1/*
2 * MPEG Audio decoder
3 * Copyright (c) 2001, 2002 Fabrice Bellard
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22/**
23 * @file libavcodec/mpegaudiodec.c
24 * MPEG Audio decoder.
25 */
26
27#include "avcodec.h"
28#include "bitstream.h"
29#include "dsputil.h"
30
31/*
32 * TODO:
33 *  - in low precision mode, use more 16 bit multiplies in synth filter
34 *  - test lsf / mpeg25 extensively.
35 */
36
37#include "mpegaudio.h"
38#include "mpegaudiodecheader.h"
39
40#include "mathops.h"
41
42/* WARNING: only correct for posititive numbers */
43#define FIXR(a)   ((int)((a) * FRAC_ONE + 0.5))
44#define FRAC_RND(a) (((a) + (FRAC_ONE/2)) >> FRAC_BITS)
45
46#define FIXHR(a) ((int)((a) * (1LL<<32) + 0.5))
47
48/****************/
49
50#define HEADER_SIZE 4
51
52/* layer 3 "granule" */
53typedef struct GranuleDef {
54    uint8_t scfsi;
55    int part2_3_length;
56    int big_values;
57    int global_gain;
58    int scalefac_compress;
59    uint8_t block_type;
60    uint8_t switch_point;
61    int table_select[3];
62    int subblock_gain[3];
63    uint8_t scalefac_scale;
64    uint8_t count1table_select;
65    int region_size[3]; /* number of huffman codes in each region */
66    int preflag;
67    int short_start, long_end; /* long/short band indexes */
68    uint8_t scale_factors[40];
69    int32_t sb_hybrid[SBLIMIT * 18]; /* 576 samples */
70} GranuleDef;
71
72#include "mpegaudiodata.h"
73#include "mpegaudiodectab.h"
74
75static void compute_antialias_integer(MPADecodeContext *s, GranuleDef *g);
76static void compute_antialias_float(MPADecodeContext *s, GranuleDef *g);
77
78/* vlc structure for decoding layer 3 huffman tables */
79static VLC huff_vlc[16];
80static VLC_TYPE huff_vlc_tables[
81  0+128+128+128+130+128+154+166+
82  142+204+190+170+542+460+662+414
83  ][2];
84static const int huff_vlc_tables_sizes[16] = {
85  0, 128, 128, 128, 130, 128, 154, 166,
86  142, 204, 190, 170, 542, 460, 662, 414
87};
88static VLC huff_quad_vlc[2];
89static VLC_TYPE huff_quad_vlc_tables[128+16][2];
90static const int huff_quad_vlc_tables_sizes[2] = {
91  128, 16
92};
93/* computed from band_size_long */
94static uint16_t band_index_long[9][23];
95/* XXX: free when all decoders are closed */
96#define TABLE_4_3_SIZE (8191 + 16)*4
97static int8_t  table_4_3_exp[TABLE_4_3_SIZE];
98static uint32_t table_4_3_value[TABLE_4_3_SIZE];
99static uint32_t exp_table[512];
100static uint32_t expval_table[512][16];
101/* intensity stereo coef table */
102static int32_t is_table[2][16];
103static int32_t is_table_lsf[2][2][16];
104static int32_t csa_table[8][4];
105static float csa_table_float[8][4];
106static int32_t mdct_win[8][36];
107
108/* lower 2 bits: modulo 3, higher bits: shift */
109static uint16_t scale_factor_modshift[64];
110/* [i][j]:  2^(-j/3) * FRAC_ONE * 2^(i+2) / (2^(i+2) - 1) */
111static int32_t scale_factor_mult[15][3];
112/* mult table for layer 2 group quantization */
113
114#define SCALE_GEN(v) \
115{ FIXR(1.0 * (v)), FIXR(0.7937005259 * (v)), FIXR(0.6299605249 * (v)) }
116
117static const int32_t scale_factor_mult2[3][3] = {
118    SCALE_GEN(4.0 / 3.0), /* 3 steps */
119    SCALE_GEN(4.0 / 5.0), /* 5 steps */
120    SCALE_GEN(4.0 / 9.0), /* 9 steps */
121};
122
123static DECLARE_ALIGNED_16(MPA_INT, window[512]);
124
125/**
126 * Convert region offsets to region sizes and truncate
127 * size to big_values.
128 */
129void ff_region_offset2size(GranuleDef *g){
130    int i, k, j=0;
131    g->region_size[2] = (576 / 2);
132    for(i=0;i<3;i++) {
133        k = FFMIN(g->region_size[i], g->big_values);
134        g->region_size[i] = k - j;
135        j = k;
136    }
137}
138
139void ff_init_short_region(MPADecodeContext *s, GranuleDef *g){
140    if (g->block_type == 2)
141        g->region_size[0] = (36 / 2);
142    else {
143        if (s->sample_rate_index <= 2)
144            g->region_size[0] = (36 / 2);
145        else if (s->sample_rate_index != 8)
146            g->region_size[0] = (54 / 2);
147        else
148            g->region_size[0] = (108 / 2);
149    }
150    g->region_size[1] = (576 / 2);
151}
152
153void ff_init_long_region(MPADecodeContext *s, GranuleDef *g, int ra1, int ra2){
154    int l;
155    g->region_size[0] =
156        band_index_long[s->sample_rate_index][ra1 + 1] >> 1;
157    /* should not overflow */
158    l = FFMIN(ra1 + ra2 + 2, 22);
159    g->region_size[1] =
160        band_index_long[s->sample_rate_index][l] >> 1;
161}
162
163void ff_compute_band_indexes(MPADecodeContext *s, GranuleDef *g){
164    if (g->block_type == 2) {
165        if (g->switch_point) {
166            /* if switched mode, we handle the 36 first samples as
167                long blocks.  For 8000Hz, we handle the 48 first
168                exponents as long blocks (XXX: check this!) */
169            if (s->sample_rate_index <= 2)
170                g->long_end = 8;
171            else if (s->sample_rate_index != 8)
172                g->long_end = 6;
173            else
174                g->long_end = 4; /* 8000 Hz */
175
176            g->short_start = 2 + (s->sample_rate_index != 8);
177        } else {
178            g->long_end = 0;
179            g->short_start = 0;
180        }
181    } else {
182        g->short_start = 13;
183        g->long_end = 22;
184    }
185}
186
187/* layer 1 unscaling */
188/* n = number of bits of the mantissa minus 1 */
189static inline int l1_unscale(int n, int mant, int scale_factor)
190{
191    int shift, mod;
192    int64_t val;
193
194    shift = scale_factor_modshift[scale_factor];
195    mod = shift & 3;
196    shift >>= 2;
197    val = MUL64(mant + (-1 << n) + 1, scale_factor_mult[n-1][mod]);
198    shift += n;
199    /* NOTE: at this point, 1 <= shift >= 21 + 15 */
200    return (int)((val + (1LL << (shift - 1))) >> shift);
201}
202
203static inline int l2_unscale_group(int steps, int mant, int scale_factor)
204{
205    int shift, mod, val;
206
207    shift = scale_factor_modshift[scale_factor];
208    mod = shift & 3;
209    shift >>= 2;
210
211    val = (mant - (steps >> 1)) * scale_factor_mult2[steps >> 2][mod];
212    /* NOTE: at this point, 0 <= shift <= 21 */
213    if (shift > 0)
214        val = (val + (1 << (shift - 1))) >> shift;
215    return val;
216}
217
218/* compute value^(4/3) * 2^(exponent/4). It normalized to FRAC_BITS */
219static inline int l3_unscale(int value, int exponent)
220{
221    unsigned int m;
222    int e;
223
224    e = table_4_3_exp  [4*value + (exponent&3)];
225    m = table_4_3_value[4*value + (exponent&3)];
226    e -= (exponent >> 2);
227    assert(e>=1);
228    if (e > 31)
229        return 0;
230    m = (m + (1 << (e-1))) >> e;
231
232    return m;
233}
234
235/* all integer n^(4/3) computation code */
236#define DEV_ORDER 13
237
238#define POW_FRAC_BITS 24
239#define POW_FRAC_ONE    (1 << POW_FRAC_BITS)
240#define POW_FIX(a)   ((int)((a) * POW_FRAC_ONE))
241#define POW_MULL(a,b) (((int64_t)(a) * (int64_t)(b)) >> POW_FRAC_BITS)
242
243static int dev_4_3_coefs[DEV_ORDER];
244
245#if 0 /* unused */
246static int pow_mult3[3] = {
247    POW_FIX(1.0),
248    POW_FIX(1.25992104989487316476),
249    POW_FIX(1.58740105196819947474),
250};
251#endif
252
253static av_cold void int_pow_init(void)
254{
255    int i, a;
256
257    a = POW_FIX(1.0);
258    for(i=0;i<DEV_ORDER;i++) {
259        a = POW_MULL(a, POW_FIX(4.0 / 3.0) - i * POW_FIX(1.0)) / (i + 1);
260        dev_4_3_coefs[i] = a;
261    }
262}
263
264#if 0 /* unused, remove? */
265/* return the mantissa and the binary exponent */
266static int int_pow(int i, int *exp_ptr)
267{
268    int e, er, eq, j;
269    int a, a1;
270
271    /* renormalize */
272    a = i;
273    e = POW_FRAC_BITS;
274    while (a < (1 << (POW_FRAC_BITS - 1))) {
275        a = a << 1;
276        e--;
277    }
278    a -= (1 << POW_FRAC_BITS);
279    a1 = 0;
280    for(j = DEV_ORDER - 1; j >= 0; j--)
281        a1 = POW_MULL(a, dev_4_3_coefs[j] + a1);
282    a = (1 << POW_FRAC_BITS) + a1;
283    /* exponent compute (exact) */
284    e = e * 4;
285    er = e % 3;
286    eq = e / 3;
287    a = POW_MULL(a, pow_mult3[er]);
288    while (a >= 2 * POW_FRAC_ONE) {
289        a = a >> 1;
290        eq++;
291    }
292    /* convert to float */
293    while (a < POW_FRAC_ONE) {
294        a = a << 1;
295        eq--;
296    }
297    /* now POW_FRAC_ONE <= a < 2 * POW_FRAC_ONE */
298#if POW_FRAC_BITS > FRAC_BITS
299    a = (a + (1 << (POW_FRAC_BITS - FRAC_BITS - 1))) >> (POW_FRAC_BITS - FRAC_BITS);
300    /* correct overflow */
301    if (a >= 2 * (1 << FRAC_BITS)) {
302        a = a >> 1;
303        eq++;
304    }
305#endif
306    *exp_ptr = eq;
307    return a;
308}
309#endif
310
311static av_cold int decode_init(AVCodecContext * avctx)
312{
313    MPADecodeContext *s = avctx->priv_data;
314    static int init=0;
315    int i, j, k;
316
317    s->avctx = avctx;
318
319    avctx->sample_fmt= OUT_FMT;
320    s->error_recognition= avctx->error_recognition;
321
322    if(avctx->antialias_algo != FF_AA_FLOAT)
323        s->compute_antialias= compute_antialias_integer;
324    else
325        s->compute_antialias= compute_antialias_float;
326
327    if (!init && !avctx->parse_only) {
328        int offset;
329
330        /* scale factors table for layer 1/2 */
331        for(i=0;i<64;i++) {
332            int shift, mod;
333            /* 1.0 (i = 3) is normalized to 2 ^ FRAC_BITS */
334            shift = (i / 3);
335            mod = i % 3;
336            scale_factor_modshift[i] = mod | (shift << 2);
337        }
338
339        /* scale factor multiply for layer 1 */
340        for(i=0;i<15;i++) {
341            int n, norm;
342            n = i + 2;
343            norm = ((INT64_C(1) << n) * FRAC_ONE) / ((1 << n) - 1);
344            scale_factor_mult[i][0] = MULL(FIXR(1.0 * 2.0), norm, FRAC_BITS);
345            scale_factor_mult[i][1] = MULL(FIXR(0.7937005259 * 2.0), norm, FRAC_BITS);
346            scale_factor_mult[i][2] = MULL(FIXR(0.6299605249 * 2.0), norm, FRAC_BITS);
347            dprintf(avctx, "%d: norm=%x s=%x %x %x\n",
348                    i, norm,
349                    scale_factor_mult[i][0],
350                    scale_factor_mult[i][1],
351                    scale_factor_mult[i][2]);
352        }
353
354        ff_mpa_synth_init(window);
355
356        /* huffman decode tables */
357        offset = 0;
358        for(i=1;i<16;i++) {
359            const HuffTable *h = &mpa_huff_tables[i];
360            int xsize, x, y;
361            unsigned int n;
362            uint8_t  tmp_bits [512];
363            uint16_t tmp_codes[512];
364
365            memset(tmp_bits , 0, sizeof(tmp_bits ));
366            memset(tmp_codes, 0, sizeof(tmp_codes));
367
368            xsize = h->xsize;
369            n = xsize * xsize;
370
371            j = 0;
372            for(x=0;x<xsize;x++) {
373                for(y=0;y<xsize;y++){
374                    tmp_bits [(x << 5) | y | ((x&&y)<<4)]= h->bits [j  ];
375                    tmp_codes[(x << 5) | y | ((x&&y)<<4)]= h->codes[j++];
376                }
377            }
378
379            /* XXX: fail test */
380            huff_vlc[i].table = huff_vlc_tables+offset;
381            huff_vlc[i].table_allocated = huff_vlc_tables_sizes[i];
382            init_vlc(&huff_vlc[i], 7, 512,
383                     tmp_bits, 1, 1, tmp_codes, 2, 2,
384                     INIT_VLC_USE_NEW_STATIC);
385            offset += huff_vlc_tables_sizes[i];
386        }
387        assert(offset == FF_ARRAY_ELEMS(huff_vlc_tables));
388
389        offset = 0;
390        for(i=0;i<2;i++) {
391            huff_quad_vlc[i].table = huff_quad_vlc_tables+offset;
392            huff_quad_vlc[i].table_allocated = huff_quad_vlc_tables_sizes[i];
393            init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16,
394                     mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1,
395                     INIT_VLC_USE_NEW_STATIC);
396            offset += huff_quad_vlc_tables_sizes[i];
397        }
398        assert(offset == FF_ARRAY_ELEMS(huff_quad_vlc_tables));
399
400        for(i=0;i<9;i++) {
401            k = 0;
402            for(j=0;j<22;j++) {
403                band_index_long[i][j] = k;
404                k += band_size_long[i][j];
405            }
406            band_index_long[i][22] = k;
407        }
408
409        /* compute n ^ (4/3) and store it in mantissa/exp format */
410
411        int_pow_init();
412        for(i=1;i<TABLE_4_3_SIZE;i++) {
413            double f, fm;
414            int e, m;
415            f = pow((double)(i/4), 4.0 / 3.0) * pow(2, (i&3)*0.25);
416            fm = frexp(f, &e);
417            m = (uint32_t)(fm*(1LL<<31) + 0.5);
418            e+= FRAC_BITS - 31 + 5 - 100;
419
420            /* normalized to FRAC_BITS */
421            table_4_3_value[i] = m;
422            table_4_3_exp[i] = -e;
423        }
424        for(i=0; i<512*16; i++){
425            int exponent= (i>>4);
426            double f= pow(i&15, 4.0 / 3.0) * pow(2, (exponent-400)*0.25 + FRAC_BITS + 5);
427            expval_table[exponent][i&15]= llrint(f);
428            if((i&15)==1)
429                exp_table[exponent]= llrint(f);
430        }
431
432        for(i=0;i<7;i++) {
433            float f;
434            int v;
435            if (i != 6) {
436                f = tan((double)i * M_PI / 12.0);
437                v = FIXR(f / (1.0 + f));
438            } else {
439                v = FIXR(1.0);
440            }
441            is_table[0][i] = v;
442            is_table[1][6 - i] = v;
443        }
444        /* invalid values */
445        for(i=7;i<16;i++)
446            is_table[0][i] = is_table[1][i] = 0.0;
447
448        for(i=0;i<16;i++) {
449            double f;
450            int e, k;
451
452            for(j=0;j<2;j++) {
453                e = -(j + 1) * ((i + 1) >> 1);
454                f = pow(2.0, e / 4.0);
455                k = i & 1;
456                is_table_lsf[j][k ^ 1][i] = FIXR(f);
457                is_table_lsf[j][k][i] = FIXR(1.0);
458                dprintf(avctx, "is_table_lsf %d %d: %x %x\n",
459                        i, j, is_table_lsf[j][0][i], is_table_lsf[j][1][i]);
460            }
461        }
462
463        for(i=0;i<8;i++) {
464            float ci, cs, ca;
465            ci = ci_table[i];
466            cs = 1.0 / sqrt(1.0 + ci * ci);
467            ca = cs * ci;
468            csa_table[i][0] = FIXHR(cs/4);
469            csa_table[i][1] = FIXHR(ca/4);
470            csa_table[i][2] = FIXHR(ca/4) + FIXHR(cs/4);
471            csa_table[i][3] = FIXHR(ca/4) - FIXHR(cs/4);
472            csa_table_float[i][0] = cs;
473            csa_table_float[i][1] = ca;
474            csa_table_float[i][2] = ca + cs;
475            csa_table_float[i][3] = ca - cs;
476        }
477
478        /* compute mdct windows */
479        for(i=0;i<36;i++) {
480            for(j=0; j<4; j++){
481                double d;
482
483                if(j==2 && i%3 != 1)
484                    continue;
485
486                d= sin(M_PI * (i + 0.5) / 36.0);
487                if(j==1){
488                    if     (i>=30) d= 0;
489                    else if(i>=24) d= sin(M_PI * (i - 18 + 0.5) / 12.0);
490                    else if(i>=18) d= 1;
491                }else if(j==3){
492                    if     (i<  6) d= 0;
493                    else if(i< 12) d= sin(M_PI * (i -  6 + 0.5) / 12.0);
494                    else if(i< 18) d= 1;
495                }
496                //merge last stage of imdct into the window coefficients
497                d*= 0.5 / cos(M_PI*(2*i + 19)/72);
498
499                if(j==2)
500                    mdct_win[j][i/3] = FIXHR((d / (1<<5)));
501                else
502                    mdct_win[j][i  ] = FIXHR((d / (1<<5)));
503            }
504        }
505
506        /* NOTE: we do frequency inversion adter the MDCT by changing
507           the sign of the right window coefs */
508        for(j=0;j<4;j++) {
509            for(i=0;i<36;i+=2) {
510                mdct_win[j + 4][i] = mdct_win[j][i];
511                mdct_win[j + 4][i + 1] = -mdct_win[j][i + 1];
512            }
513        }
514
515        init = 1;
516    }
517
518    if (avctx->codec_id == CODEC_ID_MP3ADU)
519        s->adu_mode = 1;
520    return 0;
521}
522
523/* tab[i][j] = 1.0 / (2.0 * cos(pi*(2*k+1) / 2^(6 - j))) */
524
525/* cos(i*pi/64) */
526
527#define COS0_0  FIXHR(0.50060299823519630134/2)
528#define COS0_1  FIXHR(0.50547095989754365998/2)
529#define COS0_2  FIXHR(0.51544730992262454697/2)
530#define COS0_3  FIXHR(0.53104259108978417447/2)
531#define COS0_4  FIXHR(0.55310389603444452782/2)
532#define COS0_5  FIXHR(0.58293496820613387367/2)
533#define COS0_6  FIXHR(0.62250412303566481615/2)
534#define COS0_7  FIXHR(0.67480834145500574602/2)
535#define COS0_8  FIXHR(0.74453627100229844977/2)
536#define COS0_9  FIXHR(0.83934964541552703873/2)
537#define COS0_10 FIXHR(0.97256823786196069369/2)
538#define COS0_11 FIXHR(1.16943993343288495515/4)
539#define COS0_12 FIXHR(1.48416461631416627724/4)
540#define COS0_13 FIXHR(2.05778100995341155085/8)
541#define COS0_14 FIXHR(3.40760841846871878570/8)
542#define COS0_15 FIXHR(10.19000812354805681150/32)
543
544#define COS1_0 FIXHR(0.50241928618815570551/2)
545#define COS1_1 FIXHR(0.52249861493968888062/2)
546#define COS1_2 FIXHR(0.56694403481635770368/2)
547#define COS1_3 FIXHR(0.64682178335999012954/2)
548#define COS1_4 FIXHR(0.78815462345125022473/2)
549#define COS1_5 FIXHR(1.06067768599034747134/4)
550#define COS1_6 FIXHR(1.72244709823833392782/4)
551#define COS1_7 FIXHR(5.10114861868916385802/16)
552
553#define COS2_0 FIXHR(0.50979557910415916894/2)
554#define COS2_1 FIXHR(0.60134488693504528054/2)
555#define COS2_2 FIXHR(0.89997622313641570463/2)
556#define COS2_3 FIXHR(2.56291544774150617881/8)
557
558#define COS3_0 FIXHR(0.54119610014619698439/2)
559#define COS3_1 FIXHR(1.30656296487637652785/4)
560
561#define COS4_0 FIXHR(0.70710678118654752439/2)
562
563/* butterfly operator */
564#define BF(a, b, c, s)\
565{\
566    tmp0 = tab[a] + tab[b];\
567    tmp1 = tab[a] - tab[b];\
568    tab[a] = tmp0;\
569    tab[b] = MULH(tmp1<<(s), c);\
570}
571
572#define BF1(a, b, c, d)\
573{\
574    BF(a, b, COS4_0, 1);\
575    BF(c, d,-COS4_0, 1);\
576    tab[c] += tab[d];\
577}
578
579#define BF2(a, b, c, d)\
580{\
581    BF(a, b, COS4_0, 1);\
582    BF(c, d,-COS4_0, 1);\
583    tab[c] += tab[d];\
584    tab[a] += tab[c];\
585    tab[c] += tab[b];\
586    tab[b] += tab[d];\
587}
588
589#define ADD(a, b) tab[a] += tab[b]
590
591/* DCT32 without 1/sqrt(2) coef zero scaling. */
592static void dct32(int32_t *out, int32_t *tab)
593{
594    int tmp0, tmp1;
595
596    /* pass 1 */
597    BF( 0, 31, COS0_0 , 1);
598    BF(15, 16, COS0_15, 5);
599    /* pass 2 */
600    BF( 0, 15, COS1_0 , 1);
601    BF(16, 31,-COS1_0 , 1);
602    /* pass 1 */
603    BF( 7, 24, COS0_7 , 1);
604    BF( 8, 23, COS0_8 , 1);
605    /* pass 2 */
606    BF( 7,  8, COS1_7 , 4);
607    BF(23, 24,-COS1_7 , 4);
608    /* pass 3 */
609    BF( 0,  7, COS2_0 , 1);
610    BF( 8, 15,-COS2_0 , 1);
611    BF(16, 23, COS2_0 , 1);
612    BF(24, 31,-COS2_0 , 1);
613    /* pass 1 */
614    BF( 3, 28, COS0_3 , 1);
615    BF(12, 19, COS0_12, 2);
616    /* pass 2 */
617    BF( 3, 12, COS1_3 , 1);
618    BF(19, 28,-COS1_3 , 1);
619    /* pass 1 */
620    BF( 4, 27, COS0_4 , 1);
621    BF(11, 20, COS0_11, 2);
622    /* pass 2 */
623    BF( 4, 11, COS1_4 , 1);
624    BF(20, 27,-COS1_4 , 1);
625    /* pass 3 */
626    BF( 3,  4, COS2_3 , 3);
627    BF(11, 12,-COS2_3 , 3);
628    BF(19, 20, COS2_3 , 3);
629    BF(27, 28,-COS2_3 , 3);
630    /* pass 4 */
631    BF( 0,  3, COS3_0 , 1);
632    BF( 4,  7,-COS3_0 , 1);
633    BF( 8, 11, COS3_0 , 1);
634    BF(12, 15,-COS3_0 , 1);
635    BF(16, 19, COS3_0 , 1);
636    BF(20, 23,-COS3_0 , 1);
637    BF(24, 27, COS3_0 , 1);
638    BF(28, 31,-COS3_0 , 1);
639
640
641
642    /* pass 1 */
643    BF( 1, 30, COS0_1 , 1);
644    BF(14, 17, COS0_14, 3);
645    /* pass 2 */
646    BF( 1, 14, COS1_1 , 1);
647    BF(17, 30,-COS1_1 , 1);
648    /* pass 1 */
649    BF( 6, 25, COS0_6 , 1);
650    BF( 9, 22, COS0_9 , 1);
651    /* pass 2 */
652    BF( 6,  9, COS1_6 , 2);
653    BF(22, 25,-COS1_6 , 2);
654    /* pass 3 */
655    BF( 1,  6, COS2_1 , 1);
656    BF( 9, 14,-COS2_1 , 1);
657    BF(17, 22, COS2_1 , 1);
658    BF(25, 30,-COS2_1 , 1);
659
660    /* pass 1 */
661    BF( 2, 29, COS0_2 , 1);
662    BF(13, 18, COS0_13, 3);
663    /* pass 2 */
664    BF( 2, 13, COS1_2 , 1);
665    BF(18, 29,-COS1_2 , 1);
666    /* pass 1 */
667    BF( 5, 26, COS0_5 , 1);
668    BF(10, 21, COS0_10, 1);
669    /* pass 2 */
670    BF( 5, 10, COS1_5 , 2);
671    BF(21, 26,-COS1_5 , 2);
672    /* pass 3 */
673    BF( 2,  5, COS2_2 , 1);
674    BF(10, 13,-COS2_2 , 1);
675    BF(18, 21, COS2_2 , 1);
676    BF(26, 29,-COS2_2 , 1);
677    /* pass 4 */
678    BF( 1,  2, COS3_1 , 2);
679    BF( 5,  6,-COS3_1 , 2);
680    BF( 9, 10, COS3_1 , 2);
681    BF(13, 14,-COS3_1 , 2);
682    BF(17, 18, COS3_1 , 2);
683    BF(21, 22,-COS3_1 , 2);
684    BF(25, 26, COS3_1 , 2);
685    BF(29, 30,-COS3_1 , 2);
686
687    /* pass 5 */
688    BF1( 0,  1,  2,  3);
689    BF2( 4,  5,  6,  7);
690    BF1( 8,  9, 10, 11);
691    BF2(12, 13, 14, 15);
692    BF1(16, 17, 18, 19);
693    BF2(20, 21, 22, 23);
694    BF1(24, 25, 26, 27);
695    BF2(28, 29, 30, 31);
696
697    /* pass 6 */
698
699    ADD( 8, 12);
700    ADD(12, 10);
701    ADD(10, 14);
702    ADD(14,  9);
703    ADD( 9, 13);
704    ADD(13, 11);
705    ADD(11, 15);
706
707    out[ 0] = tab[0];
708    out[16] = tab[1];
709    out[ 8] = tab[2];
710    out[24] = tab[3];
711    out[ 4] = tab[4];
712    out[20] = tab[5];
713    out[12] = tab[6];
714    out[28] = tab[7];
715    out[ 2] = tab[8];
716    out[18] = tab[9];
717    out[10] = tab[10];
718    out[26] = tab[11];
719    out[ 6] = tab[12];
720    out[22] = tab[13];
721    out[14] = tab[14];
722    out[30] = tab[15];
723
724    ADD(24, 28);
725    ADD(28, 26);
726    ADD(26, 30);
727    ADD(30, 25);
728    ADD(25, 29);
729    ADD(29, 27);
730    ADD(27, 31);
731
732    out[ 1] = tab[16] + tab[24];
733    out[17] = tab[17] + tab[25];
734    out[ 9] = tab[18] + tab[26];
735    out[25] = tab[19] + tab[27];
736    out[ 5] = tab[20] + tab[28];
737    out[21] = tab[21] + tab[29];
738    out[13] = tab[22] + tab[30];
739    out[29] = tab[23] + tab[31];
740    out[ 3] = tab[24] + tab[20];
741    out[19] = tab[25] + tab[21];
742    out[11] = tab[26] + tab[22];
743    out[27] = tab[27] + tab[23];
744    out[ 7] = tab[28] + tab[18];
745    out[23] = tab[29] + tab[19];
746    out[15] = tab[30] + tab[17];
747    out[31] = tab[31];
748}
749
750#if FRAC_BITS <= 15
751
752static inline int round_sample(int *sum)
753{
754    int sum1;
755    sum1 = (*sum) >> OUT_SHIFT;
756    *sum &= (1<<OUT_SHIFT)-1;
757    if (sum1 < OUT_MIN)
758        sum1 = OUT_MIN;
759    else if (sum1 > OUT_MAX)
760        sum1 = OUT_MAX;
761    return sum1;
762}
763
764/* signed 16x16 -> 32 multiply add accumulate */
765#define MACS(rt, ra, rb) MAC16(rt, ra, rb)
766
767/* signed 16x16 -> 32 multiply */
768#define MULS(ra, rb) MUL16(ra, rb)
769
770#define MLSS(rt, ra, rb) MLS16(rt, ra, rb)
771
772#else
773
774static inline int round_sample(int64_t *sum)
775{
776    int sum1;
777    sum1 = (int)((*sum) >> OUT_SHIFT);
778    *sum &= (1<<OUT_SHIFT)-1;
779    if (sum1 < OUT_MIN)
780        sum1 = OUT_MIN;
781    else if (sum1 > OUT_MAX)
782        sum1 = OUT_MAX;
783    return sum1;
784}
785
786#   define MULS(ra, rb) MUL64(ra, rb)
787#   define MACS(rt, ra, rb) MAC64(rt, ra, rb)
788#   define MLSS(rt, ra, rb) MLS64(rt, ra, rb)
789#endif
790
791#define SUM8(op, sum, w, p)               \
792{                                         \
793    op(sum, (w)[0 * 64], p[0 * 64]);      \
794    op(sum, (w)[1 * 64], p[1 * 64]);      \
795    op(sum, (w)[2 * 64], p[2 * 64]);      \
796    op(sum, (w)[3 * 64], p[3 * 64]);      \
797    op(sum, (w)[4 * 64], p[4 * 64]);      \
798    op(sum, (w)[5 * 64], p[5 * 64]);      \
799    op(sum, (w)[6 * 64], p[6 * 64]);      \
800    op(sum, (w)[7 * 64], p[7 * 64]);      \
801}
802
803#define SUM8P2(sum1, op1, sum2, op2, w1, w2, p) \
804{                                               \
805    int tmp;\
806    tmp = p[0 * 64];\
807    op1(sum1, (w1)[0 * 64], tmp);\
808    op2(sum2, (w2)[0 * 64], tmp);\
809    tmp = p[1 * 64];\
810    op1(sum1, (w1)[1 * 64], tmp);\
811    op2(sum2, (w2)[1 * 64], tmp);\
812    tmp = p[2 * 64];\
813    op1(sum1, (w1)[2 * 64], tmp);\
814    op2(sum2, (w2)[2 * 64], tmp);\
815    tmp = p[3 * 64];\
816    op1(sum1, (w1)[3 * 64], tmp);\
817    op2(sum2, (w2)[3 * 64], tmp);\
818    tmp = p[4 * 64];\
819    op1(sum1, (w1)[4 * 64], tmp);\
820    op2(sum2, (w2)[4 * 64], tmp);\
821    tmp = p[5 * 64];\
822    op1(sum1, (w1)[5 * 64], tmp);\
823    op2(sum2, (w2)[5 * 64], tmp);\
824    tmp = p[6 * 64];\
825    op1(sum1, (w1)[6 * 64], tmp);\
826    op2(sum2, (w2)[6 * 64], tmp);\
827    tmp = p[7 * 64];\
828    op1(sum1, (w1)[7 * 64], tmp);\
829    op2(sum2, (w2)[7 * 64], tmp);\
830}
831
832void av_cold ff_mpa_synth_init(MPA_INT *window)
833{
834    int i;
835
836    /* max = 18760, max sum over all 16 coefs : 44736 */
837    for(i=0;i<257;i++) {
838        int v;
839        v = ff_mpa_enwindow[i];
840#if WFRAC_BITS < 16
841        v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS);
842#endif
843        window[i] = v;
844        if ((i & 63) != 0)
845            v = -v;
846        if (i != 0)
847            window[512 - i] = v;
848    }
849}
850
851/* 32 sub band synthesis filter. Input: 32 sub band samples, Output:
852   32 samples. */
853/* XXX: optimize by avoiding ring buffer usage */
854void ff_mpa_synth_filter(MPA_INT *synth_buf_ptr, int *synth_buf_offset,
855                         MPA_INT *window, int *dither_state,
856                         OUT_INT *samples, int incr,
857                         int32_t sb_samples[SBLIMIT])
858{
859    int32_t tmp[32];
860    register MPA_INT *synth_buf;
861    register const MPA_INT *w, *w2, *p;
862    int j, offset, v;
863    OUT_INT *samples2;
864#if FRAC_BITS <= 15
865    int sum, sum2;
866#else
867    int64_t sum, sum2;
868#endif
869
870    dct32(tmp, sb_samples);
871
872    offset = *synth_buf_offset;
873    synth_buf = synth_buf_ptr + offset;
874
875    for(j=0;j<32;j++) {
876        v = tmp[j];
877#if FRAC_BITS <= 15
878        /* NOTE: can cause a loss in precision if very high amplitude
879           sound */
880        v = av_clip_int16(v);
881#endif
882        synth_buf[j] = v;
883    }
884    /* copy to avoid wrap */
885    memcpy(synth_buf + 512, synth_buf, 32 * sizeof(MPA_INT));
886
887    samples2 = samples + 31 * incr;
888    w = window;
889    w2 = window + 31;
890
891    sum = *dither_state;
892    p = synth_buf + 16;
893    SUM8(MACS, sum, w, p);
894    p = synth_buf + 48;
895    SUM8(MLSS, sum, w + 32, p);
896    *samples = round_sample(&sum);
897    samples += incr;
898    w++;
899
900    /* we calculate two samples at the same time to avoid one memory
901       access per two sample */
902    for(j=1;j<16;j++) {
903        sum2 = 0;
904        p = synth_buf + 16 + j;
905        SUM8P2(sum, MACS, sum2, MLSS, w, w2, p);
906        p = synth_buf + 48 - j;
907        SUM8P2(sum, MLSS, sum2, MLSS, w + 32, w2 + 32, p);
908
909        *samples = round_sample(&sum);
910        samples += incr;
911        sum += sum2;
912        *samples2 = round_sample(&sum);
913        samples2 -= incr;
914        w++;
915        w2--;
916    }
917
918    p = synth_buf + 32;
919    SUM8(MLSS, sum, w + 32, p);
920    *samples = round_sample(&sum);
921    *dither_state= sum;
922
923    offset = (offset - 32) & 511;
924    *synth_buf_offset = offset;
925}
926
927#define C3 FIXHR(0.86602540378443864676/2)
928
929/* 0.5 / cos(pi*(2*i+1)/36) */
930static const int icos36[9] = {
931    FIXR(0.50190991877167369479),
932    FIXR(0.51763809020504152469), //0
933    FIXR(0.55168895948124587824),
934    FIXR(0.61038729438072803416),
935    FIXR(0.70710678118654752439), //1
936    FIXR(0.87172339781054900991),
937    FIXR(1.18310079157624925896),
938    FIXR(1.93185165257813657349), //2
939    FIXR(5.73685662283492756461),
940};
941
942/* 0.5 / cos(pi*(2*i+1)/36) */
943static const int icos36h[9] = {
944    FIXHR(0.50190991877167369479/2),
945    FIXHR(0.51763809020504152469/2), //0
946    FIXHR(0.55168895948124587824/2),
947    FIXHR(0.61038729438072803416/2),
948    FIXHR(0.70710678118654752439/2), //1
949    FIXHR(0.87172339781054900991/2),
950    FIXHR(1.18310079157624925896/4),
951    FIXHR(1.93185165257813657349/4), //2
952//    FIXHR(5.73685662283492756461),
953};
954
955/* 12 points IMDCT. We compute it "by hand" by factorizing obvious
956   cases. */
957static void imdct12(int *out, int *in)
958{
959    int in0, in1, in2, in3, in4, in5, t1, t2;
960
961    in0= in[0*3];
962    in1= in[1*3] + in[0*3];
963    in2= in[2*3] + in[1*3];
964    in3= in[3*3] + in[2*3];
965    in4= in[4*3] + in[3*3];
966    in5= in[5*3] + in[4*3];
967    in5 += in3;
968    in3 += in1;
969
970    in2= MULH(2*in2, C3);
971    in3= MULH(4*in3, C3);
972
973    t1 = in0 - in4;
974    t2 = MULH(2*(in1 - in5), icos36h[4]);
975
976    out[ 7]=
977    out[10]= t1 + t2;
978    out[ 1]=
979    out[ 4]= t1 - t2;
980
981    in0 += in4>>1;
982    in4 = in0 + in2;
983    in5 += 2*in1;
984    in1 = MULH(in5 + in3, icos36h[1]);
985    out[ 8]=
986    out[ 9]= in4 + in1;
987    out[ 2]=
988    out[ 3]= in4 - in1;
989
990    in0 -= in2;
991    in5 = MULH(2*(in5 - in3), icos36h[7]);
992    out[ 0]=
993    out[ 5]= in0 - in5;
994    out[ 6]=
995    out[11]= in0 + in5;
996}
997
998/* cos(pi*i/18) */
999#define C1 FIXHR(0.98480775301220805936/2)
1000#define C2 FIXHR(0.93969262078590838405/2)
1001#define C3 FIXHR(0.86602540378443864676/2)
1002#define C4 FIXHR(0.76604444311897803520/2)
1003#define C5 FIXHR(0.64278760968653932632/2)
1004#define C6 FIXHR(0.5/2)
1005#define C7 FIXHR(0.34202014332566873304/2)
1006#define C8 FIXHR(0.17364817766693034885/2)
1007
1008
1009/* using Lee like decomposition followed by hand coded 9 points DCT */
1010static void imdct36(int *out, int *buf, int *in, int *win)
1011{
1012    int i, j, t0, t1, t2, t3, s0, s1, s2, s3;
1013    int tmp[18], *tmp1, *in1;
1014
1015    for(i=17;i>=1;i--)
1016        in[i] += in[i-1];
1017    for(i=17;i>=3;i-=2)
1018        in[i] += in[i-2];
1019
1020    for(j=0;j<2;j++) {
1021        tmp1 = tmp + j;
1022        in1 = in + j;
1023#if 0
1024//more accurate but slower
1025        int64_t t0, t1, t2, t3;
1026        t2 = in1[2*4] + in1[2*8] - in1[2*2];
1027
1028        t3 = (in1[2*0] + (int64_t)(in1[2*6]>>1))<<32;
1029        t1 = in1[2*0] - in1[2*6];
1030        tmp1[ 6] = t1 - (t2>>1);
1031        tmp1[16] = t1 + t2;
1032
1033        t0 = MUL64(2*(in1[2*2] + in1[2*4]),    C2);
1034        t1 = MUL64(   in1[2*4] - in1[2*8] , -2*C8);
1035        t2 = MUL64(2*(in1[2*2] + in1[2*8]),   -C4);
1036
1037        tmp1[10] = (t3 - t0 - t2) >> 32;
1038        tmp1[ 2] = (t3 + t0 + t1) >> 32;
1039        tmp1[14] = (t3 + t2 - t1) >> 32;
1040
1041        tmp1[ 4] = MULH(2*(in1[2*5] + in1[2*7] - in1[2*1]), -C3);
1042        t2 = MUL64(2*(in1[2*1] + in1[2*5]),    C1);
1043        t3 = MUL64(   in1[2*5] - in1[2*7] , -2*C7);
1044        t0 = MUL64(2*in1[2*3], C3);
1045
1046        t1 = MUL64(2*(in1[2*1] + in1[2*7]),   -C5);
1047
1048        tmp1[ 0] = (t2 + t3 + t0) >> 32;
1049        tmp1[12] = (t2 + t1 - t0) >> 32;
1050        tmp1[ 8] = (t3 - t1 - t0) >> 32;
1051#else
1052        t2 = in1[2*4] + in1[2*8] - in1[2*2];
1053
1054        t3 = in1[2*0] + (in1[2*6]>>1);
1055        t1 = in1[2*0] - in1[2*6];
1056        tmp1[ 6] = t1 - (t2>>1);
1057        tmp1[16] = t1 + t2;
1058
1059        t0 = MULH(2*(in1[2*2] + in1[2*4]),    C2);
1060        t1 = MULH(   in1[2*4] - in1[2*8] , -2*C8);
1061        t2 = MULH(2*(in1[2*2] + in1[2*8]),   -C4);
1062
1063        tmp1[10] = t3 - t0 - t2;
1064        tmp1[ 2] = t3 + t0 + t1;
1065        tmp1[14] = t3 + t2 - t1;
1066
1067        tmp1[ 4] = MULH(2*(in1[2*5] + in1[2*7] - in1[2*1]), -C3);
1068        t2 = MULH(2*(in1[2*1] + in1[2*5]),    C1);
1069        t3 = MULH(   in1[2*5] - in1[2*7] , -2*C7);
1070        t0 = MULH(2*in1[2*3], C3);
1071
1072        t1 = MULH(2*(in1[2*1] + in1[2*7]),   -C5);
1073
1074        tmp1[ 0] = t2 + t3 + t0;
1075        tmp1[12] = t2 + t1 - t0;
1076        tmp1[ 8] = t3 - t1 - t0;
1077#endif
1078    }
1079
1080    i = 0;
1081    for(j=0;j<4;j++) {
1082        t0 = tmp[i];
1083        t1 = tmp[i + 2];
1084        s0 = t1 + t0;
1085        s2 = t1 - t0;
1086
1087        t2 = tmp[i + 1];
1088        t3 = tmp[i + 3];
1089        s1 = MULH(2*(t3 + t2), icos36h[j]);
1090        s3 = MULL(t3 - t2, icos36[8 - j], FRAC_BITS);
1091
1092        t0 = s0 + s1;
1093        t1 = s0 - s1;
1094        out[(9 + j)*SBLIMIT] =  MULH(t1, win[9 + j]) + buf[9 + j];
1095        out[(8 - j)*SBLIMIT] =  MULH(t1, win[8 - j]) + buf[8 - j];
1096        buf[9 + j] = MULH(t0, win[18 + 9 + j]);
1097        buf[8 - j] = MULH(t0, win[18 + 8 - j]);
1098
1099        t0 = s2 + s3;
1100        t1 = s2 - s3;
1101        out[(9 + 8 - j)*SBLIMIT] =  MULH(t1, win[9 + 8 - j]) + buf[9 + 8 - j];
1102        out[(        j)*SBLIMIT] =  MULH(t1, win[        j]) + buf[        j];
1103        buf[9 + 8 - j] = MULH(t0, win[18 + 9 + 8 - j]);
1104        buf[      + j] = MULH(t0, win[18         + j]);
1105        i += 4;
1106    }
1107
1108    s0 = tmp[16];
1109    s1 = MULH(2*tmp[17], icos36h[4]);
1110    t0 = s0 + s1;
1111    t1 = s0 - s1;
1112    out[(9 + 4)*SBLIMIT] =  MULH(t1, win[9 + 4]) + buf[9 + 4];
1113    out[(8 - 4)*SBLIMIT] =  MULH(t1, win[8 - 4]) + buf[8 - 4];
1114    buf[9 + 4] = MULH(t0, win[18 + 9 + 4]);
1115    buf[8 - 4] = MULH(t0, win[18 + 8 - 4]);
1116}
1117
1118/* return the number of decoded frames */
1119static int mp_decode_layer1(MPADecodeContext *s)
1120{
1121    int bound, i, v, n, ch, j, mant;
1122    uint8_t allocation[MPA_MAX_CHANNELS][SBLIMIT];
1123    uint8_t scale_factors[MPA_MAX_CHANNELS][SBLIMIT];
1124
1125    if (s->mode == MPA_JSTEREO)
1126        bound = (s->mode_ext + 1) * 4;
1127    else
1128        bound = SBLIMIT;
1129
1130    /* allocation bits */
1131    for(i=0;i<bound;i++) {
1132        for(ch=0;ch<s->nb_channels;ch++) {
1133            allocation[ch][i] = get_bits(&s->gb, 4);
1134        }
1135    }
1136    for(i=bound;i<SBLIMIT;i++) {
1137        allocation[0][i] = get_bits(&s->gb, 4);
1138    }
1139
1140    /* scale factors */
1141    for(i=0;i<bound;i++) {
1142        for(ch=0;ch<s->nb_channels;ch++) {
1143            if (allocation[ch][i])
1144                scale_factors[ch][i] = get_bits(&s->gb, 6);
1145        }
1146    }
1147    for(i=bound;i<SBLIMIT;i++) {
1148        if (allocation[0][i]) {
1149            scale_factors[0][i] = get_bits(&s->gb, 6);
1150            scale_factors[1][i] = get_bits(&s->gb, 6);
1151        }
1152    }
1153
1154    /* compute samples */
1155    for(j=0;j<12;j++) {
1156        for(i=0;i<bound;i++) {
1157            for(ch=0;ch<s->nb_channels;ch++) {
1158                n = allocation[ch][i];
1159                if (n) {
1160                    mant = get_bits(&s->gb, n + 1);
1161                    v = l1_unscale(n, mant, scale_factors[ch][i]);
1162                } else {
1163                    v = 0;
1164                }
1165                s->sb_samples[ch][j][i] = v;
1166            }
1167        }
1168        for(i=bound;i<SBLIMIT;i++) {
1169            n = allocation[0][i];
1170            if (n) {
1171                mant = get_bits(&s->gb, n + 1);
1172                v = l1_unscale(n, mant, scale_factors[0][i]);
1173                s->sb_samples[0][j][i] = v;
1174                v = l1_unscale(n, mant, scale_factors[1][i]);
1175                s->sb_samples[1][j][i] = v;
1176            } else {
1177                s->sb_samples[0][j][i] = 0;
1178                s->sb_samples[1][j][i] = 0;
1179            }
1180        }
1181    }
1182    return 12;
1183}
1184
1185static int mp_decode_layer2(MPADecodeContext *s)
1186{
1187    int sblimit; /* number of used subbands */
1188    const unsigned char *alloc_table;
1189    int table, bit_alloc_bits, i, j, ch, bound, v;
1190    unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
1191    unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
1192    unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf;
1193    int scale, qindex, bits, steps, k, l, m, b;
1194
1195    /* select decoding table */
1196    table = ff_mpa_l2_select_table(s->bit_rate / 1000, s->nb_channels,
1197                            s->sample_rate, s->lsf);
1198    sblimit = ff_mpa_sblimit_table[table];
1199    alloc_table = ff_mpa_alloc_tables[table];
1200
1201    if (s->mode == MPA_JSTEREO)
1202        bound = (s->mode_ext + 1) * 4;
1203    else
1204        bound = sblimit;
1205
1206    dprintf(s->avctx, "bound=%d sblimit=%d\n", bound, sblimit);
1207
1208    /* sanity check */
1209    if( bound > sblimit ) bound = sblimit;
1210
1211    /* parse bit allocation */
1212    j = 0;
1213    for(i=0;i<bound;i++) {
1214        bit_alloc_bits = alloc_table[j];
1215        for(ch=0;ch<s->nb_channels;ch++) {
1216            bit_alloc[ch][i] = get_bits(&s->gb, bit_alloc_bits);
1217        }
1218        j += 1 << bit_alloc_bits;
1219    }
1220    for(i=bound;i<sblimit;i++) {
1221        bit_alloc_bits = alloc_table[j];
1222        v = get_bits(&s->gb, bit_alloc_bits);
1223        bit_alloc[0][i] = v;
1224        bit_alloc[1][i] = v;
1225        j += 1 << bit_alloc_bits;
1226    }
1227
1228    /* scale codes */
1229    for(i=0;i<sblimit;i++) {
1230        for(ch=0;ch<s->nb_channels;ch++) {
1231            if (bit_alloc[ch][i])
1232                scale_code[ch][i] = get_bits(&s->gb, 2);
1233        }
1234    }
1235
1236    /* scale factors */
1237    for(i=0;i<sblimit;i++) {
1238        for(ch=0;ch<s->nb_channels;ch++) {
1239            if (bit_alloc[ch][i]) {
1240                sf = scale_factors[ch][i];
1241                switch(scale_code[ch][i]) {
1242                default:
1243                case 0:
1244                    sf[0] = get_bits(&s->gb, 6);
1245                    sf[1] = get_bits(&s->gb, 6);
1246                    sf[2] = get_bits(&s->gb, 6);
1247                    break;
1248                case 2:
1249                    sf[0] = get_bits(&s->gb, 6);
1250                    sf[1] = sf[0];
1251                    sf[2] = sf[0];
1252                    break;
1253                case 1:
1254                    sf[0] = get_bits(&s->gb, 6);
1255                    sf[2] = get_bits(&s->gb, 6);
1256                    sf[1] = sf[0];
1257                    break;
1258                case 3:
1259                    sf[0] = get_bits(&s->gb, 6);
1260                    sf[2] = get_bits(&s->gb, 6);
1261                    sf[1] = sf[2];
1262                    break;
1263                }
1264            }
1265        }
1266    }
1267
1268    /* samples */
1269    for(k=0;k<3;k++) {
1270        for(l=0;l<12;l+=3) {
1271            j = 0;
1272            for(i=0;i<bound;i++) {
1273                bit_alloc_bits = alloc_table[j];
1274                for(ch=0;ch<s->nb_channels;ch++) {
1275                    b = bit_alloc[ch][i];
1276                    if (b) {
1277                        scale = scale_factors[ch][i][k];
1278                        qindex = alloc_table[j+b];
1279                        bits = ff_mpa_quant_bits[qindex];
1280                        if (bits < 0) {
1281                            /* 3 values at the same time */
1282                            v = get_bits(&s->gb, -bits);
1283                            steps = ff_mpa_quant_steps[qindex];
1284                            s->sb_samples[ch][k * 12 + l + 0][i] =
1285                                l2_unscale_group(steps, v % steps, scale);
1286                            v = v / steps;
1287                            s->sb_samples[ch][k * 12 + l + 1][i] =
1288                                l2_unscale_group(steps, v % steps, scale);
1289                            v = v / steps;
1290                            s->sb_samples[ch][k * 12 + l + 2][i] =
1291                                l2_unscale_group(steps, v, scale);
1292                        } else {
1293                            for(m=0;m<3;m++) {
1294                                v = get_bits(&s->gb, bits);
1295                                v = l1_unscale(bits - 1, v, scale);
1296                                s->sb_samples[ch][k * 12 + l + m][i] = v;
1297                            }
1298                        }
1299                    } else {
1300                        s->sb_samples[ch][k * 12 + l + 0][i] = 0;
1301                        s->sb_samples[ch][k * 12 + l + 1][i] = 0;
1302                        s->sb_samples[ch][k * 12 + l + 2][i] = 0;
1303                    }
1304                }
1305                /* next subband in alloc table */
1306                j += 1 << bit_alloc_bits;
1307            }
1308            /* XXX: find a way to avoid this duplication of code */
1309            for(i=bound;i<sblimit;i++) {
1310                bit_alloc_bits = alloc_table[j];
1311                b = bit_alloc[0][i];
1312                if (b) {
1313                    int mant, scale0, scale1;
1314                    scale0 = scale_factors[0][i][k];
1315                    scale1 = scale_factors[1][i][k];
1316                    qindex = alloc_table[j+b];
1317                    bits = ff_mpa_quant_bits[qindex];
1318                    if (bits < 0) {
1319                        /* 3 values at the same time */
1320                        v = get_bits(&s->gb, -bits);
1321                        steps = ff_mpa_quant_steps[qindex];
1322                        mant = v % steps;
1323                        v = v / steps;
1324                        s->sb_samples[0][k * 12 + l + 0][i] =
1325                            l2_unscale_group(steps, mant, scale0);
1326                        s->sb_samples[1][k * 12 + l + 0][i] =
1327                            l2_unscale_group(steps, mant, scale1);
1328                        mant = v % steps;
1329                        v = v / steps;
1330                        s->sb_samples[0][k * 12 + l + 1][i] =
1331                            l2_unscale_group(steps, mant, scale0);
1332                        s->sb_samples[1][k * 12 + l + 1][i] =
1333                            l2_unscale_group(steps, mant, scale1);
1334                        s->sb_samples[0][k * 12 + l + 2][i] =
1335                            l2_unscale_group(steps, v, scale0);
1336                        s->sb_samples[1][k * 12 + l + 2][i] =
1337                            l2_unscale_group(steps, v, scale1);
1338                    } else {
1339                        for(m=0;m<3;m++) {
1340                            mant = get_bits(&s->gb, bits);
1341                            s->sb_samples[0][k * 12 + l + m][i] =
1342                                l1_unscale(bits - 1, mant, scale0);
1343                            s->sb_samples[1][k * 12 + l + m][i] =
1344                                l1_unscale(bits - 1, mant, scale1);
1345                        }
1346                    }
1347                } else {
1348                    s->sb_samples[0][k * 12 + l + 0][i] = 0;
1349                    s->sb_samples[0][k * 12 + l + 1][i] = 0;
1350                    s->sb_samples[0][k * 12 + l + 2][i] = 0;
1351                    s->sb_samples[1][k * 12 + l + 0][i] = 0;
1352                    s->sb_samples[1][k * 12 + l + 1][i] = 0;
1353                    s->sb_samples[1][k * 12 + l + 2][i] = 0;
1354                }
1355                /* next subband in alloc table */
1356                j += 1 << bit_alloc_bits;
1357            }
1358            /* fill remaining samples to zero */
1359            for(i=sblimit;i<SBLIMIT;i++) {
1360                for(ch=0;ch<s->nb_channels;ch++) {
1361                    s->sb_samples[ch][k * 12 + l + 0][i] = 0;
1362                    s->sb_samples[ch][k * 12 + l + 1][i] = 0;
1363                    s->sb_samples[ch][k * 12 + l + 2][i] = 0;
1364                }
1365            }
1366        }
1367    }
1368    return 3 * 12;
1369}
1370
1371static inline void lsf_sf_expand(int *slen,
1372                                 int sf, int n1, int n2, int n3)
1373{
1374    if (n3) {
1375        slen[3] = sf % n3;
1376        sf /= n3;
1377    } else {
1378        slen[3] = 0;
1379    }
1380    if (n2) {
1381        slen[2] = sf % n2;
1382        sf /= n2;
1383    } else {
1384        slen[2] = 0;
1385    }
1386    slen[1] = sf % n1;
1387    sf /= n1;
1388    slen[0] = sf;
1389}
1390
1391static void exponents_from_scale_factors(MPADecodeContext *s,
1392                                         GranuleDef *g,
1393                                         int16_t *exponents)
1394{
1395    const uint8_t *bstab, *pretab;
1396    int len, i, j, k, l, v0, shift, gain, gains[3];
1397    int16_t *exp_ptr;
1398
1399    exp_ptr = exponents;
1400    gain = g->global_gain - 210;
1401    shift = g->scalefac_scale + 1;
1402
1403    bstab = band_size_long[s->sample_rate_index];
1404    pretab = mpa_pretab[g->preflag];
1405    for(i=0;i<g->long_end;i++) {
1406        v0 = gain - ((g->scale_factors[i] + pretab[i]) << shift) + 400;
1407        len = bstab[i];
1408        for(j=len;j>0;j--)
1409            *exp_ptr++ = v0;
1410    }
1411
1412    if (g->short_start < 13) {
1413        bstab = band_size_short[s->sample_rate_index];
1414        gains[0] = gain - (g->subblock_gain[0] << 3);
1415        gains[1] = gain - (g->subblock_gain[1] << 3);
1416        gains[2] = gain - (g->subblock_gain[2] << 3);
1417        k = g->long_end;
1418        for(i=g->short_start;i<13;i++) {
1419            len = bstab[i];
1420            for(l=0;l<3;l++) {
1421                v0 = gains[l] - (g->scale_factors[k++] << shift) + 400;
1422                for(j=len;j>0;j--)
1423                *exp_ptr++ = v0;
1424            }
1425        }
1426    }
1427}
1428
1429/* handle n = 0 too */
1430static inline int get_bitsz(GetBitContext *s, int n)
1431{
1432    if (n == 0)
1433        return 0;
1434    else
1435        return get_bits(s, n);
1436}
1437
1438
1439static void switch_buffer(MPADecodeContext *s, int *pos, int *end_pos, int *end_pos2){
1440    if(s->in_gb.buffer && *pos >= s->gb.size_in_bits){
1441        s->gb= s->in_gb;
1442        s->in_gb.buffer=NULL;
1443        assert((get_bits_count(&s->gb) & 7) == 0);
1444        skip_bits_long(&s->gb, *pos - *end_pos);
1445        *end_pos2=
1446        *end_pos= *end_pos2 + get_bits_count(&s->gb) - *pos;
1447        *pos= get_bits_count(&s->gb);
1448    }
1449}
1450
1451static int huffman_decode(MPADecodeContext *s, GranuleDef *g,
1452                          int16_t *exponents, int end_pos2)
1453{
1454    int s_index;
1455    int i;
1456    int last_pos, bits_left;
1457    VLC *vlc;
1458    int end_pos= FFMIN(end_pos2, s->gb.size_in_bits);
1459
1460    /* low frequencies (called big values) */
1461    s_index = 0;
1462    for(i=0;i<3;i++) {
1463        int j, k, l, linbits;
1464        j = g->region_size[i];
1465        if (j == 0)
1466            continue;
1467        /* select vlc table */
1468        k = g->table_select[i];
1469        l = mpa_huff_data[k][0];
1470        linbits = mpa_huff_data[k][1];
1471        vlc = &huff_vlc[l];
1472
1473        if(!l){
1474            memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid)*2*j);
1475            s_index += 2*j;
1476            continue;
1477        }
1478
1479        /* read huffcode and compute each couple */
1480        for(;j>0;j--) {
1481            int exponent, x, y, v;
1482            int pos= get_bits_count(&s->gb);
1483
1484            if (pos >= end_pos){
1485//                av_log(NULL, AV_LOG_ERROR, "pos: %d %d %d %d\n", pos, end_pos, end_pos2, s_index);
1486                switch_buffer(s, &pos, &end_pos, &end_pos2);
1487//                av_log(NULL, AV_LOG_ERROR, "new pos: %d %d\n", pos, end_pos);
1488                if(pos >= end_pos)
1489                    break;
1490            }
1491            y = get_vlc2(&s->gb, vlc->table, 7, 3);
1492
1493            if(!y){
1494                g->sb_hybrid[s_index  ] =
1495                g->sb_hybrid[s_index+1] = 0;
1496                s_index += 2;
1497                continue;
1498            }
1499
1500            exponent= exponents[s_index];
1501
1502            dprintf(s->avctx, "region=%d n=%d x=%d y=%d exp=%d\n",
1503                    i, g->region_size[i] - j, x, y, exponent);
1504            if(y&16){
1505                x = y >> 5;
1506                y = y & 0x0f;
1507                if (x < 15){
1508                    v = expval_table[ exponent ][ x ];
1509//                      v = expval_table[ (exponent&3) ][ x ] >> FFMIN(0 - (exponent>>2), 31);
1510                }else{
1511                    x += get_bitsz(&s->gb, linbits);
1512                    v = l3_unscale(x, exponent);
1513                }
1514                if (get_bits1(&s->gb))
1515                    v = -v;
1516                g->sb_hybrid[s_index] = v;
1517                if (y < 15){
1518                    v = expval_table[ exponent ][ y ];
1519                }else{
1520                    y += get_bitsz(&s->gb, linbits);
1521                    v = l3_unscale(y, exponent);
1522                }
1523                if (get_bits1(&s->gb))
1524                    v = -v;
1525                g->sb_hybrid[s_index+1] = v;
1526            }else{
1527                x = y >> 5;
1528                y = y & 0x0f;
1529                x += y;
1530                if (x < 15){
1531                    v = expval_table[ exponent ][ x ];
1532                }else{
1533                    x += get_bitsz(&s->gb, linbits);
1534                    v = l3_unscale(x, exponent);
1535                }
1536                if (get_bits1(&s->gb))
1537                    v = -v;
1538                g->sb_hybrid[s_index+!!y] = v;
1539                g->sb_hybrid[s_index+ !y] = 0;
1540            }
1541            s_index+=2;
1542        }
1543    }
1544
1545    /* high frequencies */
1546    vlc = &huff_quad_vlc[g->count1table_select];
1547    last_pos=0;
1548    while (s_index <= 572) {
1549        int pos, code;
1550        pos = get_bits_count(&s->gb);
1551        if (pos >= end_pos) {
1552            if (pos > end_pos2 && last_pos){
1553                /* some encoders generate an incorrect size for this
1554                   part. We must go back into the data */
1555                s_index -= 4;
1556                skip_bits_long(&s->gb, last_pos - pos);
1557                av_log(s->avctx, AV_LOG_INFO, "overread, skip %d enddists: %d %d\n", last_pos - pos, end_pos-pos, end_pos2-pos);
1558                if(s->error_recognition >= FF_ER_COMPLIANT)
1559                    s_index=0;
1560                break;
1561            }
1562//                av_log(NULL, AV_LOG_ERROR, "pos2: %d %d %d %d\n", pos, end_pos, end_pos2, s_index);
1563            switch_buffer(s, &pos, &end_pos, &end_pos2);
1564//                av_log(NULL, AV_LOG_ERROR, "new pos2: %d %d %d\n", pos, end_pos, s_index);
1565            if(pos >= end_pos)
1566                break;
1567        }
1568        last_pos= pos;
1569
1570        code = get_vlc2(&s->gb, vlc->table, vlc->bits, 1);
1571        dprintf(s->avctx, "t=%d code=%d\n", g->count1table_select, code);
1572        g->sb_hybrid[s_index+0]=
1573        g->sb_hybrid[s_index+1]=
1574        g->sb_hybrid[s_index+2]=
1575        g->sb_hybrid[s_index+3]= 0;
1576        while(code){
1577            static const int idxtab[16]={3,3,2,2,1,1,1,1,0,0,0,0,0,0,0,0};
1578            int v;
1579            int pos= s_index+idxtab[code];
1580            code ^= 8>>idxtab[code];
1581            v = exp_table[ exponents[pos] ];
1582//            v = exp_table[ (exponents[pos]&3) ] >> FFMIN(0 - (exponents[pos]>>2), 31);
1583            if(get_bits1(&s->gb))
1584                v = -v;
1585            g->sb_hybrid[pos] = v;
1586        }
1587        s_index+=4;
1588    }
1589    /* skip extension bits */
1590    bits_left = end_pos2 - get_bits_count(&s->gb);
1591//av_log(NULL, AV_LOG_ERROR, "left:%d buf:%p\n", bits_left, s->in_gb.buffer);
1592    if (bits_left < 0 && s->error_recognition >= FF_ER_COMPLIANT) {
1593        av_log(s->avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
1594        s_index=0;
1595    }else if(bits_left > 0 && s->error_recognition >= FF_ER_AGGRESSIVE){
1596        av_log(s->avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
1597        s_index=0;
1598    }
1599    memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid)*(576 - s_index));
1600    skip_bits_long(&s->gb, bits_left);
1601
1602    i= get_bits_count(&s->gb);
1603    switch_buffer(s, &i, &end_pos, &end_pos2);
1604
1605    return 0;
1606}
1607
1608/* Reorder short blocks from bitstream order to interleaved order. It
1609   would be faster to do it in parsing, but the code would be far more
1610   complicated */
1611static void reorder_block(MPADecodeContext *s, GranuleDef *g)
1612{
1613    int i, j, len;
1614    int32_t *ptr, *dst, *ptr1;
1615    int32_t tmp[576];
1616
1617    if (g->block_type != 2)
1618        return;
1619
1620    if (g->switch_point) {
1621        if (s->sample_rate_index != 8) {
1622            ptr = g->sb_hybrid + 36;
1623        } else {
1624            ptr = g->sb_hybrid + 48;
1625        }
1626    } else {
1627        ptr = g->sb_hybrid;
1628    }
1629
1630    for(i=g->short_start;i<13;i++) {
1631        len = band_size_short[s->sample_rate_index][i];
1632        ptr1 = ptr;
1633        dst = tmp;
1634        for(j=len;j>0;j--) {
1635            *dst++ = ptr[0*len];
1636            *dst++ = ptr[1*len];
1637            *dst++ = ptr[2*len];
1638            ptr++;
1639        }
1640        ptr+=2*len;
1641        memcpy(ptr1, tmp, len * 3 * sizeof(*ptr1));
1642    }
1643}
1644
1645#define ISQRT2 FIXR(0.70710678118654752440)
1646
1647static void compute_stereo(MPADecodeContext *s,
1648                           GranuleDef *g0, GranuleDef *g1)
1649{
1650    int i, j, k, l;
1651    int32_t v1, v2;
1652    int sf_max, tmp0, tmp1, sf, len, non_zero_found;
1653    int32_t (*is_tab)[16];
1654    int32_t *tab0, *tab1;
1655    int non_zero_found_short[3];
1656
1657    /* intensity stereo */
1658    if (s->mode_ext & MODE_EXT_I_STEREO) {
1659        if (!s->lsf) {
1660            is_tab = is_table;
1661            sf_max = 7;
1662        } else {
1663            is_tab = is_table_lsf[g1->scalefac_compress & 1];
1664            sf_max = 16;
1665        }
1666
1667        tab0 = g0->sb_hybrid + 576;
1668        tab1 = g1->sb_hybrid + 576;
1669
1670        non_zero_found_short[0] = 0;
1671        non_zero_found_short[1] = 0;
1672        non_zero_found_short[2] = 0;
1673        k = (13 - g1->short_start) * 3 + g1->long_end - 3;
1674        for(i = 12;i >= g1->short_start;i--) {
1675            /* for last band, use previous scale factor */
1676            if (i != 11)
1677                k -= 3;
1678            len = band_size_short[s->sample_rate_index][i];
1679            for(l=2;l>=0;l--) {
1680                tab0 -= len;
1681                tab1 -= len;
1682                if (!non_zero_found_short[l]) {
1683                    /* test if non zero band. if so, stop doing i-stereo */
1684                    for(j=0;j<len;j++) {
1685                        if (tab1[j] != 0) {
1686                            non_zero_found_short[l] = 1;
1687                            goto found1;
1688                        }
1689                    }
1690                    sf = g1->scale_factors[k + l];
1691                    if (sf >= sf_max)
1692                        goto found1;
1693
1694                    v1 = is_tab[0][sf];
1695                    v2 = is_tab[1][sf];
1696                    for(j=0;j<len;j++) {
1697                        tmp0 = tab0[j];
1698                        tab0[j] = MULL(tmp0, v1, FRAC_BITS);
1699                        tab1[j] = MULL(tmp0, v2, FRAC_BITS);
1700                    }
1701                } else {
1702                found1:
1703                    if (s->mode_ext & MODE_EXT_MS_STEREO) {
1704                        /* lower part of the spectrum : do ms stereo
1705                           if enabled */
1706                        for(j=0;j<len;j++) {
1707                            tmp0 = tab0[j];
1708                            tmp1 = tab1[j];
1709                            tab0[j] = MULL(tmp0 + tmp1, ISQRT2, FRAC_BITS);
1710                            tab1[j] = MULL(tmp0 - tmp1, ISQRT2, FRAC_BITS);
1711                        }
1712                    }
1713                }
1714            }
1715        }
1716
1717        non_zero_found = non_zero_found_short[0] |
1718            non_zero_found_short[1] |
1719            non_zero_found_short[2];
1720
1721        for(i = g1->long_end - 1;i >= 0;i--) {
1722            len = band_size_long[s->sample_rate_index][i];
1723            tab0 -= len;
1724            tab1 -= len;
1725            /* test if non zero band. if so, stop doing i-stereo */
1726            if (!non_zero_found) {
1727                for(j=0;j<len;j++) {
1728                    if (tab1[j] != 0) {
1729                        non_zero_found = 1;
1730                        goto found2;
1731                    }
1732                }
1733                /* for last band, use previous scale factor */
1734                k = (i == 21) ? 20 : i;
1735                sf = g1->scale_factors[k];
1736                if (sf >= sf_max)
1737                    goto found2;
1738                v1 = is_tab[0][sf];
1739                v2 = is_tab[1][sf];
1740                for(j=0;j<len;j++) {
1741                    tmp0 = tab0[j];
1742                    tab0[j] = MULL(tmp0, v1, FRAC_BITS);
1743                    tab1[j] = MULL(tmp0, v2, FRAC_BITS);
1744                }
1745            } else {
1746            found2:
1747                if (s->mode_ext & MODE_EXT_MS_STEREO) {
1748                    /* lower part of the spectrum : do ms stereo
1749                       if enabled */
1750                    for(j=0;j<len;j++) {
1751                        tmp0 = tab0[j];
1752                        tmp1 = tab1[j];
1753                        tab0[j] = MULL(tmp0 + tmp1, ISQRT2, FRAC_BITS);
1754                        tab1[j] = MULL(tmp0 - tmp1, ISQRT2, FRAC_BITS);
1755                    }
1756                }
1757            }
1758        }
1759    } else if (s->mode_ext & MODE_EXT_MS_STEREO) {
1760        /* ms stereo ONLY */
1761        /* NOTE: the 1/sqrt(2) normalization factor is included in the
1762           global gain */
1763        tab0 = g0->sb_hybrid;
1764        tab1 = g1->sb_hybrid;
1765        for(i=0;i<576;i++) {
1766            tmp0 = tab0[i];
1767            tmp1 = tab1[i];
1768            tab0[i] = tmp0 + tmp1;
1769            tab1[i] = tmp0 - tmp1;
1770        }
1771    }
1772}
1773
1774static void compute_antialias_integer(MPADecodeContext *s,
1775                              GranuleDef *g)
1776{
1777    int32_t *ptr, *csa;
1778    int n, i;
1779
1780    /* we antialias only "long" bands */
1781    if (g->block_type == 2) {
1782        if (!g->switch_point)
1783            return;
1784        /* XXX: check this for 8000Hz case */
1785        n = 1;
1786    } else {
1787        n = SBLIMIT - 1;
1788    }
1789
1790    ptr = g->sb_hybrid + 18;
1791    for(i = n;i > 0;i--) {
1792        int tmp0, tmp1, tmp2;
1793        csa = &csa_table[0][0];
1794#define INT_AA(j) \
1795            tmp0 = ptr[-1-j];\
1796            tmp1 = ptr[   j];\
1797            tmp2= MULH(tmp0 + tmp1, csa[0+4*j]);\
1798            ptr[-1-j] = 4*(tmp2 - MULH(tmp1, csa[2+4*j]));\
1799            ptr[   j] = 4*(tmp2 + MULH(tmp0, csa[3+4*j]));
1800
1801        INT_AA(0)
1802        INT_AA(1)
1803        INT_AA(2)
1804        INT_AA(3)
1805        INT_AA(4)
1806        INT_AA(5)
1807        INT_AA(6)
1808        INT_AA(7)
1809
1810        ptr += 18;
1811    }
1812}
1813
1814static void compute_antialias_float(MPADecodeContext *s,
1815                              GranuleDef *g)
1816{
1817    int32_t *ptr;
1818    int n, i;
1819
1820    /* we antialias only "long" bands */
1821    if (g->block_type == 2) {
1822        if (!g->switch_point)
1823            return;
1824        /* XXX: check this for 8000Hz case */
1825        n = 1;
1826    } else {
1827        n = SBLIMIT - 1;
1828    }
1829
1830    ptr = g->sb_hybrid + 18;
1831    for(i = n;i > 0;i--) {
1832        float tmp0, tmp1;
1833        float *csa = &csa_table_float[0][0];
1834#define FLOAT_AA(j)\
1835        tmp0= ptr[-1-j];\
1836        tmp1= ptr[   j];\
1837        ptr[-1-j] = lrintf(tmp0 * csa[0+4*j] - tmp1 * csa[1+4*j]);\
1838        ptr[   j] = lrintf(tmp0 * csa[1+4*j] + tmp1 * csa[0+4*j]);
1839
1840        FLOAT_AA(0)
1841        FLOAT_AA(1)
1842        FLOAT_AA(2)
1843        FLOAT_AA(3)
1844        FLOAT_AA(4)
1845        FLOAT_AA(5)
1846        FLOAT_AA(6)
1847        FLOAT_AA(7)
1848
1849        ptr += 18;
1850    }
1851}
1852
1853static void compute_imdct(MPADecodeContext *s,
1854                          GranuleDef *g,
1855                          int32_t *sb_samples,
1856                          int32_t *mdct_buf)
1857{
1858    int32_t *ptr, *win, *win1, *buf, *out_ptr, *ptr1;
1859    int32_t out2[12];
1860    int i, j, mdct_long_end, v, sblimit;
1861
1862    /* find last non zero block */
1863    ptr = g->sb_hybrid + 576;
1864    ptr1 = g->sb_hybrid + 2 * 18;
1865    while (ptr >= ptr1) {
1866        ptr -= 6;
1867        v = ptr[0] | ptr[1] | ptr[2] | ptr[3] | ptr[4] | ptr[5];
1868        if (v != 0)
1869            break;
1870    }
1871    sblimit = ((ptr - g->sb_hybrid) / 18) + 1;
1872
1873    if (g->block_type == 2) {
1874        /* XXX: check for 8000 Hz */
1875        if (g->switch_point)
1876            mdct_long_end = 2;
1877        else
1878            mdct_long_end = 0;
1879    } else {
1880        mdct_long_end = sblimit;
1881    }
1882
1883    buf = mdct_buf;
1884    ptr = g->sb_hybrid;
1885    for(j=0;j<mdct_long_end;j++) {
1886        /* apply window & overlap with previous buffer */
1887        out_ptr = sb_samples + j;
1888        /* select window */
1889        if (g->switch_point && j < 2)
1890            win1 = mdct_win[0];
1891        else
1892            win1 = mdct_win[g->block_type];
1893        /* select frequency inversion */
1894        win = win1 + ((4 * 36) & -(j & 1));
1895        imdct36(out_ptr, buf, ptr, win);
1896        out_ptr += 18*SBLIMIT;
1897        ptr += 18;
1898        buf += 18;
1899    }
1900    for(j=mdct_long_end;j<sblimit;j++) {
1901        /* select frequency inversion */
1902        win = mdct_win[2] + ((4 * 36) & -(j & 1));
1903        out_ptr = sb_samples + j;
1904
1905        for(i=0; i<6; i++){
1906            *out_ptr = buf[i];
1907            out_ptr += SBLIMIT;
1908        }
1909        imdct12(out2, ptr + 0);
1910        for(i=0;i<6;i++) {
1911            *out_ptr = MULH(out2[i], win[i]) + buf[i + 6*1];
1912            buf[i + 6*2] = MULH(out2[i + 6], win[i + 6]);
1913            out_ptr += SBLIMIT;
1914        }
1915        imdct12(out2, ptr + 1);
1916        for(i=0;i<6;i++) {
1917            *out_ptr = MULH(out2[i], win[i]) + buf[i + 6*2];
1918            buf[i + 6*0] = MULH(out2[i + 6], win[i + 6]);
1919            out_ptr += SBLIMIT;
1920        }
1921        imdct12(out2, ptr + 2);
1922        for(i=0;i<6;i++) {
1923            buf[i + 6*0] = MULH(out2[i], win[i]) + buf[i + 6*0];
1924            buf[i + 6*1] = MULH(out2[i + 6], win[i + 6]);
1925            buf[i + 6*2] = 0;
1926        }
1927        ptr += 18;
1928        buf += 18;
1929    }
1930    /* zero bands */
1931    for(j=sblimit;j<SBLIMIT;j++) {
1932        /* overlap */
1933        out_ptr = sb_samples + j;
1934        for(i=0;i<18;i++) {
1935            *out_ptr = buf[i];
1936            buf[i] = 0;
1937            out_ptr += SBLIMIT;
1938        }
1939        buf += 18;
1940    }
1941}
1942
1943/* main layer3 decoding function */
1944static int mp_decode_layer3(MPADecodeContext *s)
1945{
1946    int nb_granules, main_data_begin, private_bits;
1947    int gr, ch, blocksplit_flag, i, j, k, n, bits_pos;
1948    GranuleDef granules[2][2], *g;
1949    int16_t exponents[576];
1950
1951    /* read side info */
1952    if (s->lsf) {
1953        main_data_begin = get_bits(&s->gb, 8);
1954        private_bits = get_bits(&s->gb, s->nb_channels);
1955        nb_granules = 1;
1956    } else {
1957        main_data_begin = get_bits(&s->gb, 9);
1958        if (s->nb_channels == 2)
1959            private_bits = get_bits(&s->gb, 3);
1960        else
1961            private_bits = get_bits(&s->gb, 5);
1962        nb_granules = 2;
1963        for(ch=0;ch<s->nb_channels;ch++) {
1964            granules[ch][0].scfsi = 0; /* all scale factors are transmitted */
1965            granules[ch][1].scfsi = get_bits(&s->gb, 4);
1966        }
1967    }
1968
1969    for(gr=0;gr<nb_granules;gr++) {
1970        for(ch=0;ch<s->nb_channels;ch++) {
1971            dprintf(s->avctx, "gr=%d ch=%d: side_info\n", gr, ch);
1972            g = &granules[ch][gr];
1973            g->part2_3_length = get_bits(&s->gb, 12);
1974            g->big_values = get_bits(&s->gb, 9);
1975            if(g->big_values > 288){
1976                av_log(s->avctx, AV_LOG_ERROR, "big_values too big\n");
1977                return -1;
1978            }
1979
1980            g->global_gain = get_bits(&s->gb, 8);
1981            /* if MS stereo only is selected, we precompute the
1982               1/sqrt(2) renormalization factor */
1983            if ((s->mode_ext & (MODE_EXT_MS_STEREO | MODE_EXT_I_STEREO)) ==
1984                MODE_EXT_MS_STEREO)
1985                g->global_gain -= 2;
1986            if (s->lsf)
1987                g->scalefac_compress = get_bits(&s->gb, 9);
1988            else
1989                g->scalefac_compress = get_bits(&s->gb, 4);
1990            blocksplit_flag = get_bits1(&s->gb);
1991            if (blocksplit_flag) {
1992                g->block_type = get_bits(&s->gb, 2);
1993                if (g->block_type == 0){
1994                    av_log(s->avctx, AV_LOG_ERROR, "invalid block type\n");
1995                    return -1;
1996                }
1997                g->switch_point = get_bits1(&s->gb);
1998                for(i=0;i<2;i++)
1999                    g->table_select[i] = get_bits(&s->gb, 5);
2000                for(i=0;i<3;i++)
2001                    g->subblock_gain[i] = get_bits(&s->gb, 3);
2002                ff_init_short_region(s, g);
2003            } else {
2004                int region_address1, region_address2;
2005                g->block_type = 0;
2006                g->switch_point = 0;
2007                for(i=0;i<3;i++)
2008                    g->table_select[i] = get_bits(&s->gb, 5);
2009                /* compute huffman coded region sizes */
2010                region_address1 = get_bits(&s->gb, 4);
2011                region_address2 = get_bits(&s->gb, 3);
2012                dprintf(s->avctx, "region1=%d region2=%d\n",
2013                        region_address1, region_address2);
2014                ff_init_long_region(s, g, region_address1, region_address2);
2015            }
2016            ff_region_offset2size(g);
2017            ff_compute_band_indexes(s, g);
2018
2019            g->preflag = 0;
2020            if (!s->lsf)
2021                g->preflag = get_bits1(&s->gb);
2022            g->scalefac_scale = get_bits1(&s->gb);
2023            g->count1table_select = get_bits1(&s->gb);
2024            dprintf(s->avctx, "block_type=%d switch_point=%d\n",
2025                    g->block_type, g->switch_point);
2026        }
2027    }
2028
2029  if (!s->adu_mode) {
2030    const uint8_t *ptr = s->gb.buffer + (get_bits_count(&s->gb)>>3);
2031    assert((get_bits_count(&s->gb) & 7) == 0);
2032    /* now we get bits from the main_data_begin offset */
2033    dprintf(s->avctx, "seekback: %d\n", main_data_begin);
2034//av_log(NULL, AV_LOG_ERROR, "backstep:%d, lastbuf:%d\n", main_data_begin, s->last_buf_size);
2035
2036    memcpy(s->last_buf + s->last_buf_size, ptr, EXTRABYTES);
2037    s->in_gb= s->gb;
2038        init_get_bits(&s->gb, s->last_buf, s->last_buf_size*8);
2039        skip_bits_long(&s->gb, 8*(s->last_buf_size - main_data_begin));
2040  }
2041
2042    for(gr=0;gr<nb_granules;gr++) {
2043        for(ch=0;ch<s->nb_channels;ch++) {
2044            g = &granules[ch][gr];
2045            if(get_bits_count(&s->gb)<0){
2046                av_log(s->avctx, AV_LOG_ERROR, "mdb:%d, lastbuf:%d skipping granule %d\n",
2047                                            main_data_begin, s->last_buf_size, gr);
2048                skip_bits_long(&s->gb, g->part2_3_length);
2049                memset(g->sb_hybrid, 0, sizeof(g->sb_hybrid));
2050                if(get_bits_count(&s->gb) >= s->gb.size_in_bits && s->in_gb.buffer){
2051                    skip_bits_long(&s->in_gb, get_bits_count(&s->gb) - s->gb.size_in_bits);
2052                    s->gb= s->in_gb;
2053                    s->in_gb.buffer=NULL;
2054                }
2055                continue;
2056            }
2057
2058            bits_pos = get_bits_count(&s->gb);
2059
2060            if (!s->lsf) {
2061                uint8_t *sc;
2062                int slen, slen1, slen2;
2063
2064                /* MPEG1 scale factors */
2065                slen1 = slen_table[0][g->scalefac_compress];
2066                slen2 = slen_table[1][g->scalefac_compress];
2067                dprintf(s->avctx, "slen1=%d slen2=%d\n", slen1, slen2);
2068                if (g->block_type == 2) {
2069                    n = g->switch_point ? 17 : 18;
2070                    j = 0;
2071                    if(slen1){
2072                        for(i=0;i<n;i++)
2073                            g->scale_factors[j++] = get_bits(&s->gb, slen1);
2074                    }else{
2075                        for(i=0;i<n;i++)
2076                            g->scale_factors[j++] = 0;
2077                    }
2078                    if(slen2){
2079                        for(i=0;i<18;i++)
2080                            g->scale_factors[j++] = get_bits(&s->gb, slen2);
2081                        for(i=0;i<3;i++)
2082                            g->scale_factors[j++] = 0;
2083                    }else{
2084                        for(i=0;i<21;i++)
2085                            g->scale_factors[j++] = 0;
2086                    }
2087                } else {
2088                    sc = granules[ch][0].scale_factors;
2089                    j = 0;
2090                    for(k=0;k<4;k++) {
2091                        n = (k == 0 ? 6 : 5);
2092                        if ((g->scfsi & (0x8 >> k)) == 0) {
2093                            slen = (k < 2) ? slen1 : slen2;
2094                            if(slen){
2095                                for(i=0;i<n;i++)
2096                                    g->scale_factors[j++] = get_bits(&s->gb, slen);
2097                            }else{
2098                                for(i=0;i<n;i++)
2099                                    g->scale_factors[j++] = 0;
2100                            }
2101                        } else {
2102                            /* simply copy from last granule */
2103                            for(i=0;i<n;i++) {
2104                                g->scale_factors[j] = sc[j];
2105                                j++;
2106                            }
2107                        }
2108                    }
2109                    g->scale_factors[j++] = 0;
2110                }
2111            } else {
2112                int tindex, tindex2, slen[4], sl, sf;
2113
2114                /* LSF scale factors */
2115                if (g->block_type == 2) {
2116                    tindex = g->switch_point ? 2 : 1;
2117                } else {
2118                    tindex = 0;
2119                }
2120                sf = g->scalefac_compress;
2121                if ((s->mode_ext & MODE_EXT_I_STEREO) && ch == 1) {
2122                    /* intensity stereo case */
2123                    sf >>= 1;
2124                    if (sf < 180) {
2125                        lsf_sf_expand(slen, sf, 6, 6, 0);
2126                        tindex2 = 3;
2127                    } else if (sf < 244) {
2128                        lsf_sf_expand(slen, sf - 180, 4, 4, 0);
2129                        tindex2 = 4;
2130                    } else {
2131                        lsf_sf_expand(slen, sf - 244, 3, 0, 0);
2132                        tindex2 = 5;
2133                    }
2134                } else {
2135                    /* normal case */
2136                    if (sf < 400) {
2137                        lsf_sf_expand(slen, sf, 5, 4, 4);
2138                        tindex2 = 0;
2139                    } else if (sf < 500) {
2140                        lsf_sf_expand(slen, sf - 400, 5, 4, 0);
2141                        tindex2 = 1;
2142                    } else {
2143                        lsf_sf_expand(slen, sf - 500, 3, 0, 0);
2144                        tindex2 = 2;
2145                        g->preflag = 1;
2146                    }
2147                }
2148
2149                j = 0;
2150                for(k=0;k<4;k++) {
2151                    n = lsf_nsf_table[tindex2][tindex][k];
2152                    sl = slen[k];
2153                    if(sl){
2154                        for(i=0;i<n;i++)
2155                            g->scale_factors[j++] = get_bits(&s->gb, sl);
2156                    }else{
2157                        for(i=0;i<n;i++)
2158                            g->scale_factors[j++] = 0;
2159                    }
2160                }
2161                /* XXX: should compute exact size */
2162                for(;j<40;j++)
2163                    g->scale_factors[j] = 0;
2164            }
2165
2166            exponents_from_scale_factors(s, g, exponents);
2167
2168            /* read Huffman coded residue */
2169            huffman_decode(s, g, exponents, bits_pos + g->part2_3_length);
2170        } /* ch */
2171
2172        if (s->nb_channels == 2)
2173            compute_stereo(s, &granules[0][gr], &granules[1][gr]);
2174
2175        for(ch=0;ch<s->nb_channels;ch++) {
2176            g = &granules[ch][gr];
2177
2178            reorder_block(s, g);
2179            s->compute_antialias(s, g);
2180            compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
2181        }
2182    } /* gr */
2183    if(get_bits_count(&s->gb)<0)
2184        skip_bits_long(&s->gb, -get_bits_count(&s->gb));
2185    return nb_granules * 18;
2186}
2187
2188static int mp_decode_frame(MPADecodeContext *s,
2189                           OUT_INT *samples, const uint8_t *buf, int buf_size)
2190{
2191    int i, nb_frames, ch;
2192    OUT_INT *samples_ptr;
2193
2194    init_get_bits(&s->gb, buf + HEADER_SIZE, (buf_size - HEADER_SIZE)*8);
2195
2196    /* skip error protection field */
2197    if (s->error_protection)
2198        skip_bits(&s->gb, 16);
2199
2200    dprintf(s->avctx, "frame %d:\n", s->frame_count);
2201    switch(s->layer) {
2202    case 1:
2203        s->avctx->frame_size = 384;
2204        nb_frames = mp_decode_layer1(s);
2205        break;
2206    case 2:
2207        s->avctx->frame_size = 1152;
2208        nb_frames = mp_decode_layer2(s);
2209        break;
2210    case 3:
2211        s->avctx->frame_size = s->lsf ? 576 : 1152;
2212    default:
2213        nb_frames = mp_decode_layer3(s);
2214
2215        s->last_buf_size=0;
2216        if(s->in_gb.buffer){
2217            align_get_bits(&s->gb);
2218            i= (s->gb.size_in_bits - get_bits_count(&s->gb))>>3;
2219            if(i >= 0 && i <= BACKSTEP_SIZE){
2220                memmove(s->last_buf, s->gb.buffer + (get_bits_count(&s->gb)>>3), i);
2221                s->last_buf_size=i;
2222            }else
2223                av_log(s->avctx, AV_LOG_ERROR, "invalid old backstep %d\n", i);
2224            s->gb= s->in_gb;
2225            s->in_gb.buffer= NULL;
2226        }
2227
2228        align_get_bits(&s->gb);
2229        assert((get_bits_count(&s->gb) & 7) == 0);
2230        i= (s->gb.size_in_bits - get_bits_count(&s->gb))>>3;
2231
2232        if(i<0 || i > BACKSTEP_SIZE || nb_frames<0){
2233            if(i<0)
2234                av_log(s->avctx, AV_LOG_ERROR, "invalid new backstep %d\n", i);
2235            i= FFMIN(BACKSTEP_SIZE, buf_size - HEADER_SIZE);
2236        }
2237        assert(i <= buf_size - HEADER_SIZE && i>= 0);
2238        memcpy(s->last_buf + s->last_buf_size, s->gb.buffer + buf_size - HEADER_SIZE - i, i);
2239        s->last_buf_size += i;
2240
2241        break;
2242    }
2243
2244    /* apply the synthesis filter */
2245    for(ch=0;ch<s->nb_channels;ch++) {
2246        samples_ptr = samples + ch;
2247        for(i=0;i<nb_frames;i++) {
2248            ff_mpa_synth_filter(s->synth_buf[ch], &(s->synth_buf_offset[ch]),
2249                         window, &s->dither_state,
2250                         samples_ptr, s->nb_channels,
2251                         s->sb_samples[ch][i]);
2252            samples_ptr += 32 * s->nb_channels;
2253        }
2254    }
2255
2256    return nb_frames * 32 * sizeof(OUT_INT) * s->nb_channels;
2257}
2258
2259static int decode_frame(AVCodecContext * avctx,
2260                        void *data, int *data_size,
2261                        const uint8_t * buf, int buf_size)
2262{
2263    MPADecodeContext *s = avctx->priv_data;
2264    uint32_t header;
2265    int out_size;
2266    OUT_INT *out_samples = data;
2267
2268retry:
2269    if(buf_size < HEADER_SIZE)
2270        return -1;
2271
2272    header = AV_RB32(buf);
2273    if(ff_mpa_check_header(header) < 0){
2274        buf++;
2275//        buf_size--;
2276        av_log(avctx, AV_LOG_ERROR, "Header missing skipping one byte.\n");
2277        goto retry;
2278    }
2279
2280    if (ff_mpegaudio_decode_header((MPADecodeHeader *)s, header) == 1) {
2281        /* free format: prepare to compute frame size */
2282        s->frame_size = -1;
2283        return -1;
2284    }
2285    /* update codec info */
2286    avctx->channels = s->nb_channels;
2287    avctx->bit_rate = s->bit_rate;
2288    avctx->sub_id = s->layer;
2289
2290    if(*data_size < 1152*avctx->channels*sizeof(OUT_INT))
2291        return -1;
2292    *data_size = 0;
2293
2294    if(s->frame_size<=0 || s->frame_size > buf_size){
2295        av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");
2296        return -1;
2297    }else if(s->frame_size < buf_size){
2298        av_log(avctx, AV_LOG_ERROR, "incorrect frame size\n");
2299        buf_size= s->frame_size;
2300    }
2301
2302    out_size = mp_decode_frame(s, out_samples, buf, buf_size);
2303    if(out_size>=0){
2304        *data_size = out_size;
2305        avctx->sample_rate = s->sample_rate;
2306        //FIXME maybe move the other codec info stuff from above here too
2307    }else
2308        av_log(avctx, AV_LOG_DEBUG, "Error while decoding MPEG audio frame.\n"); //FIXME return -1 / but also return the number of bytes consumed
2309    s->frame_size = 0;
2310    return buf_size;
2311}
2312
2313static void flush(AVCodecContext *avctx){
2314    MPADecodeContext *s = avctx->priv_data;
2315    memset(s->synth_buf, 0, sizeof(s->synth_buf));
2316    s->last_buf_size= 0;
2317}
2318
2319#if CONFIG_MP3ADU_DECODER
2320static int decode_frame_adu(AVCodecContext * avctx,
2321                        void *data, int *data_size,
2322                        const uint8_t * buf, int buf_size)
2323{
2324    MPADecodeContext *s = avctx->priv_data;
2325    uint32_t header;
2326    int len, out_size;
2327    OUT_INT *out_samples = data;
2328
2329    len = buf_size;
2330
2331    // Discard too short frames
2332    if (buf_size < HEADER_SIZE) {
2333        *data_size = 0;
2334        return buf_size;
2335    }
2336
2337
2338    if (len > MPA_MAX_CODED_FRAME_SIZE)
2339        len = MPA_MAX_CODED_FRAME_SIZE;
2340
2341    // Get header and restore sync word
2342    header = AV_RB32(buf) | 0xffe00000;
2343
2344    if (ff_mpa_check_header(header) < 0) { // Bad header, discard frame
2345        *data_size = 0;
2346        return buf_size;
2347    }
2348
2349    ff_mpegaudio_decode_header((MPADecodeHeader *)s, header);
2350    /* update codec info */
2351    avctx->sample_rate = s->sample_rate;
2352    avctx->channels = s->nb_channels;
2353    avctx->bit_rate = s->bit_rate;
2354    avctx->sub_id = s->layer;
2355
2356    s->frame_size = len;
2357
2358    if (avctx->parse_only) {
2359        out_size = buf_size;
2360    } else {
2361        out_size = mp_decode_frame(s, out_samples, buf, buf_size);
2362    }
2363
2364    *data_size = out_size;
2365    return buf_size;
2366}
2367#endif /* CONFIG_MP3ADU_DECODER */
2368
2369#if CONFIG_MP3ON4_DECODER
2370
2371/**
2372 * Context for MP3On4 decoder
2373 */
2374typedef struct MP3On4DecodeContext {
2375    int frames;   ///< number of mp3 frames per block (number of mp3 decoder instances)
2376    int syncword; ///< syncword patch
2377    const uint8_t *coff; ///< channels offsets in output buffer
2378    MPADecodeContext *mp3decctx[5]; ///< MPADecodeContext for every decoder instance
2379} MP3On4DecodeContext;
2380
2381#include "mpeg4audio.h"
2382
2383/* Next 3 arrays are indexed by channel config number (passed via codecdata) */
2384static const uint8_t mp3Frames[8] = {0,1,1,2,3,3,4,5};   /* number of mp3 decoder instances */
2385/* offsets into output buffer, assume output order is FL FR BL BR C LFE */
2386static const uint8_t chan_offset[8][5] = {
2387    {0},
2388    {0},            // C
2389    {0},            // FLR
2390    {2,0},          // C FLR
2391    {2,0,3},        // C FLR BS
2392    {4,0,2},        // C FLR BLRS
2393    {4,0,2,5},      // C FLR BLRS LFE
2394    {4,0,2,6,5},    // C FLR BLRS BLR LFE
2395};
2396
2397
2398static int decode_init_mp3on4(AVCodecContext * avctx)
2399{
2400    MP3On4DecodeContext *s = avctx->priv_data;
2401    MPEG4AudioConfig cfg;
2402    int i;
2403
2404    if ((avctx->extradata_size < 2) || (avctx->extradata == NULL)) {
2405        av_log(avctx, AV_LOG_ERROR, "Codec extradata missing or too short.\n");
2406        return -1;
2407    }
2408
2409    ff_mpeg4audio_get_config(&cfg, avctx->extradata, avctx->extradata_size);
2410    if (!cfg.chan_config || cfg.chan_config > 7) {
2411        av_log(avctx, AV_LOG_ERROR, "Invalid channel config number.\n");
2412        return -1;
2413    }
2414    s->frames = mp3Frames[cfg.chan_config];
2415    s->coff = chan_offset[cfg.chan_config];
2416    avctx->channels = ff_mpeg4audio_channels[cfg.chan_config];
2417
2418    if (cfg.sample_rate < 16000)
2419        s->syncword = 0xffe00000;
2420    else
2421        s->syncword = 0xfff00000;
2422
2423    /* Init the first mp3 decoder in standard way, so that all tables get builded
2424     * We replace avctx->priv_data with the context of the first decoder so that
2425     * decode_init() does not have to be changed.
2426     * Other decoders will be initialized here copying data from the first context
2427     */
2428    // Allocate zeroed memory for the first decoder context
2429    s->mp3decctx[0] = av_mallocz(sizeof(MPADecodeContext));
2430    // Put decoder context in place to make init_decode() happy
2431    avctx->priv_data = s->mp3decctx[0];
2432    decode_init(avctx);
2433    // Restore mp3on4 context pointer
2434    avctx->priv_data = s;
2435    s->mp3decctx[0]->adu_mode = 1; // Set adu mode
2436
2437    /* Create a separate codec/context for each frame (first is already ok).
2438     * Each frame is 1 or 2 channels - up to 5 frames allowed
2439     */
2440    for (i = 1; i < s->frames; i++) {
2441        s->mp3decctx[i] = av_mallocz(sizeof(MPADecodeContext));
2442        s->mp3decctx[i]->compute_antialias = s->mp3decctx[0]->compute_antialias;
2443        s->mp3decctx[i]->adu_mode = 1;
2444        s->mp3decctx[i]->avctx = avctx;
2445    }
2446
2447    return 0;
2448}
2449
2450
2451static av_cold int decode_close_mp3on4(AVCodecContext * avctx)
2452{
2453    MP3On4DecodeContext *s = avctx->priv_data;
2454    int i;
2455
2456    for (i = 0; i < s->frames; i++)
2457        if (s->mp3decctx[i])
2458            av_free(s->mp3decctx[i]);
2459
2460    return 0;
2461}
2462
2463
2464static int decode_frame_mp3on4(AVCodecContext * avctx,
2465                        void *data, int *data_size,
2466                        const uint8_t * buf, int buf_size)
2467{
2468    MP3On4DecodeContext *s = avctx->priv_data;
2469    MPADecodeContext *m;
2470    int fsize, len = buf_size, out_size = 0;
2471    uint32_t header;
2472    OUT_INT *out_samples = data;
2473    OUT_INT decoded_buf[MPA_FRAME_SIZE * MPA_MAX_CHANNELS];
2474    OUT_INT *outptr, *bp;
2475    int fr, j, n;
2476
2477    if(*data_size < MPA_FRAME_SIZE * MPA_MAX_CHANNELS * s->frames * sizeof(OUT_INT))
2478        return -1;
2479
2480    *data_size = 0;
2481    // Discard too short frames
2482    if (buf_size < HEADER_SIZE)
2483        return -1;
2484
2485    // If only one decoder interleave is not needed
2486    outptr = s->frames == 1 ? out_samples : decoded_buf;
2487
2488    avctx->bit_rate = 0;
2489
2490    for (fr = 0; fr < s->frames; fr++) {
2491        fsize = AV_RB16(buf) >> 4;
2492        fsize = FFMIN3(fsize, len, MPA_MAX_CODED_FRAME_SIZE);
2493        m = s->mp3decctx[fr];
2494        assert (m != NULL);
2495
2496        header = (AV_RB32(buf) & 0x000fffff) | s->syncword; // patch header
2497
2498        if (ff_mpa_check_header(header) < 0) // Bad header, discard block
2499            break;
2500
2501        ff_mpegaudio_decode_header((MPADecodeHeader *)m, header);
2502        out_size += mp_decode_frame(m, outptr, buf, fsize);
2503        buf += fsize;
2504        len -= fsize;
2505
2506        if(s->frames > 1) {
2507            n = m->avctx->frame_size*m->nb_channels;
2508            /* interleave output data */
2509            bp = out_samples + s->coff[fr];
2510            if(m->nb_channels == 1) {
2511                for(j = 0; j < n; j++) {
2512                    *bp = decoded_buf[j];
2513                    bp += avctx->channels;
2514                }
2515            } else {
2516                for(j = 0; j < n; j++) {
2517                    bp[0] = decoded_buf[j++];
2518                    bp[1] = decoded_buf[j];
2519                    bp += avctx->channels;
2520                }
2521            }
2522        }
2523        avctx->bit_rate += m->bit_rate;
2524    }
2525
2526    /* update codec info */
2527    avctx->sample_rate = s->mp3decctx[0]->sample_rate;
2528
2529    *data_size = out_size;
2530    return buf_size;
2531}
2532#endif /* CONFIG_MP3ON4_DECODER */
2533
2534#if CONFIG_MP1_DECODER
2535AVCodec mp1_decoder =
2536{
2537    "mp1",
2538    CODEC_TYPE_AUDIO,
2539    CODEC_ID_MP1,
2540    sizeof(MPADecodeContext),
2541    decode_init,
2542    NULL,
2543    NULL,
2544    decode_frame,
2545    CODEC_CAP_PARSE_ONLY,
2546    .flush= flush,
2547    .long_name= NULL_IF_CONFIG_SMALL("MP1 (MPEG audio layer 1)"),
2548};
2549#endif
2550#if CONFIG_MP2_DECODER
2551AVCodec mp2_decoder =
2552{
2553    "mp2",
2554    CODEC_TYPE_AUDIO,
2555    CODEC_ID_MP2,
2556    sizeof(MPADecodeContext),
2557    decode_init,
2558    NULL,
2559    NULL,
2560    decode_frame,
2561    CODEC_CAP_PARSE_ONLY,
2562    .flush= flush,
2563    .long_name= NULL_IF_CONFIG_SMALL("MP2 (MPEG audio layer 2)"),
2564};
2565#endif
2566#if CONFIG_MP3_DECODER
2567AVCodec mp3_decoder =
2568{
2569    "mp3",
2570    CODEC_TYPE_AUDIO,
2571    CODEC_ID_MP3,
2572    sizeof(MPADecodeContext),
2573    decode_init,
2574    NULL,
2575    NULL,
2576    decode_frame,
2577    CODEC_CAP_PARSE_ONLY,
2578    .flush= flush,
2579    .long_name= NULL_IF_CONFIG_SMALL("MP3 (MPEG audio layer 3)"),
2580};
2581#endif
2582#if CONFIG_MP3ADU_DECODER
2583AVCodec mp3adu_decoder =
2584{
2585    "mp3adu",
2586    CODEC_TYPE_AUDIO,
2587    CODEC_ID_MP3ADU,
2588    sizeof(MPADecodeContext),
2589    decode_init,
2590    NULL,
2591    NULL,
2592    decode_frame_adu,
2593    CODEC_CAP_PARSE_ONLY,
2594    .flush= flush,
2595    .long_name= NULL_IF_CONFIG_SMALL("ADU (Application Data Unit) MP3 (MPEG audio layer 3)"),
2596};
2597#endif
2598#if CONFIG_MP3ON4_DECODER
2599AVCodec mp3on4_decoder =
2600{
2601    "mp3on4",
2602    CODEC_TYPE_AUDIO,
2603    CODEC_ID_MP3ON4,
2604    sizeof(MP3On4DecodeContext),
2605    decode_init_mp3on4,
2606    NULL,
2607    decode_close_mp3on4,
2608    decode_frame_mp3on4,
2609    .flush= flush,
2610    .long_name= NULL_IF_CONFIG_SMALL("MP3onMP4"),
2611};
2612#endif
2613