1/*
2 * Extensible Firmware Interface
3 *
4 * Based on Extensible Firmware Interface Specification version 1.0
5 *
6 * Copyright (C) 1999 VA Linux Systems
7 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
8 * Copyright (C) 1999-2002 Hewlett-Packard Co.
9 *	David Mosberger-Tang <davidm@hpl.hp.com>
10 *	Stephane Eranian <eranian@hpl.hp.com>
11 *
12 * All EFI Runtime Services are not implemented yet as EFI only
13 * supports physical mode addressing on SoftSDV. This is to be fixed
14 * in a future version.  --drummond 1999-07-20
15 *
16 * Implemented EFI runtime services and virtual mode calls.  --davidm
17 *
18 * Goutham Rao: <goutham.rao@intel.com>
19 *	Skip non-WB memory and ignore empty memory ranges.
20 */
21
22#include <linux/kernel.h>
23#include <linux/init.h>
24#include <linux/mm.h>
25#include <linux/types.h>
26#include <linux/time.h>
27#include <linux/spinlock.h>
28#include <linux/bootmem.h>
29#include <linux/ioport.h>
30#include <linux/module.h>
31#include <linux/efi.h>
32#include <linux/kexec.h>
33
34#include <asm/setup.h>
35#include <asm/io.h>
36#include <asm/page.h>
37#include <asm/pgtable.h>
38#include <asm/processor.h>
39#include <asm/desc.h>
40#include <asm/tlbflush.h>
41
42#define EFI_DEBUG	0
43#define PFX 		"EFI: "
44
45extern efi_status_t asmlinkage efi_call_phys(void *, ...);
46
47struct efi efi;
48EXPORT_SYMBOL(efi);
49static struct efi efi_phys;
50struct efi_memory_map memmap;
51
52/*
53 * We require an early boot_ioremap mapping mechanism initially
54 */
55extern void * boot_ioremap(unsigned long, unsigned long);
56
57/*
58 * To make EFI call EFI runtime service in physical addressing mode we need
59 * prelog/epilog before/after the invocation to disable interrupt, to
60 * claim EFI runtime service handler exclusively and to duplicate a memory in
61 * low memory space say 0 - 3G.
62 */
63
64static unsigned long efi_rt_eflags;
65static DEFINE_SPINLOCK(efi_rt_lock);
66static pgd_t efi_bak_pg_dir_pointer[2];
67
68static void efi_call_phys_prelog(void) __acquires(efi_rt_lock)
69{
70	unsigned long cr4;
71	unsigned long temp;
72	struct Xgt_desc_struct gdt_descr;
73
74	spin_lock(&efi_rt_lock);
75	local_irq_save(efi_rt_eflags);
76
77	/*
78	 * If I don't have PSE, I should just duplicate two entries in page
79	 * directory. If I have PSE, I just need to duplicate one entry in
80	 * page directory.
81	 */
82	cr4 = read_cr4();
83
84	if (cr4 & X86_CR4_PSE) {
85		efi_bak_pg_dir_pointer[0].pgd =
86		    swapper_pg_dir[pgd_index(0)].pgd;
87		swapper_pg_dir[0].pgd =
88		    swapper_pg_dir[pgd_index(PAGE_OFFSET)].pgd;
89	} else {
90		efi_bak_pg_dir_pointer[0].pgd =
91		    swapper_pg_dir[pgd_index(0)].pgd;
92		efi_bak_pg_dir_pointer[1].pgd =
93		    swapper_pg_dir[pgd_index(0x400000)].pgd;
94		swapper_pg_dir[pgd_index(0)].pgd =
95		    swapper_pg_dir[pgd_index(PAGE_OFFSET)].pgd;
96		temp = PAGE_OFFSET + 0x400000;
97		swapper_pg_dir[pgd_index(0x400000)].pgd =
98		    swapper_pg_dir[pgd_index(temp)].pgd;
99	}
100
101	/*
102	 * After the lock is released, the original page table is restored.
103	 */
104	local_flush_tlb();
105
106	gdt_descr.address = __pa(get_cpu_gdt_table(0));
107	gdt_descr.size = GDT_SIZE - 1;
108	load_gdt(&gdt_descr);
109}
110
111static void efi_call_phys_epilog(void) __releases(efi_rt_lock)
112{
113	unsigned long cr4;
114	struct Xgt_desc_struct gdt_descr;
115
116	gdt_descr.address = (unsigned long)get_cpu_gdt_table(0);
117	gdt_descr.size = GDT_SIZE - 1;
118	load_gdt(&gdt_descr);
119
120	cr4 = read_cr4();
121
122	if (cr4 & X86_CR4_PSE) {
123		swapper_pg_dir[pgd_index(0)].pgd =
124		    efi_bak_pg_dir_pointer[0].pgd;
125	} else {
126		swapper_pg_dir[pgd_index(0)].pgd =
127		    efi_bak_pg_dir_pointer[0].pgd;
128		swapper_pg_dir[pgd_index(0x400000)].pgd =
129		    efi_bak_pg_dir_pointer[1].pgd;
130	}
131
132	/*
133	 * After the lock is released, the original page table is restored.
134	 */
135	local_flush_tlb();
136
137	local_irq_restore(efi_rt_eflags);
138	spin_unlock(&efi_rt_lock);
139}
140
141static efi_status_t
142phys_efi_set_virtual_address_map(unsigned long memory_map_size,
143				 unsigned long descriptor_size,
144				 u32 descriptor_version,
145				 efi_memory_desc_t *virtual_map)
146{
147	efi_status_t status;
148
149	efi_call_phys_prelog();
150	status = efi_call_phys(efi_phys.set_virtual_address_map,
151				     memory_map_size, descriptor_size,
152				     descriptor_version, virtual_map);
153	efi_call_phys_epilog();
154	return status;
155}
156
157static efi_status_t
158phys_efi_get_time(efi_time_t *tm, efi_time_cap_t *tc)
159{
160	efi_status_t status;
161
162	efi_call_phys_prelog();
163	status = efi_call_phys(efi_phys.get_time, tm, tc);
164	efi_call_phys_epilog();
165	return status;
166}
167
168inline int efi_set_rtc_mmss(unsigned long nowtime)
169{
170	int real_seconds, real_minutes;
171	efi_status_t 	status;
172	efi_time_t 	eft;
173	efi_time_cap_t 	cap;
174
175	spin_lock(&efi_rt_lock);
176	status = efi.get_time(&eft, &cap);
177	spin_unlock(&efi_rt_lock);
178	if (status != EFI_SUCCESS)
179		panic("Ooops, efitime: can't read time!\n");
180	real_seconds = nowtime % 60;
181	real_minutes = nowtime / 60;
182
183	if (((abs(real_minutes - eft.minute) + 15)/30) & 1)
184		real_minutes += 30;
185	real_minutes %= 60;
186
187	eft.minute = real_minutes;
188	eft.second = real_seconds;
189
190	if (status != EFI_SUCCESS) {
191		printk("Ooops: efitime: can't read time!\n");
192		return -1;
193	}
194	return 0;
195}
196/*
197 * This is used during kernel init before runtime
198 * services have been remapped and also during suspend, therefore,
199 * we'll need to call both in physical and virtual modes.
200 */
201inline unsigned long efi_get_time(void)
202{
203	efi_status_t status;
204	efi_time_t eft;
205	efi_time_cap_t cap;
206
207	if (efi.get_time) {
208		/* if we are in virtual mode use remapped function */
209 		status = efi.get_time(&eft, &cap);
210	} else {
211		/* we are in physical mode */
212		status = phys_efi_get_time(&eft, &cap);
213	}
214
215	if (status != EFI_SUCCESS)
216		printk("Oops: efitime: can't read time status: 0x%lx\n",status);
217
218	return mktime(eft.year, eft.month, eft.day, eft.hour,
219			eft.minute, eft.second);
220}
221
222int is_available_memory(efi_memory_desc_t * md)
223{
224	if (!(md->attribute & EFI_MEMORY_WB))
225		return 0;
226
227	switch (md->type) {
228		case EFI_LOADER_CODE:
229		case EFI_LOADER_DATA:
230		case EFI_BOOT_SERVICES_CODE:
231		case EFI_BOOT_SERVICES_DATA:
232		case EFI_CONVENTIONAL_MEMORY:
233			return 1;
234	}
235	return 0;
236}
237
238/*
239 * We need to map the EFI memory map again after paging_init().
240 */
241void __init efi_map_memmap(void)
242{
243	memmap.map = NULL;
244
245	memmap.map = bt_ioremap((unsigned long) memmap.phys_map,
246			(memmap.nr_map * memmap.desc_size));
247	if (memmap.map == NULL)
248		printk(KERN_ERR PFX "Could not remap the EFI memmap!\n");
249
250	memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size);
251}
252
253#if EFI_DEBUG
254static void __init print_efi_memmap(void)
255{
256	efi_memory_desc_t *md;
257	void *p;
258	int i;
259
260	for (p = memmap.map, i = 0; p < memmap.map_end; p += memmap.desc_size, i++) {
261		md = p;
262		printk(KERN_INFO "mem%02u: type=%u, attr=0x%llx, "
263			"range=[0x%016llx-0x%016llx) (%lluMB)\n",
264			i, md->type, md->attribute, md->phys_addr,
265			md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
266			(md->num_pages >> (20 - EFI_PAGE_SHIFT)));
267	}
268}
269#endif  /*  EFI_DEBUG  */
270
271/*
272 * Walks the EFI memory map and calls CALLBACK once for each EFI
273 * memory descriptor that has memory that is available for kernel use.
274 */
275void efi_memmap_walk(efi_freemem_callback_t callback, void *arg)
276{
277	int prev_valid = 0;
278	struct range {
279		unsigned long start;
280		unsigned long end;
281	} prev, curr;
282	efi_memory_desc_t *md;
283	unsigned long start, end;
284	void *p;
285
286	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
287		md = p;
288
289		if ((md->num_pages == 0) || (!is_available_memory(md)))
290			continue;
291
292		curr.start = md->phys_addr;
293		curr.end = curr.start + (md->num_pages << EFI_PAGE_SHIFT);
294
295		if (!prev_valid) {
296			prev = curr;
297			prev_valid = 1;
298		} else {
299			if (curr.start < prev.start)
300				printk(KERN_INFO PFX "Unordered memory map\n");
301			if (prev.end == curr.start)
302				prev.end = curr.end;
303			else {
304				start =
305				    (unsigned long) (PAGE_ALIGN(prev.start));
306				end = (unsigned long) (prev.end & PAGE_MASK);
307				if ((end > start)
308				    && (*callback) (start, end, arg) < 0)
309					return;
310				prev = curr;
311			}
312		}
313	}
314	if (prev_valid) {
315		start = (unsigned long) PAGE_ALIGN(prev.start);
316		end = (unsigned long) (prev.end & PAGE_MASK);
317		if (end > start)
318			(*callback) (start, end, arg);
319	}
320}
321
322void __init efi_init(void)
323{
324	efi_config_table_t *config_tables;
325	efi_runtime_services_t *runtime;
326	efi_char16_t *c16;
327	char vendor[100] = "unknown";
328	unsigned long num_config_tables;
329	int i = 0;
330
331	memset(&efi, 0, sizeof(efi) );
332	memset(&efi_phys, 0, sizeof(efi_phys));
333
334	efi_phys.systab = EFI_SYSTAB;
335	memmap.phys_map = EFI_MEMMAP;
336	memmap.nr_map = EFI_MEMMAP_SIZE/EFI_MEMDESC_SIZE;
337	memmap.desc_version = EFI_MEMDESC_VERSION;
338	memmap.desc_size = EFI_MEMDESC_SIZE;
339
340	efi.systab = (efi_system_table_t *)
341		boot_ioremap((unsigned long) efi_phys.systab,
342			sizeof(efi_system_table_t));
343	/*
344	 * Verify the EFI Table
345	 */
346	if (efi.systab == NULL)
347		printk(KERN_ERR PFX "Woah! Couldn't map the EFI system table.\n");
348	if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
349		printk(KERN_ERR PFX "Woah! EFI system table signature incorrect\n");
350	if ((efi.systab->hdr.revision >> 16) == 0)
351		printk(KERN_ERR PFX "Warning: EFI system table version "
352		       "%d.%02d, expected 1.00 or greater\n",
353		       efi.systab->hdr.revision >> 16,
354		       efi.systab->hdr.revision & 0xffff);
355
356	/*
357	 * Grab some details from the system table
358	 */
359	num_config_tables = efi.systab->nr_tables;
360	config_tables = (efi_config_table_t *)efi.systab->tables;
361	runtime = efi.systab->runtime;
362
363	/*
364	 * Show what we know for posterity
365	 */
366	c16 = (efi_char16_t *) boot_ioremap(efi.systab->fw_vendor, 2);
367	if (c16) {
368		for (i = 0; i < (sizeof(vendor) - 1) && *c16; ++i)
369			vendor[i] = *c16++;
370		vendor[i] = '\0';
371	} else
372		printk(KERN_ERR PFX "Could not map the firmware vendor!\n");
373
374	printk(KERN_INFO PFX "EFI v%u.%.02u by %s \n",
375	       efi.systab->hdr.revision >> 16,
376	       efi.systab->hdr.revision & 0xffff, vendor);
377
378	/*
379	 * Let's see what config tables the firmware passed to us.
380	 */
381	config_tables = (efi_config_table_t *)
382				boot_ioremap((unsigned long) config_tables,
383			        num_config_tables * sizeof(efi_config_table_t));
384
385	if (config_tables == NULL)
386		printk(KERN_ERR PFX "Could not map EFI Configuration Table!\n");
387
388	efi.mps        = EFI_INVALID_TABLE_ADDR;
389	efi.acpi       = EFI_INVALID_TABLE_ADDR;
390	efi.acpi20     = EFI_INVALID_TABLE_ADDR;
391	efi.smbios     = EFI_INVALID_TABLE_ADDR;
392	efi.sal_systab = EFI_INVALID_TABLE_ADDR;
393	efi.boot_info  = EFI_INVALID_TABLE_ADDR;
394	efi.hcdp       = EFI_INVALID_TABLE_ADDR;
395	efi.uga        = EFI_INVALID_TABLE_ADDR;
396
397	for (i = 0; i < num_config_tables; i++) {
398		if (efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID) == 0) {
399			efi.mps = config_tables[i].table;
400			printk(KERN_INFO " MPS=0x%lx ", config_tables[i].table);
401		} else
402		    if (efi_guidcmp(config_tables[i].guid, ACPI_20_TABLE_GUID) == 0) {
403			efi.acpi20 = config_tables[i].table;
404			printk(KERN_INFO " ACPI 2.0=0x%lx ", config_tables[i].table);
405		} else
406		    if (efi_guidcmp(config_tables[i].guid, ACPI_TABLE_GUID) == 0) {
407			efi.acpi = config_tables[i].table;
408			printk(KERN_INFO " ACPI=0x%lx ", config_tables[i].table);
409		} else
410		    if (efi_guidcmp(config_tables[i].guid, SMBIOS_TABLE_GUID) == 0) {
411			efi.smbios = config_tables[i].table;
412			printk(KERN_INFO " SMBIOS=0x%lx ", config_tables[i].table);
413		} else
414		    if (efi_guidcmp(config_tables[i].guid, HCDP_TABLE_GUID) == 0) {
415			efi.hcdp = config_tables[i].table;
416			printk(KERN_INFO " HCDP=0x%lx ", config_tables[i].table);
417		} else
418		    if (efi_guidcmp(config_tables[i].guid, UGA_IO_PROTOCOL_GUID) == 0) {
419			efi.uga = config_tables[i].table;
420			printk(KERN_INFO " UGA=0x%lx ", config_tables[i].table);
421		}
422	}
423	printk("\n");
424
425	/*
426	 * Check out the runtime services table. We need to map
427	 * the runtime services table so that we can grab the physical
428	 * address of several of the EFI runtime functions, needed to
429	 * set the firmware into virtual mode.
430	 */
431
432	runtime = (efi_runtime_services_t *) boot_ioremap((unsigned long)
433						runtime,
434				      		sizeof(efi_runtime_services_t));
435	if (runtime != NULL) {
436		/*
437	 	 * We will only need *early* access to the following
438		 * two EFI runtime services before set_virtual_address_map
439		 * is invoked.
440 	 	 */
441		efi_phys.get_time = (efi_get_time_t *) runtime->get_time;
442		efi_phys.set_virtual_address_map =
443			(efi_set_virtual_address_map_t *)
444				runtime->set_virtual_address_map;
445	} else
446		printk(KERN_ERR PFX "Could not map the runtime service table!\n");
447
448	/* Map the EFI memory map for use until paging_init() */
449	memmap.map = boot_ioremap((unsigned long) EFI_MEMMAP, EFI_MEMMAP_SIZE);
450	if (memmap.map == NULL)
451		printk(KERN_ERR PFX "Could not map the EFI memory map!\n");
452
453	memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size);
454
455#if EFI_DEBUG
456	print_efi_memmap();
457#endif
458}
459
460static inline void __init check_range_for_systab(efi_memory_desc_t *md)
461{
462	if (((unsigned long)md->phys_addr <= (unsigned long)efi_phys.systab) &&
463		((unsigned long)efi_phys.systab < md->phys_addr +
464		((unsigned long)md->num_pages << EFI_PAGE_SHIFT))) {
465		unsigned long addr;
466
467		addr = md->virt_addr - md->phys_addr +
468			(unsigned long)efi_phys.systab;
469		efi.systab = (efi_system_table_t *)addr;
470	}
471}
472
473/*
474 * Wrap all the virtual calls in a way that forces the parameters on the stack.
475 */
476
477#define efi_call_virt(f, args...) \
478     ((efi_##f##_t __attribute__((regparm(0)))*)efi.systab->runtime->f)(args)
479
480static efi_status_t virt_efi_get_time(efi_time_t *tm, efi_time_cap_t *tc)
481{
482	return efi_call_virt(get_time, tm, tc);
483}
484
485static efi_status_t virt_efi_set_time (efi_time_t *tm)
486{
487	return efi_call_virt(set_time, tm);
488}
489
490static efi_status_t virt_efi_get_wakeup_time (efi_bool_t *enabled,
491					      efi_bool_t *pending,
492					      efi_time_t *tm)
493{
494	return efi_call_virt(get_wakeup_time, enabled, pending, tm);
495}
496
497static efi_status_t virt_efi_set_wakeup_time (efi_bool_t enabled,
498					      efi_time_t *tm)
499{
500	return efi_call_virt(set_wakeup_time, enabled, tm);
501}
502
503static efi_status_t virt_efi_get_variable (efi_char16_t *name,
504					   efi_guid_t *vendor, u32 *attr,
505					   unsigned long *data_size, void *data)
506{
507	return efi_call_virt(get_variable, name, vendor, attr, data_size, data);
508}
509
510static efi_status_t virt_efi_get_next_variable (unsigned long *name_size,
511						efi_char16_t *name,
512						efi_guid_t *vendor)
513{
514	return efi_call_virt(get_next_variable, name_size, name, vendor);
515}
516
517static efi_status_t virt_efi_set_variable (efi_char16_t *name,
518					   efi_guid_t *vendor,
519					   unsigned long attr,
520					   unsigned long data_size, void *data)
521{
522	return efi_call_virt(set_variable, name, vendor, attr, data_size, data);
523}
524
525static efi_status_t virt_efi_get_next_high_mono_count (u32 *count)
526{
527	return efi_call_virt(get_next_high_mono_count, count);
528}
529
530static void virt_efi_reset_system (int reset_type, efi_status_t status,
531				   unsigned long data_size,
532				   efi_char16_t *data)
533{
534	efi_call_virt(reset_system, reset_type, status, data_size, data);
535}
536
537/*
538 * This function will switch the EFI runtime services to virtual mode.
539 * Essentially, look through the EFI memmap and map every region that
540 * has the runtime attribute bit set in its memory descriptor and update
541 * that memory descriptor with the virtual address obtained from ioremap().
542 * This enables the runtime services to be called without having to
543 * thunk back into physical mode for every invocation.
544 */
545
546void __init efi_enter_virtual_mode(void)
547{
548	efi_memory_desc_t *md;
549	efi_status_t status;
550	void *p;
551
552	efi.systab = NULL;
553
554	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
555		md = p;
556
557		if (!(md->attribute & EFI_MEMORY_RUNTIME))
558			continue;
559
560		md->virt_addr = (unsigned long)ioremap(md->phys_addr,
561			md->num_pages << EFI_PAGE_SHIFT);
562		if (!(unsigned long)md->virt_addr) {
563			printk(KERN_ERR PFX "ioremap of 0x%lX failed\n",
564				(unsigned long)md->phys_addr);
565		}
566		/* update the virtual address of the EFI system table */
567		check_range_for_systab(md);
568	}
569
570	BUG_ON(!efi.systab);
571
572	status = phys_efi_set_virtual_address_map(
573			memmap.desc_size * memmap.nr_map,
574			memmap.desc_size,
575			memmap.desc_version,
576		       	memmap.phys_map);
577
578	if (status != EFI_SUCCESS) {
579		printk (KERN_ALERT "You are screwed! "
580			"Unable to switch EFI into virtual mode "
581			"(status=%lx)\n", status);
582		panic("EFI call to SetVirtualAddressMap() failed!");
583	}
584
585	/*
586	 * Now that EFI is in virtual mode, update the function
587	 * pointers in the runtime service table to the new virtual addresses.
588	 */
589
590	efi.get_time = virt_efi_get_time;
591	efi.set_time = virt_efi_set_time;
592	efi.get_wakeup_time = virt_efi_get_wakeup_time;
593	efi.set_wakeup_time = virt_efi_set_wakeup_time;
594	efi.get_variable = virt_efi_get_variable;
595	efi.get_next_variable = virt_efi_get_next_variable;
596	efi.set_variable = virt_efi_set_variable;
597	efi.get_next_high_mono_count = virt_efi_get_next_high_mono_count;
598	efi.reset_system = virt_efi_reset_system;
599}
600
601void __init
602efi_initialize_iomem_resources(struct resource *code_resource,
603			       struct resource *data_resource)
604{
605	struct resource *res;
606	efi_memory_desc_t *md;
607	void *p;
608
609	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
610		md = p;
611
612		if ((md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT)) >
613		    0x100000000ULL)
614			continue;
615		res = kzalloc(sizeof(struct resource), GFP_ATOMIC);
616		switch (md->type) {
617		case EFI_RESERVED_TYPE:
618			res->name = "Reserved Memory";
619			break;
620		case EFI_LOADER_CODE:
621			res->name = "Loader Code";
622			break;
623		case EFI_LOADER_DATA:
624			res->name = "Loader Data";
625			break;
626		case EFI_BOOT_SERVICES_DATA:
627			res->name = "BootServices Data";
628			break;
629		case EFI_BOOT_SERVICES_CODE:
630			res->name = "BootServices Code";
631			break;
632		case EFI_RUNTIME_SERVICES_CODE:
633			res->name = "Runtime Service Code";
634			break;
635		case EFI_RUNTIME_SERVICES_DATA:
636			res->name = "Runtime Service Data";
637			break;
638		case EFI_CONVENTIONAL_MEMORY:
639			res->name = "Conventional Memory";
640			break;
641		case EFI_UNUSABLE_MEMORY:
642			res->name = "Unusable Memory";
643			break;
644		case EFI_ACPI_RECLAIM_MEMORY:
645			res->name = "ACPI Reclaim";
646			break;
647		case EFI_ACPI_MEMORY_NVS:
648			res->name = "ACPI NVS";
649			break;
650		case EFI_MEMORY_MAPPED_IO:
651			res->name = "Memory Mapped IO";
652			break;
653		case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
654			res->name = "Memory Mapped IO Port Space";
655			break;
656		default:
657			res->name = "Reserved";
658			break;
659		}
660		res->start = md->phys_addr;
661		res->end = res->start + ((md->num_pages << EFI_PAGE_SHIFT) - 1);
662		res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
663		if (request_resource(&iomem_resource, res) < 0)
664			printk(KERN_ERR PFX "Failed to allocate res %s : "
665				"0x%llx-0x%llx\n", res->name,
666				(unsigned long long)res->start,
667				(unsigned long long)res->end);
668		/*
669		 * We don't know which region contains kernel data so we try
670		 * it repeatedly and let the resource manager test it.
671		 */
672		if (md->type == EFI_CONVENTIONAL_MEMORY) {
673			request_resource(res, code_resource);
674			request_resource(res, data_resource);
675#ifdef CONFIG_KEXEC
676			request_resource(res, &crashk_res);
677#endif
678		}
679	}
680}
681
682/*
683 * Convenience functions to obtain memory types and attributes
684 */
685
686u32 efi_mem_type(unsigned long phys_addr)
687{
688	efi_memory_desc_t *md;
689	void *p;
690
691	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
692		md = p;
693		if ((md->phys_addr <= phys_addr) && (phys_addr <
694			(md->phys_addr + (md-> num_pages << EFI_PAGE_SHIFT)) ))
695			return md->type;
696	}
697	return 0;
698}
699
700u64 efi_mem_attributes(unsigned long phys_addr)
701{
702	efi_memory_desc_t *md;
703	void *p;
704
705	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
706		md = p;
707		if ((md->phys_addr <= phys_addr) && (phys_addr <
708			(md->phys_addr + (md-> num_pages << EFI_PAGE_SHIFT)) ))
709			return md->attribute;
710	}
711	return 0;
712}
713