1/*
2 * RV40 decoder
3 * Copyright (c) 2007 Konstantin Shishkov
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22/**
23 * @file libavcodec/rv40.c
24 * RV40 decoder
25 */
26
27#include "avcodec.h"
28#include "dsputil.h"
29#include "mpegvideo.h"
30#include "golomb.h"
31
32#include "rv34.h"
33#include "rv40vlc2.h"
34#include "rv40data.h"
35
36static VLC aic_top_vlc;
37static VLC aic_mode1_vlc[AIC_MODE1_NUM], aic_mode2_vlc[AIC_MODE2_NUM];
38static VLC ptype_vlc[NUM_PTYPE_VLCS], btype_vlc[NUM_BTYPE_VLCS];
39
40/**
41 * Initialize all tables.
42 */
43static av_cold void rv40_init_tables(void)
44{
45    int i;
46
47    init_vlc(&aic_top_vlc, AIC_TOP_BITS, AIC_TOP_SIZE,
48             rv40_aic_top_vlc_bits,  1, 1,
49             rv40_aic_top_vlc_codes, 1, 1, INIT_VLC_USE_STATIC);
50    for(i = 0; i < AIC_MODE1_NUM; i++){
51        // Every tenth VLC table is empty
52        if((i % 10) == 9) continue;
53        init_vlc(&aic_mode1_vlc[i], AIC_MODE1_BITS, AIC_MODE1_SIZE,
54                 aic_mode1_vlc_bits[i],  1, 1,
55                 aic_mode1_vlc_codes[i], 1, 1, INIT_VLC_USE_STATIC);
56    }
57    for(i = 0; i < AIC_MODE2_NUM; i++){
58        init_vlc(&aic_mode2_vlc[i], AIC_MODE2_BITS, AIC_MODE2_SIZE,
59                 aic_mode2_vlc_bits[i],  1, 1,
60                 aic_mode2_vlc_codes[i], 2, 2, INIT_VLC_USE_STATIC);
61    }
62    for(i = 0; i < NUM_PTYPE_VLCS; i++)
63         init_vlc_sparse(&ptype_vlc[i], PTYPE_VLC_BITS, PTYPE_VLC_SIZE,
64                         ptype_vlc_bits[i],  1, 1,
65                         ptype_vlc_codes[i], 1, 1,
66                         ptype_vlc_syms,     1, 1, INIT_VLC_USE_STATIC);
67    for(i = 0; i < NUM_BTYPE_VLCS; i++)
68         init_vlc_sparse(&btype_vlc[i], BTYPE_VLC_BITS, BTYPE_VLC_SIZE,
69                         btype_vlc_bits[i],  1, 1,
70                         btype_vlc_codes[i], 1, 1,
71                         btype_vlc_syms,     1, 1, INIT_VLC_USE_STATIC);
72}
73
74/**
75 * Get stored dimension from bitstream.
76 *
77 * If the width/height is the standard one then it's coded as a 3-bit index.
78 * Otherwise it is coded as escaped 8-bit portions.
79 */
80static int get_dimension(GetBitContext *gb, const int *dim)
81{
82    int t   = get_bits(gb, 3);
83    int val = dim[t];
84    if(val < 0)
85        val = dim[get_bits1(gb) - val];
86    if(!val){
87        do{
88            t = get_bits(gb, 8);
89            val += t << 2;
90        }while(t == 0xFF);
91    }
92    return val;
93}
94
95/**
96 * Get encoded picture size - usually this is called from rv40_parse_slice_header.
97 */
98static void rv40_parse_picture_size(GetBitContext *gb, int *w, int *h)
99{
100    *w = get_dimension(gb, rv40_standard_widths);
101    *h = get_dimension(gb, rv40_standard_heights);
102}
103
104static int rv40_parse_slice_header(RV34DecContext *r, GetBitContext *gb, SliceInfo *si)
105{
106    int mb_bits;
107    int w = r->s.width, h = r->s.height;
108    int mb_size;
109
110    memset(si, 0, sizeof(SliceInfo));
111    if(get_bits1(gb))
112        return -1;
113    si->type = get_bits(gb, 2);
114    if(si->type == 1) si->type = 0;
115    si->quant = get_bits(gb, 5);
116    if(get_bits(gb, 2))
117        return -1;
118    si->vlc_set = get_bits(gb, 2);
119    skip_bits1(gb);
120    si->pts = get_bits(gb, 13);
121    if(!si->type || !get_bits1(gb))
122        rv40_parse_picture_size(gb, &w, &h);
123    if(avcodec_check_dimensions(r->s.avctx, w, h) < 0)
124        return -1;
125    si->width  = w;
126    si->height = h;
127    mb_size = ((w + 15) >> 4) * ((h + 15) >> 4);
128    mb_bits = ff_rv34_get_start_offset(gb, mb_size);
129    si->start = get_bits(gb, mb_bits);
130
131    return 0;
132}
133
134/**
135 * Decode 4x4 intra types array.
136 */
137static int rv40_decode_intra_types(RV34DecContext *r, GetBitContext *gb, int8_t *dst)
138{
139    MpegEncContext *s = &r->s;
140    int i, j, k, v;
141    int A, B, C;
142    int pattern;
143    int8_t *ptr;
144
145    for(i = 0; i < 4; i++, dst += s->b4_stride){
146        if(!i && s->first_slice_line){
147            pattern = get_vlc2(gb, aic_top_vlc.table, AIC_TOP_BITS, 1);
148            dst[0] = (pattern >> 2) & 2;
149            dst[1] = (pattern >> 1) & 2;
150            dst[2] =  pattern       & 2;
151            dst[3] = (pattern << 1) & 2;
152            continue;
153        }
154        ptr = dst;
155        for(j = 0; j < 4; j++){
156            /* Coefficients are read using VLC chosen by the prediction pattern
157             * The first one (used for retrieving a pair of coefficients) is
158             * constructed from the top, top right and left coefficients
159             * The second one (used for retrieving only one coefficient) is
160             * top + 10 * left.
161             */
162            A = ptr[-s->b4_stride + 1]; // it won't be used for the last coefficient in a row
163            B = ptr[-s->b4_stride];
164            C = ptr[-1];
165            pattern = A + (B << 4) + (C << 8);
166            for(k = 0; k < MODE2_PATTERNS_NUM; k++)
167                if(pattern == rv40_aic_table_index[k])
168                    break;
169            if(j < 3 && k < MODE2_PATTERNS_NUM){ //pattern is found, decoding 2 coefficients
170                v = get_vlc2(gb, aic_mode2_vlc[k].table, AIC_MODE2_BITS, 2);
171                *ptr++ = v/9;
172                *ptr++ = v%9;
173                j++;
174            }else{
175                if(B != -1 && C != -1)
176                    v = get_vlc2(gb, aic_mode1_vlc[B + C*10].table, AIC_MODE1_BITS, 1);
177                else{ // tricky decoding
178                    v = 0;
179                    switch(C){
180                    case -1: // code 0 -> 1, 1 -> 0
181                        if(B < 2)
182                            v = get_bits1(gb) ^ 1;
183                        break;
184                    case  0:
185                    case  2: // code 0 -> 2, 1 -> 0
186                        v = (get_bits1(gb) ^ 1) << 1;
187                        break;
188                    }
189                }
190                *ptr++ = v;
191            }
192        }
193    }
194    return 0;
195}
196
197/**
198 * Decode macroblock information.
199 */
200static int rv40_decode_mb_info(RV34DecContext *r)
201{
202    MpegEncContext *s = &r->s;
203    GetBitContext *gb = &s->gb;
204    int q, i;
205    int prev_type = 0;
206    int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
207    int blocks[RV34_MB_TYPES] = {0};
208    int count = 0;
209
210    if(!r->s.mb_skip_run)
211        r->s.mb_skip_run = svq3_get_ue_golomb(gb) + 1;
212
213    if(--r->s.mb_skip_run)
214         return RV34_MB_SKIP;
215
216    if(r->avail_cache[5-1])
217        blocks[r->mb_type[mb_pos - 1]]++;
218    if(r->avail_cache[5-4]){
219        blocks[r->mb_type[mb_pos - s->mb_stride]]++;
220        if(r->avail_cache[5-2])
221            blocks[r->mb_type[mb_pos - s->mb_stride + 1]]++;
222        if(r->avail_cache[5-5])
223            blocks[r->mb_type[mb_pos - s->mb_stride - 1]]++;
224    }
225
226    for(i = 0; i < RV34_MB_TYPES; i++){
227        if(blocks[i] > count){
228            count = blocks[i];
229            prev_type = i;
230        }
231    }
232    if(s->pict_type == FF_P_TYPE){
233        prev_type = block_num_to_ptype_vlc_num[prev_type];
234        q = get_vlc2(gb, ptype_vlc[prev_type].table, PTYPE_VLC_BITS, 1);
235        if(q < PBTYPE_ESCAPE)
236            return q;
237        q = get_vlc2(gb, ptype_vlc[prev_type].table, PTYPE_VLC_BITS, 1);
238        av_log(s->avctx, AV_LOG_ERROR, "Dquant for P-frame\n");
239    }else{
240        prev_type = block_num_to_btype_vlc_num[prev_type];
241        q = get_vlc2(gb, btype_vlc[prev_type].table, BTYPE_VLC_BITS, 1);
242        if(q < PBTYPE_ESCAPE)
243            return q;
244        q = get_vlc2(gb, btype_vlc[prev_type].table, BTYPE_VLC_BITS, 1);
245        av_log(s->avctx, AV_LOG_ERROR, "Dquant for B-frame\n");
246    }
247    return 0;
248}
249
250#define CLIP_SYMM(a, b) av_clip(a, -(b), b)
251/**
252 * weaker deblocking very similar to the one described in 4.4.2 of JVT-A003r1
253 */
254static inline void rv40_weak_loop_filter(uint8_t *src, const int step,
255                                         const int filter_p1, const int filter_q1,
256                                         const int alpha, const int beta,
257                                         const int lim_p0q0,
258                                         const int lim_q1, const int lim_p1,
259                                         const int diff_p1p0, const int diff_q1q0,
260                                         const int diff_p1p2, const int diff_q1q2)
261{
262    uint8_t *cm = ff_cropTbl + MAX_NEG_CROP;
263    int t, u, diff;
264
265    t = src[0*step] - src[-1*step];
266    if(!t)
267        return;
268    u = (alpha * FFABS(t)) >> 7;
269    if(u > 3 - (filter_p1 && filter_q1))
270        return;
271
272    t <<= 2;
273    if(filter_p1 && filter_q1)
274        t += src[-2*step] - src[1*step];
275    diff = CLIP_SYMM((t + 4) >> 3, lim_p0q0);
276    src[-1*step] = cm[src[-1*step] + diff];
277    src[ 0*step] = cm[src[ 0*step] - diff];
278    if(FFABS(diff_p1p2) <= beta && filter_p1){
279        t = (diff_p1p0 + diff_p1p2 - diff) >> 1;
280        src[-2*step] = cm[src[-2*step] - CLIP_SYMM(t, lim_p1)];
281    }
282    if(FFABS(diff_q1q2) <= beta && filter_q1){
283        t = (diff_q1q0 + diff_q1q2 + diff) >> 1;
284        src[ 1*step] = cm[src[ 1*step] - CLIP_SYMM(t, lim_q1)];
285    }
286}
287
288static inline void rv40_adaptive_loop_filter(uint8_t *src, const int step,
289                                             const int stride, const int dmode,
290                                             const int lim_q1, const int lim_p1,
291                                             const int alpha,
292                                             const int beta, const int beta2,
293                                             const int chroma, const int edge)
294{
295    int diff_p1p0[4], diff_q1q0[4], diff_p1p2[4], diff_q1q2[4];
296    int sum_p1p0 = 0, sum_q1q0 = 0, sum_p1p2 = 0, sum_q1q2 = 0;
297    uint8_t *ptr;
298    int flag_strong0 = 1, flag_strong1 = 1;
299    int filter_p1, filter_q1;
300    int i;
301    int lims;
302
303    for(i = 0, ptr = src; i < 4; i++, ptr += stride){
304        diff_p1p0[i] = ptr[-2*step] - ptr[-1*step];
305        diff_q1q0[i] = ptr[ 1*step] - ptr[ 0*step];
306        sum_p1p0 += diff_p1p0[i];
307        sum_q1q0 += diff_q1q0[i];
308    }
309    filter_p1 = FFABS(sum_p1p0) < (beta<<2);
310    filter_q1 = FFABS(sum_q1q0) < (beta<<2);
311    if(!filter_p1 && !filter_q1)
312        return;
313
314    for(i = 0, ptr = src; i < 4; i++, ptr += stride){
315        diff_p1p2[i] = ptr[-2*step] - ptr[-3*step];
316        diff_q1q2[i] = ptr[ 1*step] - ptr[ 2*step];
317        sum_p1p2 += diff_p1p2[i];
318        sum_q1q2 += diff_q1q2[i];
319    }
320
321    if(edge){
322        flag_strong0 = filter_p1 && (FFABS(sum_p1p2) < beta2);
323        flag_strong1 = filter_q1 && (FFABS(sum_q1q2) < beta2);
324    }else{
325        flag_strong0 = flag_strong1 = 0;
326    }
327
328    lims = filter_p1 + filter_q1 + ((lim_q1 + lim_p1) >> 1) + 1;
329    if(flag_strong0 && flag_strong1){ /* strong filtering */
330        for(i = 0; i < 4; i++, src += stride){
331            int sflag, p0, q0, p1, q1;
332            int t = src[0*step] - src[-1*step];
333
334            if(!t) continue;
335            sflag = (alpha * FFABS(t)) >> 7;
336            if(sflag > 1) continue;
337
338            p0 = (25*src[-3*step] + 26*src[-2*step]
339                + 26*src[-1*step]
340                + 26*src[ 0*step] + 25*src[ 1*step] + rv40_dither_l[dmode + i]) >> 7;
341            q0 = (25*src[-2*step] + 26*src[-1*step]
342                + 26*src[ 0*step]
343                + 26*src[ 1*step] + 25*src[ 2*step] + rv40_dither_r[dmode + i]) >> 7;
344            if(sflag){
345                p0 = av_clip(p0, src[-1*step] - lims, src[-1*step] + lims);
346                q0 = av_clip(q0, src[ 0*step] - lims, src[ 0*step] + lims);
347            }
348            p1 = (25*src[-4*step] + 26*src[-3*step]
349                + 26*src[-2*step]
350                + 26*p0           + 25*src[ 0*step] + rv40_dither_l[dmode + i]) >> 7;
351            q1 = (25*src[-1*step] + 26*q0
352                + 26*src[ 1*step]
353                + 26*src[ 2*step] + 25*src[ 3*step] + rv40_dither_r[dmode + i]) >> 7;
354            if(sflag){
355                p1 = av_clip(p1, src[-2*step] - lims, src[-2*step] + lims);
356                q1 = av_clip(q1, src[ 1*step] - lims, src[ 1*step] + lims);
357            }
358            src[-2*step] = p1;
359            src[-1*step] = p0;
360            src[ 0*step] = q0;
361            src[ 1*step] = q1;
362            if(!chroma){
363                src[-3*step] = (25*src[-1*step] + 26*src[-2*step] + 51*src[-3*step] + 26*src[-4*step] + 64) >> 7;
364                src[ 2*step] = (25*src[ 0*step] + 26*src[ 1*step] + 51*src[ 2*step] + 26*src[ 3*step] + 64) >> 7;
365            }
366        }
367    }else if(filter_p1 && filter_q1){
368        for(i = 0; i < 4; i++, src += stride)
369            rv40_weak_loop_filter(src, step, 1, 1, alpha, beta, lims, lim_q1, lim_p1,
370                                  diff_p1p0[i], diff_q1q0[i], diff_p1p2[i], diff_q1q2[i]);
371    }else{
372        for(i = 0; i < 4; i++, src += stride)
373            rv40_weak_loop_filter(src, step, filter_p1, filter_q1,
374                                  alpha, beta, lims>>1, lim_q1>>1, lim_p1>>1,
375                                  diff_p1p0[i], diff_q1q0[i], diff_p1p2[i], diff_q1q2[i]);
376    }
377}
378
379static void rv40_v_loop_filter(uint8_t *src, int stride, int dmode,
380                               int lim_q1, int lim_p1,
381                               int alpha, int beta, int beta2, int chroma, int edge){
382    rv40_adaptive_loop_filter(src, 1, stride, dmode, lim_q1, lim_p1,
383                              alpha, beta, beta2, chroma, edge);
384}
385static void rv40_h_loop_filter(uint8_t *src, int stride, int dmode,
386                               int lim_q1, int lim_p1,
387                               int alpha, int beta, int beta2, int chroma, int edge){
388    rv40_adaptive_loop_filter(src, stride, 1, dmode, lim_q1, lim_p1,
389                              alpha, beta, beta2, chroma, edge);
390}
391
392enum RV40BlockPos{
393    POS_CUR,
394    POS_TOP,
395    POS_LEFT,
396    POS_BOTTOM,
397};
398
399#define MASK_CUR          0x0001
400#define MASK_RIGHT        0x0008
401#define MASK_BOTTOM       0x0010
402#define MASK_TOP          0x1000
403#define MASK_Y_TOP_ROW    0x000F
404#define MASK_Y_LAST_ROW   0xF000
405#define MASK_Y_LEFT_COL   0x1111
406#define MASK_Y_RIGHT_COL  0x8888
407#define MASK_C_TOP_ROW    0x0003
408#define MASK_C_LAST_ROW   0x000C
409#define MASK_C_LEFT_COL   0x0005
410#define MASK_C_RIGHT_COL  0x000A
411
412static const int neighbour_offs_x[4] = { 0,  0, -1, 0 };
413static const int neighbour_offs_y[4] = { 0, -1,  0, 1 };
414
415/**
416 * RV40 loop filtering function
417 */
418static void rv40_loop_filter(RV34DecContext *r, int row)
419{
420    MpegEncContext *s = &r->s;
421    int mb_pos, mb_x;
422    int i, j, k;
423    uint8_t *Y, *C;
424    int alpha, beta, betaY, betaC;
425    int q;
426    int mbtype[4];   ///< current macroblock and its neighbours types
427    /**
428     * flags indicating that macroblock can be filtered with strong filter
429     * it is set only for intra coded MB and MB with DCs coded separately
430     */
431    int mb_strong[4];
432    int clip[4];     ///< MB filter clipping value calculated from filtering strength
433    /**
434     * coded block patterns for luma part of current macroblock and its neighbours
435     * Format:
436     * LSB corresponds to the top left block,
437     * each nibble represents one row of subblocks.
438     */
439    int cbp[4];
440    /**
441     * coded block patterns for chroma part of current macroblock and its neighbours
442     * Format is the same as for luma with two subblocks in a row.
443     */
444    int uvcbp[4][2];
445    /**
446     * This mask represents the pattern of luma subblocks that should be filtered
447     * in addition to the coded ones because because they lie at the edge of
448     * 8x8 block with different enough motion vectors
449     */
450    int mvmasks[4];
451
452    mb_pos = row * s->mb_stride;
453    for(mb_x = 0; mb_x < s->mb_width; mb_x++, mb_pos++){
454        int mbtype = s->current_picture_ptr->mb_type[mb_pos];
455        if(IS_INTRA(mbtype) || IS_SEPARATE_DC(mbtype))
456            r->cbp_luma  [mb_pos] = r->deblock_coefs[mb_pos] = 0xFFFF;
457        if(IS_INTRA(mbtype))
458            r->cbp_chroma[mb_pos] = 0xFF;
459    }
460    mb_pos = row * s->mb_stride;
461    for(mb_x = 0; mb_x < s->mb_width; mb_x++, mb_pos++){
462        int y_h_deblock, y_v_deblock;
463        int c_v_deblock[2], c_h_deblock[2];
464        int clip_left;
465        int avail[4];
466        int y_to_deblock, c_to_deblock[2];
467
468        q = s->current_picture_ptr->qscale_table[mb_pos];
469        alpha = rv40_alpha_tab[q];
470        beta  = rv40_beta_tab [q];
471        betaY = betaC = beta * 3;
472        if(s->width * s->height <= 176*144)
473            betaY += beta;
474
475        avail[0] = 1;
476        avail[1] = row;
477        avail[2] = mb_x;
478        avail[3] = row < s->mb_height - 1;
479        for(i = 0; i < 4; i++){
480            if(avail[i]){
481                int pos = mb_pos + neighbour_offs_x[i] + neighbour_offs_y[i]*s->mb_stride;
482                mvmasks[i] = r->deblock_coefs[pos];
483                mbtype [i] = s->current_picture_ptr->mb_type[pos];
484                cbp    [i] = r->cbp_luma[pos];
485                uvcbp[i][0] = r->cbp_chroma[pos] & 0xF;
486                uvcbp[i][1] = r->cbp_chroma[pos] >> 4;
487            }else{
488                mvmasks[i] = 0;
489                mbtype [i] = mbtype[0];
490                cbp    [i] = 0;
491                uvcbp[i][0] = uvcbp[i][1] = 0;
492            }
493            mb_strong[i] = IS_INTRA(mbtype[i]) || IS_SEPARATE_DC(mbtype[i]);
494            clip[i] = rv40_filter_clip_tbl[mb_strong[i] + 1][q];
495        }
496        y_to_deblock =  mvmasks[POS_CUR]
497                     | (mvmasks[POS_BOTTOM] << 16);
498        /* This pattern contains bits signalling that horizontal edges of
499         * the current block can be filtered.
500         * That happens when either of adjacent subblocks is coded or lies on
501         * the edge of 8x8 blocks with motion vectors differing by more than
502         * 3/4 pel in any component (any edge orientation for some reason).
503         */
504        y_h_deblock =   y_to_deblock
505                    | ((cbp[POS_CUR]                           <<  4) & ~MASK_Y_TOP_ROW)
506                    | ((cbp[POS_TOP]        & MASK_Y_LAST_ROW) >> 12);
507        /* This pattern contains bits signalling that vertical edges of
508         * the current block can be filtered.
509         * That happens when either of adjacent subblocks is coded or lies on
510         * the edge of 8x8 blocks with motion vectors differing by more than
511         * 3/4 pel in any component (any edge orientation for some reason).
512         */
513        y_v_deblock =   y_to_deblock
514                    | ((cbp[POS_CUR]                      << 1) & ~MASK_Y_LEFT_COL)
515                    | ((cbp[POS_LEFT] & MASK_Y_RIGHT_COL) >> 3);
516        if(!mb_x)
517            y_v_deblock &= ~MASK_Y_LEFT_COL;
518        if(!row)
519            y_h_deblock &= ~MASK_Y_TOP_ROW;
520        if(row == s->mb_height - 1 || (mb_strong[POS_CUR] || mb_strong[POS_BOTTOM]))
521            y_h_deblock &= ~(MASK_Y_TOP_ROW << 16);
522        /* Calculating chroma patterns is similar and easier since there is
523         * no motion vector pattern for them.
524         */
525        for(i = 0; i < 2; i++){
526            c_to_deblock[i] = (uvcbp[POS_BOTTOM][i] << 4) | uvcbp[POS_CUR][i];
527            c_v_deblock[i] =   c_to_deblock[i]
528                           | ((uvcbp[POS_CUR] [i]                       << 1) & ~MASK_C_LEFT_COL)
529                           | ((uvcbp[POS_LEFT][i]   & MASK_C_RIGHT_COL) >> 1);
530            c_h_deblock[i] =   c_to_deblock[i]
531                           | ((uvcbp[POS_TOP][i]    & MASK_C_LAST_ROW)  >> 2)
532                           |  (uvcbp[POS_CUR][i]                        << 2);
533            if(!mb_x)
534                c_v_deblock[i] &= ~MASK_C_LEFT_COL;
535            if(!row)
536                c_h_deblock[i] &= ~MASK_C_TOP_ROW;
537            if(row == s->mb_height - 1 || mb_strong[POS_CUR] || mb_strong[POS_BOTTOM])
538                c_h_deblock[i] &= ~(MASK_C_TOP_ROW << 4);
539        }
540
541        for(j = 0; j < 16; j += 4){
542            Y = s->current_picture_ptr->data[0] + mb_x*16 + (row*16 + j) * s->linesize;
543            for(i = 0; i < 4; i++, Y += 4){
544                int ij = i + j;
545                int clip_cur = y_to_deblock & (MASK_CUR << ij) ? clip[POS_CUR] : 0;
546                int dither = j ? ij : i*4;
547
548                // if bottom block is coded then we can filter its top edge
549                // (or bottom edge of this block, which is the same)
550                if(y_h_deblock & (MASK_BOTTOM << ij)){
551                    rv40_h_loop_filter(Y+4*s->linesize, s->linesize, dither,
552                                       y_to_deblock & (MASK_BOTTOM << ij) ? clip[POS_CUR] : 0,
553                                       clip_cur,
554                                       alpha, beta, betaY, 0, 0);
555                }
556                // filter left block edge in ordinary mode (with low filtering strength)
557                if(y_v_deblock & (MASK_CUR << ij) && (i || !(mb_strong[POS_CUR] || mb_strong[POS_LEFT]))){
558                    if(!i)
559                        clip_left = mvmasks[POS_LEFT] & (MASK_RIGHT << j) ? clip[POS_LEFT] : 0;
560                    else
561                        clip_left = y_to_deblock & (MASK_CUR << (ij-1)) ? clip[POS_CUR] : 0;
562                    rv40_v_loop_filter(Y, s->linesize, dither,
563                                       clip_cur,
564                                       clip_left,
565                                       alpha, beta, betaY, 0, 0);
566                }
567                // filter top edge of the current macroblock when filtering strength is high
568                if(!j && y_h_deblock & (MASK_CUR << i) && (mb_strong[POS_CUR] || mb_strong[POS_TOP])){
569                    rv40_h_loop_filter(Y, s->linesize, dither,
570                                       clip_cur,
571                                       mvmasks[POS_TOP] & (MASK_TOP << i) ? clip[POS_TOP] : 0,
572                                       alpha, beta, betaY, 0, 1);
573                }
574                // filter left block edge in edge mode (with high filtering strength)
575                if(y_v_deblock & (MASK_CUR << ij) && !i && (mb_strong[POS_CUR] || mb_strong[POS_LEFT])){
576                    clip_left = mvmasks[POS_LEFT] & (MASK_RIGHT << j) ? clip[POS_LEFT] : 0;
577                    rv40_v_loop_filter(Y, s->linesize, dither,
578                                       clip_cur,
579                                       clip_left,
580                                       alpha, beta, betaY, 0, 1);
581                }
582            }
583        }
584        for(k = 0; k < 2; k++){
585            for(j = 0; j < 2; j++){
586                C = s->current_picture_ptr->data[k+1] + mb_x*8 + (row*8 + j*4) * s->uvlinesize;
587                for(i = 0; i < 2; i++, C += 4){
588                    int ij = i + j*2;
589                    int clip_cur = c_to_deblock[k] & (MASK_CUR << ij) ? clip[POS_CUR] : 0;
590                    if(c_h_deblock[k] & (MASK_CUR << (ij+2))){
591                        int clip_bot = c_to_deblock[k] & (MASK_CUR << (ij+2)) ? clip[POS_CUR] : 0;
592                        rv40_h_loop_filter(C+4*s->uvlinesize, s->uvlinesize, i*8,
593                                           clip_bot,
594                                           clip_cur,
595                                           alpha, beta, betaC, 1, 0);
596                    }
597                    if((c_v_deblock[k] & (MASK_CUR << ij)) && (i || !(mb_strong[POS_CUR] || mb_strong[POS_LEFT]))){
598                        if(!i)
599                            clip_left = uvcbp[POS_LEFT][k] & (MASK_CUR << (2*j+1)) ? clip[POS_LEFT] : 0;
600                        else
601                            clip_left = c_to_deblock[k]    & (MASK_CUR << (ij-1))  ? clip[POS_CUR]  : 0;
602                        rv40_v_loop_filter(C, s->uvlinesize, j*8,
603                                           clip_cur,
604                                           clip_left,
605                                           alpha, beta, betaC, 1, 0);
606                    }
607                    if(!j && c_h_deblock[k] & (MASK_CUR << ij) && (mb_strong[POS_CUR] || mb_strong[POS_TOP])){
608                        int clip_top = uvcbp[POS_TOP][k] & (MASK_CUR << (ij+2)) ? clip[POS_TOP] : 0;
609                        rv40_h_loop_filter(C, s->uvlinesize, i*8,
610                                           clip_cur,
611                                           clip_top,
612                                           alpha, beta, betaC, 1, 1);
613                    }
614                    if(c_v_deblock[k] & (MASK_CUR << ij) && !i && (mb_strong[POS_CUR] || mb_strong[POS_LEFT])){
615                        clip_left = uvcbp[POS_LEFT][k] & (MASK_CUR << (2*j+1)) ? clip[POS_LEFT] : 0;
616                        rv40_v_loop_filter(C, s->uvlinesize, j*8,
617                                           clip_cur,
618                                           clip_left,
619                                           alpha, beta, betaC, 1, 1);
620                    }
621                }
622            }
623        }
624    }
625}
626
627/**
628 * Initialize decoder.
629 */
630static av_cold int rv40_decode_init(AVCodecContext *avctx)
631{
632    RV34DecContext *r = avctx->priv_data;
633
634    r->rv30 = 0;
635    ff_rv34_decode_init(avctx);
636    if(!aic_top_vlc.bits)
637        rv40_init_tables();
638    r->parse_slice_header = rv40_parse_slice_header;
639    r->decode_intra_types = rv40_decode_intra_types;
640    r->decode_mb_info     = rv40_decode_mb_info;
641    r->loop_filter        = rv40_loop_filter;
642    r->luma_dc_quant_i = rv40_luma_dc_quant[0];
643    r->luma_dc_quant_p = rv40_luma_dc_quant[1];
644    return 0;
645}
646
647AVCodec rv40_decoder = {
648    "rv40",
649    CODEC_TYPE_VIDEO,
650    CODEC_ID_RV40,
651    sizeof(RV34DecContext),
652    rv40_decode_init,
653    NULL,
654    ff_rv34_decode_end,
655    ff_rv34_decode_frame,
656    CODEC_CAP_DR1 | CODEC_CAP_DELAY,
657    .flush = ff_mpeg_flush,
658    .long_name = NULL_IF_CONFIG_SMALL("RealVideo 4.0"),
659    .pix_fmts= ff_pixfmt_list_420,
660};
661