1/*
2 *  linux/arch/arm/mm/mmu.c
3 *
4 *  Copyright (C) 1995-2005 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10#include <linux/module.h>
11#include <linux/kernel.h>
12#include <linux/errno.h>
13#include <linux/init.h>
14#include <linux/bootmem.h>
15#include <linux/mman.h>
16#include <linux/nodemask.h>
17
18#include <asm/mach-types.h>
19#include <asm/setup.h>
20#include <asm/sizes.h>
21#include <asm/tlb.h>
22
23#include <asm/mach/arch.h>
24#include <asm/mach/map.h>
25
26#include "mm.h"
27
28DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
29
30extern void _stext, _etext, __data_start, _end;
31extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
32
33/*
34 * empty_zero_page is a special page that is used for
35 * zero-initialized data and COW.
36 */
37struct page *empty_zero_page;
38
39/*
40 * The pmd table for the upper-most set of pages.
41 */
42pmd_t *top_pmd;
43
44#define CPOLICY_UNCACHED	0
45#define CPOLICY_BUFFERED	1
46#define CPOLICY_WRITETHROUGH	2
47#define CPOLICY_WRITEBACK	3
48#define CPOLICY_WRITEALLOC	4
49
50static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
51static unsigned int ecc_mask __initdata = 0;
52pgprot_t pgprot_user;
53pgprot_t pgprot_kernel;
54
55EXPORT_SYMBOL(pgprot_user);
56EXPORT_SYMBOL(pgprot_kernel);
57
58struct cachepolicy {
59	const char	policy[16];
60	unsigned int	cr_mask;
61	unsigned int	pmd;
62	unsigned int	pte;
63};
64
65static struct cachepolicy cache_policies[] __initdata = {
66	{
67		.policy		= "uncached",
68		.cr_mask	= CR_W|CR_C,
69		.pmd		= PMD_SECT_UNCACHED,
70		.pte		= 0,
71	}, {
72		.policy		= "buffered",
73		.cr_mask	= CR_C,
74		.pmd		= PMD_SECT_BUFFERED,
75		.pte		= PTE_BUFFERABLE,
76	}, {
77		.policy		= "writethrough",
78		.cr_mask	= 0,
79		.pmd		= PMD_SECT_WT,
80		.pte		= PTE_CACHEABLE,
81	}, {
82		.policy		= "writeback",
83		.cr_mask	= 0,
84		.pmd		= PMD_SECT_WB,
85		.pte		= PTE_BUFFERABLE|PTE_CACHEABLE,
86	}, {
87		.policy		= "writealloc",
88		.cr_mask	= 0,
89		.pmd		= PMD_SECT_WBWA,
90		.pte		= PTE_BUFFERABLE|PTE_CACHEABLE,
91	}
92};
93
94/*
95 * These are useful for identifying cache coherency
96 * problems by allowing the cache or the cache and
97 * writebuffer to be turned off.  (Note: the write
98 * buffer should not be on and the cache off).
99 */
100static void __init early_cachepolicy(char **p)
101{
102	int i;
103
104	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
105		int len = strlen(cache_policies[i].policy);
106
107		if (memcmp(*p, cache_policies[i].policy, len) == 0) {
108			cachepolicy = i;
109			cr_alignment &= ~cache_policies[i].cr_mask;
110			cr_no_alignment &= ~cache_policies[i].cr_mask;
111			*p += len;
112			break;
113		}
114	}
115	if (i == ARRAY_SIZE(cache_policies))
116		printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
117	flush_cache_all();
118	set_cr(cr_alignment);
119}
120__early_param("cachepolicy=", early_cachepolicy);
121
122static void __init early_nocache(char **__unused)
123{
124	char *p = "buffered";
125	printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
126	early_cachepolicy(&p);
127}
128__early_param("nocache", early_nocache);
129
130static void __init early_nowrite(char **__unused)
131{
132	char *p = "uncached";
133	printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
134	early_cachepolicy(&p);
135}
136__early_param("nowb", early_nowrite);
137
138static void __init early_ecc(char **p)
139{
140	if (memcmp(*p, "on", 2) == 0) {
141		ecc_mask = PMD_PROTECTION;
142		*p += 2;
143	} else if (memcmp(*p, "off", 3) == 0) {
144		ecc_mask = 0;
145		*p += 3;
146	}
147}
148__early_param("ecc=", early_ecc);
149
150static int __init noalign_setup(char *__unused)
151{
152	cr_alignment &= ~CR_A;
153	cr_no_alignment &= ~CR_A;
154	set_cr(cr_alignment);
155	return 1;
156}
157__setup("noalign", noalign_setup);
158
159#ifndef CONFIG_SMP
160void adjust_cr(unsigned long mask, unsigned long set)
161{
162	unsigned long flags;
163
164	mask &= ~CR_A;
165
166	set &= mask;
167
168	local_irq_save(flags);
169
170	cr_no_alignment = (cr_no_alignment & ~mask) | set;
171	cr_alignment = (cr_alignment & ~mask) | set;
172
173	set_cr((get_cr() & ~mask) | set);
174
175	local_irq_restore(flags);
176}
177#endif
178
179#define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_WRITE
180#define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_XN|PMD_SECT_AP_WRITE
181
182static struct mem_type mem_types[] = {
183	[MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */
184		.prot_pte	= PROT_PTE_DEVICE,
185		.prot_l1	= PMD_TYPE_TABLE,
186		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_UNCACHED,
187		.domain		= DOMAIN_IO,
188	},
189	[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
190		.prot_pte	= PROT_PTE_DEVICE,
191		.prot_pte_ext	= PTE_EXT_TEX(2),
192		.prot_l1	= PMD_TYPE_TABLE,
193		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_TEX(2),
194		.domain		= DOMAIN_IO,
195	},
196	[MT_DEVICE_CACHED] = {	  /* ioremap_cached */
197		.prot_pte	= PROT_PTE_DEVICE | L_PTE_CACHEABLE | L_PTE_BUFFERABLE,
198		.prot_l1	= PMD_TYPE_TABLE,
199		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB,
200		.domain		= DOMAIN_IO,
201	},
202	[MT_DEVICE_IXP2000] = {	  /* IXP2400 requires XCB=101 for on-chip I/O */
203		.prot_pte	= PROT_PTE_DEVICE,
204		.prot_l1	= PMD_TYPE_TABLE,
205		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_BUFFERABLE |
206				  PMD_SECT_TEX(1),
207		.domain		= DOMAIN_IO,
208	},
209	[MT_CACHECLEAN] = {
210		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
211		.domain    = DOMAIN_KERNEL,
212	},
213	[MT_MINICLEAN] = {
214		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
215		.domain    = DOMAIN_KERNEL,
216	},
217	[MT_LOW_VECTORS] = {
218		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
219				L_PTE_EXEC,
220		.prot_l1   = PMD_TYPE_TABLE,
221		.domain    = DOMAIN_USER,
222	},
223	[MT_HIGH_VECTORS] = {
224		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
225				L_PTE_USER | L_PTE_EXEC,
226		.prot_l1   = PMD_TYPE_TABLE,
227		.domain    = DOMAIN_USER,
228	},
229	[MT_MEMORY] = {
230		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
231		.domain    = DOMAIN_KERNEL,
232	},
233	[MT_ROM] = {
234		.prot_sect = PMD_TYPE_SECT,
235		.domain    = DOMAIN_KERNEL,
236	},
237};
238
239const struct mem_type *get_mem_type(unsigned int type)
240{
241	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
242}
243
244/*
245 * Adjust the PMD section entries according to the CPU in use.
246 */
247static void __init build_mem_type_table(void)
248{
249	struct cachepolicy *cp;
250	unsigned int cr = get_cr();
251	unsigned int user_pgprot, kern_pgprot;
252	int cpu_arch = cpu_architecture();
253	int i;
254
255#if defined(CONFIG_CPU_DCACHE_DISABLE)
256	if (cachepolicy > CPOLICY_BUFFERED)
257		cachepolicy = CPOLICY_BUFFERED;
258#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
259	if (cachepolicy > CPOLICY_WRITETHROUGH)
260		cachepolicy = CPOLICY_WRITETHROUGH;
261#endif
262	if (cpu_arch < CPU_ARCH_ARMv5) {
263		if (cachepolicy >= CPOLICY_WRITEALLOC)
264			cachepolicy = CPOLICY_WRITEBACK;
265		ecc_mask = 0;
266	}
267
268	/*
269	 * ARMv5 and lower, bit 4 must be set for page tables.
270	 * (was: cache "update-able on write" bit on ARM610)
271	 * However, Xscale cores require this bit to be cleared.
272	 */
273	if (cpu_is_xscale()) {
274		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
275			mem_types[i].prot_sect &= ~PMD_BIT4;
276			mem_types[i].prot_l1 &= ~PMD_BIT4;
277		}
278	} else if (cpu_arch < CPU_ARCH_ARMv6) {
279		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
280			if (mem_types[i].prot_l1)
281				mem_types[i].prot_l1 |= PMD_BIT4;
282			if (mem_types[i].prot_sect)
283				mem_types[i].prot_sect |= PMD_BIT4;
284		}
285	}
286
287	cp = &cache_policies[cachepolicy];
288	kern_pgprot = user_pgprot = cp->pte;
289
290	/*
291	 * Enable CPU-specific coherency if supported.
292	 * (Only available on XSC3 at the moment.)
293	 */
294	if (arch_is_coherent()) {
295		if (cpu_is_xsc3()) {
296			mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
297			mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
298		}
299	}
300
301	/*
302	 * ARMv6 and above have extended page tables.
303	 */
304	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
305		/*
306		 * Mark cache clean areas and XIP ROM read only
307		 * from SVC mode and no access from userspace.
308		 */
309		mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
310		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
311		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
312
313		/*
314		 * Mark the device area as "shared device"
315		 */
316		mem_types[MT_DEVICE].prot_pte |= L_PTE_BUFFERABLE;
317		mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
318
319#ifdef CONFIG_SMP
320		/*
321		 * Mark memory with the "shared" attribute for SMP systems
322		 */
323		user_pgprot |= L_PTE_SHARED;
324		kern_pgprot |= L_PTE_SHARED;
325		mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
326#endif
327	}
328
329	for (i = 0; i < 16; i++) {
330		unsigned long v = pgprot_val(protection_map[i]);
331		v = (v & ~(L_PTE_BUFFERABLE|L_PTE_CACHEABLE)) | user_pgprot;
332		protection_map[i] = __pgprot(v);
333	}
334
335	mem_types[MT_LOW_VECTORS].prot_pte |= kern_pgprot;
336	mem_types[MT_HIGH_VECTORS].prot_pte |= kern_pgprot;
337
338	if (cpu_arch >= CPU_ARCH_ARMv5) {
339#ifndef CONFIG_SMP
340		/*
341		 * Only use write-through for non-SMP systems
342		 */
343		mem_types[MT_LOW_VECTORS].prot_pte &= ~L_PTE_BUFFERABLE;
344		mem_types[MT_HIGH_VECTORS].prot_pte &= ~L_PTE_BUFFERABLE;
345#endif
346	} else {
347		mem_types[MT_MINICLEAN].prot_sect &= ~PMD_SECT_TEX(1);
348	}
349
350	pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
351	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
352				 L_PTE_DIRTY | L_PTE_WRITE |
353				 L_PTE_EXEC | kern_pgprot);
354
355	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
356	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
357	mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
358	mem_types[MT_ROM].prot_sect |= cp->pmd;
359
360	switch (cp->pmd) {
361	case PMD_SECT_WT:
362		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
363		break;
364	case PMD_SECT_WB:
365	case PMD_SECT_WBWA:
366		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
367		break;
368	}
369	printk("Memory policy: ECC %sabled, Data cache %s\n",
370		ecc_mask ? "en" : "dis", cp->policy);
371
372	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
373		struct mem_type *t = &mem_types[i];
374		if (t->prot_l1)
375			t->prot_l1 |= PMD_DOMAIN(t->domain);
376		if (t->prot_sect)
377			t->prot_sect |= PMD_DOMAIN(t->domain);
378	}
379}
380
381#define vectors_base()	(vectors_high() ? 0xffff0000 : 0)
382
383static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
384				  unsigned long end, unsigned long pfn,
385				  const struct mem_type *type)
386{
387	pte_t *pte;
388
389	if (pmd_none(*pmd)) {
390		pte = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * sizeof(pte_t));
391		__pmd_populate(pmd, __pa(pte) | type->prot_l1);
392	}
393
394	pte = pte_offset_kernel(pmd, addr);
395	do {
396		set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)),
397			    type->prot_pte_ext);
398		pfn++;
399	} while (pte++, addr += PAGE_SIZE, addr != end);
400}
401
402static void __init alloc_init_section(pgd_t *pgd, unsigned long addr,
403				      unsigned long end, unsigned long phys,
404				      const struct mem_type *type)
405{
406	pmd_t *pmd = pmd_offset(pgd, addr);
407
408	/*
409	 * Try a section mapping - end, addr and phys must all be aligned
410	 * to a section boundary.  Note that PMDs refer to the individual
411	 * L1 entries, whereas PGDs refer to a group of L1 entries making
412	 * up one logical pointer to an L2 table.
413	 */
414	if (((addr | end | phys) & ~SECTION_MASK) == 0) {
415		pmd_t *p = pmd;
416
417		if (addr & SECTION_SIZE)
418			pmd++;
419
420		do {
421			*pmd = __pmd(phys | type->prot_sect);
422			phys += SECTION_SIZE;
423		} while (pmd++, addr += SECTION_SIZE, addr != end);
424
425		flush_pmd_entry(p);
426	} else {
427		/*
428		 * No need to loop; pte's aren't interested in the
429		 * individual L1 entries.
430		 */
431		alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
432	}
433}
434
435static void __init create_36bit_mapping(struct map_desc *md,
436					const struct mem_type *type)
437{
438	unsigned long phys, addr, length, end;
439	pgd_t *pgd;
440
441	addr = md->virtual;
442	phys = (unsigned long)__pfn_to_phys(md->pfn);
443	length = PAGE_ALIGN(md->length);
444
445	if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
446		printk(KERN_ERR "MM: CPU does not support supersection "
447		       "mapping for 0x%08llx at 0x%08lx\n",
448		       __pfn_to_phys((u64)md->pfn), addr);
449		return;
450	}
451
452	/* N.B.	ARMv6 supersections are only defined to work with domain 0.
453	 *	Since domain assignments can in fact be arbitrary, the
454	 *	'domain == 0' check below is required to insure that ARMv6
455	 *	supersections are only allocated for domain 0 regardless
456	 *	of the actual domain assignments in use.
457	 */
458	if (type->domain) {
459		printk(KERN_ERR "MM: invalid domain in supersection "
460		       "mapping for 0x%08llx at 0x%08lx\n",
461		       __pfn_to_phys((u64)md->pfn), addr);
462		return;
463	}
464
465	if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
466		printk(KERN_ERR "MM: cannot create mapping for "
467		       "0x%08llx at 0x%08lx invalid alignment\n",
468		       __pfn_to_phys((u64)md->pfn), addr);
469		return;
470	}
471
472	/*
473	 * Shift bits [35:32] of address into bits [23:20] of PMD
474	 * (See ARMv6 spec).
475	 */
476	phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
477
478	pgd = pgd_offset_k(addr);
479	end = addr + length;
480	do {
481		pmd_t *pmd = pmd_offset(pgd, addr);
482		int i;
483
484		for (i = 0; i < 16; i++)
485			*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
486
487		addr += SUPERSECTION_SIZE;
488		phys += SUPERSECTION_SIZE;
489		pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
490	} while (addr != end);
491}
492
493/*
494 * Create the page directory entries and any necessary
495 * page tables for the mapping specified by `md'.  We
496 * are able to cope here with varying sizes and address
497 * offsets, and we take full advantage of sections and
498 * supersections.
499 */
500void __init create_mapping(struct map_desc *md)
501{
502	unsigned long phys, addr, length, end;
503	const struct mem_type *type;
504	pgd_t *pgd;
505
506	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
507		printk(KERN_WARNING "BUG: not creating mapping for "
508		       "0x%08llx at 0x%08lx in user region\n",
509		       __pfn_to_phys((u64)md->pfn), md->virtual);
510		return;
511	}
512
513	if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
514	    md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
515		printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx "
516		       "overlaps vmalloc space\n",
517		       __pfn_to_phys((u64)md->pfn), md->virtual);
518	}
519
520	type = &mem_types[md->type];
521
522	/*
523	 * Catch 36-bit addresses
524	 */
525	if (md->pfn >= 0x100000) {
526		create_36bit_mapping(md, type);
527		return;
528	}
529
530	addr = md->virtual & PAGE_MASK;
531	phys = (unsigned long)__pfn_to_phys(md->pfn);
532	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
533
534	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
535		printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
536		       "be mapped using pages, ignoring.\n",
537		       __pfn_to_phys(md->pfn), addr);
538		return;
539	}
540
541	pgd = pgd_offset_k(addr);
542	end = addr + length;
543	do {
544		unsigned long next = pgd_addr_end(addr, end);
545
546		alloc_init_section(pgd, addr, next, phys, type);
547
548		phys += next - addr;
549		addr = next;
550	} while (pgd++, addr != end);
551}
552
553/*
554 * Create the architecture specific mappings
555 */
556void __init iotable_init(struct map_desc *io_desc, int nr)
557{
558	int i;
559
560	for (i = 0; i < nr; i++)
561		create_mapping(io_desc + i);
562}
563
564static inline void prepare_page_table(struct meminfo *mi)
565{
566	unsigned long addr;
567
568	/*
569	 * Clear out all the mappings below the kernel image.
570	 */
571	for (addr = 0; addr < MODULE_START; addr += PGDIR_SIZE)
572		pmd_clear(pmd_off_k(addr));
573
574#ifdef CONFIG_XIP_KERNEL
575	/* The XIP kernel is mapped in the module area -- skip over it */
576	addr = ((unsigned long)&_etext + PGDIR_SIZE - 1) & PGDIR_MASK;
577#endif
578	for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
579		pmd_clear(pmd_off_k(addr));
580
581	/*
582	 * Clear out all the kernel space mappings, except for the first
583	 * memory bank, up to the end of the vmalloc region.
584	 */
585	for (addr = __phys_to_virt(mi->bank[0].start + mi->bank[0].size);
586	     addr < VMALLOC_END; addr += PGDIR_SIZE)
587		pmd_clear(pmd_off_k(addr));
588}
589
590/*
591 * Reserve the various regions of node 0
592 */
593void __init reserve_node_zero(pg_data_t *pgdat)
594{
595	unsigned long res_size = 0;
596
597	/*
598	 * Register the kernel text and data with bootmem.
599	 * Note that this can only be in node 0.
600	 */
601#ifdef CONFIG_XIP_KERNEL
602	reserve_bootmem_node(pgdat, __pa(&__data_start), &_end - &__data_start);
603#else
604	reserve_bootmem_node(pgdat, __pa(&_stext), &_end - &_stext);
605#endif
606
607	/*
608	 * Reserve the page tables.  These are already in use,
609	 * and can only be in node 0.
610	 */
611	reserve_bootmem_node(pgdat, __pa(swapper_pg_dir),
612			     PTRS_PER_PGD * sizeof(pgd_t));
613
614	/*
615	 * Hmm... This should go elsewhere, but we really really need to
616	 * stop things allocating the low memory; ideally we need a better
617	 * implementation of GFP_DMA which does not assume that DMA-able
618	 * memory starts at zero.
619	 */
620	if (machine_is_integrator() || machine_is_cintegrator())
621		res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
622
623	/*
624	 * These should likewise go elsewhere.  They pre-reserve the
625	 * screen memory region at the start of main system memory.
626	 */
627	if (machine_is_edb7211())
628		res_size = 0x00020000;
629	if (machine_is_p720t())
630		res_size = 0x00014000;
631
632	/* H1940 and RX3715 need to reserve this for suspend */
633
634	if (machine_is_h1940() || machine_is_rx3715()) {
635		reserve_bootmem_node(pgdat, 0x30003000, 0x1000);
636		reserve_bootmem_node(pgdat, 0x30081000, 0x1000);
637	}
638
639#ifdef CONFIG_SA1111
640	/*
641	 * Because of the SA1111 DMA bug, we want to preserve our
642	 * precious DMA-able memory...
643	 */
644	res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
645#endif
646	if (res_size)
647		reserve_bootmem_node(pgdat, PHYS_OFFSET, res_size);
648}
649
650/*
651 * Set up device the mappings.  Since we clear out the page tables for all
652 * mappings above VMALLOC_END, we will remove any debug device mappings.
653 * This means you have to be careful how you debug this function, or any
654 * called function.  This means you can't use any function or debugging
655 * method which may touch any device, otherwise the kernel _will_ crash.
656 */
657static void __init devicemaps_init(struct machine_desc *mdesc)
658{
659	struct map_desc map;
660	unsigned long addr;
661	void *vectors;
662
663	/*
664	 * Allocate the vector page early.
665	 */
666	vectors = alloc_bootmem_low_pages(PAGE_SIZE);
667	BUG_ON(!vectors);
668
669	for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
670		pmd_clear(pmd_off_k(addr));
671
672	/*
673	 * Map the kernel if it is XIP.
674	 * It is always first in the modulearea.
675	 */
676#ifdef CONFIG_XIP_KERNEL
677	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
678	map.virtual = MODULE_START;
679	map.length = ((unsigned long)&_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
680	map.type = MT_ROM;
681	create_mapping(&map);
682#endif
683
684	/*
685	 * Map the cache flushing regions.
686	 */
687#ifdef FLUSH_BASE
688	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
689	map.virtual = FLUSH_BASE;
690	map.length = SZ_1M;
691	map.type = MT_CACHECLEAN;
692	create_mapping(&map);
693#endif
694#ifdef FLUSH_BASE_MINICACHE
695	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
696	map.virtual = FLUSH_BASE_MINICACHE;
697	map.length = SZ_1M;
698	map.type = MT_MINICLEAN;
699	create_mapping(&map);
700#endif
701
702	/*
703	 * Create a mapping for the machine vectors at the high-vectors
704	 * location (0xffff0000).  If we aren't using high-vectors, also
705	 * create a mapping at the low-vectors virtual address.
706	 */
707	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
708	map.virtual = 0xffff0000;
709	map.length = PAGE_SIZE;
710	map.type = MT_HIGH_VECTORS;
711	create_mapping(&map);
712
713	if (!vectors_high()) {
714		map.virtual = 0;
715		map.type = MT_LOW_VECTORS;
716		create_mapping(&map);
717	}
718
719	/*
720	 * Ask the machine support to map in the statically mapped devices.
721	 */
722	if (mdesc->map_io)
723		mdesc->map_io();
724
725	/*
726	 * Finally flush the caches and tlb to ensure that we're in a
727	 * consistent state wrt the writebuffer.  This also ensures that
728	 * any write-allocated cache lines in the vector page are written
729	 * back.  After this point, we can start to touch devices again.
730	 */
731	local_flush_tlb_all();
732	flush_cache_all();
733}
734
735/*
736 * paging_init() sets up the page tables, initialises the zone memory
737 * maps, and sets up the zero page, bad page and bad page tables.
738 */
739void __init paging_init(struct meminfo *mi, struct machine_desc *mdesc)
740{
741	void *zero_page;
742
743	build_mem_type_table();
744	prepare_page_table(mi);
745	bootmem_init(mi);
746	devicemaps_init(mdesc);
747
748	top_pmd = pmd_off_k(0xffff0000);
749
750	/*
751	 * allocate the zero page.  Note that we count on this going ok.
752	 */
753	zero_page = alloc_bootmem_low_pages(PAGE_SIZE);
754	memzero(zero_page, PAGE_SIZE);
755	empty_zero_page = virt_to_page(zero_page);
756	flush_dcache_page(empty_zero_page);
757}
758
759/*
760 * In order to soft-boot, we need to insert a 1:1 mapping in place of
761 * the user-mode pages.  This will then ensure that we have predictable
762 * results when turning the mmu off
763 */
764void setup_mm_for_reboot(char mode)
765{
766	unsigned long base_pmdval;
767	pgd_t *pgd;
768	int i;
769
770	if (current->mm && current->mm->pgd)
771		pgd = current->mm->pgd;
772	else
773		pgd = init_mm.pgd;
774
775	base_pmdval = PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | PMD_TYPE_SECT;
776	if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ && !cpu_is_xscale())
777		base_pmdval |= PMD_BIT4;
778
779	for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) {
780		unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval;
781		pmd_t *pmd;
782
783		pmd = pmd_off(pgd, i << PGDIR_SHIFT);
784		pmd[0] = __pmd(pmdval);
785		pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1)));
786		flush_pmd_entry(pmd);
787	}
788}
789