1/*
2 * ALAC (Apple Lossless Audio Codec) decoder
3 * Copyright (c) 2005 David Hammerton
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22/**
23 * @file libavcodec/alac.c
24 * ALAC (Apple Lossless Audio Codec) decoder
25 * @author 2005 David Hammerton
26 *
27 * For more information on the ALAC format, visit:
28 *  http://crazney.net/programs/itunes/alac.html
29 *
30 * Note: This decoder expects a 36- (0x24-)byte QuickTime atom to be
31 * passed through the extradata[_size] fields. This atom is tacked onto
32 * the end of an 'alac' stsd atom and has the following format:
33 *  bytes 0-3   atom size (0x24), big-endian
34 *  bytes 4-7   atom type ('alac', not the 'alac' tag from start of stsd)
35 *  bytes 8-35  data bytes needed by decoder
36 *
37 * Extradata:
38 * 32bit  size
39 * 32bit  tag (=alac)
40 * 32bit  zero?
41 * 32bit  max sample per frame
42 *  8bit  ?? (zero?)
43 *  8bit  sample size
44 *  8bit  history mult
45 *  8bit  initial history
46 *  8bit  kmodifier
47 *  8bit  channels?
48 * 16bit  ??
49 * 32bit  max coded frame size
50 * 32bit  bitrate?
51 * 32bit  samplerate
52 */
53
54
55#include "avcodec.h"
56#include "bitstream.h"
57#include "bytestream.h"
58#include "unary.h"
59
60#define ALAC_EXTRADATA_SIZE 36
61#define MAX_CHANNELS 2
62
63typedef struct {
64
65    AVCodecContext *avctx;
66    GetBitContext gb;
67    /* init to 0; first frame decode should initialize from extradata and
68     * set this to 1 */
69    int context_initialized;
70
71    int numchannels;
72    int bytespersample;
73
74    /* buffers */
75    int32_t *predicterror_buffer[MAX_CHANNELS];
76
77    int32_t *outputsamples_buffer[MAX_CHANNELS];
78
79    /* stuff from setinfo */
80    uint32_t setinfo_max_samples_per_frame; /* 0x1000 = 4096 */    /* max samples per frame? */
81    uint8_t setinfo_sample_size; /* 0x10 */
82    uint8_t setinfo_rice_historymult; /* 0x28 */
83    uint8_t setinfo_rice_initialhistory; /* 0x0a */
84    uint8_t setinfo_rice_kmodifier; /* 0x0e */
85    /* end setinfo stuff */
86
87} ALACContext;
88
89static void allocate_buffers(ALACContext *alac)
90{
91    int chan;
92    for (chan = 0; chan < MAX_CHANNELS; chan++) {
93        alac->predicterror_buffer[chan] =
94            av_malloc(alac->setinfo_max_samples_per_frame * 4);
95
96        alac->outputsamples_buffer[chan] =
97            av_malloc(alac->setinfo_max_samples_per_frame * 4);
98    }
99}
100
101static int alac_set_info(ALACContext *alac)
102{
103    const unsigned char *ptr = alac->avctx->extradata;
104
105    ptr += 4; /* size */
106    ptr += 4; /* alac */
107    ptr += 4; /* 0 ? */
108
109    if(AV_RB32(ptr) >= UINT_MAX/4){
110        av_log(alac->avctx, AV_LOG_ERROR, "setinfo_max_samples_per_frame too large\n");
111        return -1;
112    }
113
114    /* buffer size / 2 ? */
115    alac->setinfo_max_samples_per_frame = bytestream_get_be32(&ptr);
116    ptr++;                          /* ??? */
117    alac->setinfo_sample_size           = *ptr++;
118    if (alac->setinfo_sample_size > 32) {
119        av_log(alac->avctx, AV_LOG_ERROR, "setinfo_sample_size too large\n");
120        return -1;
121    }
122    alac->setinfo_rice_historymult      = *ptr++;
123    alac->setinfo_rice_initialhistory   = *ptr++;
124    alac->setinfo_rice_kmodifier        = *ptr++;
125    ptr++;                         /* channels? */
126    bytestream_get_be16(&ptr);      /* ??? */
127    bytestream_get_be32(&ptr);      /* max coded frame size */
128    bytestream_get_be32(&ptr);      /* bitrate ? */
129    bytestream_get_be32(&ptr);      /* samplerate */
130
131    allocate_buffers(alac);
132
133    return 0;
134}
135
136static inline int decode_scalar(GetBitContext *gb, int k, int limit, int readsamplesize){
137    /* read x - number of 1s before 0 represent the rice */
138    int x = get_unary_0_9(gb);
139
140    if (x > 8) { /* RICE THRESHOLD */
141        /* use alternative encoding */
142        x = get_bits(gb, readsamplesize);
143    } else {
144        if (k >= limit)
145            k = limit;
146
147        if (k != 1) {
148            int extrabits = show_bits(gb, k);
149
150            /* multiply x by 2^k - 1, as part of their strange algorithm */
151            x = (x << k) - x;
152
153            if (extrabits > 1) {
154                x += extrabits - 1;
155                skip_bits(gb, k);
156            } else
157                skip_bits(gb, k - 1);
158        }
159    }
160    return x;
161}
162
163static void bastardized_rice_decompress(ALACContext *alac,
164                                 int32_t *output_buffer,
165                                 int output_size,
166                                 int readsamplesize, /* arg_10 */
167                                 int rice_initialhistory, /* arg424->b */
168                                 int rice_kmodifier, /* arg424->d */
169                                 int rice_historymult, /* arg424->c */
170                                 int rice_kmodifier_mask /* arg424->e */
171        )
172{
173    int output_count;
174    unsigned int history = rice_initialhistory;
175    int sign_modifier = 0;
176
177    for (output_count = 0; output_count < output_size; output_count++) {
178        int32_t x;
179        int32_t x_modified;
180        int32_t final_val;
181
182        /* standard rice encoding */
183        int k; /* size of extra bits */
184
185        /* read k, that is bits as is */
186        k = av_log2((history >> 9) + 3);
187        x= decode_scalar(&alac->gb, k, rice_kmodifier, readsamplesize);
188
189        x_modified = sign_modifier + x;
190        final_val = (x_modified + 1) / 2;
191        if (x_modified & 1) final_val *= -1;
192
193        output_buffer[output_count] = final_val;
194
195        sign_modifier = 0;
196
197        /* now update the history */
198        history += x_modified * rice_historymult
199                   - ((history * rice_historymult) >> 9);
200
201        if (x_modified > 0xffff)
202            history = 0xffff;
203
204        /* special case: there may be compressed blocks of 0 */
205        if ((history < 128) && (output_count+1 < output_size)) {
206            int k;
207            unsigned int block_size;
208
209            sign_modifier = 1;
210
211            k = 7 - av_log2(history) + ((history + 16) >> 6 /* / 64 */);
212
213            block_size= decode_scalar(&alac->gb, k, rice_kmodifier, 16);
214
215            if (block_size > 0) {
216                if(block_size >= output_size - output_count){
217                    av_log(alac->avctx, AV_LOG_ERROR, "invalid zero block size of %d %d %d\n", block_size, output_size, output_count);
218                    block_size= output_size - output_count - 1;
219                }
220                memset(&output_buffer[output_count+1], 0, block_size * 4);
221                output_count += block_size;
222            }
223
224            if (block_size > 0xffff)
225                sign_modifier = 0;
226
227            history = 0;
228        }
229    }
230}
231
232static inline int32_t extend_sign32(int32_t val, int bits)
233{
234    return (val << (32 - bits)) >> (32 - bits);
235}
236
237static inline int sign_only(int v)
238{
239    return v ? FFSIGN(v) : 0;
240}
241
242static void predictor_decompress_fir_adapt(int32_t *error_buffer,
243                                           int32_t *buffer_out,
244                                           int output_size,
245                                           int readsamplesize,
246                                           int16_t *predictor_coef_table,
247                                           int predictor_coef_num,
248                                           int predictor_quantitization)
249{
250    int i;
251
252    /* first sample always copies */
253    *buffer_out = *error_buffer;
254
255    if (!predictor_coef_num) {
256        if (output_size <= 1)
257            return;
258
259        memcpy(buffer_out+1, error_buffer+1, (output_size-1) * 4);
260        return;
261    }
262
263    if (predictor_coef_num == 0x1f) { /* 11111 - max value of predictor_coef_num */
264      /* second-best case scenario for fir decompression,
265       * error describes a small difference from the previous sample only
266       */
267        if (output_size <= 1)
268            return;
269        for (i = 0; i < output_size - 1; i++) {
270            int32_t prev_value;
271            int32_t error_value;
272
273            prev_value = buffer_out[i];
274            error_value = error_buffer[i+1];
275            buffer_out[i+1] =
276                extend_sign32((prev_value + error_value), readsamplesize);
277        }
278        return;
279    }
280
281    /* read warm-up samples */
282    if (predictor_coef_num > 0)
283        for (i = 0; i < predictor_coef_num; i++) {
284            int32_t val;
285
286            val = buffer_out[i] + error_buffer[i+1];
287            val = extend_sign32(val, readsamplesize);
288            buffer_out[i+1] = val;
289        }
290
291#if 0
292    /* 4 and 8 are very common cases (the only ones i've seen). these
293     * should be unrolled and optimized
294     */
295    if (predictor_coef_num == 4) {
296        /* FIXME: optimized general case */
297        return;
298    }
299
300    if (predictor_coef_table == 8) {
301        /* FIXME: optimized general case */
302        return;
303    }
304#endif
305
306    /* general case */
307    if (predictor_coef_num > 0) {
308        for (i = predictor_coef_num + 1; i < output_size; i++) {
309            int j;
310            int sum = 0;
311            int outval;
312            int error_val = error_buffer[i];
313
314            for (j = 0; j < predictor_coef_num; j++) {
315                sum += (buffer_out[predictor_coef_num-j] - buffer_out[0]) *
316                       predictor_coef_table[j];
317            }
318
319            outval = (1 << (predictor_quantitization-1)) + sum;
320            outval = outval >> predictor_quantitization;
321            outval = outval + buffer_out[0] + error_val;
322            outval = extend_sign32(outval, readsamplesize);
323
324            buffer_out[predictor_coef_num+1] = outval;
325
326            if (error_val > 0) {
327                int predictor_num = predictor_coef_num - 1;
328
329                while (predictor_num >= 0 && error_val > 0) {
330                    int val = buffer_out[0] - buffer_out[predictor_coef_num - predictor_num];
331                    int sign = sign_only(val);
332
333                    predictor_coef_table[predictor_num] -= sign;
334
335                    val *= sign; /* absolute value */
336
337                    error_val -= ((val >> predictor_quantitization) *
338                                  (predictor_coef_num - predictor_num));
339
340                    predictor_num--;
341                }
342            } else if (error_val < 0) {
343                int predictor_num = predictor_coef_num - 1;
344
345                while (predictor_num >= 0 && error_val < 0) {
346                    int val = buffer_out[0] - buffer_out[predictor_coef_num - predictor_num];
347                    int sign = - sign_only(val);
348
349                    predictor_coef_table[predictor_num] -= sign;
350
351                    val *= sign; /* neg value */
352
353                    error_val -= ((val >> predictor_quantitization) *
354                                  (predictor_coef_num - predictor_num));
355
356                    predictor_num--;
357                }
358            }
359
360            buffer_out++;
361        }
362    }
363}
364
365static void reconstruct_stereo_16(int32_t *buffer[MAX_CHANNELS],
366                                  int16_t *buffer_out,
367                                  int numchannels, int numsamples,
368                                  uint8_t interlacing_shift,
369                                  uint8_t interlacing_leftweight)
370{
371    int i;
372    if (numsamples <= 0)
373        return;
374
375    /* weighted interlacing */
376    if (interlacing_leftweight) {
377        for (i = 0; i < numsamples; i++) {
378            int32_t a, b;
379
380            a = buffer[0][i];
381            b = buffer[1][i];
382
383            a -= (b * interlacing_leftweight) >> interlacing_shift;
384            b += a;
385
386            buffer_out[i*numchannels] = b;
387            buffer_out[i*numchannels + 1] = a;
388        }
389
390        return;
391    }
392
393    /* otherwise basic interlacing took place */
394    for (i = 0; i < numsamples; i++) {
395        int16_t left, right;
396
397        left = buffer[0][i];
398        right = buffer[1][i];
399
400        buffer_out[i*numchannels] = left;
401        buffer_out[i*numchannels + 1] = right;
402    }
403}
404
405static int alac_decode_frame(AVCodecContext *avctx,
406                             void *outbuffer, int *outputsize,
407                             const uint8_t *inbuffer, int input_buffer_size)
408{
409    ALACContext *alac = avctx->priv_data;
410
411    int channels;
412    unsigned int outputsamples;
413    int hassize;
414    unsigned int readsamplesize;
415    int wasted_bytes;
416    int isnotcompressed;
417    uint8_t interlacing_shift;
418    uint8_t interlacing_leftweight;
419
420    /* short-circuit null buffers */
421    if (!inbuffer || !input_buffer_size)
422        return input_buffer_size;
423
424    /* initialize from the extradata */
425    if (!alac->context_initialized) {
426        if (alac->avctx->extradata_size != ALAC_EXTRADATA_SIZE) {
427            av_log(avctx, AV_LOG_ERROR, "alac: expected %d extradata bytes\n",
428                ALAC_EXTRADATA_SIZE);
429            return input_buffer_size;
430        }
431        if (alac_set_info(alac)) {
432            av_log(avctx, AV_LOG_ERROR, "alac: set_info failed\n");
433            return input_buffer_size;
434        }
435        alac->context_initialized = 1;
436    }
437
438    init_get_bits(&alac->gb, inbuffer, input_buffer_size * 8);
439
440    channels = get_bits(&alac->gb, 3) + 1;
441    if (channels > MAX_CHANNELS) {
442        av_log(avctx, AV_LOG_ERROR, "channels > %d not supported\n",
443               MAX_CHANNELS);
444        return input_buffer_size;
445    }
446
447    /* 2^result = something to do with output waiting.
448     * perhaps matters if we read > 1 frame in a pass?
449     */
450    skip_bits(&alac->gb, 4);
451
452    skip_bits(&alac->gb, 12); /* unknown, skip 12 bits */
453
454    /* the output sample size is stored soon */
455    hassize = get_bits1(&alac->gb);
456
457    wasted_bytes = get_bits(&alac->gb, 2); /* unknown ? */
458
459    /* whether the frame is compressed */
460    isnotcompressed = get_bits1(&alac->gb);
461
462    if (hassize) {
463        /* now read the number of samples as a 32bit integer */
464        outputsamples = get_bits_long(&alac->gb, 32);
465        if(outputsamples > alac->setinfo_max_samples_per_frame){
466            av_log(avctx, AV_LOG_ERROR, "outputsamples %d > %d\n", outputsamples, alac->setinfo_max_samples_per_frame);
467            return -1;
468        }
469    } else
470        outputsamples = alac->setinfo_max_samples_per_frame;
471
472    if(outputsamples > *outputsize / alac->bytespersample){
473        av_log(avctx, AV_LOG_ERROR, "sample buffer too small\n");
474        return -1;
475    }
476
477    *outputsize = outputsamples * alac->bytespersample;
478    readsamplesize = alac->setinfo_sample_size - (wasted_bytes * 8) + channels - 1;
479    if (readsamplesize > MIN_CACHE_BITS) {
480        av_log(avctx, AV_LOG_ERROR, "readsamplesize too big (%d)\n", readsamplesize);
481        return -1;
482    }
483
484    if (!isnotcompressed) {
485        /* so it is compressed */
486        int16_t predictor_coef_table[channels][32];
487        int predictor_coef_num[channels];
488        int prediction_type[channels];
489        int prediction_quantitization[channels];
490        int ricemodifier[channels];
491        int i, chan;
492
493        interlacing_shift = get_bits(&alac->gb, 8);
494        interlacing_leftweight = get_bits(&alac->gb, 8);
495
496        for (chan = 0; chan < channels; chan++) {
497            prediction_type[chan] = get_bits(&alac->gb, 4);
498            prediction_quantitization[chan] = get_bits(&alac->gb, 4);
499
500            ricemodifier[chan] = get_bits(&alac->gb, 3);
501            predictor_coef_num[chan] = get_bits(&alac->gb, 5);
502
503            /* read the predictor table */
504            for (i = 0; i < predictor_coef_num[chan]; i++)
505                predictor_coef_table[chan][i] = (int16_t)get_bits(&alac->gb, 16);
506        }
507
508        if (wasted_bytes)
509            av_log(avctx, AV_LOG_ERROR, "FIXME: unimplemented, unhandling of wasted_bytes\n");
510
511        for (chan = 0; chan < channels; chan++) {
512            bastardized_rice_decompress(alac,
513                                        alac->predicterror_buffer[chan],
514                                        outputsamples,
515                                        readsamplesize,
516                                        alac->setinfo_rice_initialhistory,
517                                        alac->setinfo_rice_kmodifier,
518                                        ricemodifier[chan] * alac->setinfo_rice_historymult / 4,
519                                        (1 << alac->setinfo_rice_kmodifier) - 1);
520
521            if (prediction_type[chan] == 0) {
522                /* adaptive fir */
523                predictor_decompress_fir_adapt(alac->predicterror_buffer[chan],
524                                               alac->outputsamples_buffer[chan],
525                                               outputsamples,
526                                               readsamplesize,
527                                               predictor_coef_table[chan],
528                                               predictor_coef_num[chan],
529                                               prediction_quantitization[chan]);
530            } else {
531                av_log(avctx, AV_LOG_ERROR, "FIXME: unhandled prediction type: %i\n", prediction_type[chan]);
532                /* I think the only other prediction type (or perhaps this is
533                 * just a boolean?) runs adaptive fir twice.. like:
534                 * predictor_decompress_fir_adapt(predictor_error, tempout, ...)
535                 * predictor_decompress_fir_adapt(predictor_error, outputsamples ...)
536                 * little strange..
537                 */
538            }
539        }
540    } else {
541        /* not compressed, easy case */
542        int i, chan;
543        for (i = 0; i < outputsamples; i++)
544            for (chan = 0; chan < channels; chan++) {
545                int32_t audiobits;
546
547                audiobits = get_bits_long(&alac->gb, alac->setinfo_sample_size);
548                audiobits = extend_sign32(audiobits, alac->setinfo_sample_size);
549
550                alac->outputsamples_buffer[chan][i] = audiobits;
551            }
552        /* wasted_bytes = 0; */
553        interlacing_shift = 0;
554        interlacing_leftweight = 0;
555    }
556    if (get_bits(&alac->gb, 3) != 7)
557        av_log(avctx, AV_LOG_ERROR, "Error : Wrong End Of Frame\n");
558
559    switch(alac->setinfo_sample_size) {
560    case 16:
561        if (channels == 2) {
562            reconstruct_stereo_16(alac->outputsamples_buffer,
563                                  (int16_t*)outbuffer,
564                                  alac->numchannels,
565                                  outputsamples,
566                                  interlacing_shift,
567                                  interlacing_leftweight);
568        } else {
569            int i;
570            for (i = 0; i < outputsamples; i++) {
571                int16_t sample = alac->outputsamples_buffer[0][i];
572                ((int16_t*)outbuffer)[i * alac->numchannels] = sample;
573            }
574        }
575        break;
576    case 20:
577    case 24:
578        // It is not clear if there exist any encoder that creates 24 bit ALAC
579        // files. iTunes convert 24 bit raw files to 16 bit before encoding.
580    case 32:
581        av_log(avctx, AV_LOG_ERROR, "FIXME: unimplemented sample size %i\n", alac->setinfo_sample_size);
582        break;
583    default:
584        break;
585    }
586
587    if (input_buffer_size * 8 - get_bits_count(&alac->gb) > 8)
588        av_log(avctx, AV_LOG_ERROR, "Error : %d bits left\n", input_buffer_size * 8 - get_bits_count(&alac->gb));
589
590    return input_buffer_size;
591}
592
593static av_cold int alac_decode_init(AVCodecContext * avctx)
594{
595    ALACContext *alac = avctx->priv_data;
596    alac->avctx = avctx;
597    alac->context_initialized = 0;
598
599    alac->numchannels = alac->avctx->channels;
600    alac->bytespersample = 2 * alac->numchannels;
601    avctx->sample_fmt = SAMPLE_FMT_S16;
602
603    return 0;
604}
605
606static av_cold int alac_decode_close(AVCodecContext *avctx)
607{
608    ALACContext *alac = avctx->priv_data;
609
610    int chan;
611    for (chan = 0; chan < MAX_CHANNELS; chan++) {
612        av_free(alac->predicterror_buffer[chan]);
613        av_free(alac->outputsamples_buffer[chan]);
614    }
615
616    return 0;
617}
618
619AVCodec alac_decoder = {
620    "alac",
621    CODEC_TYPE_AUDIO,
622    CODEC_ID_ALAC,
623    sizeof(ALACContext),
624    alac_decode_init,
625    NULL,
626    alac_decode_close,
627    alac_decode_frame,
628    .long_name = NULL_IF_CONFIG_SMALL("ALAC (Apple Lossless Audio Codec)"),
629};
630