1/* ========================================================================== **
2 *                              ubi_BinTree.c
3 *
4 *  Copyright (C) 1991-1998 by Christopher R. Hertel
5 *
6 *  Email:  crh@ubiqx.mn.org
7 * -------------------------------------------------------------------------- **
8 *
9 *  This module implements a simple binary tree.
10 *
11 * -------------------------------------------------------------------------- **
12 *
13 *  This library is free software; you can redistribute it and/or
14 *  modify it under the terms of the GNU Library General Public
15 *  License as published by the Free Software Foundation; either
16 *  version 2 of the License, or (at your option) any later version.
17 *
18 *  This library is distributed in the hope that it will be useful,
19 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
20 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
21 *  Library General Public License for more details.
22 *
23 *  You should have received a copy of the GNU Library General Public
24 *  License along with this library; if not, write to the Free
25 *  Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 *
27 * -------------------------------------------------------------------------- **
28 *
29 * Log: ubi_BinTree.c,v
30 * Revision 4.12  2004/06/06 04:51:56  crh
31 * Fixed a small typo in ubi_BinTree.c (leftover testing cruft).
32 * Did a small amount of formatting touchup to ubi_BinTree.h.
33 *
34 * Revision 4.11  2004/06/06 03:14:09  crh
35 * Rewrote the ubi_btLeafNode() function.  It now takes several paths in an
36 * effort to find a deeper leaf node.  There is a small amount of extra
37 * overhead, but it is limited.
38 *
39 * Revision 4.10  2000/06/06 20:38:40  crh
40 * In the ReplaceNode() function, the old node header was being copied
41 * to the new node header using a byte-by-byte copy.  This was causing
42 * the 'insure' software testing program to report a memory leak.  The
43 * fix was to do a simple assignement: *newnode = *oldnode;
44 * This quieted the (errant) memory leak reports and is probably a bit
45 * faster than the bytewise copy.
46 *
47 * Revision 4.9  2000/01/08 23:24:30  crh
48 * Clarified a variety of if( pointer ) lines, replacing them with
49 * if( NULL != pointer ).  This is more correct, and I have heard
50 * of at least one (obscure?) system out there that uses a non-zero
51 * value for NULL.
52 * Also, speed improvement in Neighbor().  It was comparing pointers
53 * when it could have compared two gender values.  The pointer
54 * comparison was somewhat indirect (does pointer equal the pointer
55 * of the parent of the node pointed to by pointer).  Urq.
56 *
57 * Revision 4.8  1999/09/22 03:40:30  crh
58 * Modified ubi_btTraverse() and ubi_btKillTree().  They now return an
59 * unsigned long indicating the number of nodes processed.  The change
60 * is subtle.  An empty tree formerly returned False, and now returns
61 * zero.
62 *
63 * Revision 4.7  1998/10/21 06:14:42  crh
64 * Fixed bugs in FirstOf() and LastOf() reported by Massimo Campostrini.
65 * See function comments.
66 *
67 * Revision 4.6  1998/07/25 17:02:10  crh
68 * Added the ubi_trNewTree() macro.
69 *
70 * Revision 4.5  1998/06/04 21:29:27  crh
71 * Upper-cased defined constants (eg UBI_BINTREE_H) in some header files.
72 * This is more "standard", and is what people expect.  Weird, eh?
73 *
74 * Revision 4.4  1998/06/03 17:42:46  crh
75 * Further fiddling with sys_include.h.  It's now in ubi_BinTree.h which is
76 * included by all of the binary tree files.
77 *
78 * Reminder: Some of the ubi_tr* macros in ubi_BinTree.h are redefined in
79 *           ubi_AVLtree.h and ubi_SplayTree.h.  This allows easy swapping
80 *           of tree types by simply changing a header.  Unfortunately, the
81 *           macro redefinitions in ubi_AVLtree.h and ubi_SplayTree.h will
82 *           conflict if used together.  You must either choose a single tree
83 *           type, or use the underlying function calls directly.  Compare
84 *           the two header files for more information.
85 *
86 * Revision 4.3  1998/06/02 01:28:43  crh
87 * Changed ubi_null.h to sys_include.h to make it more generic.
88 *
89 * Revision 4.2  1998/05/20 04:32:36  crh
90 * The C file now includes ubi_null.h.  See ubi_null.h for more info.
91 * Also, the balance and gender fields of the node were declared as
92 * signed char.  As I understand it, at least one SunOS or Solaris
93 * compiler doesn't like "signed char".  The declarations were
94 * wrong anyway, so I changed them to simple "char".
95 *
96 * Revision 4.1  1998/03/31 06:11:57  crh
97 * Thomas Aglassinger sent E'mail pointing out errors in the
98 * dereferencing of function pointers, and a missing typecast.
99 * Thanks, Thomas!
100 *
101 * Revision 4.0  1998/03/10 03:19:22  crh
102 * Added the AVL field 'balance' to the ubi_btNode structure.  This means
103 * that all BinTree modules now use the same basic node structure, which
104 * greatly simplifies the AVL module.
105 * Decided that this was a big enough change to justify a new major revision
106 * number.  3.0 was an error, so we're at 4.0.
107 *
108 * Revision 2.6  1998/01/24 06:27:46  crh
109 * Added ubi_trCount() macro.
110 *
111 * Revision 2.5  1997/12/23 03:56:29  crh
112 * In this version, all constants & macros defined in the header file have
113 * the ubi_tr prefix.  Also cleaned up anything that gcc complained about
114 * when run with '-pedantic -fsyntax-only -Wall'.
115 *
116 * Revision 2.4  1997/07/26 04:11:10  crh
117 * + Just to be annoying I changed ubi_TRUE and ubi_FALSE to ubi_trTRUE
118 *   and ubi_trFALSE.
119 * + There is now a type ubi_trBool to go with ubi_trTRUE and ubi_trFALSE.
120 * + There used to be something called "ubi_TypeDefs.h".  I got rid of it.
121 * + Added function ubi_btLeafNode().
122 *
123 * Revision 2.3  1997/06/03 05:16:17  crh
124 * Changed TRUE and FALSE to ubi_TRUE and ubi_FALSE to avoid conflicts.
125 * Also changed the interface to function InitTree().  See the comments
126 * for this function for more information.
127 *
128 * Revision 2.2  1995/10/03 22:00:07  CRH
129 * Ubisized!
130 *
131 * Revision 2.1  95/03/09  23:37:10  CRH
132 * Added the ModuleID static string and function.  These modules are now
133 * self-identifying.
134 *
135 * Revision 2.0  95/02/27  22:00:17  CRH
136 * Revision 2.0 of this program includes the following changes:
137 *
138 *     1)  A fix to a major typo in the RepaceNode() function.
139 *     2)  The addition of the static function Border().
140 *     3)  The addition of the public functions FirstOf() and LastOf(), which
141 *         use Border(). These functions are used with trees that allow
142 *         duplicate keys.
143 *     4)  A complete rewrite of the Locate() function.  Locate() now accepts
144 *         a "comparison" operator.
145 *     5)  Overall enhancements to both code and comments.
146 *
147 * I decided to give this a new major rev number because the interface has
148 * changed.  In particular, there are two new functions, and changes to the
149 * Locate() function.
150 *
151 * Revision 1.0  93/10/15  22:44:59  CRH
152 * With this revision, I have added a set of #define's that provide a single,
153 * standard API to all existing tree modules.  Until now, each of the three
154 * existing modules had a different function and typedef prefix, as follows:
155 *
156 *       Module        Prefix
157 *     ubi_BinTree     ubi_bt
158 *     ubi_AVLtree     ubi_avl
159 *     ubi_SplayTree   ubi_spt
160 *
161 * To further complicate matters, only those portions of the base module
162 * (ubi_BinTree) that were superceeded in the new module had the new names.
163 * For example, if you were using ubi_SplayTree, the locate function was
164 * called "ubi_sptLocate", but the next and previous functions remained
165 * "ubi_btNext" and "ubi_btPrev".
166 *
167 * This was not too terrible if you were familiar with the modules and knew
168 * exactly which tree model you wanted to use.  If you wanted to be able to
169 * change modules (for speed comparisons, etc), things could get messy very
170 * quickly.
171 *
172 * So, I have added a set of defined names that get redefined in any of the
173 * descendant modules.  To use this standardized interface in your code,
174 * simply replace all occurances of "ubi_bt", "ubi_avl", and "ubi_spt" with
175 * "ubi_tr".  The "ubi_tr" names will resolve to the correct function or
176 * datatype names for the module that you are using.  Just remember to
177 * include the header for that module in your program file.  Because these
178 * names are handled by the preprocessor, there is no added run-time
179 * overhead.
180 *
181 * Note that the original names do still exist, and can be used if you wish
182 * to write code directly to a specific module.  This should probably only be
183 * done if you are planning to implement a new descendant type, such as
184 * red/black trees.  CRH
185 *
186 *  V0.0 - June, 1991   -  Written by Christopher R. Hertel (CRH).
187 *
188 * ========================================================================== **
189 */
190
191#include "ubi_BinTree.h"  /* Header for this module.   */
192
193
194/* ========================================================================== **
195 * Static data.
196 */
197
198static char ModuleID[] = "ubi_BinTree\n\
199\tRevision: 4.12\n\
200\tDate: 2004/06/06 04:51:56\n\
201\tAuthor: crh\n";
202
203/* ========================================================================== **
204 * Internal (private) functions.
205 */
206
207static ubi_btNodePtr qFind( ubi_btCompFunc cmp,
208                            ubi_btItemPtr  FindMe,
209                   register ubi_btNodePtr  p )
210  /* ------------------------------------------------------------------------ **
211   * This function performs a non-recursive search of a tree for a node
212   * matching a specific key.  It is called "qFind()" because it is
213   * faster that TreeFind (below).
214   *
215   *  Input:
216   *     cmp      -  a pointer to the tree's comparison function.
217   *     FindMe   -  a pointer to the key value for which to search.
218   *     p        -  a pointer to the starting point of the search.  <p>
219   *                 is considered to be the root of a subtree, and only
220   *                 the subtree will be searched.
221   *
222   *  Output:
223   *     A pointer to a node with a key that matches the key indicated by
224   *     FindMe, or NULL if no such node was found.
225   *
226   *  Note:   In a tree that allows duplicates, the pointer returned *might
227   *          not* point to the (sequentially) first occurance of the
228   *          desired key.
229   * ------------------------------------------------------------------------ **
230   */
231  {
232  int tmp;
233
234  while( (NULL != p)
235      && ((tmp = ubi_trAbNormal( (*cmp)(FindMe, p) )) != ubi_trEQUAL) )
236    p = p->Link[tmp];
237
238  return( p );
239  } /* qFind */
240
241static ubi_btNodePtr TreeFind( ubi_btItemPtr  findme,
242                               ubi_btNodePtr  p,
243                               ubi_btNodePtr *parentp,
244                               char          *gender,
245                               ubi_btCompFunc CmpFunc )
246  /* ------------------------------------------------------------------------ **
247   * TreeFind() searches a tree for a given value (findme).  It will return a
248   * pointer to the target node, if found, or NULL if the target node was not
249   * found.
250   *
251   * TreeFind() also returns, via parameters, a pointer to the parent of the
252   * target node, and a LEFT or RIGHT value indicating which child of the
253   * parent is the target node.  *If the target is not found*, then these
254   * values indicate the place at which the target *should be found*.  This
255   * is useful when inserting a new node into a tree or searching for nodes
256   * "near" the target node.
257   *
258   * The parameters are:
259   *
260   *  findme   -  is a pointer to the key information to be searched for.
261   *  p        -  points to the root of the tree to be searched.
262   *  parentp  -  will return a pointer to a pointer to the !parent! of the
263   *              target node, which can be especially usefull if the target
264   *              was not found.
265   *  gender   -  returns LEFT or RIGHT to indicate which child of *parentp
266   *              was last searched.
267   *  CmpFunc  -  points to the comparison function.
268   *
269   * This function is called by ubi_btLocate() and ubi_btInsert().
270   * ------------------------------------------------------------------------ **
271   */
272  {
273  register ubi_btNodePtr tmp_p      = p;
274  ubi_btNodePtr          tmp_pp     = NULL;
275  char                   tmp_gender = ubi_trEQUAL;
276  int                    tmp_cmp;
277
278  while( (NULL != tmp_p)
279     && (ubi_trEQUAL != (tmp_cmp = ubi_trAbNormal((*CmpFunc)(findme, tmp_p)))) )
280    {
281    tmp_pp     = tmp_p;                 /* Keep track of previous node. */
282    tmp_gender = (char)tmp_cmp;         /* Keep track of sex of child.  */
283    tmp_p      = tmp_p->Link[tmp_cmp];  /* Go to child. */
284    }
285  *parentp = tmp_pp;                /* Return results. */
286  *gender  = tmp_gender;
287  return( tmp_p );
288  } /* TreeFind */
289
290static void ReplaceNode( ubi_btNodePtr *parent,
291                         ubi_btNodePtr  oldnode,
292                         ubi_btNodePtr  newnode )
293  /* ------------------------------------------------------------------------ **
294   * Remove node oldnode from the tree, replacing it with node newnode.
295   *
296   * Input:
297   *  parent   - A pointer to he parent pointer of the node to be
298   *             replaced.  <parent> may point to the Link[] field of
299   *             a parent node, or it may indicate the root pointer at
300   *             the top of the tree.
301   *  oldnode  - A pointer to the node that is to be replaced.
302   *  newnode  - A pointer to the node that is to be installed in the
303   *             place of <*oldnode>.
304   *
305   * Notes:    Don't forget to free oldnode.
306   *           Also, this function used to have a really nasty typo
307   *           bug.  "oldnode" and "newnode" were swapped in the line
308   *           that now reads:
309   *     ((unsigned char *)newnode)[i] = ((unsigned char *)oldnode)[i];
310   *           Bleah!
311   * ------------------------------------------------------------------------ **
312   */
313  {
314  *newnode = *oldnode;  /* Copy node internals to new node. */
315
316  (*parent) = newnode;  /* Old node's parent points to new child. */
317  /* Now tell the children about their new step-parent. */
318  if( oldnode->Link[ubi_trLEFT] )
319    (oldnode->Link[ubi_trLEFT])->Link[ubi_trPARENT] = newnode;
320  if( oldnode->Link[ubi_trRIGHT] )
321    (oldnode->Link[ubi_trRIGHT])->Link[ubi_trPARENT] = newnode;
322  } /* ReplaceNode */
323
324static void SwapNodes( ubi_btRootPtr RootPtr,
325                       ubi_btNodePtr Node1,
326                       ubi_btNodePtr Node2 )
327  /* ------------------------------------------------------------------------ **
328   * This function swaps two nodes in the tree.  Node1 will take the place of
329   * Node2, and Node2 will fill in the space left vacant by Node 1.
330   *
331   * Input:
332   *  RootPtr  - pointer to the tree header structure for this tree.
333   *  Node1    - \
334   *              > These are the two nodes which are to be swapped.
335   *  Node2    - /
336   *
337   * Notes:
338   *  This function does a three step swap, using a dummy node as a place
339   *  holder.  This function is used by ubi_btRemove().
340   * ------------------------------------------------------------------------ **
341   */
342  {
343  ubi_btNodePtr *Parent;
344  ubi_btNode     dummy;
345  ubi_btNodePtr  dummy_p = &dummy;
346
347  /* Replace Node 1 with the dummy, thus removing Node1 from the tree. */
348  if( NULL != Node1->Link[ubi_trPARENT] )
349    Parent = &((Node1->Link[ubi_trPARENT])->Link[(int)(Node1->gender)]);
350  else
351    Parent = &(RootPtr->root);
352  ReplaceNode( Parent, Node1, dummy_p );
353
354  /* Swap Node 1 with Node 2, placing Node 1 back into the tree. */
355  if( NULL != Node2->Link[ubi_trPARENT] )
356    Parent = &((Node2->Link[ubi_trPARENT])->Link[(int)(Node2->gender)]);
357  else
358    Parent = &(RootPtr->root);
359  ReplaceNode( Parent, Node2, Node1 );
360
361  /* Swap Node 2 and the dummy, thus placing Node 2 back into the tree. */
362  if( NULL != dummy_p->Link[ubi_trPARENT] )
363    Parent = &((dummy_p->Link[ubi_trPARENT])->Link[(int)(dummy_p->gender)]);
364  else
365    Parent = &(RootPtr->root);
366  ReplaceNode( Parent, dummy_p, Node2 );
367  } /* SwapNodes */
368
369/* -------------------------------------------------------------------------- **
370 * These routines allow you to walk through the tree, forwards or backwards.
371 */
372
373static ubi_btNodePtr SubSlide( register ubi_btNodePtr P,
374                               register int           whichway )
375  /* ------------------------------------------------------------------------ **
376   * Slide down the side of a subtree.
377   *
378   * Given a starting node, this function returns a pointer to the LEFT-, or
379   * RIGHT-most descendent, *or* (if whichway is PARENT) to the tree root.
380   *
381   *  Input:  P         - a pointer to a starting place.
382   *          whichway  - the direction (LEFT, RIGHT, or PARENT) in which to
383   *                      travel.
384   *  Output: A pointer to a node that is either the root, or has no
385   *          whichway-th child but is within the subtree of P.  Note that
386   *          the return value may be the same as P.  The return value *will
387   *          be* NULL if P is NULL.
388   * ------------------------------------------------------------------------ **
389   */
390  {
391
392  if( NULL != P )
393    while( NULL != P->Link[ whichway ] )
394      P = P->Link[ whichway ];
395  return( P );
396  } /* SubSlide */
397
398static ubi_btNodePtr Neighbor( register ubi_btNodePtr P,
399                               register int           whichway )
400  /* ------------------------------------------------------------------------ **
401   * Given starting point p, return the (key order) next or preceeding node
402   * in the tree.
403   *
404   *  Input:  P         - Pointer to our starting place node.
405   *          whichway  - the direction in which to travel to find the
406   *                      neighbor, i.e., the RIGHT neighbor or the LEFT
407   *                      neighbor.
408   *
409   *  Output: A pointer to the neighboring node, or NULL if P was NULL.
410   *
411   *  Notes:  If whichway is PARENT, the results are unpredictable.
412   * ------------------------------------------------------------------------ **
413   */
414  {
415  if( P )
416    {
417    if( NULL != P->Link[ whichway ] )
418      return( SubSlide( P->Link[ whichway ], (char)ubi_trRevWay(whichway) ) );
419    else
420      while( NULL != P->Link[ ubi_trPARENT ] )
421        {
422        if( whichway == P->gender )
423          P = P->Link[ ubi_trPARENT ];
424        else
425          return( P->Link[ ubi_trPARENT ] );
426        }
427    }
428  return( NULL );
429  } /* Neighbor */
430
431static ubi_btNodePtr Border( ubi_btRootPtr RootPtr,
432                             ubi_btItemPtr FindMe,
433                             ubi_btNodePtr p,
434                             int           whichway )
435  /* ------------------------------------------------------------------------ **
436   * Given starting point p, which has a key value equal to *FindMe, locate
437   * the first (index order) node with the same key value.
438   *
439   * This function is useful in trees that have can have duplicate keys.
440   * For example, consider the following tree:
441   *     Tree                                                      Traversal
442   *       2    If <p> points to the root and <whichway> is RIGHT,     3
443   *      / \    then the return value will be a pointer to the       / \
444   *     2   2    RIGHT child of the root node.  The tree on         2   5
445   *    /   / \    the right shows the order of traversal.          /   / \
446   *   1   2   3                                                   1   4   6
447   *
448   *  Input:  RootPtr   - Pointer to the tree root structure.
449   *          FindMe    - Key value for comparisons.
450   *          p         - Pointer to the starting-point node.
451   *          whichway  - the direction in which to travel to find the
452   *                      neighbor, i.e., the RIGHT neighbor or the LEFT
453   *                      neighbor.
454   *
455   *  Output: A pointer to the first (index, or "traversal", order) node with
456   *          a Key value that matches *FindMe.
457   *
458   *  Notes:  If whichway is PARENT, or if the tree does not allow duplicate
459   *          keys, this function will return <p>.
460   * ------------------------------------------------------------------------ **
461   */
462  {
463  register ubi_btNodePtr q;
464
465  /* Exit if there's nothing that can be done. */
466  if( !ubi_trDups_OK( RootPtr ) || (ubi_trPARENT == whichway) )
467    return( p );
468
469  /* First, if needed, move up the tree.  We need to get to the root of the
470   * subtree that contains all of the matching nodes.
471   */
472  q = p->Link[ubi_trPARENT];
473  while( (NULL != q)
474      && (ubi_trEQUAL == ubi_trAbNormal( (*(RootPtr->cmp))(FindMe, q) )) )
475    {
476    p = q;
477    q = p->Link[ubi_trPARENT];
478    }
479
480  /* Next, move back down in the "whichway" direction. */
481  q = p->Link[whichway];
482  while( NULL != q )
483    {
484    q = qFind( RootPtr->cmp, FindMe, q );
485    if( q )
486      {
487      p = q;
488      q = p->Link[whichway];
489      }
490    }
491  return( p );
492  } /* Border */
493
494
495/* ========================================================================== **
496 * Exported utilities.
497 */
498
499long ubi_btSgn( register long x )
500  /* ------------------------------------------------------------------------ **
501   * Return the sign of x; {negative,zero,positive} ==> {-1, 0, 1}.
502   *
503   *  Input:  x - a signed long integer value.
504   *
505   *  Output: the "sign" of x, represented as follows:
506   *            -1 == negative
507   *             0 == zero (no sign)
508   *             1 == positive
509   *
510   * Note: This utility is provided in order to facilitate the conversion
511   *       of C comparison function return values into BinTree direction
512   *       values: {LEFT, PARENT, EQUAL}.  It is INCORPORATED into the
513   *       ubi_trAbNormal() conversion macro!
514   *
515   * ------------------------------------------------------------------------ **
516   */
517  {
518  return( (x)?((x>0)?(1):(-1)):(0) );
519  } /* ubi_btSgn */
520
521ubi_btNodePtr ubi_btInitNode( ubi_btNodePtr NodePtr )
522  /* ------------------------------------------------------------------------ **
523   * Initialize a tree node.
524   *
525   *  Input:  a pointer to a ubi_btNode structure to be initialized.
526   *  Output: a pointer to the initialized ubi_btNode structure (ie. the
527   *          same as the input pointer).
528   * ------------------------------------------------------------------------ **
529   */
530  {
531  NodePtr->Link[ ubi_trLEFT ]   = NULL;
532  NodePtr->Link[ ubi_trPARENT ] = NULL;
533  NodePtr->Link[ ubi_trRIGHT ]  = NULL;
534  NodePtr->gender               = ubi_trEQUAL;
535  NodePtr->balance              = ubi_trEQUAL;
536  return( NodePtr );
537  } /* ubi_btInitNode */
538
539ubi_btRootPtr ubi_btInitTree( ubi_btRootPtr   RootPtr,
540                              ubi_btCompFunc  CompFunc,
541                              char            Flags )
542  /* ------------------------------------------------------------------------ **
543   * Initialize the fields of a Tree Root header structure.
544   *
545   *  Input:   RootPtr   - a pointer to an ubi_btRoot structure to be
546   *                       initialized.
547   *           CompFunc  - a pointer to a comparison function that will be used
548   *                       whenever nodes in the tree must be compared against
549   *                       outside values.
550   *           Flags     - One bytes worth of flags.  Flags include
551   *                       ubi_trOVERWRITE and ubi_trDUPKEY.  See the header
552   *                       file for more info.
553   *
554   *  Output:  a pointer to the initialized ubi_btRoot structure (ie. the
555   *           same value as RootPtr).
556   *
557   *  Note:    The interface to this function has changed from that of
558   *           previous versions.  The <Flags> parameter replaces two
559   *           boolean parameters that had the same basic effect.
560   *
561   * ------------------------------------------------------------------------ **
562   */
563  {
564  if( RootPtr )
565    {
566    RootPtr->root   = NULL;
567    RootPtr->count  = 0L;
568    RootPtr->cmp    = CompFunc;
569    RootPtr->flags  = (Flags & ubi_trDUPKEY) ? ubi_trDUPKEY : Flags;
570    }                 /* There are only two supported flags, and they are
571                       * mutually exclusive.  ubi_trDUPKEY takes precedence
572                       * over ubi_trOVERWRITE.
573                       */
574  return( RootPtr );
575  } /* ubi_btInitTree */
576
577ubi_trBool ubi_btInsert( ubi_btRootPtr  RootPtr,
578                         ubi_btNodePtr  NewNode,
579                         ubi_btItemPtr  ItemPtr,
580                         ubi_btNodePtr *OldNode )
581  /* ------------------------------------------------------------------------ **
582   * This function uses a non-recursive algorithm to add a new element to the
583   * tree.
584   *
585   *  Input:   RootPtr  -  a pointer to the ubi_btRoot structure that indicates
586   *                       the root of the tree to which NewNode is to be added.
587   *           NewNode  -  a pointer to an ubi_btNode structure that is NOT
588   *                       part of any tree.
589   *           ItemPtr  -  A pointer to the sort key that is stored within
590   *                       *NewNode.  ItemPtr MUST point to information stored
591   *                       in *NewNode or an EXACT DUPLICATE.  The key data
592   *                       indicated by ItemPtr is used to place the new node
593   *                       into the tree.
594   *           OldNode  -  a pointer to an ubi_btNodePtr.  When searching
595   *                       the tree, a duplicate node may be found.  If
596   *                       duplicates are allowed, then the new node will
597   *                       be simply placed into the tree.  If duplicates
598   *                       are not allowed, however, then one of two things
599   *                       may happen.
600   *                       1) if overwritting *is not* allowed, this
601   *                          function will return FALSE (indicating that
602   *                          the new node could not be inserted), and
603   *                          *OldNode will point to the duplicate that is
604   *                          still in the tree.
605   *                       2) if overwritting *is* allowed, then this
606   *                          function will swap **OldNode for *NewNode.
607   *                          In this case, *OldNode will point to the node
608   *                          that was removed (thus allowing you to free
609   *                          the node).
610   *                          **  If you are using overwrite mode, ALWAYS  **
611   *                          ** check the return value of this parameter! **
612   *                 Note: You may pass NULL in this parameter, the
613   *                       function knows how to cope.  If you do this,
614   *                       however, there will be no way to return a
615   *                       pointer to an old (ie. replaced) node (which is
616   *                       a problem if you are using overwrite mode).
617   *
618   *  Output:  a boolean value indicating success or failure.  The function
619   *           will return FALSE if the node could not be added to the tree.
620   *           Such failure will only occur if duplicates are not allowed,
621   *           nodes cannot be overwritten, AND a duplicate key was found
622   *           within the tree.
623   * ------------------------------------------------------------------------ **
624   */
625  {
626  ubi_btNodePtr OtherP,
627                parent = NULL;
628  char          tmp;
629
630  if( NULL == OldNode ) /* If they didn't give us a pointer, supply our own.  */
631    OldNode = &OtherP;
632
633  (void)ubi_btInitNode( NewNode );     /* Init the new node's BinTree fields. */
634
635  /* Find a place for the new node. */
636  *OldNode = TreeFind(ItemPtr, (RootPtr->root), &parent, &tmp, (RootPtr->cmp));
637
638  /* Now add the node to the tree... */
639  if( NULL == (*OldNode) )  /* The easy one: we have a space for a new node!  */
640    {
641    if( NULL == parent )
642      RootPtr->root = NewNode;
643    else
644      {
645      parent->Link[(int)tmp]      = NewNode;
646      NewNode->Link[ubi_trPARENT] = parent;
647      NewNode->gender             = tmp;
648      }
649    (RootPtr->count)++;
650    return( ubi_trTRUE );
651    }
652
653  /* If we reach this point, we know that a duplicate node exists.  This
654   * section adds the node to the tree if duplicate keys are allowed.
655   */
656  if( ubi_trDups_OK(RootPtr) )    /* Key exists, add duplicate */
657    {
658    ubi_btNodePtr q;
659
660    tmp = ubi_trRIGHT;
661    q = (*OldNode);
662    *OldNode = NULL;
663    while( NULL != q )
664      {
665      parent = q;
666      if( tmp == ubi_trEQUAL )
667        tmp = ubi_trRIGHT;
668      q = q->Link[(int)tmp];
669      if ( q )
670        tmp = ubi_trAbNormal( (*(RootPtr->cmp))(ItemPtr, q) );
671      }
672    parent->Link[(int)tmp]       = NewNode;
673    NewNode->Link[ubi_trPARENT]  = parent;
674    NewNode->gender              = tmp;
675    (RootPtr->count)++;
676    return( ubi_trTRUE );
677    }
678
679  /* If we get to *this* point, we know that we are not allowed to have
680   * duplicate nodes, but our node keys match, so... may we replace the
681   * old one?
682   */
683  if( ubi_trOvwt_OK(RootPtr) )    /* Key exists, we replace */
684    {
685    if( NULL == parent )
686      ReplaceNode( &(RootPtr->root), *OldNode, NewNode );
687    else
688      ReplaceNode( &(parent->Link[(int)((*OldNode)->gender)]),
689                   *OldNode, NewNode );
690    return( ubi_trTRUE );
691    }
692
693  return( ubi_trFALSE );      /* Failure: could not replace an existing node. */
694  } /* ubi_btInsert */
695
696ubi_btNodePtr ubi_btRemove( ubi_btRootPtr RootPtr,
697                            ubi_btNodePtr DeadNode )
698  /* ------------------------------------------------------------------------ **
699   * This function removes the indicated node from the tree.
700   *
701   *  Input:   RootPtr  -  A pointer to the header of the tree that contains
702   *                       the node to be removed.
703   *           DeadNode -  A pointer to the node that will be removed.
704   *
705   *  Output:  This function returns a pointer to the node that was removed
706   *           from the tree (ie. the same as DeadNode).
707   *
708   *  Note:    The node MUST be in the tree indicated by RootPtr.  If not,
709   *           strange and evil things will happen to your trees.
710   * ------------------------------------------------------------------------ **
711   */
712  {
713  ubi_btNodePtr p,
714               *parentp;
715  int           tmp;
716
717  /* if the node has both left and right subtrees, then we have to swap
718   * it with another node.  The other node we choose will be the Prev()ious
719   * node, which is garunteed to have no RIGHT child.
720   */
721  if( (NULL != DeadNode->Link[ubi_trLEFT])
722   && (NULL != DeadNode->Link[ubi_trRIGHT]) )
723    SwapNodes( RootPtr, DeadNode, ubi_btPrev( DeadNode ) );
724
725  /* The parent of the node to be deleted may be another node, or it may be
726   * the root of the tree.  Since we're not sure, it's best just to have
727   * a pointer to the parent pointer, whatever it is.
728   */
729  if( NULL == DeadNode->Link[ubi_trPARENT] )
730    parentp = &( RootPtr->root );
731  else
732    parentp = &((DeadNode->Link[ubi_trPARENT])->Link[(int)(DeadNode->gender)]);
733
734  /* Now link the parent to the only grand-child and patch up the gender. */
735  tmp = ((DeadNode->Link[ubi_trLEFT])?ubi_trLEFT:ubi_trRIGHT);
736
737  p = (DeadNode->Link[tmp]);
738  if( NULL != p )
739    {
740    p->Link[ubi_trPARENT] = DeadNode->Link[ubi_trPARENT];
741    p->gender       = DeadNode->gender;
742    }
743  (*parentp) = p;
744
745  /* Finished, reduce the node count and return. */
746  (RootPtr->count)--;
747  return( DeadNode );
748  } /* ubi_btRemove */
749
750ubi_btNodePtr ubi_btLocate( ubi_btRootPtr RootPtr,
751                            ubi_btItemPtr FindMe,
752                            ubi_trCompOps CompOp )
753  /* ------------------------------------------------------------------------ **
754   * The purpose of ubi_btLocate() is to find a node or set of nodes given
755   * a target value and a "comparison operator".  The Locate() function is
756   * more flexible and (in the case of trees that may contain dupicate keys)
757   * more precise than the ubi_btFind() function.  The latter is faster,
758   * but it only searches for exact matches and, if the tree contains
759   * duplicates, Find() may return a pointer to any one of the duplicate-
760   * keyed records.
761   *
762   *  Input:
763   *     RootPtr  -  A pointer to the header of the tree to be searched.
764   *     FindMe   -  An ubi_btItemPtr that indicates the key for which to
765   *                 search.
766   *     CompOp   -  One of the following:
767   *                    CompOp     Return a pointer to the node with
768   *                    ------     ---------------------------------
769   *                   ubi_trLT - the last key value that is less
770   *                              than FindMe.
771   *                   ubi_trLE - the first key matching FindMe, or
772   *                              the last key that is less than
773   *                              FindMe.
774   *                   ubi_trEQ - the first key matching FindMe.
775   *                   ubi_trGE - the first key matching FindMe, or the
776   *                              first key greater than FindMe.
777   *                   ubi_trGT - the first key greater than FindMe.
778   *  Output:
779   *     A pointer to the node matching the criteria listed above under
780   *     CompOp, or NULL if no node matched the criteria.
781   *
782   *  Notes:
783   *     In the case of trees with duplicate keys, Locate() will behave as
784   *     follows:
785   *
786   *     Find:  3                       Find: 3
787   *     Keys:  1 2 2 2 3 3 3 3 3 4 4   Keys: 1 1 2 2 2 4 4 5 5 5 6
788   *                  ^ ^         ^                   ^ ^
789   *                 LT EQ        GT                 LE GE
790   *
791   *     That is, when returning a pointer to a node with a key that is LESS
792   *     THAN the target key (FindMe), Locate() will return a pointer to the
793   *     LAST matching node.
794   *     When returning a pointer to a node with a key that is GREATER
795   *     THAN the target key (FindMe), Locate() will return a pointer to the
796   *     FIRST matching node.
797   *
798   *  See Also: ubi_btFind(), ubi_btFirstOf(), ubi_btLastOf().
799   * ------------------------------------------------------------------------ **
800   */
801  {
802  register ubi_btNodePtr p;
803  ubi_btNodePtr   parent;
804  char            whichkid;
805
806  /* Start by searching for a matching node. */
807  p = TreeFind( FindMe,
808                RootPtr->root,
809                &parent,
810                &whichkid,
811                RootPtr->cmp );
812
813  if( NULL != p )    /* If we have found a match, we can resolve as follows:  */
814    {
815    switch( CompOp )
816      {
817      case ubi_trLT:            /* It's just a jump to the left...  */
818        p = Border( RootPtr, FindMe, p, ubi_trLEFT );
819        return( Neighbor( p, ubi_trLEFT ) );
820      case ubi_trGT:            /* ...and then a jump to the right. */
821        p = Border( RootPtr, FindMe, p, ubi_trRIGHT );
822        return( Neighbor( p, ubi_trRIGHT ) );
823      default:
824        p = Border( RootPtr, FindMe, p, ubi_trLEFT );
825        return( p );
826      }
827    }
828
829  /* Else, no match. */
830  if( ubi_trEQ == CompOp )    /* If we were looking for an exact match... */
831    return( NULL );           /* ...forget it.                            */
832
833  /* We can still return a valid result for GT, GE, LE, and LT.
834   * <parent> points to a node with a value that is either just before or
835   * just after the target value.
836   * Remaining possibilities are LT and GT (including LE & GE).
837   */
838  if( (ubi_trLT == CompOp) || (ubi_trLE == CompOp) )
839    return( (ubi_trLEFT == whichkid) ? Neighbor( parent, whichkid ) : parent );
840  else
841    return( (ubi_trRIGHT == whichkid) ? Neighbor( parent, whichkid ) : parent );
842  } /* ubi_btLocate */
843
844ubi_btNodePtr ubi_btFind( ubi_btRootPtr RootPtr,
845                          ubi_btItemPtr FindMe )
846  /* ------------------------------------------------------------------------ **
847   * This function performs a non-recursive search of a tree for any node
848   * matching a specific key.
849   *
850   *  Input:
851   *     RootPtr  -  a pointer to the header of the tree to be searched.
852   *     FindMe   -  a pointer to the key value for which to search.
853   *
854   *  Output:
855   *     A pointer to a node with a key that matches the key indicated by
856   *     FindMe, or NULL if no such node was found.
857   *
858   *  Note:   In a tree that allows duplicates, the pointer returned *might
859   *          not* point to the (sequentially) first occurance of the
860   *          desired key.  In such a tree, it may be more useful to use
861   *          ubi_btLocate().
862   * ------------------------------------------------------------------------ **
863   */
864  {
865  return( qFind( RootPtr->cmp, FindMe, RootPtr->root ) );
866  } /* ubi_btFind */
867
868ubi_btNodePtr ubi_btNext( ubi_btNodePtr P )
869  /* ------------------------------------------------------------------------ **
870   * Given the node indicated by P, find the (sorted order) Next node in the
871   * tree.
872   *  Input:   P  -  a pointer to a node that exists in a binary tree.
873   *  Output:  A pointer to the "next" node in the tree, or NULL if P pointed
874   *           to the "last" node in the tree or was NULL.
875   * ------------------------------------------------------------------------ **
876   */
877  {
878  return( Neighbor( P, ubi_trRIGHT ) );
879  } /* ubi_btNext */
880
881ubi_btNodePtr ubi_btPrev( ubi_btNodePtr P )
882  /* ------------------------------------------------------------------------ **
883   * Given the node indicated by P, find the (sorted order) Previous node in
884   * the tree.
885   *  Input:   P  -  a pointer to a node that exists in a binary tree.
886   *  Output:  A pointer to the "previous" node in the tree, or NULL if P
887   *           pointed to the "first" node in the tree or was NULL.
888   * ------------------------------------------------------------------------ **
889   */
890  {
891  return( Neighbor( P, ubi_trLEFT ) );
892  } /* ubi_btPrev */
893
894ubi_btNodePtr ubi_btFirst( ubi_btNodePtr P )
895  /* ------------------------------------------------------------------------ **
896   * Given the node indicated by P, find the (sorted order) First node in the
897   * subtree of which *P is the root.
898   *  Input:   P  -  a pointer to a node that exists in a binary tree.
899   *  Output:  A pointer to the "first" node in a subtree that has *P as its
900   *           root.  This function will return NULL only if P is NULL.
901   *  Note:    In general, you will be passing in the value of the root field
902   *           of an ubi_btRoot structure.
903   * ------------------------------------------------------------------------ **
904   */
905  {
906  return( SubSlide( P, ubi_trLEFT ) );
907  } /* ubi_btFirst */
908
909ubi_btNodePtr ubi_btLast( ubi_btNodePtr P )
910  /* ------------------------------------------------------------------------ **
911   * Given the node indicated by P, find the (sorted order) Last node in the
912   * subtree of which *P is the root.
913   *  Input:   P  -  a pointer to a node that exists in a binary tree.
914   *  Output:  A pointer to the "last" node in a subtree that has *P as its
915   *           root.  This function will return NULL only if P is NULL.
916   *  Note:    In general, you will be passing in the value of the root field
917   *           of an ubi_btRoot structure.
918   * ------------------------------------------------------------------------ **
919   */
920  {
921  return( SubSlide( P, ubi_trRIGHT ) );
922  } /* ubi_btLast */
923
924ubi_btNodePtr ubi_btFirstOf( ubi_btRootPtr RootPtr,
925                             ubi_btItemPtr MatchMe,
926                             ubi_btNodePtr p )
927  /* ------------------------------------------------------------------------ **
928   * Given a tree that a allows duplicate keys, and a pointer to a node in
929   * the tree, this function will return a pointer to the first (traversal
930   * order) node with the same key value.
931   *
932   *  Input:  RootPtr - A pointer to the root of the tree.
933   *          MatchMe - A pointer to the key value.  This should probably
934   *                    point to the key within node *p.
935   *          p       - A pointer to a node in the tree.
936   *  Output: A pointer to the first node in the set of nodes with keys
937   *          matching <FindMe>.
938   *  Notes:  Node *p MUST be in the set of nodes with keys matching
939   *          <FindMe>.  If not, this function will return NULL.
940   *
941   *          4.7: Bug found & fixed by Massimo Campostrini,
942   *               Istituto Nazionale di Fisica Nucleare, Sezione di Pisa.
943   *
944   * ------------------------------------------------------------------------ **
945   */
946  {
947  /* If our starting point is invalid, return NULL. */
948  if( (NULL == p)
949   || (ubi_trEQUAL != ubi_trAbNormal( (*(RootPtr->cmp))( MatchMe, p ) )) )
950    return( NULL );
951  return( Border( RootPtr, MatchMe, p, ubi_trLEFT ) );
952  } /* ubi_btFirstOf */
953
954ubi_btNodePtr ubi_btLastOf( ubi_btRootPtr RootPtr,
955                            ubi_btItemPtr MatchMe,
956                            ubi_btNodePtr p )
957  /* ------------------------------------------------------------------------ **
958   * Given a tree that a allows duplicate keys, and a pointer to a node in
959   * the tree, this function will return a pointer to the last (traversal
960   * order) node with the same key value.
961   *
962   *  Input:  RootPtr - A pointer to the root of the tree.
963   *          MatchMe - A pointer to the key value.  This should probably
964   *                    point to the key within node *p.
965   *          p       - A pointer to a node in the tree.
966   *  Output: A pointer to the last node in the set of nodes with keys
967   *          matching <FindMe>.
968   *  Notes:  Node *p MUST be in the set of nodes with keys matching
969   *          <FindMe>.  If not, this function will return NULL.
970   *
971   *          4.7: Bug found & fixed by Massimo Campostrini,
972   *               Istituto Nazionale di Fisica Nucleare, Sezione di Pisa.
973   *
974   * ------------------------------------------------------------------------ **
975   */
976  {
977  /* If our starting point is invalid, return NULL. */
978  if( (NULL != p)
979   || (ubi_trEQUAL != ubi_trAbNormal( (*(RootPtr->cmp))( MatchMe, p ) )) )
980    return( NULL );
981  return( Border( RootPtr, MatchMe, p, ubi_trRIGHT ) );
982  } /* ubi_btLastOf */
983
984unsigned long ubi_btTraverse( ubi_btRootPtr   RootPtr,
985                              ubi_btActionRtn EachNode,
986                              void           *UserData )
987  /* ------------------------------------------------------------------------ **
988   * Traverse a tree in sorted order (non-recursively).  At each node, call
989   * (*EachNode)(), passing a pointer to the current node, and UserData as the
990   * second parameter.
991   *
992   *  Input:   RootPtr  -  a pointer to an ubi_btRoot structure that indicates
993   *                       the tree to be traversed.
994   *           EachNode -  a pointer to a function to be called at each node
995   *                       as the node is visited.
996   *           UserData -  a generic pointer that may point to anything that
997   *                       you choose.
998   *
999   *  Output:  A count of the number of nodes visited.  This will be zero
1000   *           if the tree is empty.
1001   *
1002   * ------------------------------------------------------------------------ **
1003   */
1004  {
1005  ubi_btNodePtr p = ubi_btFirst( RootPtr->root );
1006  unsigned long count = 0;
1007
1008  while( NULL != p )
1009    {
1010    (*EachNode)( p, UserData );
1011    count++;
1012    p = ubi_btNext( p );
1013    }
1014  return( count );
1015  } /* ubi_btTraverse */
1016
1017unsigned long ubi_btKillTree( ubi_btRootPtr     RootPtr,
1018                              ubi_btKillNodeRtn FreeNode )
1019  /* ------------------------------------------------------------------------ **
1020   * Delete an entire tree (non-recursively) and reinitialize the ubi_btRoot
1021   * structure.  Return a count of the number of nodes deleted.
1022   *
1023   *  Input:   RootPtr  -  a pointer to an ubi_btRoot structure that indicates
1024   *                       the root of the tree to delete.
1025   *           FreeNode -  a function that will be called for each node in the
1026   *                       tree to deallocate the memory used by the node.
1027   *
1028   *  Output:  The number of nodes removed from the tree.
1029   *           A value of 0 will be returned if:
1030   *           - The tree actually contains 0 entries.
1031   *           - the value of <RootPtr> is NULL, in which case the tree is
1032   *             assumed to be empty
1033   *           - the value of <FreeNode> is NULL, in which case entries
1034   *             cannot be removed, so 0 is returned.  *Make sure that you
1035   *             provide a valid value for <FreeNode>*.
1036   *           In all other cases, you should get a positive value equal to
1037   *           the value of RootPtr->count upon entry.
1038   *
1039   * ------------------------------------------------------------------------ **
1040   */
1041  {
1042  ubi_btNodePtr p, q;
1043  unsigned long count = 0;
1044
1045  if( (NULL == RootPtr) || (NULL == FreeNode) )
1046    return( 0 );
1047
1048  p = ubi_btFirst( RootPtr->root );
1049  while( NULL != p )
1050    {
1051    q = p;
1052    while( q->Link[ubi_trRIGHT] )
1053      q = SubSlide( q->Link[ubi_trRIGHT], ubi_trLEFT );
1054    p = q->Link[ubi_trPARENT];
1055    if( NULL != p )
1056      p->Link[ ((p->Link[ubi_trLEFT] == q)?ubi_trLEFT:ubi_trRIGHT) ] = NULL;
1057    (*FreeNode)((void *)q);
1058    count++;
1059    }
1060
1061  /* overkill... */
1062  (void)ubi_btInitTree( RootPtr,
1063                        RootPtr->cmp,
1064                        RootPtr->flags );
1065  return( count );
1066  } /* ubi_btKillTree */
1067
1068ubi_btNodePtr ubi_btLeafNode( ubi_btNodePtr leader )
1069  /* ------------------------------------------------------------------------ **
1070   * Returns a pointer to a leaf node.
1071   *
1072   *  Input:  leader  - Pointer to a node at which to start the descent.
1073   *
1074   *  Output: A pointer to a leaf node, selected in a somewhat arbitrary
1075   *          manner but with an effort to dig deep.
1076   *
1077   *  Notes:  I wrote this function because I was using splay trees as a
1078   *          database cache.  The cache had a maximum size on it, and I
1079   *          needed a way of choosing a node to sacrifice if the cache
1080   *          became full.  In a splay tree, less recently accessed nodes
1081   *          tend toward the bottom of the tree, meaning that leaf nodes
1082   *          are good candidates for removal.  (I really can't think of
1083   *          any other reason to use this function.)
1084   *        + In a simple binary tree, or in an AVL tree, the most recently
1085   *          added nodes tend to be nearer the bottom, making this a *bad*
1086   *          way to choose which node to remove from the cache.
1087   *        + Randomizing the traversal order is probably a good idea.  You
1088   *          can improve the randomization of leaf node selection by passing
1089   *          in pointers to nodes other than the root node each time.  A
1090   *          pointer to any node in the tree will do.  Of course, if you
1091   *          pass a pointer to a leaf node you'll get the same thing back.
1092   *        + In an unbalanced splay tree, if you simply traverse downward
1093   *          until you hit a leaf node it is possible to accidentally
1094   *          stumble onto a short path.  The result will be a leaf node
1095   *          that is actually very high in the tree--possibly a very
1096   *          recently accessed node.  Not good.  This function can follow
1097   *          multiple paths in an effort to find a leaf node deeper
1098   *          in the tree.  Following a single path, of course, is the
1099   *          fastest way to find a leaf node.  A complete traversal would
1100   *          be sure to find the deepest leaf but would be very costly in
1101   *          terms of time.  This function uses a compromise that has
1102   *          worked well in testing.
1103   *
1104   * ------------------------------------------------------------------------ **
1105   */
1106  {
1107  #define MAXPATHS 4  /* Set higher for more maximum paths, lower for fewer.  */
1108  ubi_trNodePtr p[MAXPATHS];
1109  ubi_trNodePtr q[MAXPATHS];
1110  int           whichway = ubi_trLEFT;
1111  int           paths;
1112  int           i, j;
1113
1114  /* If the subtree is empty, return NULL.
1115   */
1116  if( NULL == leader )
1117    return( NULL );
1118
1119  /* Initialize the p[] array with a pointer to the single node we've been
1120   * given as a starting point.
1121   */
1122  p[0]  = leader;
1123  paths = 1;
1124  while( paths > 0 )
1125    {
1126    for( i = 0; i < paths; i++ )
1127      q[i] = p[i];
1128
1129    for( i = j = 0; (i < paths) && (j < MAXPATHS); i++ )
1130      {
1131      if( NULL != q[i]->Link[whichway] )
1132        p[j++] = q[i]->Link[whichway];
1133      whichway = ubi_trRevWay( whichway );
1134      if( (j < MAXPATHS) && (NULL != q[i]->Link[whichway]) )
1135        p[j++] = q[i]->Link[whichway];
1136      }
1137    paths = j;
1138    }
1139
1140  return( q[0] );
1141  } /* ubi_btLeafNode */
1142
1143int ubi_btModuleID( int size, char *list[] )
1144  /* ------------------------------------------------------------------------ **
1145   * Returns a set of strings that identify the module.
1146   *
1147   *  Input:  size  - The number of elements in the array <list>.
1148   *          list  - An array of pointers of type (char *).  This array
1149   *                  should, initially, be empty.  This function will fill
1150   *                  in the array with pointers to strings.
1151   *  Output: The number of elements of <list> that were used.  If this value
1152   *          is less than <size>, the values of the remaining elements are
1153   *          not guaranteed.
1154   *
1155   *  Notes:  Please keep in mind that the pointers returned indicate strings
1156   *          stored in static memory.  Don't free() them, don't write over
1157   *          them, etc.  Just read them.
1158   * ------------------------------------------------------------------------ **
1159   */
1160  {
1161  if( size > 0 )
1162    {
1163    list[0] = ModuleID;
1164    if( size > 1 )
1165      list[1] = NULL;
1166    return( 1 );
1167    }
1168  return( 0 );
1169  } /* ubi_btModuleID */
1170
1171
1172/* ========================================================================== */
1173