1/*
2 * jdarith.c
3 *
4 * Developed 1997 by Guido Vollbeding.
5 * This file is part of the Independent JPEG Group's software.
6 * For conditions of distribution and use, see the accompanying README file.
7 *
8 * This file contains portable arithmetic entropy decoding routines for JPEG
9 * (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81).
10 *
11 * Both sequential and progressive modes are supported in this single module.
12 *
13 * Suspension is not currently supported in this module.
14 */
15
16#define JPEG_INTERNALS
17#include "jinclude.h"
18#include "jpeglib.h"
19
20
21/* Expanded entropy decoder object for arithmetic decoding. */
22
23typedef struct {
24  struct jpeg_entropy_decoder pub; /* public fields */
25
26  INT32 c;       /* C register, base of coding interval + input bit buffer */
27  INT32 a;               /* A register, normalized size of coding interval */
28  int ct;     /* bit shift counter, # of bits left in bit buffer part of C */
29                                                         /* init: ct = -16 */
30                                                         /* run: ct = 0..7 */
31                                                         /* error: ct = -1 */
32  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
33  int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */
34
35  unsigned int restarts_to_go;	/* MCUs left in this restart interval */
36
37  /* Pointers to statistics areas (these workspaces have image lifespan) */
38  unsigned char * dc_stats[NUM_ARITH_TBLS];
39  unsigned char * ac_stats[NUM_ARITH_TBLS];
40} arith_entropy_decoder;
41
42typedef arith_entropy_decoder * arith_entropy_ptr;
43
44/* The following two definitions specify the allocation chunk size
45 * for the statistics area.
46 * According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least
47 * 49 statistics bins for DC, and 245 statistics bins for AC coding.
48 * Note that we use one additional AC bin for codings with fixed
49 * probability (0.5), thus the minimum number for AC is 246.
50 *
51 * We use a compact representation with 1 byte per statistics bin,
52 * thus the numbers directly represent byte sizes.
53 * This 1 byte per statistics bin contains the meaning of the MPS
54 * (more probable symbol) in the highest bit (mask 0x80), and the
55 * index into the probability estimation state machine table
56 * in the lower bits (mask 0x7F).
57 */
58
59#define DC_STAT_BINS 64
60#define AC_STAT_BINS 256
61
62
63LOCAL(int)
64get_byte (j_decompress_ptr cinfo)
65/* Read next input byte; we do not support suspension in this module. */
66{
67  struct jpeg_source_mgr * src = cinfo->src;
68
69  if (src->bytes_in_buffer == 0)
70    if (! (*src->fill_input_buffer) (cinfo))
71      ERREXIT(cinfo, JERR_CANT_SUSPEND);
72  src->bytes_in_buffer--;
73  return GETJOCTET(*src->next_input_byte++);
74}
75
76
77/*
78 * The core arithmetic decoding routine (common in JPEG and JBIG).
79 * This needs to go as fast as possible.
80 * Machine-dependent optimization facilities
81 * are not utilized in this portable implementation.
82 * However, this code should be fairly efficient and
83 * may be a good base for further optimizations anyway.
84 *
85 * Return value is 0 or 1 (binary decision).
86 *
87 * Note: I've changed the handling of the code base & bit
88 * buffer register C compared to other implementations
89 * based on the standards layout & procedures.
90 * While it also contains both the actual base of the
91 * coding interval (16 bits) and the next-bits buffer,
92 * the cut-point between these two parts is floating
93 * (instead of fixed) with the bit shift counter CT.
94 * Thus, we also need only one (variable instead of
95 * fixed size) shift for the LPS/MPS decision, and
96 * we can get away with any renormalization update
97 * of C (except for new data insertion, of course).
98 *
99 * I've also introduced a new scheme for accessing
100 * the probability estimation state machine table,
101 * derived from Markus Kuhn's JBIG implementation.
102 */
103
104LOCAL(int)
105arith_decode (j_decompress_ptr cinfo, unsigned char *st)
106{
107  extern const INT32 jaritab[];
108  register arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
109  register unsigned char nl, nm;
110  register INT32 qe, temp;
111  register int sv, data;
112
113  /* Renormalization & data input per section D.2.6 */
114  while (e->a < 0x8000L) {
115    if (--e->ct < 0) {
116      /* Need to fetch next data byte */
117      if (cinfo->unread_marker)
118	data = 0;		/* stuff zero data */
119      else {
120	data = get_byte(cinfo);	/* read next input byte */
121	if (data == 0xFF) {	/* zero stuff or marker code */
122	  do data = get_byte(cinfo);
123	  while (data == 0xFF);	/* swallow extra 0xFF bytes */
124	  if (data == 0)
125	    data = 0xFF;	/* discard stuffed zero byte */
126	  else {
127	    /* Note: Different from the Huffman decoder, hitting
128	     * a marker while processing the compressed data
129	     * segment is legal in arithmetic coding.
130	     * The convention is to supply zero data
131	     * then until decoding is complete.
132	     */
133	    cinfo->unread_marker = data;
134	    data = 0;
135	  }
136	}
137      }
138      e->c = (e->c << 8) | data; /* insert data into C register */
139      if ((e->ct += 8) < 0)	 /* update bit shift counter */
140	/* Need more initial bytes */
141	if (++e->ct == 0)
142	  /* Got 2 initial bytes -> re-init A and exit loop */
143	  e->a = 0x8000L; /* => e->a = 0x10000L after loop exit */
144    }
145    e->a <<= 1;
146  }
147
148  /* Fetch values from our compact representation of Table D.2:
149   * Qe values and probability estimation state machine
150   */
151  sv = *st;
152  qe = jaritab[sv & 0x7F];	/* => Qe_Value */
153  nl = qe & 0xFF; qe >>= 8;	/* Next_Index_LPS + Switch_MPS */
154  nm = qe & 0xFF; qe >>= 8;	/* Next_Index_MPS */
155
156  /* Decode & estimation procedures per sections D.2.4 & D.2.5 */
157  temp = e->a - qe;
158  e->a = temp;
159  temp <<= e->ct;
160  if (e->c >= temp) {
161    e->c -= temp;
162    /* Conditional LPS (less probable symbol) exchange */
163    if (e->a < qe) {
164      e->a = qe;
165      *st = (sv & 0x80) ^ nm;	/* Estimate_after_MPS */
166    } else {
167      e->a = qe;
168      *st = (sv & 0x80) ^ nl;	/* Estimate_after_LPS */
169      sv ^= 0x80;		/* Exchange LPS/MPS */
170    }
171  } else if (e->a < 0x8000L) {
172    /* Conditional MPS (more probable symbol) exchange */
173    if (e->a < qe) {
174      *st = (sv & 0x80) ^ nl;	/* Estimate_after_LPS */
175      sv ^= 0x80;		/* Exchange LPS/MPS */
176    } else {
177      *st = (sv & 0x80) ^ nm;	/* Estimate_after_MPS */
178    }
179  }
180
181  return sv >> 7;
182}
183
184
185/*
186 * Check for a restart marker & resynchronize decoder.
187 */
188
189LOCAL(void)
190process_restart (j_decompress_ptr cinfo)
191{
192  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
193  int ci;
194  jpeg_component_info * compptr;
195
196  /* Advance past the RSTn marker */
197  if (! (*cinfo->marker->read_restart_marker) (cinfo))
198    ERREXIT(cinfo, JERR_CANT_SUSPEND);
199
200  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
201    compptr = cinfo->cur_comp_info[ci];
202    /* Re-initialize statistics areas */
203    if (cinfo->progressive_mode == 0 || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
204      MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS);
205      /* Reset DC predictions to 0 */
206      entropy->last_dc_val[ci] = 0;
207      entropy->dc_context[ci] = 0;
208    }
209    if (cinfo->progressive_mode == 0 || cinfo->Ss) {
210      MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS);
211    }
212  }
213
214  /* Reset arithmetic decoding variables */
215  entropy->c = 0;
216  entropy->a = 0;
217  entropy->ct = -16;	/* force reading 2 initial bytes to fill C */
218
219  /* Reset restart counter */
220  entropy->restarts_to_go = cinfo->restart_interval;
221}
222
223
224/*
225 * Arithmetic MCU decoding.
226 * Each of these routines decodes and returns one MCU's worth of
227 * arithmetic-compressed coefficients.
228 * The coefficients are reordered from zigzag order into natural array order,
229 * but are not dequantized.
230 *
231 * The i'th block of the MCU is stored into the block pointed to by
232 * MCU_data[i].  WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER.
233 */
234
235/*
236 * MCU decoding for DC initial scan (either spectral selection,
237 * or first pass of successive approximation).
238 */
239
240METHODDEF(boolean)
241decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
242{
243  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
244  JBLOCKROW block;
245  unsigned char *st;
246  int blkn, ci, tbl, sign;
247  int v, m;
248
249  /* Process restart marker if needed */
250  if (cinfo->restart_interval) {
251    if (entropy->restarts_to_go == 0)
252      process_restart(cinfo);
253    entropy->restarts_to_go--;
254  }
255
256  if (entropy->ct == -1) return TRUE;	/* if error do nothing */
257
258  /* Outer loop handles each block in the MCU */
259
260  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
261    block = MCU_data[blkn];
262    ci = cinfo->MCU_membership[blkn];
263    tbl = cinfo->cur_comp_info[ci]->dc_tbl_no;
264
265    /* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */
266
267    /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
268    st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
269
270    /* Figure F.19: Decode_DC_DIFF */
271    if (arith_decode(cinfo, st) == 0)
272      entropy->dc_context[ci] = 0;
273    else {
274      /* Figure F.21: Decoding nonzero value v */
275      /* Figure F.22: Decoding the sign of v */
276      sign = arith_decode(cinfo, st + 1);
277      st += 2; st += sign;
278      /* Figure F.23: Decoding the magnitude category of v */
279      if ((m = arith_decode(cinfo, st)) != 0) {
280	st = entropy->dc_stats[tbl] + 20;	/* Table F.4: X1 = 20 */
281	while (arith_decode(cinfo, st)) {
282	  if ((m <<= 1) == 0x8000) {
283	    WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
284	    entropy->ct = -1;			/* magnitude overflow */
285	    return TRUE;
286	  }
287	  st += 1;
288	}
289      }
290      /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
291      if (m < (int) (((INT32) 1 << cinfo->arith_dc_L[tbl]) >> 1))
292	entropy->dc_context[ci] = 0;		   /* zero diff category */
293      else if (m > (int) (((INT32) 1 << cinfo->arith_dc_U[tbl]) >> 1))
294	entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */
295      else
296	entropy->dc_context[ci] = 4 + (sign * 4);  /* small diff category */
297      v = m;
298      /* Figure F.24: Decoding the magnitude bit pattern of v */
299      st += 14;
300      while (m >>= 1)
301	if (arith_decode(cinfo, st)) v |= m;
302      v += 1; if (sign) v = -v;
303      entropy->last_dc_val[ci] += v;
304    }
305
306    /* Scale and output the DC coefficient (assumes jpeg_natural_order[0]=0) */
307    (*block)[0] = (JCOEF) (entropy->last_dc_val[ci] << cinfo->Al);
308  }
309
310  return TRUE;
311}
312
313
314/*
315 * MCU decoding for AC initial scan (either spectral selection,
316 * or first pass of successive approximation).
317 */
318
319METHODDEF(boolean)
320decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
321{
322  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
323  JBLOCKROW block;
324  unsigned char *st;
325  int tbl, sign, k;
326  int v, m;
327
328  /* Process restart marker if needed */
329  if (cinfo->restart_interval) {
330    if (entropy->restarts_to_go == 0)
331      process_restart(cinfo);
332    entropy->restarts_to_go--;
333  }
334
335  if (entropy->ct == -1) return TRUE;	/* if error do nothing */
336
337  /* There is always only one block per MCU */
338  block = MCU_data[0];
339  tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
340
341  /* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */
342
343  /* Figure F.20: Decode_AC_coefficients */
344  for (k = cinfo->Ss; k <= cinfo->Se; k++) {
345    st = entropy->ac_stats[tbl] + 3 * (k - 1);
346    if (arith_decode(cinfo, st)) break;		/* EOB flag */
347    while (arith_decode(cinfo, st + 1) == 0) {
348      st += 3; k++;
349      if (k > cinfo->Se) {
350	WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
351	entropy->ct = -1;			/* spectral overflow */
352	return TRUE;
353      }
354    }
355    /* Figure F.21: Decoding nonzero value v */
356    /* Figure F.22: Decoding the sign of v */
357    entropy->ac_stats[tbl][245] = 0;
358    sign = arith_decode(cinfo, entropy->ac_stats[tbl] + 245);
359    st += 2;
360    /* Figure F.23: Decoding the magnitude category of v */
361    if ((m = arith_decode(cinfo, st)) != 0) {
362      if (arith_decode(cinfo, st)) {
363	m <<= 1;
364	st = entropy->ac_stats[tbl] +
365	     (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
366	while (arith_decode(cinfo, st)) {
367	  if ((m <<= 1) == 0x8000) {
368	    WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
369	    entropy->ct = -1;			/* magnitude overflow */
370	    return TRUE;
371	  }
372	  st += 1;
373	}
374      }
375    }
376    v = m;
377    /* Figure F.24: Decoding the magnitude bit pattern of v */
378    st += 14;
379    while (m >>= 1)
380      if (arith_decode(cinfo, st)) v |= m;
381    v += 1; if (sign) v = -v;
382    /* Scale and output coefficient in natural (dezigzagged) order */
383    (*block)[jpeg_natural_order[k]] = (JCOEF) (v << cinfo->Al);
384  }
385
386  return TRUE;
387}
388
389
390/*
391 * MCU decoding for DC successive approximation refinement scan.
392 */
393
394METHODDEF(boolean)
395decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
396{
397  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
398  unsigned char st[4];
399  int p1, blkn;
400
401  /* Process restart marker if needed */
402  if (cinfo->restart_interval) {
403    if (entropy->restarts_to_go == 0)
404      process_restart(cinfo);
405    entropy->restarts_to_go--;
406  }
407
408  p1 = 1 << cinfo->Al;		/* 1 in the bit position being coded */
409
410  /* Outer loop handles each block in the MCU */
411
412  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
413    st[0] = 0;	/* use fixed probability estimation */
414    /* Encoded data is simply the next bit of the two's-complement DC value */
415    if (arith_decode(cinfo, st))
416      MCU_data[blkn][0][0] |= p1;
417  }
418
419  return TRUE;
420}
421
422
423/*
424 * MCU decoding for AC successive approximation refinement scan.
425 */
426
427METHODDEF(boolean)
428decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
429{
430  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
431  JBLOCKROW block;
432  JCOEFPTR thiscoef;
433  unsigned char *st;
434  int tbl, k, kex;
435  int p1, m1;
436
437  /* Process restart marker if needed */
438  if (cinfo->restart_interval) {
439    if (entropy->restarts_to_go == 0)
440      process_restart(cinfo);
441    entropy->restarts_to_go--;
442  }
443
444  if (entropy->ct == -1) return TRUE;	/* if error do nothing */
445
446  /* There is always only one block per MCU */
447  block = MCU_data[0];
448  tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
449
450  p1 = 1 << cinfo->Al;		/* 1 in the bit position being coded */
451  m1 = (-1) << cinfo->Al;	/* -1 in the bit position being coded */
452
453  /* Establish EOBx (previous stage end-of-block) index */
454  for (kex = cinfo->Se + 1; kex > 1; kex--)
455    if ((*block)[jpeg_natural_order[kex - 1]]) break;
456
457  for (k = cinfo->Ss; k <= cinfo->Se; k++) {
458    st = entropy->ac_stats[tbl] + 3 * (k - 1);
459    if (k >= kex)
460      if (arith_decode(cinfo, st)) break;	/* EOB flag */
461    for (;;) {
462      thiscoef = *block + jpeg_natural_order[k];
463      if (*thiscoef) {				/* previously nonzero coef */
464	if (arith_decode(cinfo, st + 2)) {
465	  if (*thiscoef < 0)
466	    *thiscoef += m1;
467	  else
468	    *thiscoef += p1;
469	}
470	break;
471      }
472      if (arith_decode(cinfo, st + 1)) {	/* newly nonzero coef */
473	entropy->ac_stats[tbl][245] = 0;
474	if (arith_decode(cinfo, entropy->ac_stats[tbl] + 245))
475	  *thiscoef = m1;
476	else
477	  *thiscoef = p1;
478	break;
479      }
480      st += 3; k++;
481      if (k > cinfo->Se) {
482	WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
483	entropy->ct = -1;			/* spectral overflow */
484	return TRUE;
485      }
486    }
487  }
488
489  return TRUE;
490}
491
492
493/*
494 * Decode one MCU's worth of arithmetic-compressed coefficients.
495 */
496
497METHODDEF(boolean)
498decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
499{
500  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
501  jpeg_component_info * compptr;
502  JBLOCKROW block;
503  unsigned char *st;
504  int blkn, ci, tbl, sign, k;
505  int v, m;
506
507  /* Process restart marker if needed */
508  if (cinfo->restart_interval) {
509    if (entropy->restarts_to_go == 0)
510      process_restart(cinfo);
511    entropy->restarts_to_go--;
512  }
513
514  if (entropy->ct == -1) return TRUE;	/* if error do nothing */
515
516  /* Outer loop handles each block in the MCU */
517
518  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
519    block = MCU_data[blkn];
520    ci = cinfo->MCU_membership[blkn];
521    compptr = cinfo->cur_comp_info[ci];
522
523    /* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */
524
525    tbl = compptr->dc_tbl_no;
526
527    /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
528    st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
529
530    /* Figure F.19: Decode_DC_DIFF */
531    if (arith_decode(cinfo, st) == 0)
532      entropy->dc_context[ci] = 0;
533    else {
534      /* Figure F.21: Decoding nonzero value v */
535      /* Figure F.22: Decoding the sign of v */
536      sign = arith_decode(cinfo, st + 1);
537      st += 2; st += sign;
538      /* Figure F.23: Decoding the magnitude category of v */
539      if ((m = arith_decode(cinfo, st)) != 0) {
540	st = entropy->dc_stats[tbl] + 20;	/* Table F.4: X1 = 20 */
541	while (arith_decode(cinfo, st)) {
542	  if ((m <<= 1) == 0x8000) {
543	    WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
544	    entropy->ct = -1;			/* magnitude overflow */
545	    return TRUE;
546	  }
547	  st += 1;
548	}
549      }
550      /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
551      if (m < (int) (((INT32) 1 << cinfo->arith_dc_L[tbl]) >> 1))
552	entropy->dc_context[ci] = 0;		   /* zero diff category */
553      else if (m > (int) (((INT32) 1 << cinfo->arith_dc_U[tbl]) >> 1))
554	entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */
555      else
556	entropy->dc_context[ci] = 4 + (sign * 4);  /* small diff category */
557      v = m;
558      /* Figure F.24: Decoding the magnitude bit pattern of v */
559      st += 14;
560      while (m >>= 1)
561	if (arith_decode(cinfo, st)) v |= m;
562      v += 1; if (sign) v = -v;
563      entropy->last_dc_val[ci] += v;
564    }
565
566    (*block)[0] = (JCOEF) entropy->last_dc_val[ci];
567
568    /* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */
569
570    tbl = compptr->ac_tbl_no;
571
572    /* Figure F.20: Decode_AC_coefficients */
573    for (k = 1; k < DCTSIZE2; k++) {
574      st = entropy->ac_stats[tbl] + 3 * (k - 1);
575      if (arith_decode(cinfo, st)) break;	/* EOB flag */
576      while (arith_decode(cinfo, st + 1) == 0) {
577	st += 3; k++;
578	if (k >= DCTSIZE2) {
579	  WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
580	  entropy->ct = -1;			/* spectral overflow */
581	  return TRUE;
582	}
583      }
584      /* Figure F.21: Decoding nonzero value v */
585      /* Figure F.22: Decoding the sign of v */
586      entropy->ac_stats[tbl][245] = 0;
587      sign = arith_decode(cinfo, entropy->ac_stats[tbl] + 245);
588      st += 2;
589      /* Figure F.23: Decoding the magnitude category of v */
590      if ((m = arith_decode(cinfo, st)) != 0) {
591	if (arith_decode(cinfo, st)) {
592	  m <<= 1;
593	  st = entropy->ac_stats[tbl] +
594	       (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
595	  while (arith_decode(cinfo, st)) {
596	    if ((m <<= 1) == 0x8000) {
597	      WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
598	      entropy->ct = -1;			/* magnitude overflow */
599	      return TRUE;
600	    }
601	    st += 1;
602	  }
603	}
604      }
605      v = m;
606      /* Figure F.24: Decoding the magnitude bit pattern of v */
607      st += 14;
608      while (m >>= 1)
609	if (arith_decode(cinfo, st)) v |= m;
610      v += 1; if (sign) v = -v;
611      (*block)[jpeg_natural_order[k]] = (JCOEF) v;
612    }
613  }
614
615  return TRUE;
616}
617
618
619/*
620 * Initialize for an arithmetic-compressed scan.
621 */
622
623METHODDEF(void)
624start_pass (j_decompress_ptr cinfo)
625{
626  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
627  int ci, tbl;
628  jpeg_component_info * compptr;
629
630  if (cinfo->progressive_mode) {
631    /* Validate progressive scan parameters */
632    if (cinfo->Ss == 0) {
633      if (cinfo->Se != 0)
634	goto bad;
635    } else {
636      /* need not check Ss/Se < 0 since they came from unsigned bytes */
637      if (cinfo->Se < cinfo->Ss || cinfo->Se >= DCTSIZE2)
638	goto bad;
639      /* AC scans may have only one component */
640      if (cinfo->comps_in_scan != 1)
641	goto bad;
642    }
643    if (cinfo->Ah != 0) {
644      /* Successive approximation refinement scan: must have Al = Ah-1. */
645      if (cinfo->Ah-1 != cinfo->Al)
646	goto bad;
647    }
648    if (cinfo->Al > 13) {	/* need not check for < 0 */
649      bad:
650      ERREXIT4(cinfo, JERR_BAD_PROGRESSION,
651	       cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al);
652    }
653    /* Update progression status, and verify that scan order is legal.
654     * Note that inter-scan inconsistencies are treated as warnings
655     * not fatal errors ... not clear if this is right way to behave.
656     */
657    for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
658      int coefi, cindex = cinfo->cur_comp_info[ci]->component_index;
659      int *coef_bit_ptr = & cinfo->coef_bits[cindex][0];
660      if (cinfo->Ss && coef_bit_ptr[0] < 0) /* AC without prior DC scan */
661	WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0);
662      for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) {
663	int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi];
664	if (cinfo->Ah != expected)
665	  WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi);
666	coef_bit_ptr[coefi] = cinfo->Al;
667      }
668    }
669    /* Select MCU decoding routine */
670    if (cinfo->Ah == 0) {
671      if (cinfo->Ss == 0)
672	entropy->pub.decode_mcu = decode_mcu_DC_first;
673      else
674	entropy->pub.decode_mcu = decode_mcu_AC_first;
675    } else {
676      if (cinfo->Ss == 0)
677	entropy->pub.decode_mcu = decode_mcu_DC_refine;
678      else
679	entropy->pub.decode_mcu = decode_mcu_AC_refine;
680    }
681  } else {
682    /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
683     * This ought to be an error condition, but we make it a warning because
684     * there are some baseline files out there with all zeroes in these bytes.
685     */
686    if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2-1 ||
687	cinfo->Ah != 0 || cinfo->Al != 0)
688      WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
689    /* Select MCU decoding routine */
690    entropy->pub.decode_mcu = decode_mcu;
691  }
692
693  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
694    compptr = cinfo->cur_comp_info[ci];
695    /* Allocate & initialize requested statistics areas */
696    if (cinfo->progressive_mode == 0 || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
697      tbl = compptr->dc_tbl_no;
698      if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
699	ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
700      if (entropy->dc_stats[tbl] == NULL)
701	entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
702	  ((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS);
703      MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS);
704      /* Initialize DC predictions to 0 */
705      entropy->last_dc_val[ci] = 0;
706      entropy->dc_context[ci] = 0;
707    }
708    if (cinfo->progressive_mode == 0 || cinfo->Ss) {
709      tbl = compptr->ac_tbl_no;
710      if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
711	ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
712      if (entropy->ac_stats[tbl] == NULL)
713	entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
714	  ((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS);
715      MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS);
716    }
717  }
718
719  /* Initialize arithmetic decoding variables */
720  entropy->c = 0;
721  entropy->a = 0;
722  entropy->ct = -16;	/* force reading 2 initial bytes to fill C */
723
724  /* Initialize restart counter */
725  entropy->restarts_to_go = cinfo->restart_interval;
726}
727
728
729/*
730 * Module initialization routine for arithmetic entropy decoding.
731 */
732
733GLOBAL(void)
734jinit_arith_decoder (j_decompress_ptr cinfo)
735{
736  arith_entropy_ptr entropy;
737  int i;
738
739  entropy = (arith_entropy_ptr)
740    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
741				SIZEOF(arith_entropy_decoder));
742  cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
743  entropy->pub.start_pass = start_pass;
744
745  /* Mark tables unallocated */
746  for (i = 0; i < NUM_ARITH_TBLS; i++) {
747    entropy->dc_stats[i] = NULL;
748    entropy->ac_stats[i] = NULL;
749  }
750
751  if (cinfo->progressive_mode) {
752    /* Create progression status table */
753    int *coef_bit_ptr, ci;
754    cinfo->coef_bits = (int (*)[DCTSIZE2])
755      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
756				  cinfo->num_components*DCTSIZE2*SIZEOF(int));
757    coef_bit_ptr = & cinfo->coef_bits[0][0];
758    for (ci = 0; ci < cinfo->num_components; ci++)
759      for (i = 0; i < DCTSIZE2; i++)
760	*coef_bit_ptr++ = -1;
761  }
762}
763