1/*
2 * Atrac 3 compatible decoder
3 * Copyright (c) 2006-2008 Maxim Poliakovski
4 * Copyright (c) 2006-2008 Benjamin Larsson
5 *
6 * This file is part of FFmpeg.
7 *
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23/**
24 * @file libavcodec/atrac3.c
25 * Atrac 3 compatible decoder.
26 * This decoder handles Sony's ATRAC3 data.
27 *
28 * Container formats used to store atrac 3 data:
29 * RealMedia (.rm), RIFF WAV (.wav, .at3), Sony OpenMG (.oma, .aa3).
30 *
31 * To use this decoder, a calling application must supply the extradata
32 * bytes provided in the containers above.
33 */
34
35#include <math.h>
36#include <stddef.h>
37#include <stdio.h>
38
39#include "avcodec.h"
40#include "bitstream.h"
41#include "dsputil.h"
42#include "bytestream.h"
43
44#include "atrac3data.h"
45
46#define JOINT_STEREO    0x12
47#define STEREO          0x2
48
49
50/* These structures are needed to store the parsed gain control data. */
51typedef struct {
52    int   num_gain_data;
53    int   levcode[8];
54    int   loccode[8];
55} gain_info;
56
57typedef struct {
58    gain_info   gBlock[4];
59} gain_block;
60
61typedef struct {
62    int     pos;
63    int     numCoefs;
64    float   coef[8];
65} tonal_component;
66
67typedef struct {
68    int               bandsCoded;
69    int               numComponents;
70    tonal_component   components[64];
71    float             prevFrame[1024];
72    int               gcBlkSwitch;
73    gain_block        gainBlock[2];
74
75    DECLARE_ALIGNED_16(float, spectrum[1024]);
76    DECLARE_ALIGNED_16(float, IMDCT_buf[1024]);
77
78    float             delayBuf1[46]; ///<qmf delay buffers
79    float             delayBuf2[46];
80    float             delayBuf3[46];
81} channel_unit;
82
83typedef struct {
84    GetBitContext       gb;
85    //@{
86    /** stream data */
87    int                 channels;
88    int                 codingMode;
89    int                 bit_rate;
90    int                 sample_rate;
91    int                 samples_per_channel;
92    int                 samples_per_frame;
93
94    int                 bits_per_frame;
95    int                 bytes_per_frame;
96    int                 pBs;
97    channel_unit*       pUnits;
98    //@}
99    //@{
100    /** joint-stereo related variables */
101    int                 matrix_coeff_index_prev[4];
102    int                 matrix_coeff_index_now[4];
103    int                 matrix_coeff_index_next[4];
104    int                 weighting_delay[6];
105    //@}
106    //@{
107    /** data buffers */
108    float               outSamples[2048];
109    uint8_t*            decoded_bytes_buffer;
110    float               tempBuf[1070];
111    //@}
112    //@{
113    /** extradata */
114    int                 atrac3version;
115    int                 delay;
116    int                 scrambled_stream;
117    int                 frame_factor;
118    //@}
119} ATRAC3Context;
120
121static DECLARE_ALIGNED_16(float,mdct_window[512]);
122static float            qmf_window[48];
123static VLC              spectral_coeff_tab[7];
124static float            SFTable[64];
125static float            gain_tab1[16];
126static float            gain_tab2[31];
127static MDCTContext      mdct_ctx;
128static DSPContext       dsp;
129
130
131/* quadrature mirror synthesis filter */
132
133/**
134 * Quadrature mirror synthesis filter.
135 *
136 * @param inlo      lower part of spectrum
137 * @param inhi      higher part of spectrum
138 * @param nIn       size of spectrum buffer
139 * @param pOut      out buffer
140 * @param delayBuf  delayBuf buffer
141 * @param temp      temp buffer
142 */
143
144
145static void iqmf (float *inlo, float *inhi, unsigned int nIn, float *pOut, float *delayBuf, float *temp)
146{
147    int   i, j;
148    float   *p1, *p3;
149
150    memcpy(temp, delayBuf, 46*sizeof(float));
151
152    p3 = temp + 46;
153
154    /* loop1 */
155    for(i=0; i<nIn; i+=2){
156        p3[2*i+0] = inlo[i  ] + inhi[i  ];
157        p3[2*i+1] = inlo[i  ] - inhi[i  ];
158        p3[2*i+2] = inlo[i+1] + inhi[i+1];
159        p3[2*i+3] = inlo[i+1] - inhi[i+1];
160    }
161
162    /* loop2 */
163    p1 = temp;
164    for (j = nIn; j != 0; j--) {
165        float s1 = 0.0;
166        float s2 = 0.0;
167
168        for (i = 0; i < 48; i += 2) {
169            s1 += p1[i] * qmf_window[i];
170            s2 += p1[i+1] * qmf_window[i+1];
171        }
172
173        pOut[0] = s2;
174        pOut[1] = s1;
175
176        p1 += 2;
177        pOut += 2;
178    }
179
180    /* Update the delay buffer. */
181    memcpy(delayBuf, temp + nIn*2, 46*sizeof(float));
182}
183
184/**
185 * Regular 512 points IMDCT without overlapping, with the exception of the swapping of odd bands
186 * caused by the reverse spectra of the QMF.
187 *
188 * @param pInput    float input
189 * @param pOutput   float output
190 * @param odd_band  1 if the band is an odd band
191 */
192
193static void IMLT(float *pInput, float *pOutput, int odd_band)
194{
195    int     i;
196
197    if (odd_band) {
198        /**
199        * Reverse the odd bands before IMDCT, this is an effect of the QMF transform
200        * or it gives better compression to do it this way.
201        * FIXME: It should be possible to handle this in ff_imdct_calc
202        * for that to happen a modification of the prerotation step of
203        * all SIMD code and C code is needed.
204        * Or fix the functions before so they generate a pre reversed spectrum.
205        */
206
207        for (i=0; i<128; i++)
208            FFSWAP(float, pInput[i], pInput[255-i]);
209    }
210
211    ff_imdct_calc(&mdct_ctx,pOutput,pInput);
212
213    /* Perform windowing on the output. */
214    dsp.vector_fmul(pOutput,mdct_window,512);
215
216}
217
218
219/**
220 * Atrac 3 indata descrambling, only used for data coming from the rm container
221 *
222 * @param in        pointer to 8 bit array of indata
223 * @param bits      amount of bits
224 * @param out       pointer to 8 bit array of outdata
225 */
226
227static int decode_bytes(const uint8_t* inbuffer, uint8_t* out, int bytes){
228    int i, off;
229    uint32_t c;
230    const uint32_t* buf;
231    uint32_t* obuf = (uint32_t*) out;
232
233    off = (int)((long)inbuffer & 3);
234    buf = (const uint32_t*) (inbuffer - off);
235    c = be2me_32((0x537F6103 >> (off*8)) | (0x537F6103 << (32-(off*8))));
236    bytes += 3 + off;
237    for (i = 0; i < bytes/4; i++)
238        obuf[i] = c ^ buf[i];
239
240    if (off)
241        av_log(NULL,AV_LOG_DEBUG,"Offset of %d not handled, post sample on ffmpeg-dev.\n",off);
242
243    return off;
244}
245
246
247static av_cold void init_atrac3_transforms(ATRAC3Context *q) {
248    float enc_window[256];
249    float s;
250    int i;
251
252    /* Generate the mdct window, for details see
253     * http://wiki.multimedia.cx/index.php?title=RealAudio_atrc#Windows */
254    for (i=0 ; i<256; i++)
255        enc_window[i] = (sin(((i + 0.5) / 256.0 - 0.5) * M_PI) + 1.0) * 0.5;
256
257    if (!mdct_window[0])
258        for (i=0 ; i<256; i++) {
259            mdct_window[i] = enc_window[i]/(enc_window[i]*enc_window[i] + enc_window[255-i]*enc_window[255-i]);
260            mdct_window[511-i] = mdct_window[i];
261        }
262
263    /* Generate the QMF window. */
264    for (i=0 ; i<24; i++) {
265        s = qmf_48tap_half[i] * 2.0;
266        qmf_window[i] = s;
267        qmf_window[47 - i] = s;
268    }
269
270    /* Initialize the MDCT transform. */
271    ff_mdct_init(&mdct_ctx, 9, 1);
272}
273
274/**
275 * Atrac3 uninit, free all allocated memory
276 */
277
278static av_cold int atrac3_decode_close(AVCodecContext *avctx)
279{
280    ATRAC3Context *q = avctx->priv_data;
281
282    av_free(q->pUnits);
283    av_free(q->decoded_bytes_buffer);
284
285    return 0;
286}
287
288/**
289/ * Mantissa decoding
290 *
291 * @param gb            the GetBit context
292 * @param selector      what table is the output values coded with
293 * @param codingFlag    constant length coding or variable length coding
294 * @param mantissas     mantissa output table
295 * @param numCodes      amount of values to get
296 */
297
298static void readQuantSpectralCoeffs (GetBitContext *gb, int selector, int codingFlag, int* mantissas, int numCodes)
299{
300    int   numBits, cnt, code, huffSymb;
301
302    if (selector == 1)
303        numCodes /= 2;
304
305    if (codingFlag != 0) {
306        /* constant length coding (CLC) */
307        numBits = CLCLengthTab[selector];
308
309        if (selector > 1) {
310            for (cnt = 0; cnt < numCodes; cnt++) {
311                if (numBits)
312                    code = get_sbits(gb, numBits);
313                else
314                    code = 0;
315                mantissas[cnt] = code;
316            }
317        } else {
318            for (cnt = 0; cnt < numCodes; cnt++) {
319                if (numBits)
320                    code = get_bits(gb, numBits); //numBits is always 4 in this case
321                else
322                    code = 0;
323                mantissas[cnt*2] = seTab_0[code >> 2];
324                mantissas[cnt*2+1] = seTab_0[code & 3];
325            }
326        }
327    } else {
328        /* variable length coding (VLC) */
329        if (selector != 1) {
330            for (cnt = 0; cnt < numCodes; cnt++) {
331                huffSymb = get_vlc2(gb, spectral_coeff_tab[selector-1].table, spectral_coeff_tab[selector-1].bits, 3);
332                huffSymb += 1;
333                code = huffSymb >> 1;
334                if (huffSymb & 1)
335                    code = -code;
336                mantissas[cnt] = code;
337            }
338        } else {
339            for (cnt = 0; cnt < numCodes; cnt++) {
340                huffSymb = get_vlc2(gb, spectral_coeff_tab[selector-1].table, spectral_coeff_tab[selector-1].bits, 3);
341                mantissas[cnt*2] = decTable1[huffSymb*2];
342                mantissas[cnt*2+1] = decTable1[huffSymb*2+1];
343            }
344        }
345    }
346}
347
348/**
349 * Restore the quantized band spectrum coefficients
350 *
351 * @param gb            the GetBit context
352 * @param pOut          decoded band spectrum
353 * @return outSubbands   subband counter, fix for broken specification/files
354 */
355
356static int decodeSpectrum (GetBitContext *gb, float *pOut)
357{
358    int   numSubbands, codingMode, cnt, first, last, subbWidth, *pIn;
359    int   subband_vlc_index[32], SF_idxs[32];
360    int   mantissas[128];
361    float SF;
362
363    numSubbands = get_bits(gb, 5); // number of coded subbands
364    codingMode = get_bits1(gb); // coding Mode: 0 - VLC/ 1-CLC
365
366    /* Get the VLC selector table for the subbands, 0 means not coded. */
367    for (cnt = 0; cnt <= numSubbands; cnt++)
368        subband_vlc_index[cnt] = get_bits(gb, 3);
369
370    /* Read the scale factor indexes from the stream. */
371    for (cnt = 0; cnt <= numSubbands; cnt++) {
372        if (subband_vlc_index[cnt] != 0)
373            SF_idxs[cnt] = get_bits(gb, 6);
374    }
375
376    for (cnt = 0; cnt <= numSubbands; cnt++) {
377        first = subbandTab[cnt];
378        last = subbandTab[cnt+1];
379
380        subbWidth = last - first;
381
382        if (subband_vlc_index[cnt] != 0) {
383            /* Decode spectral coefficients for this subband. */
384            /* TODO: This can be done faster is several blocks share the
385             * same VLC selector (subband_vlc_index) */
386            readQuantSpectralCoeffs (gb, subband_vlc_index[cnt], codingMode, mantissas, subbWidth);
387
388            /* Decode the scale factor for this subband. */
389            SF = SFTable[SF_idxs[cnt]] * iMaxQuant[subband_vlc_index[cnt]];
390
391            /* Inverse quantize the coefficients. */
392            for (pIn=mantissas ; first<last; first++, pIn++)
393                pOut[first] = *pIn * SF;
394        } else {
395            /* This subband was not coded, so zero the entire subband. */
396            memset(pOut+first, 0, subbWidth*sizeof(float));
397        }
398    }
399
400    /* Clear the subbands that were not coded. */
401    first = subbandTab[cnt];
402    memset(pOut+first, 0, (1024 - first) * sizeof(float));
403    return numSubbands;
404}
405
406/**
407 * Restore the quantized tonal components
408 *
409 * @param gb            the GetBit context
410 * @param pComponent    tone component
411 * @param numBands      amount of coded bands
412 */
413
414static int decodeTonalComponents (GetBitContext *gb, tonal_component *pComponent, int numBands)
415{
416    int i,j,k,cnt;
417    int   components, coding_mode_selector, coding_mode, coded_values_per_component;
418    int   sfIndx, coded_values, max_coded_values, quant_step_index, coded_components;
419    int   band_flags[4], mantissa[8];
420    float  *pCoef;
421    float  scalefactor;
422    int   component_count = 0;
423
424    components = get_bits(gb,5);
425
426    /* no tonal components */
427    if (components == 0)
428        return 0;
429
430    coding_mode_selector = get_bits(gb,2);
431    if (coding_mode_selector == 2)
432        return -1;
433
434    coding_mode = coding_mode_selector & 1;
435
436    for (i = 0; i < components; i++) {
437        for (cnt = 0; cnt <= numBands; cnt++)
438            band_flags[cnt] = get_bits1(gb);
439
440        coded_values_per_component = get_bits(gb,3);
441
442        quant_step_index = get_bits(gb,3);
443        if (quant_step_index <= 1)
444            return -1;
445
446        if (coding_mode_selector == 3)
447            coding_mode = get_bits1(gb);
448
449        for (j = 0; j < (numBands + 1) * 4; j++) {
450            if (band_flags[j >> 2] == 0)
451                continue;
452
453            coded_components = get_bits(gb,3);
454
455            for (k=0; k<coded_components; k++) {
456                sfIndx = get_bits(gb,6);
457                pComponent[component_count].pos = j * 64 + (get_bits(gb,6));
458                max_coded_values = 1024 - pComponent[component_count].pos;
459                coded_values = coded_values_per_component + 1;
460                coded_values = FFMIN(max_coded_values,coded_values);
461
462                scalefactor = SFTable[sfIndx] * iMaxQuant[quant_step_index];
463
464                readQuantSpectralCoeffs(gb, quant_step_index, coding_mode, mantissa, coded_values);
465
466                pComponent[component_count].numCoefs = coded_values;
467
468                /* inverse quant */
469                pCoef = pComponent[component_count].coef;
470                for (cnt = 0; cnt < coded_values; cnt++)
471                    pCoef[cnt] = mantissa[cnt] * scalefactor;
472
473                component_count++;
474            }
475        }
476    }
477
478    return component_count;
479}
480
481/**
482 * Decode gain parameters for the coded bands
483 *
484 * @param gb            the GetBit context
485 * @param pGb           the gainblock for the current band
486 * @param numBands      amount of coded bands
487 */
488
489static int decodeGainControl (GetBitContext *gb, gain_block *pGb, int numBands)
490{
491    int   i, cf, numData;
492    int   *pLevel, *pLoc;
493
494    gain_info   *pGain = pGb->gBlock;
495
496    for (i=0 ; i<=numBands; i++)
497    {
498        numData = get_bits(gb,3);
499        pGain[i].num_gain_data = numData;
500        pLevel = pGain[i].levcode;
501        pLoc = pGain[i].loccode;
502
503        for (cf = 0; cf < numData; cf++){
504            pLevel[cf]= get_bits(gb,4);
505            pLoc  [cf]= get_bits(gb,5);
506            if(cf && pLoc[cf] <= pLoc[cf-1])
507                return -1;
508        }
509    }
510
511    /* Clear the unused blocks. */
512    for (; i<4 ; i++)
513        pGain[i].num_gain_data = 0;
514
515    return 0;
516}
517
518/**
519 * Apply gain parameters and perform the MDCT overlapping part
520 *
521 * @param pIn           input float buffer
522 * @param pPrev         previous float buffer to perform overlap against
523 * @param pOut          output float buffer
524 * @param pGain1        current band gain info
525 * @param pGain2        next band gain info
526 */
527
528static void gainCompensateAndOverlap (float *pIn, float *pPrev, float *pOut, gain_info *pGain1, gain_info *pGain2)
529{
530    /* gain compensation function */
531    float  gain1, gain2, gain_inc;
532    int   cnt, numdata, nsample, startLoc, endLoc;
533
534
535    if (pGain2->num_gain_data == 0)
536        gain1 = 1.0;
537    else
538        gain1 = gain_tab1[pGain2->levcode[0]];
539
540    if (pGain1->num_gain_data == 0) {
541        for (cnt = 0; cnt < 256; cnt++)
542            pOut[cnt] = pIn[cnt] * gain1 + pPrev[cnt];
543    } else {
544        numdata = pGain1->num_gain_data;
545        pGain1->loccode[numdata] = 32;
546        pGain1->levcode[numdata] = 4;
547
548        nsample = 0; // current sample = 0
549
550        for (cnt = 0; cnt < numdata; cnt++) {
551            startLoc = pGain1->loccode[cnt] * 8;
552            endLoc = startLoc + 8;
553
554            gain2 = gain_tab1[pGain1->levcode[cnt]];
555            gain_inc = gain_tab2[(pGain1->levcode[cnt+1] - pGain1->levcode[cnt])+15];
556
557            /* interpolate */
558            for (; nsample < startLoc; nsample++)
559                pOut[nsample] = (pIn[nsample] * gain1 + pPrev[nsample]) * gain2;
560
561            /* interpolation is done over eight samples */
562            for (; nsample < endLoc; nsample++) {
563                pOut[nsample] = (pIn[nsample] * gain1 + pPrev[nsample]) * gain2;
564                gain2 *= gain_inc;
565            }
566        }
567
568        for (; nsample < 256; nsample++)
569            pOut[nsample] = (pIn[nsample] * gain1) + pPrev[nsample];
570    }
571
572    /* Delay for the overlapping part. */
573    memcpy(pPrev, &pIn[256], 256*sizeof(float));
574}
575
576/**
577 * Combine the tonal band spectrum and regular band spectrum
578 * Return position of the last tonal coefficient
579 *
580 * @param pSpectrum     output spectrum buffer
581 * @param numComponents amount of tonal components
582 * @param pComponent    tonal components for this band
583 */
584
585static int addTonalComponents (float *pSpectrum, int numComponents, tonal_component *pComponent)
586{
587    int   cnt, i, lastPos = -1;
588    float   *pIn, *pOut;
589
590    for (cnt = 0; cnt < numComponents; cnt++){
591        lastPos = FFMAX(pComponent[cnt].pos + pComponent[cnt].numCoefs, lastPos);
592        pIn = pComponent[cnt].coef;
593        pOut = &(pSpectrum[pComponent[cnt].pos]);
594
595        for (i=0 ; i<pComponent[cnt].numCoefs ; i++)
596            pOut[i] += pIn[i];
597    }
598
599    return lastPos;
600}
601
602
603#define INTERPOLATE(old,new,nsample) ((old) + (nsample)*0.125*((new)-(old)))
604
605static void reverseMatrixing(float *su1, float *su2, int *pPrevCode, int *pCurrCode)
606{
607    int    i, band, nsample, s1, s2;
608    float    c1, c2;
609    float    mc1_l, mc1_r, mc2_l, mc2_r;
610
611    for (i=0,band = 0; band < 4*256; band+=256,i++) {
612        s1 = pPrevCode[i];
613        s2 = pCurrCode[i];
614        nsample = 0;
615
616        if (s1 != s2) {
617            /* Selector value changed, interpolation needed. */
618            mc1_l = matrixCoeffs[s1*2];
619            mc1_r = matrixCoeffs[s1*2+1];
620            mc2_l = matrixCoeffs[s2*2];
621            mc2_r = matrixCoeffs[s2*2+1];
622
623            /* Interpolation is done over the first eight samples. */
624            for(; nsample < 8; nsample++) {
625                c1 = su1[band+nsample];
626                c2 = su2[band+nsample];
627                c2 = c1 * INTERPOLATE(mc1_l,mc2_l,nsample) + c2 * INTERPOLATE(mc1_r,mc2_r,nsample);
628                su1[band+nsample] = c2;
629                su2[band+nsample] = c1 * 2.0 - c2;
630            }
631        }
632
633        /* Apply the matrix without interpolation. */
634        switch (s2) {
635            case 0:     /* M/S decoding */
636                for (; nsample < 256; nsample++) {
637                    c1 = su1[band+nsample];
638                    c2 = su2[band+nsample];
639                    su1[band+nsample] = c2 * 2.0;
640                    su2[band+nsample] = (c1 - c2) * 2.0;
641                }
642                break;
643
644            case 1:
645                for (; nsample < 256; nsample++) {
646                    c1 = su1[band+nsample];
647                    c2 = su2[band+nsample];
648                    su1[band+nsample] = (c1 + c2) * 2.0;
649                    su2[band+nsample] = c2 * -2.0;
650                }
651                break;
652            case 2:
653            case 3:
654                for (; nsample < 256; nsample++) {
655                    c1 = su1[band+nsample];
656                    c2 = su2[band+nsample];
657                    su1[band+nsample] = c1 + c2;
658                    su2[band+nsample] = c1 - c2;
659                }
660                break;
661            default:
662                assert(0);
663        }
664    }
665}
666
667static void getChannelWeights (int indx, int flag, float ch[2]){
668
669    if (indx == 7) {
670        ch[0] = 1.0;
671        ch[1] = 1.0;
672    } else {
673        ch[0] = (float)(indx & 7) / 7.0;
674        ch[1] = sqrt(2 - ch[0]*ch[0]);
675        if(flag)
676            FFSWAP(float, ch[0], ch[1]);
677    }
678}
679
680static void channelWeighting (float *su1, float *su2, int *p3)
681{
682    int   band, nsample;
683    /* w[x][y] y=0 is left y=1 is right */
684    float w[2][2];
685
686    if (p3[1] != 7 || p3[3] != 7){
687        getChannelWeights(p3[1], p3[0], w[0]);
688        getChannelWeights(p3[3], p3[2], w[1]);
689
690        for(band = 1; band < 4; band++) {
691            /* scale the channels by the weights */
692            for(nsample = 0; nsample < 8; nsample++) {
693                su1[band*256+nsample] *= INTERPOLATE(w[0][0], w[0][1], nsample);
694                su2[band*256+nsample] *= INTERPOLATE(w[1][0], w[1][1], nsample);
695            }
696
697            for(; nsample < 256; nsample++) {
698                su1[band*256+nsample] *= w[1][0];
699                su2[band*256+nsample] *= w[1][1];
700            }
701        }
702    }
703}
704
705
706/**
707 * Decode a Sound Unit
708 *
709 * @param gb            the GetBit context
710 * @param pSnd          the channel unit to be used
711 * @param pOut          the decoded samples before IQMF in float representation
712 * @param channelNum    channel number
713 * @param codingMode    the coding mode (JOINT_STEREO or regular stereo/mono)
714 */
715
716
717static int decodeChannelSoundUnit (ATRAC3Context *q, GetBitContext *gb, channel_unit *pSnd, float *pOut, int channelNum, int codingMode)
718{
719    int   band, result=0, numSubbands, lastTonal, numBands;
720
721    if (codingMode == JOINT_STEREO && channelNum == 1) {
722        if (get_bits(gb,2) != 3) {
723            av_log(NULL,AV_LOG_ERROR,"JS mono Sound Unit id != 3.\n");
724            return -1;
725        }
726    } else {
727        if (get_bits(gb,6) != 0x28) {
728            av_log(NULL,AV_LOG_ERROR,"Sound Unit id != 0x28.\n");
729            return -1;
730        }
731    }
732
733    /* number of coded QMF bands */
734    pSnd->bandsCoded = get_bits(gb,2);
735
736    result = decodeGainControl (gb, &(pSnd->gainBlock[pSnd->gcBlkSwitch]), pSnd->bandsCoded);
737    if (result) return result;
738
739    pSnd->numComponents = decodeTonalComponents (gb, pSnd->components, pSnd->bandsCoded);
740    if (pSnd->numComponents == -1) return -1;
741
742    numSubbands = decodeSpectrum (gb, pSnd->spectrum);
743
744    /* Merge the decoded spectrum and tonal components. */
745    lastTonal = addTonalComponents (pSnd->spectrum, pSnd->numComponents, pSnd->components);
746
747
748    /* calculate number of used MLT/QMF bands according to the amount of coded spectral lines */
749    numBands = (subbandTab[numSubbands] - 1) >> 8;
750    if (lastTonal >= 0)
751        numBands = FFMAX((lastTonal + 256) >> 8, numBands);
752
753
754    /* Reconstruct time domain samples. */
755    for (band=0; band<4; band++) {
756        /* Perform the IMDCT step without overlapping. */
757        if (band <= numBands) {
758            IMLT(&(pSnd->spectrum[band*256]), pSnd->IMDCT_buf, band&1);
759        } else
760            memset(pSnd->IMDCT_buf, 0, 512 * sizeof(float));
761
762        /* gain compensation and overlapping */
763        gainCompensateAndOverlap (pSnd->IMDCT_buf, &(pSnd->prevFrame[band*256]), &(pOut[band*256]),
764                                    &((pSnd->gainBlock[1 - (pSnd->gcBlkSwitch)]).gBlock[band]),
765                                    &((pSnd->gainBlock[pSnd->gcBlkSwitch]).gBlock[band]));
766    }
767
768    /* Swap the gain control buffers for the next frame. */
769    pSnd->gcBlkSwitch ^= 1;
770
771    return 0;
772}
773
774/**
775 * Frame handling
776 *
777 * @param q             Atrac3 private context
778 * @param databuf       the input data
779 */
780
781static int decodeFrame(ATRAC3Context *q, const uint8_t* databuf)
782{
783    int   result, i;
784    float   *p1, *p2, *p3, *p4;
785    uint8_t *ptr1;
786
787    if (q->codingMode == JOINT_STEREO) {
788
789        /* channel coupling mode */
790        /* decode Sound Unit 1 */
791        init_get_bits(&q->gb,databuf,q->bits_per_frame);
792
793        result = decodeChannelSoundUnit(q,&q->gb, q->pUnits, q->outSamples, 0, JOINT_STEREO);
794        if (result != 0)
795            return (result);
796
797        /* Framedata of the su2 in the joint-stereo mode is encoded in
798         * reverse byte order so we need to swap it first. */
799        if (databuf == q->decoded_bytes_buffer) {
800            uint8_t *ptr2 = q->decoded_bytes_buffer+q->bytes_per_frame-1;
801            ptr1 = q->decoded_bytes_buffer;
802            for (i = 0; i < (q->bytes_per_frame/2); i++, ptr1++, ptr2--) {
803                FFSWAP(uint8_t,*ptr1,*ptr2);
804            }
805        } else {
806            const uint8_t *ptr2 = databuf+q->bytes_per_frame-1;
807            for (i = 0; i < q->bytes_per_frame; i++)
808                q->decoded_bytes_buffer[i] = *ptr2--;
809        }
810
811        /* Skip the sync codes (0xF8). */
812        ptr1 = q->decoded_bytes_buffer;
813        for (i = 4; *ptr1 == 0xF8; i++, ptr1++) {
814            if (i >= q->bytes_per_frame)
815                return -1;
816        }
817
818
819        /* set the bitstream reader at the start of the second Sound Unit*/
820        init_get_bits(&q->gb,ptr1,q->bits_per_frame);
821
822        /* Fill the Weighting coeffs delay buffer */
823        memmove(q->weighting_delay,&(q->weighting_delay[2]),4*sizeof(int));
824        q->weighting_delay[4] = get_bits1(&q->gb);
825        q->weighting_delay[5] = get_bits(&q->gb,3);
826
827        for (i = 0; i < 4; i++) {
828            q->matrix_coeff_index_prev[i] = q->matrix_coeff_index_now[i];
829            q->matrix_coeff_index_now[i] = q->matrix_coeff_index_next[i];
830            q->matrix_coeff_index_next[i] = get_bits(&q->gb,2);
831        }
832
833        /* Decode Sound Unit 2. */
834        result = decodeChannelSoundUnit(q,&q->gb, &q->pUnits[1], &q->outSamples[1024], 1, JOINT_STEREO);
835        if (result != 0)
836            return (result);
837
838        /* Reconstruct the channel coefficients. */
839        reverseMatrixing(q->outSamples, &q->outSamples[1024], q->matrix_coeff_index_prev, q->matrix_coeff_index_now);
840
841        channelWeighting(q->outSamples, &q->outSamples[1024], q->weighting_delay);
842
843    } else {
844        /* normal stereo mode or mono */
845        /* Decode the channel sound units. */
846        for (i=0 ; i<q->channels ; i++) {
847
848            /* Set the bitstream reader at the start of a channel sound unit. */
849            init_get_bits(&q->gb, databuf+((i*q->bytes_per_frame)/q->channels), (q->bits_per_frame)/q->channels);
850
851            result = decodeChannelSoundUnit(q,&q->gb, &q->pUnits[i], &q->outSamples[i*1024], i, q->codingMode);
852            if (result != 0)
853                return (result);
854        }
855    }
856
857    /* Apply the iQMF synthesis filter. */
858    p1= q->outSamples;
859    for (i=0 ; i<q->channels ; i++) {
860        p2= p1+256;
861        p3= p2+256;
862        p4= p3+256;
863        iqmf (p1, p2, 256, p1, q->pUnits[i].delayBuf1, q->tempBuf);
864        iqmf (p4, p3, 256, p3, q->pUnits[i].delayBuf2, q->tempBuf);
865        iqmf (p1, p3, 512, p1, q->pUnits[i].delayBuf3, q->tempBuf);
866        p1 +=1024;
867    }
868
869    return 0;
870}
871
872
873/**
874 * Atrac frame decoding
875 *
876 * @param avctx     pointer to the AVCodecContext
877 */
878
879static int atrac3_decode_frame(AVCodecContext *avctx,
880            void *data, int *data_size,
881            const uint8_t *buf, int buf_size) {
882    ATRAC3Context *q = avctx->priv_data;
883    int result = 0, i;
884    const uint8_t* databuf;
885    int16_t* samples = data;
886
887    if (buf_size < avctx->block_align)
888        return buf_size;
889
890    /* Check if we need to descramble and what buffer to pass on. */
891    if (q->scrambled_stream) {
892        decode_bytes(buf, q->decoded_bytes_buffer, avctx->block_align);
893        databuf = q->decoded_bytes_buffer;
894    } else {
895        databuf = buf;
896    }
897
898    result = decodeFrame(q, databuf);
899
900    if (result != 0) {
901        av_log(NULL,AV_LOG_ERROR,"Frame decoding error!\n");
902        return -1;
903    }
904
905    if (q->channels == 1) {
906        /* mono */
907        for (i = 0; i<1024; i++)
908            samples[i] = av_clip_int16(round(q->outSamples[i]));
909        *data_size = 1024 * sizeof(int16_t);
910    } else {
911        /* stereo */
912        for (i = 0; i < 1024; i++) {
913            samples[i*2] = av_clip_int16(round(q->outSamples[i]));
914            samples[i*2+1] = av_clip_int16(round(q->outSamples[1024+i]));
915        }
916        *data_size = 2048 * sizeof(int16_t);
917    }
918
919    return avctx->block_align;
920}
921
922
923/**
924 * Atrac3 initialization
925 *
926 * @param avctx     pointer to the AVCodecContext
927 */
928
929static av_cold int atrac3_decode_init(AVCodecContext *avctx)
930{
931    int i;
932    const uint8_t *edata_ptr = avctx->extradata;
933    ATRAC3Context *q = avctx->priv_data;
934
935    /* Take data from the AVCodecContext (RM container). */
936    q->sample_rate = avctx->sample_rate;
937    q->channels = avctx->channels;
938    q->bit_rate = avctx->bit_rate;
939    q->bits_per_frame = avctx->block_align * 8;
940    q->bytes_per_frame = avctx->block_align;
941
942    /* Take care of the codec-specific extradata. */
943    if (avctx->extradata_size == 14) {
944        /* Parse the extradata, WAV format */
945        av_log(avctx,AV_LOG_DEBUG,"[0-1] %d\n",bytestream_get_le16(&edata_ptr));  //Unknown value always 1
946        q->samples_per_channel = bytestream_get_le32(&edata_ptr);
947        q->codingMode = bytestream_get_le16(&edata_ptr);
948        av_log(avctx,AV_LOG_DEBUG,"[8-9] %d\n",bytestream_get_le16(&edata_ptr));  //Dupe of coding mode
949        q->frame_factor = bytestream_get_le16(&edata_ptr);  //Unknown always 1
950        av_log(avctx,AV_LOG_DEBUG,"[12-13] %d\n",bytestream_get_le16(&edata_ptr));  //Unknown always 0
951
952        /* setup */
953        q->samples_per_frame = 1024 * q->channels;
954        q->atrac3version = 4;
955        q->delay = 0x88E;
956        if (q->codingMode)
957            q->codingMode = JOINT_STEREO;
958        else
959            q->codingMode = STEREO;
960
961        q->scrambled_stream = 0;
962
963        if ((q->bytes_per_frame == 96*q->channels*q->frame_factor) || (q->bytes_per_frame == 152*q->channels*q->frame_factor) || (q->bytes_per_frame == 192*q->channels*q->frame_factor)) {
964        } else {
965            av_log(avctx,AV_LOG_ERROR,"Unknown frame/channel/frame_factor configuration %d/%d/%d\n", q->bytes_per_frame, q->channels, q->frame_factor);
966            return -1;
967        }
968
969    } else if (avctx->extradata_size == 10) {
970        /* Parse the extradata, RM format. */
971        q->atrac3version = bytestream_get_be32(&edata_ptr);
972        q->samples_per_frame = bytestream_get_be16(&edata_ptr);
973        q->delay = bytestream_get_be16(&edata_ptr);
974        q->codingMode = bytestream_get_be16(&edata_ptr);
975
976        q->samples_per_channel = q->samples_per_frame / q->channels;
977        q->scrambled_stream = 1;
978
979    } else {
980        av_log(NULL,AV_LOG_ERROR,"Unknown extradata size %d.\n",avctx->extradata_size);
981    }
982    /* Check the extradata. */
983
984    if (q->atrac3version != 4) {
985        av_log(avctx,AV_LOG_ERROR,"Version %d != 4.\n",q->atrac3version);
986        return -1;
987    }
988
989    if (q->samples_per_frame != 1024 && q->samples_per_frame != 2048) {
990        av_log(avctx,AV_LOG_ERROR,"Unknown amount of samples per frame %d.\n",q->samples_per_frame);
991        return -1;
992    }
993
994    if (q->delay != 0x88E) {
995        av_log(avctx,AV_LOG_ERROR,"Unknown amount of delay %x != 0x88E.\n",q->delay);
996        return -1;
997    }
998
999    if (q->codingMode == STEREO) {
1000        av_log(avctx,AV_LOG_DEBUG,"Normal stereo detected.\n");
1001    } else if (q->codingMode == JOINT_STEREO) {
1002        av_log(avctx,AV_LOG_DEBUG,"Joint stereo detected.\n");
1003    } else {
1004        av_log(avctx,AV_LOG_ERROR,"Unknown channel coding mode %x!\n",q->codingMode);
1005        return -1;
1006    }
1007
1008    if (avctx->channels <= 0 || avctx->channels > 2 /*|| ((avctx->channels * 1024) != q->samples_per_frame)*/) {
1009        av_log(avctx,AV_LOG_ERROR,"Channel configuration error!\n");
1010        return -1;
1011    }
1012
1013
1014    if(avctx->block_align >= UINT_MAX/2)
1015        return -1;
1016
1017    /* Pad the data buffer with FF_INPUT_BUFFER_PADDING_SIZE,
1018     * this is for the bitstream reader. */
1019    if ((q->decoded_bytes_buffer = av_mallocz((avctx->block_align+(4-avctx->block_align%4) + FF_INPUT_BUFFER_PADDING_SIZE)))  == NULL)
1020        return AVERROR(ENOMEM);
1021
1022
1023    /* Initialize the VLC tables. */
1024    for (i=0 ; i<7 ; i++) {
1025        init_vlc (&spectral_coeff_tab[i], 9, huff_tab_sizes[i],
1026            huff_bits[i], 1, 1,
1027            huff_codes[i], 1, 1, INIT_VLC_USE_STATIC);
1028    }
1029
1030    init_atrac3_transforms(q);
1031
1032    /* Generate the scale factors. */
1033    for (i=0 ; i<64 ; i++)
1034        SFTable[i] = pow(2.0, (i - 15) / 3.0);
1035
1036    /* Generate gain tables. */
1037    for (i=0 ; i<16 ; i++)
1038        gain_tab1[i] = powf (2.0, (4 - i));
1039
1040    for (i=-15 ; i<16 ; i++)
1041        gain_tab2[i+15] = powf (2.0, i * -0.125);
1042
1043    /* init the joint-stereo decoding data */
1044    q->weighting_delay[0] = 0;
1045    q->weighting_delay[1] = 7;
1046    q->weighting_delay[2] = 0;
1047    q->weighting_delay[3] = 7;
1048    q->weighting_delay[4] = 0;
1049    q->weighting_delay[5] = 7;
1050
1051    for (i=0; i<4; i++) {
1052        q->matrix_coeff_index_prev[i] = 3;
1053        q->matrix_coeff_index_now[i] = 3;
1054        q->matrix_coeff_index_next[i] = 3;
1055    }
1056
1057    dsputil_init(&dsp, avctx);
1058
1059    q->pUnits = av_mallocz(sizeof(channel_unit)*q->channels);
1060    if (!q->pUnits) {
1061        av_free(q->decoded_bytes_buffer);
1062        return AVERROR(ENOMEM);
1063    }
1064
1065    avctx->sample_fmt = SAMPLE_FMT_S16;
1066    return 0;
1067}
1068
1069
1070AVCodec atrac3_decoder =
1071{
1072    .name = "atrac3",
1073    .type = CODEC_TYPE_AUDIO,
1074    .id = CODEC_ID_ATRAC3,
1075    .priv_data_size = sizeof(ATRAC3Context),
1076    .init = atrac3_decode_init,
1077    .close = atrac3_decode_close,
1078    .decode = atrac3_decode_frame,
1079    .long_name = NULL_IF_CONFIG_SMALL("Atrac 3 (Adaptive TRansform Acoustic Coding 3)"),
1080};
1081