(struct mm_struct *mm,
227					      unsigned long len,
228					      struct slice_mask available,
229					      int psize, int use_cache)
230{
231	struct vm_area_struct *vma;
232	unsigned long start_addr, addr;
233	struct slice_mask mask;
234	int pshift = max_t(int, mmu_psize_defs[psize].shift, PAGE_SHIFT);
235
236	if (use_cache) {
237		if (len <= mm->cached_hole_size) {
238			start_addr = addr = TASK_UNMAPPED_BASE;
239			mm->cached_hole_size = 0;
240		} else
241			start_addr = addr = mm->free_area_cache;
242	} else
243		start_addr = addr = TASK_UNMAPPED_BASE;
244
245full_search:
246	for (;;) {
247		addr = _ALIGN_UP(addr, 1ul << pshift);
248		if ((TASK_SIZE - len) < addr)
249			break;
250		vma = find_vma(mm, addr);
251		BUG_ON(vma && (addr >= vma->vm_end));
252
253		mask = slice_range_to_mask(addr, len);
254		if (!slice_check_fit(mask, available)) {
255			if (addr < SLICE_LOW_TOP)
256				addr = _ALIGN_UP(addr + 1,  1ul << SLICE_LOW_SHIFT);
257			else
258				addr = _ALIGN_UP(addr + 1,  1ul << SLICE_HIGH_SHIFT);
259			continue;
260		}
261		if (!vma || addr + len <= vma->vm_start) {
262			/*
263			 * Remember the place where we stopped the search:
264			 */
265			if (use_cache)
266				mm->free_area_cache = addr + len;
267			return addr;
268		}
269		if (use_cache && (addr + mm->cached_hole_size) < vma->vm_start)
270		        mm->cached_hole_size = vma->vm_start - addr;
271		addr = vma->vm_end;
272	}
273
274	/* Make sure we didn't miss any holes */
275	if (use_cache && start_addr != TASK_UNMAPPED_BASE) {
276		start_addr = addr = TASK_UNMAPPED_BASE;
277		mm->cached_hole_size = 0;
278		goto full_search;
279	}
280	return -ENOMEM;
281}
282
283static unsigned long slice_find_area_topdown(struct mm_struct *mm,
284					     unsigned long len,
285					     struct slice_mask available,
286					     int psize, int use_cache)
287{
288	struct vm_area_struct *vma;
289	unsigned long addr;
290	struct slice_mask mask;
291	int pshift = max_t(int, mmu_psize_defs[psize].shift, PAGE_SHIFT);
292
293	/* check if free_area_cache is useful for us */
294	if (use_cache) {
295		if (len <= mm->cached_hole_size) {
296			mm->cached_hole_size = 0;
297			mm->free_area_cache = mm->mmap_base;
298		}
299
300		/* either no address requested or can't fit in requested
301		 * address hole
302		 */
303		addr = mm->free_area_cache;
304
305		/* make sure it can fit in the remaining address space */
306		if (addr > len) {
307			addr = _ALIGN_DOWN(addr - len, 1ul << pshift);
308			mask = slice_range_to_mask(addr, len);
309			if (slice_check_fit(mask, available) &&
310			    slice_area_is_free(mm, addr, len))
311					/* remember the address as a hint for
312					 * next time
313					 */
314					return (mm->free_area_cache = addr);
315		}
316	}
317
318	addr = mm->mmap_base;
319	while (addr > len) {
320		/* Go down by chunk size */
321		addr = _ALIGN_DOWN(addr - len, 1ul << pshift);
322
323		/* Check for hit with different page size */
324		mask = slice_range_to_mask(addr, len);
325		if (!slice_check_fit(mask, available)) {
326			if (addr < SLICE_LOW_TOP)
327				addr = _ALIGN_DOWN(addr, 1ul << SLICE_LOW_SHIFT);
328			else if (addr < (1ul << SLICE_HIGH_SHIFT))
329				addr = SLICE_LOW_TOP;
330			else
331				addr = _ALIGN_DOWN(addr, 1ul << SLICE_HIGH_SHIFT);
332			continue;
333		}
334
335		/*
336		 * Lookup failure means no vma is above this address,
337		 * else if new region fits below vma->vm_start,
338		 * return with success:
339		 */
340		vma = find_vma(mm, addr);
341		if (!vma || (addr + len) <= vma->vm_start) {
342			/* remember the address as a hint for next time */
343			if (use_cache)
344				mm->free_area_cache = addr;
345			return addr;
346		}
347
348		/* remember the largest hole we saw so far */
349		if (use_cache && (addr + mm->cached_hole_size) < vma->vm_start)
350		        mm->cached_hole_size = vma->vm_start - addr;
351
352		/* try just below the current vma->vm_start */
353		addr = vma->vm_start;
354	}
355
356	/*
357	 * A failed mmap() very likely causes application failure,
358	 * so fall back to the bottom-up function here. This scenario
359	 * can happen with large stack limits and large mmap()
360	 * allocations.
361	 */
362	addr = slice_find_area_bottomup(mm, len, available, psize, 0);
363
364	/*
365	 * Restore the topdown base:
366	 */
367	if (use_cache) {
368		mm->free_area_cache = mm->mmap_base;
369		mm->cached_hole_size = ~0UL;
370	}
371
372	return addr;
373}
374
375
376static unsigned long slice_find_area(struct mm_struct *mm, unsigned long len,
377				     struct slice_mask mask, int psize,
378				     int topdown, int use_cache)
379{
380	if (topdown)
381		return slice_find_area_topdown(mm, len, mask, psize, use_cache);
382	else
383		return slice_find_area_bottomup(mm, len, mask, psize, use_cache);
384}
385
386unsigned long slice_get_unmapped_area(unsigned long addr, unsigned long len,
387				      unsigned long flags, unsigned int psize,
388				      int topdown, int use_cache)
389{
390	struct slice_mask mask;
391	struct slice_mask good_mask;
392	struct slice_mask potential_mask = {0,0} /* silence stupid warning */;
393	int pmask_set = 0;
394	int fixed = (flags & MAP_FIXED);
395	int pshift = max_t(int, mmu_psize_defs[psize].shift, PAGE_SHIFT);
396	struct mm_struct *mm = current->mm;
397
398	/* Sanity checks */
399	BUG_ON(mm->task_size == 0);
400
401	slice_dbg("slice_get_unmapped_area(mm=%p, psize=%d...\n", mm, psize);
402	slice_dbg(" addr=%lx, len=%lx, flags=%lx, topdown=%d, use_cache=%d\n",
403		  addr, len, flags, topdown, use_cache);
404
405	if (len > mm->task_size)
406		return -ENOMEM;
407	if (fixed && (addr & ((1ul << pshift) - 1)))
408		return -EINVAL;
409	if (fixed && addr > (mm->task_size - len))
410		return -EINVAL;
411
412	/* If hint, make sure it matches our alignment restrictions */
413	if (!fixed && addr) {
414		addr = _ALIGN_UP(addr, 1ul << pshift);
415		slice_dbg(" aligned addr=%lx\n", addr);
416	}
417
418	/* First makeup a "good" mask of slices that have the right size
419	 * already
420	 */
421	good_mask = slice_mask_for_size(mm, psize);
422	slice_print_mask(" good_mask", good_mask);
423
424	/* First check hint if it's valid or if we have MAP_FIXED */
425	if ((addr != 0 || fixed) && (mm->task_size - len) >= addr) {
426
427		/* Don't bother with hint if it overlaps a VMA */
428		if (!fixed && !slice_area_is_free(mm, addr, len))
429			goto search;
430
431		/* Build a mask for the requested range */
432		mask = slice_range_to_mask(addr, len);
433		slice_print_mask(" mask", mask);
434
435		/* Check if we fit in the good mask. If we do, we just return,
436		 * nothing else to do
437		 */
438		if (slice_check_fit(mask, good_mask)) {
439			slice_dbg(" fits good !\n");
440			return addr;
441		}
442
443		/* We don't fit in the good mask, check what other slices are
444		 * empty and thus can be converted
445		 */
446		potential_mask = slice_mask_for_free(mm);
447		potential_mask.low_slices |= good_mask.low_slices;
448		potential_mask.high_slices |= good_mask.high_slices;
449		pmask_set = 1;
450		slice_print_mask(" potential", potential_mask);
451		if (slice_check_fit(mask, potential_mask)) {
452			slice_dbg(" fits potential !\n");
453			goto convert;
454		}
455	}
456
457	/* If we have MAP_FIXED and failed the above step, then error out */
458	if (fixed)
459		return -EBUSY;
460
461 search:
462	slice_dbg(" search...\n");
463
464	/* Now let's see if we can find something in the existing slices
465	 * for that size
466	 */
467	addr = slice_find_area(mm, len, good_mask, psize, topdown, use_cache);
468	if (addr != -ENOMEM) {
469		/* Found within the good mask, we don't have to setup,
470		 * we thus return directly
471		 */
472		slice_dbg(" found area at 0x%lx\n", addr);
473		return addr;
474	}
475
476	/* Won't fit, check what can be converted */
477	if (!pmask_set) {
478		potential_mask = slice_mask_for_free(mm);
479		potential_mask.low_slices |= good_mask.low_slices;
480		potential_mask.high_slices |= good_mask.high_slices;
481		pmask_set = 1;
482		slice_print_mask(" potential", potential_mask);
483	}
484
485	/* Now let's see if we can find something in the existing slices
486	 * for that size
487	 */
488	addr = slice_find_area(mm, len, potential_mask, psize, topdown,
489			       use_cache);
490	if (addr == -ENOMEM)
491		return -ENOMEM;
492
493	mask = slice_range_to_mask(addr, len);
494	slice_dbg(" found potential area at 0x%lx\n", addr);
495	slice_print_mask(" mask", mask);
496
497 convert:
498	slice_convert(mm, mask, psize);
499	return addr;
500
501}
502EXPORT_SYMBOL_GPL(slice_get_unmapped_area);
503
504unsigned long arch_get_unmapped_area(struct file *filp,
505				     unsigned long addr,
506				     unsigned long len,
507				     unsigned long pgoff,
508				     unsigned long flags)
509{
510	return slice_get_unmapped_area(addr, len, flags,
511				       current->mm->context.user_psize,
512				       0, 1);
513}
514
515unsigned long arch_get_unmapped_area_topdown(struct file *filp,
516					     const unsigned long addr0,
517					     const unsigned long len,
518					     const unsigned long pgoff,
519					     const unsigned long flags)
520{
521	return slice_get_unmapped_area(addr0, len, flags,
522				       current->mm->context.user_psize,
523				       1, 1);
524}
525
526unsigned int get_slice_psize(struct mm_struct *mm, unsigned long addr)
527{
528	u64 psizes;
529	int index;
530
531	if (addr < SLICE_LOW_TOP) {
532		psizes = mm->context.low_slices_psize;
533		index = GET_LOW_SLICE_INDEX(addr);
534	} else {
535		psizes = mm->context.high_slices_psize;
536		index = GET_HIGH_SLICE_INDEX(addr);
537	}
538
539	return (psizes >> (index * 4)) & 0xf;
540}
541EXPORT_SYMBOL_GPL(get_slice_psize);
542
543/*
544 * This is called by hash_page when it needs to do a lazy conversion of
545 * an address space from real 64K pages to combo 4K pages (typically
546 * when hitting a non cacheable mapping on a processor or hypervisor
547 * that won't allow them for 64K pages).
548 *
549 * This is also called in init_new_context() to change back the user
550 * psize from whatever the parent context had it set to
551 *
552 * This function will only change the content of the {low,high)_slice_psize
553 * masks, it will not flush SLBs as this shall be handled lazily by the
554 * caller.
555 */
556void slice_set_user_psize(struct mm_struct *mm, unsigned int psize)
557{
558	unsigned long flags, lpsizes, hpsizes;
559	unsigned int old_psize;
560	int i;
561
562	slice_dbg("slice_set_user_psize(mm=%p, psize=%d)\n", mm, psize);
563
564	spin_lock_irqsave(&slice_convert_lock, flags);
565
566	old_psize = mm->context.user_psize;
567	slice_dbg(" old_psize=%d\n", old_psize);
568	if (old_psize == psize)
569		goto bail;
570
571	mm->context.user_psize = psize;
572	wmb();
573
574	lpsizes = mm->context.low_slices_psize;
575	for (i = 0; i < SLICE_NUM_LOW; i++)
576		if (((lpsizes >> (i * 4)) & 0xf) == old_psize)
577			lpsizes = (lpsizes & ~(0xful << (i * 4))) |
578				(((unsigned long)psize) << (i * 4));
579
580	hpsizes = mm->context.high_slices_psize;
581	for (i = 0; i < SLICE_NUM_HIGH; i++)
582		if (((hpsizes >> (i * 4)) & 0xf) == old_psize)
583			hpsizes = (hpsizes & ~(0xful << (i * 4))) |
584				(((unsigned long)psize) << (i * 4));
585
586	mm->context.low_slices_psize = lpsizes;
587	mm->context.high_slices_psize = hpsizes;
588
589	slice_dbg(" lsps=%lx, hsps=%lx\n",
590		  mm->context.low_slices_psize,
591		  mm->context.high_slices_psize);
592
593 bail:
594	spin_unlock_irqrestore(&slice_convert_lock, flags);
595}
596
597/*
598 * is_hugepage_only_range() is used by generic code to verify wether
599 * a normal mmap mapping (non hugetlbfs) is valid on a given area.
600 *
601 * until the generic code provides a more generic hook and/or starts
602 * calling arch get_unmapped_area for MAP_FIXED (which our implementation
603 * here knows how to deal with), we hijack it to keep standard mappings
604 * away from us.
605 *
606 * because of that generic code limitation, MAP_FIXED mapping cannot
607 * "convert" back a slice with no VMAs to the standard page size, only
608 * get_unmapped_area() can. It would be possible to fix it here but I
609 * prefer working on fixing the generic code instead.
610 *
611 * WARNING: This will not work if hugetlbfs isn't enabled since the
612 * generic code will redefine that function as 0 in that. This is ok
613 * for now as we only use slices with hugetlbfs enabled. This should
614 * be fixed as the generic code gets fixed.
615 */
616int is_hugepage_only_range(struct mm_struct *mm, unsigned long addr,
617			   unsigned long len)
618{
619	struct slice_mask mask, available;
620
621	mask = slice_range_to_mask(addr, len);
622	available = slice_mask_for_size(mm, mm->context.user_psize);
623
624	return !slice_check_fit(mask, available);
625}
626