1/*
2 *  Kernel Probes (KProbes)
3 *  arch/i386/kernel/kprobes.c
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 *
19 * Copyright (C) IBM Corporation, 2002, 2004
20 *
21 * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 *		Probes initial implementation ( includes contributions from
23 *		Rusty Russell).
24 * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
25 *		interface to access function arguments.
26 * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
27 *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
28 *		<prasanna@in.ibm.com> added function-return probes.
29 */
30
31#include <linux/kprobes.h>
32#include <linux/ptrace.h>
33#include <linux/preempt.h>
34#include <linux/kdebug.h>
35#include <asm/cacheflush.h>
36#include <asm/desc.h>
37#include <asm/uaccess.h>
38
39void jprobe_return_end(void);
40
41DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
42DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
43
44/* insert a jmp code */
45static __always_inline void set_jmp_op(void *from, void *to)
46{
47	struct __arch_jmp_op {
48		char op;
49		long raddr;
50	} __attribute__((packed)) *jop;
51	jop = (struct __arch_jmp_op *)from;
52	jop->raddr = (long)(to) - ((long)(from) + 5);
53	jop->op = RELATIVEJUMP_INSTRUCTION;
54}
55
56/*
57 * returns non-zero if opcodes can be boosted.
58 */
59static __always_inline int can_boost(kprobe_opcode_t *opcodes)
60{
61#define W(row,b0,b1,b2,b3,b4,b5,b6,b7,b8,b9,ba,bb,bc,bd,be,bf)		      \
62	(((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \
63	  (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \
64	  (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \
65	  (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \
66	 << (row % 32))
67	/*
68	 * Undefined/reserved opcodes, conditional jump, Opcode Extension
69	 * Groups, and some special opcodes can not be boost.
70	 */
71	static const unsigned long twobyte_is_boostable[256 / 32] = {
72		/*      0 1 2 3 4 5 6 7 8 9 a b c d e f         */
73		/*      -------------------------------         */
74		W(0x00, 0,0,1,1,0,0,1,0,1,1,0,0,0,0,0,0)| /* 00 */
75		W(0x10, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 10 */
76		W(0x20, 1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0)| /* 20 */
77		W(0x30, 0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 30 */
78		W(0x40, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 40 */
79		W(0x50, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 50 */
80		W(0x60, 1,1,1,1,1,1,1,1,1,1,1,1,0,0,1,1)| /* 60 */
81		W(0x70, 0,0,0,0,1,1,1,1,0,0,0,0,0,0,1,1), /* 70 */
82		W(0x80, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 80 */
83		W(0x90, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1), /* 90 */
84		W(0xa0, 1,1,0,1,1,1,0,0,1,1,0,1,1,1,0,1)| /* a0 */
85		W(0xb0, 1,1,1,1,1,1,1,1,0,0,0,1,1,1,1,1), /* b0 */
86		W(0xc0, 1,1,0,0,0,0,0,0,1,1,1,1,1,1,1,1)| /* c0 */
87		W(0xd0, 0,1,1,1,0,1,0,0,1,1,0,1,1,1,0,1), /* d0 */
88		W(0xe0, 0,1,1,0,0,1,0,0,1,1,0,1,1,1,0,1)| /* e0 */
89		W(0xf0, 0,1,1,1,0,1,0,0,1,1,1,0,1,1,1,0)  /* f0 */
90		/*      -------------------------------         */
91		/*      0 1 2 3 4 5 6 7 8 9 a b c d e f         */
92	};
93#undef W
94	kprobe_opcode_t opcode;
95	kprobe_opcode_t *orig_opcodes = opcodes;
96retry:
97	if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
98		return 0;
99	opcode = *(opcodes++);
100
101	/* 2nd-byte opcode */
102	if (opcode == 0x0f) {
103		if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
104			return 0;
105		return test_bit(*opcodes, twobyte_is_boostable);
106	}
107
108	switch (opcode & 0xf0) {
109	case 0x60:
110		if (0x63 < opcode && opcode < 0x67)
111			goto retry; /* prefixes */
112		/* can't boost Address-size override and bound */
113		return (opcode != 0x62 && opcode != 0x67);
114	case 0x70:
115		return 0; /* can't boost conditional jump */
116	case 0xc0:
117		/* can't boost software-interruptions */
118		return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf;
119	case 0xd0:
120		/* can boost AA* and XLAT */
121		return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7);
122	case 0xe0:
123		/* can boost in/out and absolute jmps */
124		return ((opcode & 0x04) || opcode == 0xea);
125	case 0xf0:
126		if ((opcode & 0x0c) == 0 && opcode != 0xf1)
127			goto retry; /* lock/rep(ne) prefix */
128		/* clear and set flags can be boost */
129		return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe));
130	default:
131		if (opcode == 0x26 || opcode == 0x36 || opcode == 0x3e)
132			goto retry; /* prefixes */
133		/* can't boost CS override and call */
134		return (opcode != 0x2e && opcode != 0x9a);
135	}
136}
137
138/*
139 * returns non-zero if opcode modifies the interrupt flag.
140 */
141static int __kprobes is_IF_modifier(kprobe_opcode_t opcode)
142{
143	switch (opcode) {
144	case 0xfa:		/* cli */
145	case 0xfb:		/* sti */
146	case 0xcf:		/* iret/iretd */
147	case 0x9d:		/* popf/popfd */
148		return 1;
149	}
150	return 0;
151}
152
153int __kprobes arch_prepare_kprobe(struct kprobe *p)
154{
155	/* insn: must be on special executable page on i386. */
156	p->ainsn.insn = get_insn_slot();
157	if (!p->ainsn.insn)
158		return -ENOMEM;
159
160	memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
161	p->opcode = *p->addr;
162	if (can_boost(p->addr)) {
163		p->ainsn.boostable = 0;
164	} else {
165		p->ainsn.boostable = -1;
166	}
167	return 0;
168}
169
170void __kprobes arch_arm_kprobe(struct kprobe *p)
171{
172	*p->addr = BREAKPOINT_INSTRUCTION;
173	flush_icache_range((unsigned long) p->addr,
174			   (unsigned long) p->addr + sizeof(kprobe_opcode_t));
175}
176
177void __kprobes arch_disarm_kprobe(struct kprobe *p)
178{
179	*p->addr = p->opcode;
180	flush_icache_range((unsigned long) p->addr,
181			   (unsigned long) p->addr + sizeof(kprobe_opcode_t));
182}
183
184void __kprobes arch_remove_kprobe(struct kprobe *p)
185{
186	mutex_lock(&kprobe_mutex);
187	free_insn_slot(p->ainsn.insn, (p->ainsn.boostable == 1));
188	mutex_unlock(&kprobe_mutex);
189}
190
191static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
192{
193	kcb->prev_kprobe.kp = kprobe_running();
194	kcb->prev_kprobe.status = kcb->kprobe_status;
195	kcb->prev_kprobe.old_eflags = kcb->kprobe_old_eflags;
196	kcb->prev_kprobe.saved_eflags = kcb->kprobe_saved_eflags;
197}
198
199static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
200{
201	__get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
202	kcb->kprobe_status = kcb->prev_kprobe.status;
203	kcb->kprobe_old_eflags = kcb->prev_kprobe.old_eflags;
204	kcb->kprobe_saved_eflags = kcb->prev_kprobe.saved_eflags;
205}
206
207static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
208				struct kprobe_ctlblk *kcb)
209{
210	__get_cpu_var(current_kprobe) = p;
211	kcb->kprobe_saved_eflags = kcb->kprobe_old_eflags
212		= (regs->eflags & (TF_MASK | IF_MASK));
213	if (is_IF_modifier(p->opcode))
214		kcb->kprobe_saved_eflags &= ~IF_MASK;
215}
216
217static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
218{
219	regs->eflags |= TF_MASK;
220	regs->eflags &= ~IF_MASK;
221	/*single step inline if the instruction is an int3*/
222	if (p->opcode == BREAKPOINT_INSTRUCTION)
223		regs->eip = (unsigned long)p->addr;
224	else
225		regs->eip = (unsigned long)p->ainsn.insn;
226}
227
228/* Called with kretprobe_lock held */
229void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
230				      struct pt_regs *regs)
231{
232	unsigned long *sara = (unsigned long *)&regs->esp;
233
234	ri->ret_addr = (kprobe_opcode_t *) *sara;
235
236	/* Replace the return addr with trampoline addr */
237	*sara = (unsigned long) &kretprobe_trampoline;
238}
239
240/*
241 * Interrupts are disabled on entry as trap3 is an interrupt gate and they
242 * remain disabled thorough out this function.
243 */
244static int __kprobes kprobe_handler(struct pt_regs *regs)
245{
246	struct kprobe *p;
247	int ret = 0;
248	kprobe_opcode_t *addr;
249	struct kprobe_ctlblk *kcb;
250
251	addr = (kprobe_opcode_t *)(regs->eip - sizeof(kprobe_opcode_t));
252
253	/*
254	 * We don't want to be preempted for the entire
255	 * duration of kprobe processing
256	 */
257	preempt_disable();
258	kcb = get_kprobe_ctlblk();
259
260	/* Check we're not actually recursing */
261	if (kprobe_running()) {
262		p = get_kprobe(addr);
263		if (p) {
264			if (kcb->kprobe_status == KPROBE_HIT_SS &&
265				*p->ainsn.insn == BREAKPOINT_INSTRUCTION) {
266				regs->eflags &= ~TF_MASK;
267				regs->eflags |= kcb->kprobe_saved_eflags;
268				goto no_kprobe;
269			}
270			/* We have reentered the kprobe_handler(), since
271			 * another probe was hit while within the handler.
272			 * We here save the original kprobes variables and
273			 * just single step on the instruction of the new probe
274			 * without calling any user handlers.
275			 */
276			save_previous_kprobe(kcb);
277			set_current_kprobe(p, regs, kcb);
278			kprobes_inc_nmissed_count(p);
279			prepare_singlestep(p, regs);
280			kcb->kprobe_status = KPROBE_REENTER;
281			return 1;
282		} else {
283			if (*addr != BREAKPOINT_INSTRUCTION) {
284			/* The breakpoint instruction was removed by
285			 * another cpu right after we hit, no further
286			 * handling of this interrupt is appropriate
287			 */
288				regs->eip -= sizeof(kprobe_opcode_t);
289				ret = 1;
290				goto no_kprobe;
291			}
292			p = __get_cpu_var(current_kprobe);
293			if (p->break_handler && p->break_handler(p, regs)) {
294				goto ss_probe;
295			}
296		}
297		goto no_kprobe;
298	}
299
300	p = get_kprobe(addr);
301	if (!p) {
302		if (*addr != BREAKPOINT_INSTRUCTION) {
303			/*
304			 * The breakpoint instruction was removed right
305			 * after we hit it.  Another cpu has removed
306			 * either a probepoint or a debugger breakpoint
307			 * at this address.  In either case, no further
308			 * handling of this interrupt is appropriate.
309			 * Back up over the (now missing) int3 and run
310			 * the original instruction.
311			 */
312			regs->eip -= sizeof(kprobe_opcode_t);
313			ret = 1;
314		}
315		/* Not one of ours: let kernel handle it */
316		goto no_kprobe;
317	}
318
319	set_current_kprobe(p, regs, kcb);
320	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
321
322	if (p->pre_handler && p->pre_handler(p, regs))
323		/* handler has already set things up, so skip ss setup */
324		return 1;
325
326ss_probe:
327#if !defined(CONFIG_PREEMPT) || defined(CONFIG_PM)
328	if (p->ainsn.boostable == 1 && !p->post_handler){
329		/* Boost up -- we can execute copied instructions directly */
330		reset_current_kprobe();
331		regs->eip = (unsigned long)p->ainsn.insn;
332		preempt_enable_no_resched();
333		return 1;
334	}
335#endif
336	prepare_singlestep(p, regs);
337	kcb->kprobe_status = KPROBE_HIT_SS;
338	return 1;
339
340no_kprobe:
341	preempt_enable_no_resched();
342	return ret;
343}
344
345/*
346 * For function-return probes, init_kprobes() establishes a probepoint
347 * here. When a retprobed function returns, this probe is hit and
348 * trampoline_probe_handler() runs, calling the kretprobe's handler.
349 */
350 void __kprobes kretprobe_trampoline_holder(void)
351 {
352	asm volatile ( ".global kretprobe_trampoline\n"
353			"kretprobe_trampoline: \n"
354			"	pushf\n"
355			/* skip cs, eip, orig_eax */
356			"	subl $12, %esp\n"
357			"	pushl %fs\n"
358			"	pushl %ds\n"
359			"	pushl %es\n"
360			"	pushl %eax\n"
361			"	pushl %ebp\n"
362			"	pushl %edi\n"
363			"	pushl %esi\n"
364			"	pushl %edx\n"
365			"	pushl %ecx\n"
366			"	pushl %ebx\n"
367			"	movl %esp, %eax\n"
368			"	call trampoline_handler\n"
369			/* move eflags to cs */
370			"	movl 52(%esp), %edx\n"
371			"	movl %edx, 48(%esp)\n"
372			/* save true return address on eflags */
373			"	movl %eax, 52(%esp)\n"
374			"	popl %ebx\n"
375			"	popl %ecx\n"
376			"	popl %edx\n"
377			"	popl %esi\n"
378			"	popl %edi\n"
379			"	popl %ebp\n"
380			"	popl %eax\n"
381			/* skip eip, orig_eax, es, ds, fs */
382			"	addl $20, %esp\n"
383			"	popf\n"
384			"	ret\n");
385}
386
387/*
388 * Called from kretprobe_trampoline
389 */
390fastcall void *__kprobes trampoline_handler(struct pt_regs *regs)
391{
392	struct kretprobe_instance *ri = NULL;
393	struct hlist_head *head, empty_rp;
394	struct hlist_node *node, *tmp;
395	unsigned long flags, orig_ret_address = 0;
396	unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
397
398	INIT_HLIST_HEAD(&empty_rp);
399	spin_lock_irqsave(&kretprobe_lock, flags);
400	head = kretprobe_inst_table_head(current);
401	/* fixup registers */
402	regs->xcs = __KERNEL_CS | get_kernel_rpl();
403	regs->eip = trampoline_address;
404	regs->orig_eax = 0xffffffff;
405
406	/*
407	 * It is possible to have multiple instances associated with a given
408	 * task either because an multiple functions in the call path
409	 * have a return probe installed on them, and/or more then one return
410	 * return probe was registered for a target function.
411	 *
412	 * We can handle this because:
413	 *     - instances are always inserted at the head of the list
414	 *     - when multiple return probes are registered for the same
415	 *       function, the first instance's ret_addr will point to the
416	 *       real return address, and all the rest will point to
417	 *       kretprobe_trampoline
418	 */
419	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
420		if (ri->task != current)
421			/* another task is sharing our hash bucket */
422			continue;
423
424		if (ri->rp && ri->rp->handler){
425			__get_cpu_var(current_kprobe) = &ri->rp->kp;
426			get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
427			ri->rp->handler(ri, regs);
428			__get_cpu_var(current_kprobe) = NULL;
429		}
430
431		orig_ret_address = (unsigned long)ri->ret_addr;
432		recycle_rp_inst(ri, &empty_rp);
433
434		if (orig_ret_address != trampoline_address)
435			/*
436			 * This is the real return address. Any other
437			 * instances associated with this task are for
438			 * other calls deeper on the call stack
439			 */
440			break;
441	}
442
443	kretprobe_assert(ri, orig_ret_address, trampoline_address);
444	spin_unlock_irqrestore(&kretprobe_lock, flags);
445
446	hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
447		hlist_del(&ri->hlist);
448		kfree(ri);
449	}
450	return (void*)orig_ret_address;
451}
452
453/*
454 * Called after single-stepping.  p->addr is the address of the
455 * instruction whose first byte has been replaced by the "int 3"
456 * instruction.  To avoid the SMP problems that can occur when we
457 * temporarily put back the original opcode to single-step, we
458 * single-stepped a copy of the instruction.  The address of this
459 * copy is p->ainsn.insn.
460 *
461 * This function prepares to return from the post-single-step
462 * interrupt.  We have to fix up the stack as follows:
463 *
464 * 0) Except in the case of absolute or indirect jump or call instructions,
465 * the new eip is relative to the copied instruction.  We need to make
466 * it relative to the original instruction.
467 *
468 * 1) If the single-stepped instruction was pushfl, then the TF and IF
469 * flags are set in the just-pushed eflags, and may need to be cleared.
470 *
471 * 2) If the single-stepped instruction was a call, the return address
472 * that is atop the stack is the address following the copied instruction.
473 * We need to make it the address following the original instruction.
474 *
475 * This function also checks instruction size for preparing direct execution.
476 */
477static void __kprobes resume_execution(struct kprobe *p,
478		struct pt_regs *regs, struct kprobe_ctlblk *kcb)
479{
480	unsigned long *tos = (unsigned long *)&regs->esp;
481	unsigned long copy_eip = (unsigned long)p->ainsn.insn;
482	unsigned long orig_eip = (unsigned long)p->addr;
483
484	regs->eflags &= ~TF_MASK;
485	switch (p->ainsn.insn[0]) {
486	case 0x9c:		/* pushfl */
487		*tos &= ~(TF_MASK | IF_MASK);
488		*tos |= kcb->kprobe_old_eflags;
489		break;
490	case 0xc2:		/* iret/ret/lret */
491	case 0xc3:
492	case 0xca:
493	case 0xcb:
494	case 0xcf:
495	case 0xea:		/* jmp absolute -- eip is correct */
496		/* eip is already adjusted, no more changes required */
497		p->ainsn.boostable = 1;
498		goto no_change;
499	case 0xe8:		/* call relative - Fix return addr */
500		*tos = orig_eip + (*tos - copy_eip);
501		break;
502	case 0x9a:		/* call absolute -- same as call absolute, indirect */
503		*tos = orig_eip + (*tos - copy_eip);
504		goto no_change;
505	case 0xff:
506		if ((p->ainsn.insn[1] & 0x30) == 0x10) {
507			/*
508			 * call absolute, indirect
509			 * Fix return addr; eip is correct.
510			 * But this is not boostable
511			 */
512			*tos = orig_eip + (*tos - copy_eip);
513			goto no_change;
514		} else if (((p->ainsn.insn[1] & 0x31) == 0x20) ||	/* jmp near, absolute indirect */
515			   ((p->ainsn.insn[1] & 0x31) == 0x21)) {	/* jmp far, absolute indirect */
516			/* eip is correct. And this is boostable */
517			p->ainsn.boostable = 1;
518			goto no_change;
519		}
520	default:
521		break;
522	}
523
524	if (p->ainsn.boostable == 0) {
525		if ((regs->eip > copy_eip) &&
526		    (regs->eip - copy_eip) + 5 < MAX_INSN_SIZE) {
527			/*
528			 * These instructions can be executed directly if it
529			 * jumps back to correct address.
530			 */
531			set_jmp_op((void *)regs->eip,
532				   (void *)orig_eip + (regs->eip - copy_eip));
533			p->ainsn.boostable = 1;
534		} else {
535			p->ainsn.boostable = -1;
536		}
537	}
538
539	regs->eip = orig_eip + (regs->eip - copy_eip);
540
541no_change:
542	return;
543}
544
545/*
546 * Interrupts are disabled on entry as trap1 is an interrupt gate and they
547 * remain disabled thoroughout this function.
548 */
549static int __kprobes post_kprobe_handler(struct pt_regs *regs)
550{
551	struct kprobe *cur = kprobe_running();
552	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
553
554	if (!cur)
555		return 0;
556
557	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
558		kcb->kprobe_status = KPROBE_HIT_SSDONE;
559		cur->post_handler(cur, regs, 0);
560	}
561
562	resume_execution(cur, regs, kcb);
563	regs->eflags |= kcb->kprobe_saved_eflags;
564
565	/*Restore back the original saved kprobes variables and continue. */
566	if (kcb->kprobe_status == KPROBE_REENTER) {
567		restore_previous_kprobe(kcb);
568		goto out;
569	}
570	reset_current_kprobe();
571out:
572	preempt_enable_no_resched();
573
574	/*
575	 * if somebody else is singlestepping across a probe point, eflags
576	 * will have TF set, in which case, continue the remaining processing
577	 * of do_debug, as if this is not a probe hit.
578	 */
579	if (regs->eflags & TF_MASK)
580		return 0;
581
582	return 1;
583}
584
585static int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
586{
587	struct kprobe *cur = kprobe_running();
588	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
589
590	switch(kcb->kprobe_status) {
591	case KPROBE_HIT_SS:
592	case KPROBE_REENTER:
593		/*
594		 * We are here because the instruction being single
595		 * stepped caused a page fault. We reset the current
596		 * kprobe and the eip points back to the probe address
597		 * and allow the page fault handler to continue as a
598		 * normal page fault.
599		 */
600		regs->eip = (unsigned long)cur->addr;
601		regs->eflags |= kcb->kprobe_old_eflags;
602		if (kcb->kprobe_status == KPROBE_REENTER)
603			restore_previous_kprobe(kcb);
604		else
605			reset_current_kprobe();
606		preempt_enable_no_resched();
607		break;
608	case KPROBE_HIT_ACTIVE:
609	case KPROBE_HIT_SSDONE:
610		/*
611		 * We increment the nmissed count for accounting,
612		 * we can also use npre/npostfault count for accouting
613		 * these specific fault cases.
614		 */
615		kprobes_inc_nmissed_count(cur);
616
617		/*
618		 * We come here because instructions in the pre/post
619		 * handler caused the page_fault, this could happen
620		 * if handler tries to access user space by
621		 * copy_from_user(), get_user() etc. Let the
622		 * user-specified handler try to fix it first.
623		 */
624		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
625			return 1;
626
627		/*
628		 * In case the user-specified fault handler returned
629		 * zero, try to fix up.
630		 */
631		if (fixup_exception(regs))
632			return 1;
633
634		/*
635		 * fixup_exception() could not handle it,
636		 * Let do_page_fault() fix it.
637		 */
638		break;
639	default:
640		break;
641	}
642	return 0;
643}
644
645/*
646 * Wrapper routine to for handling exceptions.
647 */
648int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
649				       unsigned long val, void *data)
650{
651	struct die_args *args = (struct die_args *)data;
652	int ret = NOTIFY_DONE;
653
654	if (args->regs && user_mode_vm(args->regs))
655		return ret;
656
657	switch (val) {
658	case DIE_INT3:
659		if (kprobe_handler(args->regs))
660			ret = NOTIFY_STOP;
661		break;
662	case DIE_DEBUG:
663		if (post_kprobe_handler(args->regs))
664			ret = NOTIFY_STOP;
665		break;
666	case DIE_GPF:
667	case DIE_PAGE_FAULT:
668		/* kprobe_running() needs smp_processor_id() */
669		preempt_disable();
670		if (kprobe_running() &&
671		    kprobe_fault_handler(args->regs, args->trapnr))
672			ret = NOTIFY_STOP;
673		preempt_enable();
674		break;
675	default:
676		break;
677	}
678	return ret;
679}
680
681int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
682{
683	struct jprobe *jp = container_of(p, struct jprobe, kp);
684	unsigned long addr;
685	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
686
687	kcb->jprobe_saved_regs = *regs;
688	kcb->jprobe_saved_esp = &regs->esp;
689	addr = (unsigned long)(kcb->jprobe_saved_esp);
690
691	/*
692	 * TBD: As Linus pointed out, gcc assumes that the callee
693	 * owns the argument space and could overwrite it, e.g.
694	 * tailcall optimization. So, to be absolutely safe
695	 * we also save and restore enough stack bytes to cover
696	 * the argument area.
697	 */
698	memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr,
699			MIN_STACK_SIZE(addr));
700	regs->eflags &= ~IF_MASK;
701	regs->eip = (unsigned long)(jp->entry);
702	return 1;
703}
704
705void __kprobes jprobe_return(void)
706{
707	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
708
709	asm volatile ("       xchgl   %%ebx,%%esp     \n"
710		      "       int3			\n"
711		      "       .globl jprobe_return_end	\n"
712		      "       jprobe_return_end:	\n"
713		      "       nop			\n"::"b"
714		      (kcb->jprobe_saved_esp):"memory");
715}
716
717int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
718{
719	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
720	u8 *addr = (u8 *) (regs->eip - 1);
721	unsigned long stack_addr = (unsigned long)(kcb->jprobe_saved_esp);
722	struct jprobe *jp = container_of(p, struct jprobe, kp);
723
724	if ((addr > (u8 *) jprobe_return) && (addr < (u8 *) jprobe_return_end)) {
725		if (&regs->esp != kcb->jprobe_saved_esp) {
726			struct pt_regs *saved_regs =
727			    container_of(kcb->jprobe_saved_esp,
728					    struct pt_regs, esp);
729			printk("current esp %p does not match saved esp %p\n",
730			       &regs->esp, kcb->jprobe_saved_esp);
731			printk("Saved registers for jprobe %p\n", jp);
732			show_registers(saved_regs);
733			printk("Current registers\n");
734			show_registers(regs);
735			BUG();
736		}
737		*regs = kcb->jprobe_saved_regs;
738		memcpy((kprobe_opcode_t *) stack_addr, kcb->jprobes_stack,
739		       MIN_STACK_SIZE(stack_addr));
740		preempt_enable_no_resched();
741		return 1;
742	}
743	return 0;
744}
745
746int __kprobes arch_trampoline_kprobe(struct kprobe *p)
747{
748	return 0;
749}
750
751int __init arch_init_kprobes(void)
752{
753	return 0;
754}
755