1/*
2 * WMA compatible decoder
3 * Copyright (c) 2002 The FFmpeg Project
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22/**
23 * @file libavcodec/wmadec.c
24 * WMA compatible decoder.
25 * This decoder handles Microsoft Windows Media Audio data, versions 1 & 2.
26 * WMA v1 is identified by audio format 0x160 in Microsoft media files
27 * (ASF/AVI/WAV). WMA v2 is identified by audio format 0x161.
28 *
29 * To use this decoder, a calling application must supply the extra data
30 * bytes provided with the WMA data. These are the extra, codec-specific
31 * bytes at the end of a WAVEFORMATEX data structure. Transmit these bytes
32 * to the decoder using the extradata[_size] fields in AVCodecContext. There
33 * should be 4 extra bytes for v1 data and 6 extra bytes for v2 data.
34 */
35
36#include "avcodec.h"
37#include "wma.h"
38
39#undef NDEBUG
40#include <assert.h>
41
42#define EXPVLCBITS 8
43#define EXPMAX ((19+EXPVLCBITS-1)/EXPVLCBITS)
44
45#define HGAINVLCBITS 9
46#define HGAINMAX ((13+HGAINVLCBITS-1)/HGAINVLCBITS)
47
48static void wma_lsp_to_curve_init(WMACodecContext *s, int frame_len);
49
50#ifdef TRACE
51static void dump_shorts(WMACodecContext *s, const char *name, const short *tab, int n)
52{
53    int i;
54
55    tprintf(s->avctx, "%s[%d]:\n", name, n);
56    for(i=0;i<n;i++) {
57        if ((i & 7) == 0)
58            tprintf(s->avctx, "%4d: ", i);
59        tprintf(s->avctx, " %5d.0", tab[i]);
60        if ((i & 7) == 7)
61            tprintf(s->avctx, "\n");
62    }
63}
64
65static void dump_floats(WMACodecContext *s, const char *name, int prec, const float *tab, int n)
66{
67    int i;
68
69    tprintf(s->avctx, "%s[%d]:\n", name, n);
70    for(i=0;i<n;i++) {
71        if ((i & 7) == 0)
72            tprintf(s->avctx, "%4d: ", i);
73        tprintf(s->avctx, " %8.*f", prec, tab[i]);
74        if ((i & 7) == 7)
75            tprintf(s->avctx, "\n");
76    }
77    if ((i & 7) != 0)
78        tprintf(s->avctx, "\n");
79}
80#endif
81
82static int wma_decode_init(AVCodecContext * avctx)
83{
84    WMACodecContext *s = avctx->priv_data;
85    int i, flags1, flags2;
86    uint8_t *extradata;
87
88    s->avctx = avctx;
89
90    /* extract flag infos */
91    flags1 = 0;
92    flags2 = 0;
93    extradata = avctx->extradata;
94    if (avctx->codec->id == CODEC_ID_WMAV1 && avctx->extradata_size >= 4) {
95        flags1 = AV_RL16(extradata);
96        flags2 = AV_RL16(extradata+2);
97    } else if (avctx->codec->id == CODEC_ID_WMAV2 && avctx->extradata_size >= 6) {
98        flags1 = AV_RL32(extradata);
99        flags2 = AV_RL16(extradata+4);
100    }
101// for(i=0; i<avctx->extradata_size; i++)
102//     av_log(NULL, AV_LOG_ERROR, "%02X ", extradata[i]);
103
104    s->use_exp_vlc = flags2 & 0x0001;
105    s->use_bit_reservoir = flags2 & 0x0002;
106    s->use_variable_block_len = flags2 & 0x0004;
107
108    if(ff_wma_init(avctx, flags2)<0)
109        return -1;
110
111    /* init MDCT */
112    for(i = 0; i < s->nb_block_sizes; i++)
113        ff_mdct_init(&s->mdct_ctx[i], s->frame_len_bits - i + 1, 1);
114
115    if (s->use_noise_coding) {
116        init_vlc(&s->hgain_vlc, HGAINVLCBITS, sizeof(ff_wma_hgain_huffbits),
117                 ff_wma_hgain_huffbits, 1, 1,
118                 ff_wma_hgain_huffcodes, 2, 2, 0);
119    }
120
121    if (s->use_exp_vlc) {
122        init_vlc(&s->exp_vlc, EXPVLCBITS, sizeof(ff_wma_scale_huffbits), //FIXME move out of context
123                 ff_wma_scale_huffbits, 1, 1,
124                 ff_wma_scale_huffcodes, 4, 4, 0);
125    } else {
126        wma_lsp_to_curve_init(s, s->frame_len);
127    }
128
129    avctx->sample_fmt = SAMPLE_FMT_S16;
130    return 0;
131}
132
133/**
134 * compute x^-0.25 with an exponent and mantissa table. We use linear
135 * interpolation to reduce the mantissa table size at a small speed
136 * expense (linear interpolation approximately doubles the number of
137 * bits of precision).
138 */
139static inline float pow_m1_4(WMACodecContext *s, float x)
140{
141    union {
142        float f;
143        unsigned int v;
144    } u, t;
145    unsigned int e, m;
146    float a, b;
147
148    u.f = x;
149    e = u.v >> 23;
150    m = (u.v >> (23 - LSP_POW_BITS)) & ((1 << LSP_POW_BITS) - 1);
151    /* build interpolation scale: 1 <= t < 2. */
152    t.v = ((u.v << LSP_POW_BITS) & ((1 << 23) - 1)) | (127 << 23);
153    a = s->lsp_pow_m_table1[m];
154    b = s->lsp_pow_m_table2[m];
155    return s->lsp_pow_e_table[e] * (a + b * t.f);
156}
157
158static void wma_lsp_to_curve_init(WMACodecContext *s, int frame_len)
159{
160    float wdel, a, b;
161    int i, e, m;
162
163    wdel = M_PI / frame_len;
164    for(i=0;i<frame_len;i++)
165        s->lsp_cos_table[i] = 2.0f * cos(wdel * i);
166
167    /* tables for x^-0.25 computation */
168    for(i=0;i<256;i++) {
169        e = i - 126;
170        s->lsp_pow_e_table[i] = pow(2.0, e * -0.25);
171    }
172
173    /* NOTE: these two tables are needed to avoid two operations in
174       pow_m1_4 */
175    b = 1.0;
176    for(i=(1 << LSP_POW_BITS) - 1;i>=0;i--) {
177        m = (1 << LSP_POW_BITS) + i;
178        a = (float)m * (0.5 / (1 << LSP_POW_BITS));
179        a = pow(a, -0.25);
180        s->lsp_pow_m_table1[i] = 2 * a - b;
181        s->lsp_pow_m_table2[i] = b - a;
182        b = a;
183    }
184#if 0
185    for(i=1;i<20;i++) {
186        float v, r1, r2;
187        v = 5.0 / i;
188        r1 = pow_m1_4(s, v);
189        r2 = pow(v,-0.25);
190        printf("%f^-0.25=%f e=%f\n", v, r1, r2 - r1);
191    }
192#endif
193}
194
195/**
196 * NOTE: We use the same code as Vorbis here
197 * @todo optimize it further with SSE/3Dnow
198 */
199static void wma_lsp_to_curve(WMACodecContext *s,
200                             float *out, float *val_max_ptr,
201                             int n, float *lsp)
202{
203    int i, j;
204    float p, q, w, v, val_max;
205
206    val_max = 0;
207    for(i=0;i<n;i++) {
208        p = 0.5f;
209        q = 0.5f;
210        w = s->lsp_cos_table[i];
211        for(j=1;j<NB_LSP_COEFS;j+=2){
212            q *= w - lsp[j - 1];
213            p *= w - lsp[j];
214        }
215        p *= p * (2.0f - w);
216        q *= q * (2.0f + w);
217        v = p + q;
218        v = pow_m1_4(s, v);
219        if (v > val_max)
220            val_max = v;
221        out[i] = v;
222    }
223    *val_max_ptr = val_max;
224}
225
226/**
227 * decode exponents coded with LSP coefficients (same idea as Vorbis)
228 */
229static void decode_exp_lsp(WMACodecContext *s, int ch)
230{
231    float lsp_coefs[NB_LSP_COEFS];
232    int val, i;
233
234    for(i = 0; i < NB_LSP_COEFS; i++) {
235        if (i == 0 || i >= 8)
236            val = get_bits(&s->gb, 3);
237        else
238            val = get_bits(&s->gb, 4);
239        lsp_coefs[i] = ff_wma_lsp_codebook[i][val];
240    }
241
242    wma_lsp_to_curve(s, s->exponents[ch], &s->max_exponent[ch],
243                     s->block_len, lsp_coefs);
244}
245
246/**
247 * decode exponents coded with VLC codes
248 */
249static int decode_exp_vlc(WMACodecContext *s, int ch)
250{
251    int last_exp, n, code;
252    const uint16_t *ptr, *band_ptr;
253    float v, *q, max_scale, *q_end;
254
255    band_ptr = s->exponent_bands[s->frame_len_bits - s->block_len_bits];
256    ptr = band_ptr;
257    q = s->exponents[ch];
258    q_end = q + s->block_len;
259    max_scale = 0;
260    if (s->version == 1) {
261        last_exp = get_bits(&s->gb, 5) + 10;
262        /* XXX: use a table */
263        v = pow(10, last_exp * (1.0 / 16.0));
264        max_scale = v;
265        n = *ptr++;
266        do {
267            *q++ = v;
268        } while (--n);
269    }else
270        last_exp = 36;
271
272    while (q < q_end) {
273        code = get_vlc2(&s->gb, s->exp_vlc.table, EXPVLCBITS, EXPMAX);
274        if (code < 0)
275            return -1;
276        /* NOTE: this offset is the same as MPEG4 AAC ! */
277        last_exp += code - 60;
278        /* XXX: use a table */
279        v = pow(10, last_exp * (1.0 / 16.0));
280        if (v > max_scale)
281            max_scale = v;
282        n = *ptr++;
283        do {
284            *q++ = v;
285        } while (--n);
286    }
287    s->max_exponent[ch] = max_scale;
288    return 0;
289}
290
291
292/**
293 * Apply MDCT window and add into output.
294 *
295 * We ensure that when the windows overlap their squared sum
296 * is always 1 (MDCT reconstruction rule).
297 */
298static void wma_window(WMACodecContext *s, float *out)
299{
300    float *in = s->output;
301    int block_len, bsize, n;
302
303    /* left part */
304    if (s->block_len_bits <= s->prev_block_len_bits) {
305        block_len = s->block_len;
306        bsize = s->frame_len_bits - s->block_len_bits;
307
308        s->dsp.vector_fmul_add_add(out, in, s->windows[bsize],
309                                   out, 0, block_len, 1);
310
311    } else {
312        block_len = 1 << s->prev_block_len_bits;
313        n = (s->block_len - block_len) / 2;
314        bsize = s->frame_len_bits - s->prev_block_len_bits;
315
316        s->dsp.vector_fmul_add_add(out+n, in+n, s->windows[bsize],
317                                   out+n, 0, block_len, 1);
318
319        memcpy(out+n+block_len, in+n+block_len, n*sizeof(float));
320    }
321
322    out += s->block_len;
323    in += s->block_len;
324
325    /* right part */
326    if (s->block_len_bits <= s->next_block_len_bits) {
327        block_len = s->block_len;
328        bsize = s->frame_len_bits - s->block_len_bits;
329
330        s->dsp.vector_fmul_reverse(out, in, s->windows[bsize], block_len);
331
332    } else {
333        block_len = 1 << s->next_block_len_bits;
334        n = (s->block_len - block_len) / 2;
335        bsize = s->frame_len_bits - s->next_block_len_bits;
336
337        memcpy(out, in, n*sizeof(float));
338
339        s->dsp.vector_fmul_reverse(out+n, in+n, s->windows[bsize], block_len);
340
341        memset(out+n+block_len, 0, n*sizeof(float));
342    }
343}
344
345
346/**
347 * @return 0 if OK. 1 if last block of frame. return -1 if
348 * unrecorrable error.
349 */
350static int wma_decode_block(WMACodecContext *s)
351{
352    int n, v, a, ch, code, bsize;
353    int coef_nb_bits, total_gain;
354    int nb_coefs[MAX_CHANNELS];
355    float mdct_norm;
356
357#ifdef TRACE
358    tprintf(s->avctx, "***decode_block: %d:%d\n", s->frame_count - 1, s->block_num);
359#endif
360
361    /* compute current block length */
362    if (s->use_variable_block_len) {
363        n = av_log2(s->nb_block_sizes - 1) + 1;
364
365        if (s->reset_block_lengths) {
366            s->reset_block_lengths = 0;
367            v = get_bits(&s->gb, n);
368            if (v >= s->nb_block_sizes)
369                return -1;
370            s->prev_block_len_bits = s->frame_len_bits - v;
371            v = get_bits(&s->gb, n);
372            if (v >= s->nb_block_sizes)
373                return -1;
374            s->block_len_bits = s->frame_len_bits - v;
375        } else {
376            /* update block lengths */
377            s->prev_block_len_bits = s->block_len_bits;
378            s->block_len_bits = s->next_block_len_bits;
379        }
380        v = get_bits(&s->gb, n);
381        if (v >= s->nb_block_sizes)
382            return -1;
383        s->next_block_len_bits = s->frame_len_bits - v;
384    } else {
385        /* fixed block len */
386        s->next_block_len_bits = s->frame_len_bits;
387        s->prev_block_len_bits = s->frame_len_bits;
388        s->block_len_bits = s->frame_len_bits;
389    }
390
391    /* now check if the block length is coherent with the frame length */
392    s->block_len = 1 << s->block_len_bits;
393    if ((s->block_pos + s->block_len) > s->frame_len)
394        return -1;
395
396    if (s->nb_channels == 2) {
397        s->ms_stereo = get_bits1(&s->gb);
398    }
399    v = 0;
400    for(ch = 0; ch < s->nb_channels; ch++) {
401        a = get_bits1(&s->gb);
402        s->channel_coded[ch] = a;
403        v |= a;
404    }
405
406    bsize = s->frame_len_bits - s->block_len_bits;
407
408    /* if no channel coded, no need to go further */
409    /* XXX: fix potential framing problems */
410    if (!v)
411        goto next;
412
413    /* read total gain and extract corresponding number of bits for
414       coef escape coding */
415    total_gain = 1;
416    for(;;) {
417        a = get_bits(&s->gb, 7);
418        total_gain += a;
419        if (a != 127)
420            break;
421    }
422
423    coef_nb_bits= ff_wma_total_gain_to_bits(total_gain);
424
425    /* compute number of coefficients */
426    n = s->coefs_end[bsize] - s->coefs_start;
427    for(ch = 0; ch < s->nb_channels; ch++)
428        nb_coefs[ch] = n;
429
430    /* complex coding */
431    if (s->use_noise_coding) {
432
433        for(ch = 0; ch < s->nb_channels; ch++) {
434            if (s->channel_coded[ch]) {
435                int i, n, a;
436                n = s->exponent_high_sizes[bsize];
437                for(i=0;i<n;i++) {
438                    a = get_bits1(&s->gb);
439                    s->high_band_coded[ch][i] = a;
440                    /* if noise coding, the coefficients are not transmitted */
441                    if (a)
442                        nb_coefs[ch] -= s->exponent_high_bands[bsize][i];
443                }
444            }
445        }
446        for(ch = 0; ch < s->nb_channels; ch++) {
447            if (s->channel_coded[ch]) {
448                int i, n, val, code;
449
450                n = s->exponent_high_sizes[bsize];
451                val = (int)0x80000000;
452                for(i=0;i<n;i++) {
453                    if (s->high_band_coded[ch][i]) {
454                        if (val == (int)0x80000000) {
455                            val = get_bits(&s->gb, 7) - 19;
456                        } else {
457                            code = get_vlc2(&s->gb, s->hgain_vlc.table, HGAINVLCBITS, HGAINMAX);
458                            if (code < 0)
459                                return -1;
460                            val += code - 18;
461                        }
462                        s->high_band_values[ch][i] = val;
463                    }
464                }
465            }
466        }
467    }
468
469    /* exponents can be reused in short blocks. */
470    if ((s->block_len_bits == s->frame_len_bits) ||
471        get_bits1(&s->gb)) {
472        for(ch = 0; ch < s->nb_channels; ch++) {
473            if (s->channel_coded[ch]) {
474                if (s->use_exp_vlc) {
475                    if (decode_exp_vlc(s, ch) < 0)
476                        return -1;
477                } else {
478                    decode_exp_lsp(s, ch);
479                }
480                s->exponents_bsize[ch] = bsize;
481            }
482        }
483    }
484
485    /* parse spectral coefficients : just RLE encoding */
486    for(ch = 0; ch < s->nb_channels; ch++) {
487        if (s->channel_coded[ch]) {
488            VLC *coef_vlc;
489            int level, run, sign, tindex;
490            int16_t *ptr, *eptr;
491            const uint16_t *level_table, *run_table;
492
493            /* special VLC tables are used for ms stereo because
494               there is potentially less energy there */
495            tindex = (ch == 1 && s->ms_stereo);
496            coef_vlc = &s->coef_vlc[tindex];
497            run_table = s->run_table[tindex];
498            level_table = s->level_table[tindex];
499            /* XXX: optimize */
500            ptr = &s->coefs1[ch][0];
501            eptr = ptr + nb_coefs[ch];
502            memset(ptr, 0, s->block_len * sizeof(int16_t));
503            for(;;) {
504                code = get_vlc2(&s->gb, coef_vlc->table, VLCBITS, VLCMAX);
505                if (code < 0)
506                    return -1;
507                if (code == 1) {
508                    /* EOB */
509                    break;
510                } else if (code == 0) {
511                    /* escape */
512                    level = get_bits(&s->gb, coef_nb_bits);
513                    /* NOTE: this is rather suboptimal. reading
514                       block_len_bits would be better */
515                    run = get_bits(&s->gb, s->frame_len_bits);
516                } else {
517                    /* normal code */
518                    run = run_table[code];
519                    level = level_table[code];
520                }
521                sign = get_bits1(&s->gb);
522                if (!sign)
523                    level = -level;
524                ptr += run;
525                if (ptr >= eptr)
526                {
527                    av_log(NULL, AV_LOG_ERROR, "overflow in spectral RLE, ignoring\n");
528                    break;
529                }
530                *ptr++ = level;
531                /* NOTE: EOB can be omitted */
532                if (ptr >= eptr)
533                    break;
534            }
535        }
536        if (s->version == 1 && s->nb_channels >= 2) {
537            align_get_bits(&s->gb);
538        }
539    }
540
541    /* normalize */
542    {
543        int n4 = s->block_len / 2;
544        mdct_norm = 1.0 / (float)n4;
545        if (s->version == 1) {
546            mdct_norm *= sqrt(n4);
547        }
548    }
549
550    /* finally compute the MDCT coefficients */
551    for(ch = 0; ch < s->nb_channels; ch++) {
552        if (s->channel_coded[ch]) {
553            int16_t *coefs1;
554            float *coefs, *exponents, mult, mult1, noise;
555            int i, j, n, n1, last_high_band, esize;
556            float exp_power[HIGH_BAND_MAX_SIZE];
557
558            coefs1 = s->coefs1[ch];
559            exponents = s->exponents[ch];
560            esize = s->exponents_bsize[ch];
561            mult = pow(10, total_gain * 0.05) / s->max_exponent[ch];
562            mult *= mdct_norm;
563            coefs = s->coefs[ch];
564            if (s->use_noise_coding) {
565                mult1 = mult;
566                /* very low freqs : noise */
567                for(i = 0;i < s->coefs_start; i++) {
568                    *coefs++ = s->noise_table[s->noise_index] *
569                      exponents[i<<bsize>>esize] * mult1;
570                    s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
571                }
572
573                n1 = s->exponent_high_sizes[bsize];
574
575                /* compute power of high bands */
576                exponents = s->exponents[ch] +
577                    (s->high_band_start[bsize]<<bsize);
578                last_high_band = 0; /* avoid warning */
579                for(j=0;j<n1;j++) {
580                    n = s->exponent_high_bands[s->frame_len_bits -
581                                              s->block_len_bits][j];
582                    if (s->high_band_coded[ch][j]) {
583                        float e2, v;
584                        e2 = 0;
585                        for(i = 0;i < n; i++) {
586                            v = exponents[i<<bsize>>esize];
587                            e2 += v * v;
588                        }
589                        exp_power[j] = e2 / n;
590                        last_high_band = j;
591                        tprintf(s->avctx, "%d: power=%f (%d)\n", j, exp_power[j], n);
592                    }
593                    exponents += n<<bsize;
594                }
595
596                /* main freqs and high freqs */
597                exponents = s->exponents[ch] + (s->coefs_start<<bsize);
598                for(j=-1;j<n1;j++) {
599                    if (j < 0) {
600                        n = s->high_band_start[bsize] -
601                            s->coefs_start;
602                    } else {
603                        n = s->exponent_high_bands[s->frame_len_bits -
604                                                  s->block_len_bits][j];
605                    }
606                    if (j >= 0 && s->high_band_coded[ch][j]) {
607                        /* use noise with specified power */
608                        mult1 = sqrt(exp_power[j] / exp_power[last_high_band]);
609                        /* XXX: use a table */
610                        mult1 = mult1 * pow(10, s->high_band_values[ch][j] * 0.05);
611                        mult1 = mult1 / (s->max_exponent[ch] * s->noise_mult);
612                        mult1 *= mdct_norm;
613                        for(i = 0;i < n; i++) {
614                            noise = s->noise_table[s->noise_index];
615                            s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
616                            *coefs++ =  noise *
617                                exponents[i<<bsize>>esize] * mult1;
618                        }
619                        exponents += n<<bsize;
620                    } else {
621                        /* coded values + small noise */
622                        for(i = 0;i < n; i++) {
623                            noise = s->noise_table[s->noise_index];
624                            s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
625                            *coefs++ = ((*coefs1++) + noise) *
626                                exponents[i<<bsize>>esize] * mult;
627                        }
628                        exponents += n<<bsize;
629                    }
630                }
631
632                /* very high freqs : noise */
633                n = s->block_len - s->coefs_end[bsize];
634                mult1 = mult * exponents[((-1<<bsize))>>esize];
635                for(i = 0; i < n; i++) {
636                    *coefs++ = s->noise_table[s->noise_index] * mult1;
637                    s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
638                }
639            } else {
640                /* XXX: optimize more */
641                for(i = 0;i < s->coefs_start; i++)
642                    *coefs++ = 0.0;
643                n = nb_coefs[ch];
644                for(i = 0;i < n; i++) {
645                    *coefs++ = coefs1[i] * exponents[i<<bsize>>esize] * mult;
646                }
647                n = s->block_len - s->coefs_end[bsize];
648                for(i = 0;i < n; i++)
649                    *coefs++ = 0.0;
650            }
651        }
652    }
653
654#ifdef TRACE
655    for(ch = 0; ch < s->nb_channels; ch++) {
656        if (s->channel_coded[ch]) {
657            dump_floats(s, "exponents", 3, s->exponents[ch], s->block_len);
658            dump_floats(s, "coefs", 1, s->coefs[ch], s->block_len);
659        }
660    }
661#endif
662
663    if (s->ms_stereo && s->channel_coded[1]) {
664        float a, b;
665        int i;
666
667        /* nominal case for ms stereo: we do it before mdct */
668        /* no need to optimize this case because it should almost
669           never happen */
670        if (!s->channel_coded[0]) {
671            tprintf(s->avctx, "rare ms-stereo case happened\n");
672            memset(s->coefs[0], 0, sizeof(float) * s->block_len);
673            s->channel_coded[0] = 1;
674        }
675
676        for(i = 0; i < s->block_len; i++) {
677            a = s->coefs[0][i];
678            b = s->coefs[1][i];
679            s->coefs[0][i] = a + b;
680            s->coefs[1][i] = a - b;
681        }
682    }
683
684next:
685    for(ch = 0; ch < s->nb_channels; ch++) {
686        int n4, index, n;
687
688        n = s->block_len;
689        n4 = s->block_len / 2;
690        if(s->channel_coded[ch]){
691            ff_imdct_calc(&s->mdct_ctx[bsize], s->output, s->coefs[ch]);
692        }else if(!(s->ms_stereo && ch==1))
693            memset(s->output, 0, sizeof(s->output));
694
695        /* multiply by the window and add in the frame */
696        index = (s->frame_len / 2) + s->block_pos - n4;
697        wma_window(s, &s->frame_out[ch][index]);
698    }
699
700    /* update block number */
701    s->block_num++;
702    s->block_pos += s->block_len;
703    if (s->block_pos >= s->frame_len)
704        return 1;
705    else
706        return 0;
707}
708
709/* decode a frame of frame_len samples */
710static int wma_decode_frame(WMACodecContext *s, int16_t *samples)
711{
712    int ret, i, n, ch, incr;
713    int16_t *ptr;
714    float *iptr;
715
716#ifdef TRACE
717    tprintf(s->avctx, "***decode_frame: %d size=%d\n", s->frame_count++, s->frame_len);
718#endif
719
720    /* read each block */
721    s->block_num = 0;
722    s->block_pos = 0;
723    for(;;) {
724        ret = wma_decode_block(s);
725        if (ret < 0)
726            return -1;
727        if (ret)
728            break;
729    }
730
731    /* convert frame to integer */
732    n = s->frame_len;
733    incr = s->nb_channels;
734    for(ch = 0; ch < s->nb_channels; ch++) {
735        ptr = samples + ch;
736        iptr = s->frame_out[ch];
737
738        for(i=0;i<n;i++) {
739            *ptr = av_clip_int16(lrintf(*iptr++));
740            ptr += incr;
741        }
742        /* prepare for next block */
743        memmove(&s->frame_out[ch][0], &s->frame_out[ch][s->frame_len],
744                s->frame_len * sizeof(float));
745    }
746
747#ifdef TRACE
748    dump_shorts(s, "samples", samples, n * s->nb_channels);
749#endif
750    return 0;
751}
752
753static int wma_decode_superframe(AVCodecContext *avctx,
754                                 void *data, int *data_size,
755                                 const uint8_t *buf, int buf_size)
756{
757    WMACodecContext *s = avctx->priv_data;
758    int nb_frames, bit_offset, i, pos, len;
759    uint8_t *q;
760    int16_t *samples;
761
762    tprintf(avctx, "***decode_superframe:\n");
763
764    if(buf_size==0){
765        s->last_superframe_len = 0;
766        return 0;
767    }
768    if (buf_size < s->block_align)
769        return 0;
770    buf_size = s->block_align;
771
772    samples = data;
773
774    init_get_bits(&s->gb, buf, buf_size*8);
775
776    if (s->use_bit_reservoir) {
777        /* read super frame header */
778        skip_bits(&s->gb, 4); /* super frame index */
779        nb_frames = get_bits(&s->gb, 4) - 1;
780
781        if((nb_frames+1) * s->nb_channels * s->frame_len * sizeof(int16_t) > *data_size){
782            av_log(s->avctx, AV_LOG_ERROR, "Insufficient output space\n");
783            goto fail;
784        }
785
786        bit_offset = get_bits(&s->gb, s->byte_offset_bits + 3);
787
788        if (s->last_superframe_len > 0) {
789            //        printf("skip=%d\n", s->last_bitoffset);
790            /* add bit_offset bits to last frame */
791            if ((s->last_superframe_len + ((bit_offset + 7) >> 3)) >
792                MAX_CODED_SUPERFRAME_SIZE)
793                goto fail;
794            q = s->last_superframe + s->last_superframe_len;
795            len = bit_offset;
796            while (len > 7) {
797                *q++ = (get_bits)(&s->gb, 8);
798                len -= 8;
799            }
800            if (len > 0) {
801                *q++ = (get_bits)(&s->gb, len) << (8 - len);
802            }
803
804            /* XXX: bit_offset bits into last frame */
805            init_get_bits(&s->gb, s->last_superframe, MAX_CODED_SUPERFRAME_SIZE*8);
806            /* skip unused bits */
807            if (s->last_bitoffset > 0)
808                skip_bits(&s->gb, s->last_bitoffset);
809            /* this frame is stored in the last superframe and in the
810               current one */
811            if (wma_decode_frame(s, samples) < 0)
812                goto fail;
813            samples += s->nb_channels * s->frame_len;
814        }
815
816        /* read each frame starting from bit_offset */
817        pos = bit_offset + 4 + 4 + s->byte_offset_bits + 3;
818        init_get_bits(&s->gb, buf + (pos >> 3), (MAX_CODED_SUPERFRAME_SIZE - (pos >> 3))*8);
819        len = pos & 7;
820        if (len > 0)
821            skip_bits(&s->gb, len);
822
823        s->reset_block_lengths = 1;
824        for(i=0;i<nb_frames;i++) {
825            if (wma_decode_frame(s, samples) < 0)
826                goto fail;
827            samples += s->nb_channels * s->frame_len;
828        }
829
830        /* we copy the end of the frame in the last frame buffer */
831        pos = get_bits_count(&s->gb) + ((bit_offset + 4 + 4 + s->byte_offset_bits + 3) & ~7);
832        s->last_bitoffset = pos & 7;
833        pos >>= 3;
834        len = buf_size - pos;
835        if (len > MAX_CODED_SUPERFRAME_SIZE || len < 0) {
836            goto fail;
837        }
838        s->last_superframe_len = len;
839        memcpy(s->last_superframe, buf + pos, len);
840    } else {
841        if(s->nb_channels * s->frame_len * sizeof(int16_t) > *data_size){
842            av_log(s->avctx, AV_LOG_ERROR, "Insufficient output space\n");
843            goto fail;
844        }
845        /* single frame decode */
846        if (wma_decode_frame(s, samples) < 0)
847            goto fail;
848        samples += s->nb_channels * s->frame_len;
849    }
850
851//av_log(NULL, AV_LOG_ERROR, "%d %d %d %d outbytes:%d eaten:%d\n", s->frame_len_bits, s->block_len_bits, s->frame_len, s->block_len,        (int8_t *)samples - (int8_t *)data, s->block_align);
852
853    *data_size = (int8_t *)samples - (int8_t *)data;
854    return s->block_align;
855 fail:
856    /* when error, we reset the bit reservoir */
857    s->last_superframe_len = 0;
858    return -1;
859}
860
861AVCodec wmav1_decoder =
862{
863    "wmav1",
864    CODEC_TYPE_AUDIO,
865    CODEC_ID_WMAV1,
866    sizeof(WMACodecContext),
867    wma_decode_init,
868    NULL,
869    ff_wma_end,
870    wma_decode_superframe,
871    .long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio 1"),
872};
873
874AVCodec wmav2_decoder =
875{
876    "wmav2",
877    CODEC_TYPE_AUDIO,
878    CODEC_ID_WMAV2,
879    sizeof(WMACodecContext),
880    wma_decode_init,
881    NULL,
882    ff_wma_end,
883    wma_decode_superframe,
884    .long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio 2"),
885};
886