1/* crypto/md32_common.h */
2/* ====================================================================
3 * Copyright (c) 1999-2002 The OpenSSL Project.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in
14 *    the documentation and/or other materials provided with the
15 *    distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 *    software must display the following acknowledgment:
19 *    "This product includes software developed by the OpenSSL Project
20 *    for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 *    endorse or promote products derived from this software without
24 *    prior written permission. For written permission, please contact
25 *    licensing@OpenSSL.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 *    nor may "OpenSSL" appear in their names without prior written
29 *    permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 *    acknowledgment:
33 *    "This product includes software developed by the OpenSSL Project
34 *    for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ====================================================================
49 *
50 * This product includes cryptographic software written by Eric Young
51 * (eay@cryptsoft.com).  This product includes software written by Tim
52 * Hudson (tjh@cryptsoft.com).
53 *
54 */
55
56/*
57 * This is a generic 32 bit "collector" for message digest algorithms.
58 * Whenever needed it collects input character stream into chunks of
59 * 32 bit values and invokes a block function that performs actual hash
60 * calculations.
61 *
62 * Porting guide.
63 *
64 * Obligatory macros:
65 *
66 * DATA_ORDER_IS_BIG_ENDIAN or DATA_ORDER_IS_LITTLE_ENDIAN
67 *	this macro defines byte order of input stream.
68 * HASH_CBLOCK
69 *	size of a unit chunk HASH_BLOCK operates on.
70 * HASH_LONG
71 *	has to be at lest 32 bit wide, if it's wider, then
72 *	HASH_LONG_LOG2 *has to* be defined along
73 * HASH_CTX
74 *	context structure that at least contains following
75 *	members:
76 *		typedef struct {
77 *			...
78 *			HASH_LONG	Nl,Nh;
79 *			HASH_LONG	data[HASH_LBLOCK];
80 *			unsigned int	num;
81 *			...
82 *			} HASH_CTX;
83 * HASH_UPDATE
84 *	name of "Update" function, implemented here.
85 * HASH_TRANSFORM
86 *	name of "Transform" function, implemented here.
87 * HASH_FINAL
88 *	name of "Final" function, implemented here.
89 * HASH_BLOCK_HOST_ORDER
90 *	name of "block" function treating *aligned* input message
91 *	in host byte order, implemented externally.
92 * HASH_BLOCK_DATA_ORDER
93 *	name of "block" function treating *unaligned* input message
94 *	in original (data) byte order, implemented externally (it
95 *	actually is optional if data and host are of the same
96 *	"endianess").
97 * HASH_MAKE_STRING
98 *	macro convering context variables to an ASCII hash string.
99 *
100 * Optional macros:
101 *
102 * B_ENDIAN or L_ENDIAN
103 *	defines host byte-order.
104 * HASH_LONG_LOG2
105 *	defaults to 2 if not states otherwise.
106 * HASH_LBLOCK
107 *	assumed to be HASH_CBLOCK/4 if not stated otherwise.
108 * HASH_BLOCK_DATA_ORDER_ALIGNED
109 *	alternative "block" function capable of treating
110 *	aligned input message in original (data) order,
111 *	implemented externally.
112 *
113 * MD5 example:
114 *
115 *	#define DATA_ORDER_IS_LITTLE_ENDIAN
116 *
117 *	#define HASH_LONG		MD5_LONG
118 *	#define HASH_LONG_LOG2		MD5_LONG_LOG2
119 *	#define HASH_CTX		MD5_CTX
120 *	#define HASH_CBLOCK		MD5_CBLOCK
121 *	#define HASH_LBLOCK		MD5_LBLOCK
122 *	#define HASH_UPDATE		MD5_Update
123 *	#define HASH_TRANSFORM		MD5_Transform
124 *	#define HASH_FINAL		MD5_Final
125 *	#define HASH_BLOCK_HOST_ORDER	md5_block_host_order
126 *	#define HASH_BLOCK_DATA_ORDER	md5_block_data_order
127 *
128 *					<appro@fy.chalmers.se>
129 */
130
131#if !defined(DATA_ORDER_IS_BIG_ENDIAN) && !defined(DATA_ORDER_IS_LITTLE_ENDIAN)
132#error "DATA_ORDER must be defined!"
133#endif
134
135#ifndef HASH_CBLOCK
136#error "HASH_CBLOCK must be defined!"
137#endif
138#ifndef HASH_LONG
139#error "HASH_LONG must be defined!"
140#endif
141#ifndef HASH_CTX
142#error "HASH_CTX must be defined!"
143#endif
144
145#ifndef HASH_UPDATE
146#error "HASH_UPDATE must be defined!"
147#endif
148#ifndef HASH_TRANSFORM
149#error "HASH_TRANSFORM must be defined!"
150#endif
151#ifndef HASH_FINAL
152#error "HASH_FINAL must be defined!"
153#endif
154
155#ifndef HASH_BLOCK_HOST_ORDER
156#error "HASH_BLOCK_HOST_ORDER must be defined!"
157#endif
158
159#if 0
160/*
161 * Moved below as it's required only if HASH_BLOCK_DATA_ORDER_ALIGNED
162 * isn't defined.
163 */
164#ifndef HASH_BLOCK_DATA_ORDER
165#error "HASH_BLOCK_DATA_ORDER must be defined!"
166#endif
167#endif
168
169#ifndef HASH_LBLOCK
170#define HASH_LBLOCK	(HASH_CBLOCK/4)
171#endif
172
173#ifndef HASH_LONG_LOG2
174#define HASH_LONG_LOG2	2
175#endif
176
177/*
178 * Engage compiler specific rotate intrinsic function if available.
179 */
180#undef ROTATE
181#ifndef PEDANTIC
182# if defined(_MSC_VER) || defined(__ICC)
183#  define ROTATE(a,n)	_lrotl(a,n)
184# elif defined(__MWERKS__)
185#  if defined(__POWERPC__)
186#   define ROTATE(a,n)	__rlwinm(a,n,0,31)
187#  elif defined(__MC68K__)
188    /* Motorola specific tweak. <appro@fy.chalmers.se> */
189#   define ROTATE(a,n)	( n<24 ? __rol(a,n) : __ror(a,32-n) )
190#  else
191#   define ROTATE(a,n)	__rol(a,n)
192#  endif
193# elif defined(__GNUC__) && __GNUC__>=2 && !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM)
194  /*
195   * Some GNU C inline assembler templates. Note that these are
196   * rotates by *constant* number of bits! But that's exactly
197   * what we need here...
198   * 					<appro@fy.chalmers.se>
199   */
200#  if defined(__i386) || defined(__i386__) || defined(__x86_64) || defined(__x86_64__)
201#   define ROTATE(a,n)	({ register unsigned int ret;	\
202				asm (			\
203				"roll %1,%0"		\
204				: "=r"(ret)		\
205				: "I"(n), "0"(a)	\
206				: "cc");		\
207			   ret;				\
208			})
209#  elif defined(__powerpc) || defined(__ppc)
210#   define ROTATE(a,n)	({ register unsigned int ret;	\
211				asm (			\
212				"rlwinm %0,%1,%2,0,31"	\
213				: "=r"(ret)		\
214				: "r"(a), "I"(n));	\
215			   ret;				\
216			})
217#  endif
218# endif
219#endif /* PEDANTIC */
220
221#if HASH_LONG_LOG2==2	/* Engage only if sizeof(HASH_LONG)== 4 */
222/* A nice byte order reversal from Wei Dai <weidai@eskimo.com> */
223#ifdef ROTATE
224/* 5 instructions with rotate instruction, else 9 */
225#define REVERSE_FETCH32(a,l)	(					\
226		l=*(const HASH_LONG *)(a),				\
227		((ROTATE(l,8)&0x00FF00FF)|(ROTATE((l&0x00FF00FF),24)))	\
228				)
229#else
230/* 6 instructions with rotate instruction, else 8 */
231#define REVERSE_FETCH32(a,l)	(				\
232		l=*(const HASH_LONG *)(a),			\
233		l=(((l>>8)&0x00FF00FF)|((l&0x00FF00FF)<<8)),	\
234		ROTATE(l,16)					\
235				)
236/*
237 * Originally the middle line started with l=(((l&0xFF00FF00)>>8)|...
238 * It's rewritten as above for two reasons:
239 *	- RISCs aren't good at long constants and have to explicitely
240 *	  compose 'em with several (well, usually 2) instructions in a
241 *	  register before performing the actual operation and (as you
242 *	  already realized:-) having same constant should inspire the
243 *	  compiler to permanently allocate the only register for it;
244 *	- most modern CPUs have two ALUs, but usually only one has
245 *	  circuitry for shifts:-( this minor tweak inspires compiler
246 *	  to schedule shift instructions in a better way...
247 *
248 *				<appro@fy.chalmers.se>
249 */
250#endif
251#endif
252
253#ifndef ROTATE
254#define ROTATE(a,n)     (((a)<<(n))|(((a)&0xffffffff)>>(32-(n))))
255#endif
256
257/*
258 * Make some obvious choices. E.g., HASH_BLOCK_DATA_ORDER_ALIGNED
259 * and HASH_BLOCK_HOST_ORDER ought to be the same if input data
260 * and host are of the same "endianess". It's possible to mask
261 * this with blank #define HASH_BLOCK_DATA_ORDER though...
262 *
263 *				<appro@fy.chalmers.se>
264 */
265#if defined(B_ENDIAN)
266#  if defined(DATA_ORDER_IS_BIG_ENDIAN)
267#    if !defined(HASH_BLOCK_DATA_ORDER_ALIGNED) && HASH_LONG_LOG2==2
268#      define HASH_BLOCK_DATA_ORDER_ALIGNED	HASH_BLOCK_HOST_ORDER
269#    endif
270#  endif
271#elif defined(L_ENDIAN)
272#  if defined(DATA_ORDER_IS_LITTLE_ENDIAN)
273#    if !defined(HASH_BLOCK_DATA_ORDER_ALIGNED) && HASH_LONG_LOG2==2
274#      define HASH_BLOCK_DATA_ORDER_ALIGNED	HASH_BLOCK_HOST_ORDER
275#    endif
276#  endif
277#endif
278
279#if !defined(HASH_BLOCK_DATA_ORDER_ALIGNED)
280#ifndef HASH_BLOCK_DATA_ORDER
281#error "HASH_BLOCK_DATA_ORDER must be defined!"
282#endif
283#endif
284
285#if defined(DATA_ORDER_IS_BIG_ENDIAN)
286
287#ifndef PEDANTIC
288# if defined(__GNUC__) && __GNUC__>=2 && !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM)
289#  if defined(__i386) || defined(__i386__) || defined(__x86_64) || defined(__x86_64__)
290    /*
291     * This gives ~30-40% performance improvement in SHA-256 compiled
292     * with gcc [on P4]. Well, first macro to be frank. We can pull
293     * this trick on x86* platforms only, because these CPUs can fetch
294     * unaligned data without raising an exception.
295     */
296#   define HOST_c2l(c,l)	({ unsigned int r=*((const unsigned int *)(c));	\
297				   asm ("bswapl %0":"=r"(r):"0"(r));	\
298				   (c)+=4; (l)=r;			})
299#   define HOST_l2c(l,c)	({ unsigned int r=(l);			\
300				   asm ("bswapl %0":"=r"(r):"0"(r));	\
301				   *((unsigned int *)(c))=r; (c)+=4; r;	})
302#  endif
303# endif
304#endif
305
306#ifndef HOST_c2l
307#define HOST_c2l(c,l)	(l =(((unsigned long)(*((c)++)))<<24),		\
308			 l|=(((unsigned long)(*((c)++)))<<16),		\
309			 l|=(((unsigned long)(*((c)++)))<< 8),		\
310			 l|=(((unsigned long)(*((c)++)))    ),		\
311			 l)
312#endif
313#define HOST_p_c2l(c,l,n)	{					\
314			switch (n) {					\
315			case 0: l =((unsigned long)(*((c)++)))<<24;	\
316			case 1: l|=((unsigned long)(*((c)++)))<<16;	\
317			case 2: l|=((unsigned long)(*((c)++)))<< 8;	\
318			case 3: l|=((unsigned long)(*((c)++)));		\
319				} }
320#define HOST_p_c2l_p(c,l,sc,len) {					\
321			switch (sc) {					\
322			case 0: l =((unsigned long)(*((c)++)))<<24;	\
323				if (--len == 0) break;			\
324			case 1: l|=((unsigned long)(*((c)++)))<<16;	\
325				if (--len == 0) break;			\
326			case 2: l|=((unsigned long)(*((c)++)))<< 8;	\
327				} }
328/* NOTE the pointer is not incremented at the end of this */
329#define HOST_c2l_p(c,l,n)	{					\
330			l=0; (c)+=n;					\
331			switch (n) {					\
332			case 3: l =((unsigned long)(*(--(c))))<< 8;	\
333			case 2: l|=((unsigned long)(*(--(c))))<<16;	\
334			case 1: l|=((unsigned long)(*(--(c))))<<24;	\
335				} }
336#ifndef HOST_l2c
337#define HOST_l2c(l,c)	(*((c)++)=(unsigned char)(((l)>>24)&0xff),	\
338			 *((c)++)=(unsigned char)(((l)>>16)&0xff),	\
339			 *((c)++)=(unsigned char)(((l)>> 8)&0xff),	\
340			 *((c)++)=(unsigned char)(((l)    )&0xff),	\
341			 l)
342#endif
343
344#elif defined(DATA_ORDER_IS_LITTLE_ENDIAN)
345
346#if defined(__i386) || defined(__i386__) || defined(__x86_64) || defined(__x86_64__)
347  /* See comment in DATA_ORDER_IS_BIG_ENDIAN section. */
348# define HOST_c2l(c,l)	((l)=*((const unsigned int *)(c)), (c)+=4, l)
349# define HOST_l2c(l,c)	(*((unsigned int *)(c))=(l), (c)+=4, l)
350#endif
351
352#ifndef HOST_c2l
353#define HOST_c2l(c,l)	(l =(((unsigned long)(*((c)++)))    ),		\
354			 l|=(((unsigned long)(*((c)++)))<< 8),		\
355			 l|=(((unsigned long)(*((c)++)))<<16),		\
356			 l|=(((unsigned long)(*((c)++)))<<24),		\
357			 l)
358#endif
359#define HOST_p_c2l(c,l,n)	{					\
360			switch (n) {					\
361			case 0: l =((unsigned long)(*((c)++)));		\
362			case 1: l|=((unsigned long)(*((c)++)))<< 8;	\
363			case 2: l|=((unsigned long)(*((c)++)))<<16;	\
364			case 3: l|=((unsigned long)(*((c)++)))<<24;	\
365				} }
366#define HOST_p_c2l_p(c,l,sc,len) {					\
367			switch (sc) {					\
368			case 0: l =((unsigned long)(*((c)++)));		\
369				if (--len == 0) break;			\
370			case 1: l|=((unsigned long)(*((c)++)))<< 8;	\
371				if (--len == 0) break;			\
372			case 2: l|=((unsigned long)(*((c)++)))<<16;	\
373				} }
374/* NOTE the pointer is not incremented at the end of this */
375#define HOST_c2l_p(c,l,n)	{					\
376			l=0; (c)+=n;					\
377			switch (n) {					\
378			case 3: l =((unsigned long)(*(--(c))))<<16;	\
379			case 2: l|=((unsigned long)(*(--(c))))<< 8;	\
380			case 1: l|=((unsigned long)(*(--(c))));		\
381				} }
382#ifndef HOST_l2c
383#define HOST_l2c(l,c)	(*((c)++)=(unsigned char)(((l)    )&0xff),	\
384			 *((c)++)=(unsigned char)(((l)>> 8)&0xff),	\
385			 *((c)++)=(unsigned char)(((l)>>16)&0xff),	\
386			 *((c)++)=(unsigned char)(((l)>>24)&0xff),	\
387			 l)
388#endif
389
390#endif
391
392/*
393 * Time for some action:-)
394 */
395
396int HASH_UPDATE (HASH_CTX *c, const void *data_, FIPS_SHA_SIZE_T len)
397	{
398	const unsigned char *data=data_;
399	register HASH_LONG * p;
400	register HASH_LONG l;
401	size_t sw,sc,ew,ec;
402
403	if(FIPS_selftest_failed())
404		return 0;
405
406	if (len==0) return 1;
407
408	l=(c->Nl+(((HASH_LONG)len)<<3))&0xffffffffUL;
409	/* 95-05-24 eay Fixed a bug with the overflow handling, thanks to
410	 * Wei Dai <weidai@eskimo.com> for pointing it out. */
411	if (l < c->Nl) /* overflow */
412		c->Nh++;
413	c->Nh+=(len>>29);	/* might cause compiler warning on 16-bit */
414	c->Nl=l;
415
416	if (c->num != 0)
417		{
418		p=c->data;
419		sw=c->num>>2;
420		sc=c->num&0x03;
421
422		if ((c->num+len) >= HASH_CBLOCK)
423			{
424			l=p[sw]; HOST_p_c2l(data,l,sc); p[sw++]=l;
425			for (; sw<HASH_LBLOCK; sw++)
426				{
427				HOST_c2l(data,l); p[sw]=l;
428				}
429			HASH_BLOCK_HOST_ORDER (c,p,1);
430			len-=(HASH_CBLOCK-c->num);
431			c->num=0;
432			/* drop through and do the rest */
433			}
434		else
435			{
436			c->num+=(unsigned int)len;
437			if ((sc+len) < 4) /* ugly, add char's to a word */
438				{
439				l=p[sw]; HOST_p_c2l_p(data,l,sc,len); p[sw]=l;
440				}
441			else
442				{
443				ew=(c->num>>2);
444				ec=(c->num&0x03);
445				if (sc)
446					l=p[sw];
447				HOST_p_c2l(data,l,sc);
448				p[sw++]=l;
449				for (; sw < ew; sw++)
450					{
451					HOST_c2l(data,l); p[sw]=l;
452					}
453				if (ec)
454					{
455					HOST_c2l_p(data,l,ec); p[sw]=l;
456					}
457				}
458			return 1;
459			}
460		}
461
462	sw=len/HASH_CBLOCK;
463	if (sw > 0)
464		{
465#if defined(HASH_BLOCK_DATA_ORDER_ALIGNED)
466		/*
467		 * Note that HASH_BLOCK_DATA_ORDER_ALIGNED gets defined
468		 * only if sizeof(HASH_LONG)==4.
469		 */
470		if ((((size_t)data)%4) == 0)
471			{
472			/* data is properly aligned so that we can cast it: */
473			HASH_BLOCK_DATA_ORDER_ALIGNED (c,(const HASH_LONG *)data,sw);
474			sw*=HASH_CBLOCK;
475			data+=sw;
476			len-=sw;
477			}
478		else
479#if !defined(HASH_BLOCK_DATA_ORDER)
480			while (sw--)
481				{
482				memcpy (p=c->data,data,HASH_CBLOCK);
483				HASH_BLOCK_DATA_ORDER_ALIGNED(c,p,1);
484				data+=HASH_CBLOCK;
485				len-=HASH_CBLOCK;
486				}
487#endif
488#endif
489#if defined(HASH_BLOCK_DATA_ORDER)
490			{
491			HASH_BLOCK_DATA_ORDER(c,data,sw);
492			sw*=HASH_CBLOCK;
493			data+=sw;
494			len-=sw;
495			}
496#endif
497		}
498
499	if (len!=0)
500		{
501		p = c->data;
502		c->num = len;
503		ew=len>>2;	/* words to copy */
504		ec=len&0x03;
505		for (; ew; ew--,p++)
506			{
507			HOST_c2l(data,l); *p=l;
508			}
509		HOST_c2l_p(data,l,ec);
510		*p=l;
511		}
512	return 1;
513	}
514
515
516void HASH_TRANSFORM (HASH_CTX *c, const unsigned char *data)
517	{
518#if defined(HASH_BLOCK_DATA_ORDER_ALIGNED)
519	if ((((size_t)data)%4) == 0)
520		/* data is properly aligned so that we can cast it: */
521		HASH_BLOCK_DATA_ORDER_ALIGNED (c,(const HASH_LONG *)data,1);
522	else
523#if !defined(HASH_BLOCK_DATA_ORDER)
524		{
525		memcpy (c->data,data,HASH_CBLOCK);
526		HASH_BLOCK_DATA_ORDER_ALIGNED (c,c->data,1);
527		}
528#endif
529#endif
530#if defined(HASH_BLOCK_DATA_ORDER)
531	HASH_BLOCK_DATA_ORDER (c,data,1);
532#endif
533	}
534
535
536int HASH_FINAL (unsigned char *md, HASH_CTX *c)
537	{
538	register HASH_LONG *p;
539	register unsigned long l;
540	register int i,j;
541	static const unsigned char end[4]={0x80,0x00,0x00,0x00};
542	const unsigned char *cp=end;
543
544	/* c->num should definitly have room for at least one more byte. */
545	p=c->data;
546	i=c->num>>2;
547	j=c->num&0x03;
548
549#if 0
550	/* purify often complains about the following line as an
551	 * Uninitialized Memory Read.  While this can be true, the
552	 * following p_c2l macro will reset l when that case is true.
553	 * This is because j&0x03 contains the number of 'valid' bytes
554	 * already in p[i].  If and only if j&0x03 == 0, the UMR will
555	 * occur but this is also the only time p_c2l will do
556	 * l= *(cp++) instead of l|= *(cp++)
557	 * Many thanks to Alex Tang <altitude@cic.net> for pickup this
558	 * 'potential bug' */
559#ifdef PURIFY
560	if (j==0) p[i]=0; /* Yeah, but that's not the way to fix it:-) */
561#endif
562	l=p[i];
563#else
564	l = (j==0) ? 0 : p[i];
565#endif
566	HOST_p_c2l(cp,l,j); p[i++]=l; /* i is the next 'undefined word' */
567
568	if (i>(HASH_LBLOCK-2)) /* save room for Nl and Nh */
569		{
570		if (i<HASH_LBLOCK) p[i]=0;
571		HASH_BLOCK_HOST_ORDER (c,p,1);
572		i=0;
573		}
574	for (; i<(HASH_LBLOCK-2); i++)
575		p[i]=0;
576
577#if   defined(DATA_ORDER_IS_BIG_ENDIAN)
578	p[HASH_LBLOCK-2]=c->Nh;
579	p[HASH_LBLOCK-1]=c->Nl;
580#elif defined(DATA_ORDER_IS_LITTLE_ENDIAN)
581	p[HASH_LBLOCK-2]=c->Nl;
582	p[HASH_LBLOCK-1]=c->Nh;
583#endif
584	HASH_BLOCK_HOST_ORDER (c,p,1);
585
586#ifndef HASH_MAKE_STRING
587#error "HASH_MAKE_STRING must be defined!"
588#else
589	HASH_MAKE_STRING(c,md);
590#endif
591
592	c->num=0;
593	/* clear stuff, HASH_BLOCK may be leaving some stuff on the stack
594	 * but I'm not worried :-)
595	OPENSSL_cleanse((void *)c,sizeof(HASH_CTX));
596	 */
597	return 1;
598	}
599
600#ifndef MD32_REG_T
601#define MD32_REG_T long
602/*
603 * This comment was originaly written for MD5, which is why it
604 * discusses A-D. But it basically applies to all 32-bit digests,
605 * which is why it was moved to common header file.
606 *
607 * In case you wonder why A-D are declared as long and not
608 * as MD5_LONG. Doing so results in slight performance
609 * boost on LP64 architectures. The catch is we don't
610 * really care if 32 MSBs of a 64-bit register get polluted
611 * with eventual overflows as we *save* only 32 LSBs in
612 * *either* case. Now declaring 'em long excuses the compiler
613 * from keeping 32 MSBs zeroed resulting in 13% performance
614 * improvement under SPARC Solaris7/64 and 5% under AlphaLinux.
615 * Well, to be honest it should say that this *prevents*
616 * performance degradation.
617 *				<appro@fy.chalmers.se>
618 * Apparently there're LP64 compilers that generate better
619 * code if A-D are declared int. Most notably GCC-x86_64
620 * generates better code.
621 *				<appro@fy.chalmers.se>
622 */
623#endif
624