1/*
2 * Copyright (c) 2002 Dieter Shirley
3 *
4 * dct_unquantize_h263_altivec:
5 * Copyright (c) 2003 Romain Dolbeau <romain@dolbeau.org>
6 *
7 * This file is part of FFmpeg.
8 *
9 * FFmpeg is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2.1 of the License, or (at your option) any later version.
13 *
14 * FFmpeg is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with FFmpeg; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22 */
23
24#include <stdlib.h>
25#include <stdio.h>
26#include "libavcodec/dsputil.h"
27#include "libavcodec/mpegvideo.h"
28
29#include "gcc_fixes.h"
30
31#include "dsputil_ppc.h"
32#include "util_altivec.h"
33// Swaps two variables (used for altivec registers)
34#define SWAP(a,b) \
35do { \
36    __typeof__(a) swap_temp=a; \
37    a=b; \
38    b=swap_temp; \
39} while (0)
40
41// transposes a matrix consisting of four vectors with four elements each
42#define TRANSPOSE4(a,b,c,d) \
43do { \
44    __typeof__(a) _trans_ach = vec_mergeh(a, c); \
45    __typeof__(a) _trans_acl = vec_mergel(a, c); \
46    __typeof__(a) _trans_bdh = vec_mergeh(b, d); \
47    __typeof__(a) _trans_bdl = vec_mergel(b, d); \
48                                                 \
49    a = vec_mergeh(_trans_ach, _trans_bdh);      \
50    b = vec_mergel(_trans_ach, _trans_bdh);      \
51    c = vec_mergeh(_trans_acl, _trans_bdl);      \
52    d = vec_mergel(_trans_acl, _trans_bdl);      \
53} while (0)
54
55
56// Loads a four-byte value (int or float) from the target address
57// into every element in the target vector.  Only works if the
58// target address is four-byte aligned (which should be always).
59#define LOAD4(vec, address) \
60{ \
61    __typeof__(vec)* _load_addr = (__typeof__(vec)*)(address);  \
62    vector unsigned char _perm_vec = vec_lvsl(0,(address));     \
63    vec = vec_ld(0, _load_addr);                                \
64    vec = vec_perm(vec, vec, _perm_vec);                        \
65    vec = vec_splat(vec, 0);                                    \
66}
67
68
69#define FOUROF(a) {a,a,a,a}
70
71int dct_quantize_altivec(MpegEncContext* s,
72                         DCTELEM* data, int n,
73                         int qscale, int* overflow)
74{
75    int lastNonZero;
76    vector float row0, row1, row2, row3, row4, row5, row6, row7;
77    vector float alt0, alt1, alt2, alt3, alt4, alt5, alt6, alt7;
78    const vector float zero = (const vector float)FOUROF(0.);
79    // used after quantize step
80    int oldBaseValue = 0;
81
82    // Load the data into the row/alt vectors
83    {
84        vector signed short data0, data1, data2, data3, data4, data5, data6, data7;
85
86        data0 = vec_ld(0, data);
87        data1 = vec_ld(16, data);
88        data2 = vec_ld(32, data);
89        data3 = vec_ld(48, data);
90        data4 = vec_ld(64, data);
91        data5 = vec_ld(80, data);
92        data6 = vec_ld(96, data);
93        data7 = vec_ld(112, data);
94
95        // Transpose the data before we start
96        TRANSPOSE8(data0, data1, data2, data3, data4, data5, data6, data7);
97
98        // load the data into floating point vectors.  We load
99        // the high half of each row into the main row vectors
100        // and the low half into the alt vectors.
101        row0 = vec_ctf(vec_unpackh(data0), 0);
102        alt0 = vec_ctf(vec_unpackl(data0), 0);
103        row1 = vec_ctf(vec_unpackh(data1), 0);
104        alt1 = vec_ctf(vec_unpackl(data1), 0);
105        row2 = vec_ctf(vec_unpackh(data2), 0);
106        alt2 = vec_ctf(vec_unpackl(data2), 0);
107        row3 = vec_ctf(vec_unpackh(data3), 0);
108        alt3 = vec_ctf(vec_unpackl(data3), 0);
109        row4 = vec_ctf(vec_unpackh(data4), 0);
110        alt4 = vec_ctf(vec_unpackl(data4), 0);
111        row5 = vec_ctf(vec_unpackh(data5), 0);
112        alt5 = vec_ctf(vec_unpackl(data5), 0);
113        row6 = vec_ctf(vec_unpackh(data6), 0);
114        alt6 = vec_ctf(vec_unpackl(data6), 0);
115        row7 = vec_ctf(vec_unpackh(data7), 0);
116        alt7 = vec_ctf(vec_unpackl(data7), 0);
117    }
118
119    // The following block could exist as a separate an altivec dct
120                // function.  However, if we put it inline, the DCT data can remain
121                // in the vector local variables, as floats, which we'll use during the
122                // quantize step...
123    {
124        const vector float vec_0_298631336 = (vector float)FOUROF(0.298631336f);
125        const vector float vec_0_390180644 = (vector float)FOUROF(-0.390180644f);
126        const vector float vec_0_541196100 = (vector float)FOUROF(0.541196100f);
127        const vector float vec_0_765366865 = (vector float)FOUROF(0.765366865f);
128        const vector float vec_0_899976223 = (vector float)FOUROF(-0.899976223f);
129        const vector float vec_1_175875602 = (vector float)FOUROF(1.175875602f);
130        const vector float vec_1_501321110 = (vector float)FOUROF(1.501321110f);
131        const vector float vec_1_847759065 = (vector float)FOUROF(-1.847759065f);
132        const vector float vec_1_961570560 = (vector float)FOUROF(-1.961570560f);
133        const vector float vec_2_053119869 = (vector float)FOUROF(2.053119869f);
134        const vector float vec_2_562915447 = (vector float)FOUROF(-2.562915447f);
135        const vector float vec_3_072711026 = (vector float)FOUROF(3.072711026f);
136
137
138        int whichPass, whichHalf;
139
140        for(whichPass = 1; whichPass<=2; whichPass++) {
141            for(whichHalf = 1; whichHalf<=2; whichHalf++) {
142                vector float tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
143                vector float tmp10, tmp11, tmp12, tmp13;
144                vector float z1, z2, z3, z4, z5;
145
146                tmp0 = vec_add(row0, row7); // tmp0 = dataptr[0] + dataptr[7];
147                tmp7 = vec_sub(row0, row7); // tmp7 = dataptr[0] - dataptr[7];
148                tmp3 = vec_add(row3, row4); // tmp3 = dataptr[3] + dataptr[4];
149                tmp4 = vec_sub(row3, row4); // tmp4 = dataptr[3] - dataptr[4];
150                tmp1 = vec_add(row1, row6); // tmp1 = dataptr[1] + dataptr[6];
151                tmp6 = vec_sub(row1, row6); // tmp6 = dataptr[1] - dataptr[6];
152                tmp2 = vec_add(row2, row5); // tmp2 = dataptr[2] + dataptr[5];
153                tmp5 = vec_sub(row2, row5); // tmp5 = dataptr[2] - dataptr[5];
154
155                tmp10 = vec_add(tmp0, tmp3); // tmp10 = tmp0 + tmp3;
156                tmp13 = vec_sub(tmp0, tmp3); // tmp13 = tmp0 - tmp3;
157                tmp11 = vec_add(tmp1, tmp2); // tmp11 = tmp1 + tmp2;
158                tmp12 = vec_sub(tmp1, tmp2); // tmp12 = tmp1 - tmp2;
159
160
161                // dataptr[0] = (DCTELEM) ((tmp10 + tmp11) << PASS1_BITS);
162                row0 = vec_add(tmp10, tmp11);
163
164                // dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS);
165                row4 = vec_sub(tmp10, tmp11);
166
167
168                // z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
169                z1 = vec_madd(vec_add(tmp12, tmp13), vec_0_541196100, (vector float)zero);
170
171                // dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
172                //                                CONST_BITS-PASS1_BITS);
173                row2 = vec_madd(tmp13, vec_0_765366865, z1);
174
175                // dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
176                //                                CONST_BITS-PASS1_BITS);
177                row6 = vec_madd(tmp12, vec_1_847759065, z1);
178
179                z1 = vec_add(tmp4, tmp7); // z1 = tmp4 + tmp7;
180                z2 = vec_add(tmp5, tmp6); // z2 = tmp5 + tmp6;
181                z3 = vec_add(tmp4, tmp6); // z3 = tmp4 + tmp6;
182                z4 = vec_add(tmp5, tmp7); // z4 = tmp5 + tmp7;
183
184                // z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
185                z5 = vec_madd(vec_add(z3, z4), vec_1_175875602, (vector float)zero);
186
187                // z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
188                z3 = vec_madd(z3, vec_1_961570560, z5);
189
190                // z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
191                z4 = vec_madd(z4, vec_0_390180644, z5);
192
193                // The following adds are rolled into the multiplies above
194                // z3 = vec_add(z3, z5);  // z3 += z5;
195                // z4 = vec_add(z4, z5);  // z4 += z5;
196
197                // z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
198                // Wow!  It's actually more efficient to roll this multiply
199                // into the adds below, even thought the multiply gets done twice!
200                // z2 = vec_madd(z2, vec_2_562915447, (vector float)zero);
201
202                // z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
203                // Same with this one...
204                // z1 = vec_madd(z1, vec_0_899976223, (vector float)zero);
205
206                // tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
207                // dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS);
208                row7 = vec_madd(tmp4, vec_0_298631336, vec_madd(z1, vec_0_899976223, z3));
209
210                // tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
211                // dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS);
212                row5 = vec_madd(tmp5, vec_2_053119869, vec_madd(z2, vec_2_562915447, z4));
213
214                // tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
215                // dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS);
216                row3 = vec_madd(tmp6, vec_3_072711026, vec_madd(z2, vec_2_562915447, z3));
217
218                // tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
219                // dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS);
220                row1 = vec_madd(z1, vec_0_899976223, vec_madd(tmp7, vec_1_501321110, z4));
221
222                // Swap the row values with the alts.  If this is the first half,
223                // this sets up the low values to be acted on in the second half.
224                // If this is the second half, it puts the high values back in
225                // the row values where they are expected to be when we're done.
226                SWAP(row0, alt0);
227                SWAP(row1, alt1);
228                SWAP(row2, alt2);
229                SWAP(row3, alt3);
230                SWAP(row4, alt4);
231                SWAP(row5, alt5);
232                SWAP(row6, alt6);
233                SWAP(row7, alt7);
234            }
235
236            if (whichPass == 1) {
237                // transpose the data for the second pass
238
239                // First, block transpose the upper right with lower left.
240                SWAP(row4, alt0);
241                SWAP(row5, alt1);
242                SWAP(row6, alt2);
243                SWAP(row7, alt3);
244
245                // Now, transpose each block of four
246                TRANSPOSE4(row0, row1, row2, row3);
247                TRANSPOSE4(row4, row5, row6, row7);
248                TRANSPOSE4(alt0, alt1, alt2, alt3);
249                TRANSPOSE4(alt4, alt5, alt6, alt7);
250            }
251        }
252    }
253
254    // perform the quantize step, using the floating point data
255    // still in the row/alt registers
256    {
257        const int* biasAddr;
258        const vector signed int* qmat;
259        vector float bias, negBias;
260
261        if (s->mb_intra) {
262            vector signed int baseVector;
263
264            // We must cache element 0 in the intra case
265            // (it needs special handling).
266            baseVector = vec_cts(vec_splat(row0, 0), 0);
267            vec_ste(baseVector, 0, &oldBaseValue);
268
269            qmat = (vector signed int*)s->q_intra_matrix[qscale];
270            biasAddr = &(s->intra_quant_bias);
271        } else {
272            qmat = (vector signed int*)s->q_inter_matrix[qscale];
273            biasAddr = &(s->inter_quant_bias);
274        }
275
276        // Load the bias vector (We add 0.5 to the bias so that we're
277                                // rounding when we convert to int, instead of flooring.)
278        {
279            vector signed int biasInt;
280            const vector float negOneFloat = (vector float)FOUROF(-1.0f);
281            LOAD4(biasInt, biasAddr);
282            bias = vec_ctf(biasInt, QUANT_BIAS_SHIFT);
283            negBias = vec_madd(bias, negOneFloat, zero);
284        }
285
286        {
287            vector float q0, q1, q2, q3, q4, q5, q6, q7;
288
289            q0 = vec_ctf(qmat[0], QMAT_SHIFT);
290            q1 = vec_ctf(qmat[2], QMAT_SHIFT);
291            q2 = vec_ctf(qmat[4], QMAT_SHIFT);
292            q3 = vec_ctf(qmat[6], QMAT_SHIFT);
293            q4 = vec_ctf(qmat[8], QMAT_SHIFT);
294            q5 = vec_ctf(qmat[10], QMAT_SHIFT);
295            q6 = vec_ctf(qmat[12], QMAT_SHIFT);
296            q7 = vec_ctf(qmat[14], QMAT_SHIFT);
297
298            row0 = vec_sel(vec_madd(row0, q0, negBias), vec_madd(row0, q0, bias),
299                    vec_cmpgt(row0, zero));
300            row1 = vec_sel(vec_madd(row1, q1, negBias), vec_madd(row1, q1, bias),
301                    vec_cmpgt(row1, zero));
302            row2 = vec_sel(vec_madd(row2, q2, negBias), vec_madd(row2, q2, bias),
303                    vec_cmpgt(row2, zero));
304            row3 = vec_sel(vec_madd(row3, q3, negBias), vec_madd(row3, q3, bias),
305                    vec_cmpgt(row3, zero));
306            row4 = vec_sel(vec_madd(row4, q4, negBias), vec_madd(row4, q4, bias),
307                    vec_cmpgt(row4, zero));
308            row5 = vec_sel(vec_madd(row5, q5, negBias), vec_madd(row5, q5, bias),
309                    vec_cmpgt(row5, zero));
310            row6 = vec_sel(vec_madd(row6, q6, negBias), vec_madd(row6, q6, bias),
311                    vec_cmpgt(row6, zero));
312            row7 = vec_sel(vec_madd(row7, q7, negBias), vec_madd(row7, q7, bias),
313                    vec_cmpgt(row7, zero));
314
315            q0 = vec_ctf(qmat[1], QMAT_SHIFT);
316            q1 = vec_ctf(qmat[3], QMAT_SHIFT);
317            q2 = vec_ctf(qmat[5], QMAT_SHIFT);
318            q3 = vec_ctf(qmat[7], QMAT_SHIFT);
319            q4 = vec_ctf(qmat[9], QMAT_SHIFT);
320            q5 = vec_ctf(qmat[11], QMAT_SHIFT);
321            q6 = vec_ctf(qmat[13], QMAT_SHIFT);
322            q7 = vec_ctf(qmat[15], QMAT_SHIFT);
323
324            alt0 = vec_sel(vec_madd(alt0, q0, negBias), vec_madd(alt0, q0, bias),
325                    vec_cmpgt(alt0, zero));
326            alt1 = vec_sel(vec_madd(alt1, q1, negBias), vec_madd(alt1, q1, bias),
327                    vec_cmpgt(alt1, zero));
328            alt2 = vec_sel(vec_madd(alt2, q2, negBias), vec_madd(alt2, q2, bias),
329                    vec_cmpgt(alt2, zero));
330            alt3 = vec_sel(vec_madd(alt3, q3, negBias), vec_madd(alt3, q3, bias),
331                    vec_cmpgt(alt3, zero));
332            alt4 = vec_sel(vec_madd(alt4, q4, negBias), vec_madd(alt4, q4, bias),
333                    vec_cmpgt(alt4, zero));
334            alt5 = vec_sel(vec_madd(alt5, q5, negBias), vec_madd(alt5, q5, bias),
335                    vec_cmpgt(alt5, zero));
336            alt6 = vec_sel(vec_madd(alt6, q6, negBias), vec_madd(alt6, q6, bias),
337                    vec_cmpgt(alt6, zero));
338            alt7 = vec_sel(vec_madd(alt7, q7, negBias), vec_madd(alt7, q7, bias),
339                    vec_cmpgt(alt7, zero));
340        }
341
342
343    }
344
345    // Store the data back into the original block
346    {
347        vector signed short data0, data1, data2, data3, data4, data5, data6, data7;
348
349        data0 = vec_pack(vec_cts(row0, 0), vec_cts(alt0, 0));
350        data1 = vec_pack(vec_cts(row1, 0), vec_cts(alt1, 0));
351        data2 = vec_pack(vec_cts(row2, 0), vec_cts(alt2, 0));
352        data3 = vec_pack(vec_cts(row3, 0), vec_cts(alt3, 0));
353        data4 = vec_pack(vec_cts(row4, 0), vec_cts(alt4, 0));
354        data5 = vec_pack(vec_cts(row5, 0), vec_cts(alt5, 0));
355        data6 = vec_pack(vec_cts(row6, 0), vec_cts(alt6, 0));
356        data7 = vec_pack(vec_cts(row7, 0), vec_cts(alt7, 0));
357
358        {
359            // Clamp for overflow
360            vector signed int max_q_int, min_q_int;
361            vector signed short max_q, min_q;
362
363            LOAD4(max_q_int, &(s->max_qcoeff));
364            LOAD4(min_q_int, &(s->min_qcoeff));
365
366            max_q = vec_pack(max_q_int, max_q_int);
367            min_q = vec_pack(min_q_int, min_q_int);
368
369            data0 = vec_max(vec_min(data0, max_q), min_q);
370            data1 = vec_max(vec_min(data1, max_q), min_q);
371            data2 = vec_max(vec_min(data2, max_q), min_q);
372            data4 = vec_max(vec_min(data4, max_q), min_q);
373            data5 = vec_max(vec_min(data5, max_q), min_q);
374            data6 = vec_max(vec_min(data6, max_q), min_q);
375            data7 = vec_max(vec_min(data7, max_q), min_q);
376        }
377
378        {
379        vector bool char zero_01, zero_23, zero_45, zero_67;
380        vector signed char scanIndexes_01, scanIndexes_23, scanIndexes_45, scanIndexes_67;
381        vector signed char negOne = vec_splat_s8(-1);
382        vector signed char* scanPtr =
383                (vector signed char*)(s->intra_scantable.inverse);
384        signed char lastNonZeroChar;
385
386        // Determine the largest non-zero index.
387        zero_01 = vec_pack(vec_cmpeq(data0, (vector signed short)zero),
388                vec_cmpeq(data1, (vector signed short)zero));
389        zero_23 = vec_pack(vec_cmpeq(data2, (vector signed short)zero),
390                vec_cmpeq(data3, (vector signed short)zero));
391        zero_45 = vec_pack(vec_cmpeq(data4, (vector signed short)zero),
392                vec_cmpeq(data5, (vector signed short)zero));
393        zero_67 = vec_pack(vec_cmpeq(data6, (vector signed short)zero),
394                vec_cmpeq(data7, (vector signed short)zero));
395
396        // 64 biggest values
397        scanIndexes_01 = vec_sel(scanPtr[0], negOne, zero_01);
398        scanIndexes_23 = vec_sel(scanPtr[1], negOne, zero_23);
399        scanIndexes_45 = vec_sel(scanPtr[2], negOne, zero_45);
400        scanIndexes_67 = vec_sel(scanPtr[3], negOne, zero_67);
401
402        // 32 largest values
403        scanIndexes_01 = vec_max(scanIndexes_01, scanIndexes_23);
404        scanIndexes_45 = vec_max(scanIndexes_45, scanIndexes_67);
405
406        // 16 largest values
407        scanIndexes_01 = vec_max(scanIndexes_01, scanIndexes_45);
408
409        // 8 largest values
410        scanIndexes_01 = vec_max(vec_mergeh(scanIndexes_01, negOne),
411                vec_mergel(scanIndexes_01, negOne));
412
413        // 4 largest values
414        scanIndexes_01 = vec_max(vec_mergeh(scanIndexes_01, negOne),
415                vec_mergel(scanIndexes_01, negOne));
416
417        // 2 largest values
418        scanIndexes_01 = vec_max(vec_mergeh(scanIndexes_01, negOne),
419                vec_mergel(scanIndexes_01, negOne));
420
421        // largest value
422        scanIndexes_01 = vec_max(vec_mergeh(scanIndexes_01, negOne),
423                vec_mergel(scanIndexes_01, negOne));
424
425        scanIndexes_01 = vec_splat(scanIndexes_01, 0);
426
427
428        vec_ste(scanIndexes_01, 0, &lastNonZeroChar);
429
430        lastNonZero = lastNonZeroChar;
431
432        // While the data is still in vectors we check for the transpose IDCT permute
433        // and handle it using the vector unit if we can.  This is the permute used
434        // by the altivec idct, so it is common when using the altivec dct.
435
436        if ((lastNonZero > 0) && (s->dsp.idct_permutation_type == FF_TRANSPOSE_IDCT_PERM)) {
437            TRANSPOSE8(data0, data1, data2, data3, data4, data5, data6, data7);
438        }
439
440        vec_st(data0, 0, data);
441        vec_st(data1, 16, data);
442        vec_st(data2, 32, data);
443        vec_st(data3, 48, data);
444        vec_st(data4, 64, data);
445        vec_st(data5, 80, data);
446        vec_st(data6, 96, data);
447        vec_st(data7, 112, data);
448        }
449    }
450
451    // special handling of block[0]
452    if (s->mb_intra) {
453        if (!s->h263_aic) {
454            if (n < 4)
455                oldBaseValue /= s->y_dc_scale;
456            else
457                oldBaseValue /= s->c_dc_scale;
458        }
459
460        // Divide by 8, rounding the result
461        data[0] = (oldBaseValue + 4) >> 3;
462    }
463
464    // We handled the transpose permutation above and we don't
465    // need to permute the "no" permutation case.
466    if ((lastNonZero > 0) &&
467        (s->dsp.idct_permutation_type != FF_TRANSPOSE_IDCT_PERM) &&
468        (s->dsp.idct_permutation_type != FF_NO_IDCT_PERM)) {
469        ff_block_permute(data, s->dsp.idct_permutation,
470                s->intra_scantable.scantable, lastNonZero);
471    }
472
473    return lastNonZero;
474}
475
476/* AltiVec version of dct_unquantize_h263
477   this code assumes `block' is 16 bytes-aligned */
478void dct_unquantize_h263_altivec(MpegEncContext *s,
479                                 DCTELEM *block, int n, int qscale)
480{
481POWERPC_PERF_DECLARE(altivec_dct_unquantize_h263_num, 1);
482    int i, level, qmul, qadd;
483    int nCoeffs;
484
485    assert(s->block_last_index[n]>=0);
486
487POWERPC_PERF_START_COUNT(altivec_dct_unquantize_h263_num, 1);
488
489    qadd = (qscale - 1) | 1;
490    qmul = qscale << 1;
491
492    if (s->mb_intra) {
493        if (!s->h263_aic) {
494            if (n < 4)
495                block[0] = block[0] * s->y_dc_scale;
496            else
497                block[0] = block[0] * s->c_dc_scale;
498        }else
499            qadd = 0;
500        i = 1;
501        nCoeffs= 63; //does not always use zigzag table
502    } else {
503        i = 0;
504        nCoeffs= s->intra_scantable.raster_end[ s->block_last_index[n] ];
505    }
506
507    {
508        register const vector signed short vczero = (const vector signed short)vec_splat_s16(0);
509        DECLARE_ALIGNED_16(short, qmul8[]) =
510            {
511              qmul, qmul, qmul, qmul,
512              qmul, qmul, qmul, qmul
513            };
514        DECLARE_ALIGNED_16(short, qadd8[]) =
515            {
516              qadd, qadd, qadd, qadd,
517              qadd, qadd, qadd, qadd
518            };
519        DECLARE_ALIGNED_16(short, nqadd8[]) =
520            {
521              -qadd, -qadd, -qadd, -qadd,
522              -qadd, -qadd, -qadd, -qadd
523            };
524        register vector signed short blockv, qmulv, qaddv, nqaddv, temp1;
525        register vector bool short blockv_null, blockv_neg;
526        register short backup_0 = block[0];
527        register int j = 0;
528
529        qmulv = vec_ld(0, qmul8);
530        qaddv = vec_ld(0, qadd8);
531        nqaddv = vec_ld(0, nqadd8);
532
533#if 0   // block *is* 16 bytes-aligned, it seems.
534        // first make sure block[j] is 16 bytes-aligned
535        for(j = 0; (j <= nCoeffs) && ((((unsigned long)block) + (j << 1)) & 0x0000000F) ; j++) {
536            level = block[j];
537            if (level) {
538                if (level < 0) {
539                    level = level * qmul - qadd;
540                } else {
541                    level = level * qmul + qadd;
542                }
543                block[j] = level;
544            }
545        }
546#endif
547
548        // vectorize all the 16 bytes-aligned blocks
549        // of 8 elements
550        for(; (j + 7) <= nCoeffs ; j+=8) {
551            blockv = vec_ld(j << 1, block);
552            blockv_neg = vec_cmplt(blockv, vczero);
553            blockv_null = vec_cmpeq(blockv, vczero);
554            // choose between +qadd or -qadd as the third operand
555            temp1 = vec_sel(qaddv, nqaddv, blockv_neg);
556            // multiply & add (block{i,i+7} * qmul [+-] qadd)
557            temp1 = vec_mladd(blockv, qmulv, temp1);
558            // put 0 where block[{i,i+7} used to have 0
559            blockv = vec_sel(temp1, blockv, blockv_null);
560            vec_st(blockv, j << 1, block);
561        }
562
563        // if nCoeffs isn't a multiple of 8, finish the job
564        // using good old scalar units.
565        // (we could do it using a truncated vector,
566        // but I'm not sure it's worth the hassle)
567        for(; j <= nCoeffs ; j++) {
568            level = block[j];
569            if (level) {
570                if (level < 0) {
571                    level = level * qmul - qadd;
572                } else {
573                    level = level * qmul + qadd;
574                }
575                block[j] = level;
576            }
577        }
578
579        if (i == 1) {
580            // cheat. this avoid special-casing the first iteration
581            block[0] = backup_0;
582        }
583    }
584POWERPC_PERF_STOP_COUNT(altivec_dct_unquantize_h263_num, nCoeffs == 63);
585}
586
587
588void idct_put_altivec(uint8_t *dest, int line_size, int16_t *block);
589void idct_add_altivec(uint8_t *dest, int line_size, int16_t *block);
590
591void MPV_common_init_altivec(MpegEncContext *s)
592{
593    if ((mm_flags & FF_MM_ALTIVEC) == 0) return;
594
595    if (s->avctx->lowres==0) {
596        if ((s->avctx->idct_algo == FF_IDCT_AUTO) ||
597            (s->avctx->idct_algo == FF_IDCT_ALTIVEC)) {
598            s->dsp.idct_put = idct_put_altivec;
599            s->dsp.idct_add = idct_add_altivec;
600            s->dsp.idct_permutation_type = FF_TRANSPOSE_IDCT_PERM;
601        }
602    }
603
604    // Test to make sure that the dct required alignments are met.
605    if ((((long)(s->q_intra_matrix) & 0x0f) != 0) ||
606        (((long)(s->q_inter_matrix) & 0x0f) != 0)) {
607        av_log(s->avctx, AV_LOG_INFO, "Internal Error: q-matrix blocks must be 16-byte aligned "
608                "to use AltiVec DCT. Reverting to non-AltiVec version.\n");
609        return;
610    }
611
612    if (((long)(s->intra_scantable.inverse) & 0x0f) != 0) {
613        av_log(s->avctx, AV_LOG_INFO, "Internal Error: scan table blocks must be 16-byte aligned "
614                "to use AltiVec DCT. Reverting to non-AltiVec version.\n");
615        return;
616    }
617
618
619    if ((s->avctx->dct_algo == FF_DCT_AUTO) ||
620            (s->avctx->dct_algo == FF_DCT_ALTIVEC)) {
621#if 0 /* seems to cause trouble under some circumstances */
622        s->dct_quantize = dct_quantize_altivec;
623#endif
624        s->dct_unquantize_h263_intra = dct_unquantize_h263_altivec;
625        s->dct_unquantize_h263_inter = dct_unquantize_h263_altivec;
626    }
627}
628