1/*
2 * AAC decoder
3 * Copyright (c) 2005-2006 Oded Shimon ( ods15 ods15 dyndns org )
4 * Copyright (c) 2006-2007 Maxim Gavrilov ( maxim.gavrilov gmail com )
5 *
6 * This file is part of FFmpeg.
7 *
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23/**
24 * @file libavcodec/aac.c
25 * AAC decoder
26 * @author Oded Shimon  ( ods15 ods15 dyndns org )
27 * @author Maxim Gavrilov ( maxim.gavrilov gmail com )
28 */
29
30/*
31 * supported tools
32 *
33 * Support?             Name
34 * N (code in SoC repo) gain control
35 * Y                    block switching
36 * Y                    window shapes - standard
37 * N                    window shapes - Low Delay
38 * Y                    filterbank - standard
39 * N (code in SoC repo) filterbank - Scalable Sample Rate
40 * Y                    Temporal Noise Shaping
41 * N (code in SoC repo) Long Term Prediction
42 * Y                    intensity stereo
43 * Y                    channel coupling
44 * Y                    frequency domain prediction
45 * Y                    Perceptual Noise Substitution
46 * Y                    Mid/Side stereo
47 * N                    Scalable Inverse AAC Quantization
48 * N                    Frequency Selective Switch
49 * N                    upsampling filter
50 * Y                    quantization & coding - AAC
51 * N                    quantization & coding - TwinVQ
52 * N                    quantization & coding - BSAC
53 * N                    AAC Error Resilience tools
54 * N                    Error Resilience payload syntax
55 * N                    Error Protection tool
56 * N                    CELP
57 * N                    Silence Compression
58 * N                    HVXC
59 * N                    HVXC 4kbits/s VR
60 * N                    Structured Audio tools
61 * N                    Structured Audio Sample Bank Format
62 * N                    MIDI
63 * N                    Harmonic and Individual Lines plus Noise
64 * N                    Text-To-Speech Interface
65 * N (in progress)      Spectral Band Replication
66 * Y (not in this code) Layer-1
67 * Y (not in this code) Layer-2
68 * Y (not in this code) Layer-3
69 * N                    SinuSoidal Coding (Transient, Sinusoid, Noise)
70 * N (planned)          Parametric Stereo
71 * N                    Direct Stream Transfer
72 *
73 * Note: - HE AAC v1 comprises LC AAC with Spectral Band Replication.
74 *       - HE AAC v2 comprises LC AAC with Spectral Band Replication and
75           Parametric Stereo.
76 */
77
78
79#include "avcodec.h"
80#include "internal.h"
81#include "bitstream.h"
82#include "dsputil.h"
83#include "lpc.h"
84
85#include "aac.h"
86#include "aactab.h"
87#include "aacdectab.h"
88#include "mpeg4audio.h"
89#include "aac_parser.h"
90
91#include <assert.h>
92#include <errno.h>
93#include <math.h>
94#include <string.h>
95
96static VLC vlc_scalefactors;
97static VLC vlc_spectral[11];
98
99
100static ChannelElement* get_che(AACContext *ac, int type, int elem_id) {
101    static const int8_t tags_per_config[16] = { 0, 1, 1, 2, 3, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0 };
102    if (ac->tag_che_map[type][elem_id]) {
103        return ac->tag_che_map[type][elem_id];
104    }
105    if (ac->tags_mapped >= tags_per_config[ac->m4ac.chan_config]) {
106        return NULL;
107    }
108    switch (ac->m4ac.chan_config) {
109        case 7:
110            if (ac->tags_mapped == 3 && type == TYPE_CPE) {
111                ac->tags_mapped++;
112                return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][2];
113            }
114        case 6:
115            /* Some streams incorrectly code 5.1 audio as SCE[0] CPE[0] CPE[1] SCE[1]
116               instead of SCE[0] CPE[0] CPE[0] LFE[0]. If we seem to have
117               encountered such a stream, transfer the LFE[0] element to SCE[1] */
118            if (ac->tags_mapped == tags_per_config[ac->m4ac.chan_config] - 1 && (type == TYPE_LFE || type == TYPE_SCE)) {
119                ac->tags_mapped++;
120                return ac->tag_che_map[type][elem_id] = ac->che[TYPE_LFE][0];
121            }
122        case 5:
123            if (ac->tags_mapped == 2 && type == TYPE_CPE) {
124                ac->tags_mapped++;
125                return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][1];
126            }
127        case 4:
128            if (ac->tags_mapped == 2 && ac->m4ac.chan_config == 4 && type == TYPE_SCE) {
129                ac->tags_mapped++;
130                return ac->tag_che_map[TYPE_SCE][elem_id] = ac->che[TYPE_SCE][1];
131            }
132        case 3:
133        case 2:
134            if (ac->tags_mapped == (ac->m4ac.chan_config != 2) && type == TYPE_CPE) {
135                ac->tags_mapped++;
136                return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][0];
137            } else if (ac->m4ac.chan_config == 2) {
138                return NULL;
139            }
140        case 1:
141            if (!ac->tags_mapped && type == TYPE_SCE) {
142                ac->tags_mapped++;
143                return ac->tag_che_map[TYPE_SCE][elem_id] = ac->che[TYPE_SCE][0];
144            }
145        default:
146            return NULL;
147    }
148}
149
150/**
151 * Configure output channel order based on the current program configuration element.
152 *
153 * @param   che_pos current channel position configuration
154 * @param   new_che_pos New channel position configuration - we only do something if it differs from the current one.
155 *
156 * @return  Returns error status. 0 - OK, !0 - error
157 */
158static int output_configure(AACContext *ac, enum ChannelPosition che_pos[4][MAX_ELEM_ID],
159        enum ChannelPosition new_che_pos[4][MAX_ELEM_ID], int channel_config) {
160    AVCodecContext *avctx = ac->avccontext;
161    int i, type, channels = 0;
162
163    if(!memcmp(che_pos, new_che_pos, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0])))
164        return 0; /* no change */
165
166    memcpy(che_pos, new_che_pos, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
167
168    /* Allocate or free elements depending on if they are in the
169     * current program configuration.
170     *
171     * Set up default 1:1 output mapping.
172     *
173     * For a 5.1 stream the output order will be:
174     *    [ Center ] [ Front Left ] [ Front Right ] [ LFE ] [ Surround Left ] [ Surround Right ]
175     */
176
177    for(i = 0; i < MAX_ELEM_ID; i++) {
178        for(type = 0; type < 4; type++) {
179            if(che_pos[type][i]) {
180                if(!ac->che[type][i] && !(ac->che[type][i] = av_mallocz(sizeof(ChannelElement))))
181                    return AVERROR(ENOMEM);
182                if(type != TYPE_CCE) {
183                    ac->output_data[channels++] = ac->che[type][i]->ch[0].ret;
184                    if(type == TYPE_CPE) {
185                        ac->output_data[channels++] = ac->che[type][i]->ch[1].ret;
186                    }
187                }
188            } else
189                av_freep(&ac->che[type][i]);
190        }
191    }
192
193    if (channel_config) {
194        memset(ac->tag_che_map, 0,       4 * MAX_ELEM_ID * sizeof(ac->che[0][0]));
195        ac->tags_mapped = 0;
196    } else {
197        memcpy(ac->tag_che_map, ac->che, 4 * MAX_ELEM_ID * sizeof(ac->che[0][0]));
198        ac->tags_mapped = 4*MAX_ELEM_ID;
199    }
200
201    avctx->channels = channels;
202
203    return 0;
204}
205
206/**
207 * Decode an array of 4 bit element IDs, optionally interleaved with a stereo/mono switching bit.
208 *
209 * @param cpe_map Stereo (Channel Pair Element) map, NULL if stereo bit is not present.
210 * @param sce_map mono (Single Channel Element) map
211 * @param type speaker type/position for these channels
212 */
213static void decode_channel_map(enum ChannelPosition *cpe_map,
214        enum ChannelPosition *sce_map, enum ChannelPosition type, GetBitContext * gb, int n) {
215    while(n--) {
216        enum ChannelPosition *map = cpe_map && get_bits1(gb) ? cpe_map : sce_map; // stereo or mono map
217        map[get_bits(gb, 4)] = type;
218    }
219}
220
221/**
222 * Decode program configuration element; reference: table 4.2.
223 *
224 * @param   new_che_pos New channel position configuration - we only do something if it differs from the current one.
225 *
226 * @return  Returns error status. 0 - OK, !0 - error
227 */
228static int decode_pce(AACContext * ac, enum ChannelPosition new_che_pos[4][MAX_ELEM_ID],
229        GetBitContext * gb) {
230    int num_front, num_side, num_back, num_lfe, num_assoc_data, num_cc, sampling_index;
231
232    skip_bits(gb, 2);  // object_type
233
234    sampling_index = get_bits(gb, 4);
235    if(sampling_index > 12) {
236        av_log(ac->avccontext, AV_LOG_ERROR, "invalid sampling rate index %d\n", ac->m4ac.sampling_index);
237        return -1;
238    }
239    ac->m4ac.sampling_index = sampling_index;
240    ac->m4ac.sample_rate = ff_mpeg4audio_sample_rates[ac->m4ac.sampling_index];
241    num_front       = get_bits(gb, 4);
242    num_side        = get_bits(gb, 4);
243    num_back        = get_bits(gb, 4);
244    num_lfe         = get_bits(gb, 2);
245    num_assoc_data  = get_bits(gb, 3);
246    num_cc          = get_bits(gb, 4);
247
248    if (get_bits1(gb))
249        skip_bits(gb, 4); // mono_mixdown_tag
250    if (get_bits1(gb))
251        skip_bits(gb, 4); // stereo_mixdown_tag
252
253    if (get_bits1(gb))
254        skip_bits(gb, 3); // mixdown_coeff_index and pseudo_surround
255
256    decode_channel_map(new_che_pos[TYPE_CPE], new_che_pos[TYPE_SCE], AAC_CHANNEL_FRONT, gb, num_front);
257    decode_channel_map(new_che_pos[TYPE_CPE], new_che_pos[TYPE_SCE], AAC_CHANNEL_SIDE,  gb, num_side );
258    decode_channel_map(new_che_pos[TYPE_CPE], new_che_pos[TYPE_SCE], AAC_CHANNEL_BACK,  gb, num_back );
259    decode_channel_map(NULL,                  new_che_pos[TYPE_LFE], AAC_CHANNEL_LFE,   gb, num_lfe  );
260
261    skip_bits_long(gb, 4 * num_assoc_data);
262
263    decode_channel_map(new_che_pos[TYPE_CCE], new_che_pos[TYPE_CCE], AAC_CHANNEL_CC,    gb, num_cc   );
264
265    align_get_bits(gb);
266
267    /* comment field, first byte is length */
268    skip_bits_long(gb, 8 * get_bits(gb, 8));
269    return 0;
270}
271
272/**
273 * Set up channel positions based on a default channel configuration
274 * as specified in table 1.17.
275 *
276 * @param   new_che_pos New channel position configuration - we only do something if it differs from the current one.
277 *
278 * @return  Returns error status. 0 - OK, !0 - error
279 */
280static int set_default_channel_config(AACContext *ac, enum ChannelPosition new_che_pos[4][MAX_ELEM_ID],
281        int channel_config)
282{
283    if(channel_config < 1 || channel_config > 7) {
284        av_log(ac->avccontext, AV_LOG_ERROR, "invalid default channel configuration (%d)\n",
285               channel_config);
286        return -1;
287    }
288
289    /* default channel configurations:
290     *
291     * 1ch : front center (mono)
292     * 2ch : L + R (stereo)
293     * 3ch : front center + L + R
294     * 4ch : front center + L + R + back center
295     * 5ch : front center + L + R + back stereo
296     * 6ch : front center + L + R + back stereo + LFE
297     * 7ch : front center + L + R + outer front left + outer front right + back stereo + LFE
298     */
299
300    if(channel_config != 2)
301        new_che_pos[TYPE_SCE][0] = AAC_CHANNEL_FRONT; // front center (or mono)
302    if(channel_config > 1)
303        new_che_pos[TYPE_CPE][0] = AAC_CHANNEL_FRONT; // L + R (or stereo)
304    if(channel_config == 4)
305        new_che_pos[TYPE_SCE][1] = AAC_CHANNEL_BACK;  // back center
306    if(channel_config > 4)
307        new_che_pos[TYPE_CPE][(channel_config == 7) + 1]
308                                 = AAC_CHANNEL_BACK;  // back stereo
309    if(channel_config > 5)
310        new_che_pos[TYPE_LFE][0] = AAC_CHANNEL_LFE;   // LFE
311    if(channel_config == 7)
312        new_che_pos[TYPE_CPE][1] = AAC_CHANNEL_FRONT; // outer front left + outer front right
313
314    return 0;
315}
316
317/**
318 * Decode GA "General Audio" specific configuration; reference: table 4.1.
319 *
320 * @return  Returns error status. 0 - OK, !0 - error
321 */
322static int decode_ga_specific_config(AACContext * ac, GetBitContext * gb, int channel_config) {
323    enum ChannelPosition new_che_pos[4][MAX_ELEM_ID];
324    int extension_flag, ret;
325
326    if(get_bits1(gb)) {  // frameLengthFlag
327        ff_log_missing_feature(ac->avccontext, "960/120 MDCT window is", 1);
328        return -1;
329    }
330
331    if (get_bits1(gb))       // dependsOnCoreCoder
332        skip_bits(gb, 14);   // coreCoderDelay
333    extension_flag = get_bits1(gb);
334
335    if(ac->m4ac.object_type == AOT_AAC_SCALABLE ||
336       ac->m4ac.object_type == AOT_ER_AAC_SCALABLE)
337        skip_bits(gb, 3);     // layerNr
338
339    memset(new_che_pos, 0, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
340    if (channel_config == 0) {
341        skip_bits(gb, 4);  // element_instance_tag
342        if((ret = decode_pce(ac, new_che_pos, gb)))
343            return ret;
344    } else {
345        if((ret = set_default_channel_config(ac, new_che_pos, channel_config)))
346            return ret;
347    }
348    if((ret = output_configure(ac, ac->che_pos, new_che_pos, channel_config)))
349        return ret;
350
351    if (extension_flag) {
352        switch (ac->m4ac.object_type) {
353            case AOT_ER_BSAC:
354                skip_bits(gb, 5);    // numOfSubFrame
355                skip_bits(gb, 11);   // layer_length
356                break;
357            case AOT_ER_AAC_LC:
358            case AOT_ER_AAC_LTP:
359            case AOT_ER_AAC_SCALABLE:
360            case AOT_ER_AAC_LD:
361                skip_bits(gb, 3);  /* aacSectionDataResilienceFlag
362                                    * aacScalefactorDataResilienceFlag
363                                    * aacSpectralDataResilienceFlag
364                                    */
365                break;
366        }
367        skip_bits1(gb);    // extensionFlag3 (TBD in version 3)
368    }
369    return 0;
370}
371
372/**
373 * Decode audio specific configuration; reference: table 1.13.
374 *
375 * @param   data        pointer to AVCodecContext extradata
376 * @param   data_size   size of AVCCodecContext extradata
377 *
378 * @return  Returns error status. 0 - OK, !0 - error
379 */
380static int decode_audio_specific_config(AACContext * ac, void *data, int data_size) {
381    GetBitContext gb;
382    int i;
383
384    init_get_bits(&gb, data, data_size * 8);
385
386    if((i = ff_mpeg4audio_get_config(&ac->m4ac, data, data_size)) < 0)
387        return -1;
388    if(ac->m4ac.sampling_index > 12) {
389        av_log(ac->avccontext, AV_LOG_ERROR, "invalid sampling rate index %d\n", ac->m4ac.sampling_index);
390        return -1;
391    }
392
393    skip_bits_long(&gb, i);
394
395    switch (ac->m4ac.object_type) {
396    case AOT_AAC_MAIN:
397    case AOT_AAC_LC:
398        if (decode_ga_specific_config(ac, &gb, ac->m4ac.chan_config))
399            return -1;
400        break;
401    default:
402        av_log(ac->avccontext, AV_LOG_ERROR, "Audio object type %s%d is not supported.\n",
403               ac->m4ac.sbr == 1? "SBR+" : "", ac->m4ac.object_type);
404        return -1;
405    }
406    return 0;
407}
408
409/**
410 * linear congruential pseudorandom number generator
411 *
412 * @param   previous_val    pointer to the current state of the generator
413 *
414 * @return  Returns a 32-bit pseudorandom integer
415 */
416static av_always_inline int lcg_random(int previous_val) {
417    return previous_val * 1664525 + 1013904223;
418}
419
420static void reset_predict_state(PredictorState * ps) {
421    ps->r0 = 0.0f;
422    ps->r1 = 0.0f;
423    ps->cor0 = 0.0f;
424    ps->cor1 = 0.0f;
425    ps->var0 = 1.0f;
426    ps->var1 = 1.0f;
427}
428
429static void reset_all_predictors(PredictorState * ps) {
430    int i;
431    for (i = 0; i < MAX_PREDICTORS; i++)
432        reset_predict_state(&ps[i]);
433}
434
435static void reset_predictor_group(PredictorState * ps, int group_num) {
436    int i;
437    for (i = group_num-1; i < MAX_PREDICTORS; i+=30)
438        reset_predict_state(&ps[i]);
439}
440
441static av_cold int aac_decode_init(AVCodecContext * avccontext) {
442    AACContext * ac = avccontext->priv_data;
443    int i;
444
445    ac->avccontext = avccontext;
446
447    if (avccontext->extradata_size > 0) {
448        if(decode_audio_specific_config(ac, avccontext->extradata, avccontext->extradata_size))
449            return -1;
450        avccontext->sample_rate = ac->m4ac.sample_rate;
451    } else if (avccontext->channels > 0) {
452        enum ChannelPosition new_che_pos[4][MAX_ELEM_ID];
453        memset(new_che_pos, 0, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
454        if(set_default_channel_config(ac, new_che_pos, avccontext->channels - (avccontext->channels == 8)))
455            return -1;
456        if(output_configure(ac, ac->che_pos, new_che_pos, 1))
457            return -1;
458        ac->m4ac.sample_rate = avccontext->sample_rate;
459    } else {
460        ff_log_missing_feature(ac->avccontext, "Implicit channel configuration is", 0);
461        return -1;
462    }
463
464    avccontext->sample_fmt  = SAMPLE_FMT_S16;
465    avccontext->frame_size  = 1024;
466
467    AAC_INIT_VLC_STATIC( 0, 144);
468    AAC_INIT_VLC_STATIC( 1, 114);
469    AAC_INIT_VLC_STATIC( 2, 188);
470    AAC_INIT_VLC_STATIC( 3, 180);
471    AAC_INIT_VLC_STATIC( 4, 172);
472    AAC_INIT_VLC_STATIC( 5, 140);
473    AAC_INIT_VLC_STATIC( 6, 168);
474    AAC_INIT_VLC_STATIC( 7, 114);
475    AAC_INIT_VLC_STATIC( 8, 262);
476    AAC_INIT_VLC_STATIC( 9, 248);
477    AAC_INIT_VLC_STATIC(10, 384);
478
479    dsputil_init(&ac->dsp, avccontext);
480
481    ac->random_state = 0x1f2e3d4c;
482
483    // -1024 - Compensate wrong IMDCT method.
484    // 32768 - Required to scale values to the correct range for the bias method
485    //         for float to int16 conversion.
486
487    if(ac->dsp.float_to_int16 == ff_float_to_int16_c) {
488        ac->add_bias = 385.0f;
489        ac->sf_scale = 1. / (-1024. * 32768.);
490        ac->sf_offset = 0;
491    } else {
492        ac->add_bias = 0.0f;
493        ac->sf_scale = 1. / -1024.;
494        ac->sf_offset = 60;
495    }
496
497#if !CONFIG_HARDCODED_TABLES
498    for (i = 0; i < 428; i++)
499        ff_aac_pow2sf_tab[i] = pow(2, (i - 200)/4.);
500#endif /* CONFIG_HARDCODED_TABLES */
501
502    INIT_VLC_STATIC(&vlc_scalefactors,7,FF_ARRAY_ELEMS(ff_aac_scalefactor_code),
503        ff_aac_scalefactor_bits, sizeof(ff_aac_scalefactor_bits[0]), sizeof(ff_aac_scalefactor_bits[0]),
504        ff_aac_scalefactor_code, sizeof(ff_aac_scalefactor_code[0]), sizeof(ff_aac_scalefactor_code[0]),
505        352);
506
507    ff_mdct_init(&ac->mdct, 11, 1);
508    ff_mdct_init(&ac->mdct_small, 8, 1);
509    // window initialization
510    ff_kbd_window_init(ff_aac_kbd_long_1024, 4.0, 1024);
511    ff_kbd_window_init(ff_aac_kbd_short_128, 6.0, 128);
512    ff_sine_window_init(ff_sine_1024, 1024);
513    ff_sine_window_init(ff_sine_128, 128);
514
515    return 0;
516}
517
518/**
519 * Skip data_stream_element; reference: table 4.10.
520 */
521static void skip_data_stream_element(GetBitContext * gb) {
522    int byte_align = get_bits1(gb);
523    int count = get_bits(gb, 8);
524    if (count == 255)
525        count += get_bits(gb, 8);
526    if (byte_align)
527        align_get_bits(gb);
528    skip_bits_long(gb, 8 * count);
529}
530
531static int decode_prediction(AACContext * ac, IndividualChannelStream * ics, GetBitContext * gb) {
532    int sfb;
533    if (get_bits1(gb)) {
534        ics->predictor_reset_group = get_bits(gb, 5);
535        if (ics->predictor_reset_group == 0 || ics->predictor_reset_group > 30) {
536            av_log(ac->avccontext, AV_LOG_ERROR, "Invalid Predictor Reset Group.\n");
537            return -1;
538        }
539    }
540    for (sfb = 0; sfb < FFMIN(ics->max_sfb, ff_aac_pred_sfb_max[ac->m4ac.sampling_index]); sfb++) {
541        ics->prediction_used[sfb] = get_bits1(gb);
542    }
543    return 0;
544}
545
546/**
547 * Decode Individual Channel Stream info; reference: table 4.6.
548 *
549 * @param   common_window   Channels have independent [0], or shared [1], Individual Channel Stream information.
550 */
551static int decode_ics_info(AACContext * ac, IndividualChannelStream * ics, GetBitContext * gb, int common_window) {
552    if (get_bits1(gb)) {
553        av_log(ac->avccontext, AV_LOG_ERROR, "Reserved bit set.\n");
554        memset(ics, 0, sizeof(IndividualChannelStream));
555        return -1;
556    }
557    ics->window_sequence[1] = ics->window_sequence[0];
558    ics->window_sequence[0] = get_bits(gb, 2);
559    ics->use_kb_window[1] = ics->use_kb_window[0];
560    ics->use_kb_window[0] = get_bits1(gb);
561    ics->num_window_groups = 1;
562    ics->group_len[0] = 1;
563    if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
564        int i;
565        ics->max_sfb = get_bits(gb, 4);
566        for (i = 0; i < 7; i++) {
567            if (get_bits1(gb)) {
568                ics->group_len[ics->num_window_groups-1]++;
569            } else {
570                ics->num_window_groups++;
571                ics->group_len[ics->num_window_groups-1] = 1;
572            }
573        }
574        ics->num_windows   = 8;
575        ics->swb_offset    =      swb_offset_128[ac->m4ac.sampling_index];
576        ics->num_swb       =  ff_aac_num_swb_128[ac->m4ac.sampling_index];
577        ics->tns_max_bands =   tns_max_bands_128[ac->m4ac.sampling_index];
578        ics->predictor_present = 0;
579    } else {
580        ics->max_sfb       = get_bits(gb, 6);
581        ics->num_windows   = 1;
582        ics->swb_offset    =     swb_offset_1024[ac->m4ac.sampling_index];
583        ics->num_swb       = ff_aac_num_swb_1024[ac->m4ac.sampling_index];
584        ics->tns_max_bands =  tns_max_bands_1024[ac->m4ac.sampling_index];
585        ics->predictor_present = get_bits1(gb);
586        ics->predictor_reset_group = 0;
587        if (ics->predictor_present) {
588            if (ac->m4ac.object_type == AOT_AAC_MAIN) {
589                if (decode_prediction(ac, ics, gb)) {
590                    memset(ics, 0, sizeof(IndividualChannelStream));
591                    return -1;
592                }
593            } else if (ac->m4ac.object_type == AOT_AAC_LC) {
594                av_log(ac->avccontext, AV_LOG_ERROR, "Prediction is not allowed in AAC-LC.\n");
595                memset(ics, 0, sizeof(IndividualChannelStream));
596                return -1;
597            } else {
598                ff_log_missing_feature(ac->avccontext, "Predictor bit set but LTP is", 1);
599                memset(ics, 0, sizeof(IndividualChannelStream));
600                return -1;
601            }
602        }
603    }
604
605    if(ics->max_sfb > ics->num_swb) {
606        av_log(ac->avccontext, AV_LOG_ERROR,
607            "Number of scalefactor bands in group (%d) exceeds limit (%d).\n",
608            ics->max_sfb, ics->num_swb);
609        memset(ics, 0, sizeof(IndividualChannelStream));
610        return -1;
611    }
612
613    return 0;
614}
615
616/**
617 * Decode band types (section_data payload); reference: table 4.46.
618 *
619 * @param   band_type           array of the used band type
620 * @param   band_type_run_end   array of the last scalefactor band of a band type run
621 *
622 * @return  Returns error status. 0 - OK, !0 - error
623 */
624static int decode_band_types(AACContext * ac, enum BandType band_type[120],
625        int band_type_run_end[120], GetBitContext * gb, IndividualChannelStream * ics) {
626    int g, idx = 0;
627    const int bits = (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) ? 3 : 5;
628    for (g = 0; g < ics->num_window_groups; g++) {
629        int k = 0;
630        while (k < ics->max_sfb) {
631            uint8_t sect_len = k;
632            int sect_len_incr;
633            int sect_band_type = get_bits(gb, 4);
634            if (sect_band_type == 12) {
635                av_log(ac->avccontext, AV_LOG_ERROR, "invalid band type\n");
636                return -1;
637            }
638            while ((sect_len_incr = get_bits(gb, bits)) == (1 << bits)-1)
639                sect_len += sect_len_incr;
640            sect_len += sect_len_incr;
641            if (sect_len > ics->max_sfb) {
642                av_log(ac->avccontext, AV_LOG_ERROR,
643                    "Number of bands (%d) exceeds limit (%d).\n",
644                    sect_len, ics->max_sfb);
645                return -1;
646            }
647            for (; k < sect_len; k++) {
648                band_type        [idx]   = sect_band_type;
649                band_type_run_end[idx++] = sect_len;
650            }
651        }
652    }
653    return 0;
654}
655
656/**
657 * Decode scalefactors; reference: table 4.47.
658 *
659 * @param   global_gain         first scalefactor value as scalefactors are differentially coded
660 * @param   band_type           array of the used band type
661 * @param   band_type_run_end   array of the last scalefactor band of a band type run
662 * @param   sf                  array of scalefactors or intensity stereo positions
663 *
664 * @return  Returns error status. 0 - OK, !0 - error
665 */
666static int decode_scalefactors(AACContext * ac, float sf[120], GetBitContext * gb,
667        unsigned int global_gain, IndividualChannelStream * ics,
668        enum BandType band_type[120], int band_type_run_end[120]) {
669    const int sf_offset = ac->sf_offset + (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE ? 12 : 0);
670    int g, i, idx = 0;
671    int offset[3] = { global_gain, global_gain - 90, 100 };
672    int noise_flag = 1;
673    static const char *sf_str[3] = { "Global gain", "Noise gain", "Intensity stereo position" };
674    for (g = 0; g < ics->num_window_groups; g++) {
675        for (i = 0; i < ics->max_sfb;) {
676            int run_end = band_type_run_end[idx];
677            if (band_type[idx] == ZERO_BT) {
678                for(; i < run_end; i++, idx++)
679                    sf[idx] = 0.;
680            }else if((band_type[idx] == INTENSITY_BT) || (band_type[idx] == INTENSITY_BT2)) {
681                for(; i < run_end; i++, idx++) {
682                    offset[2] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
683                    if(offset[2] > 255U) {
684                        av_log(ac->avccontext, AV_LOG_ERROR,
685                            "%s (%d) out of range.\n", sf_str[2], offset[2]);
686                        return -1;
687                    }
688                    sf[idx]  = ff_aac_pow2sf_tab[-offset[2] + 300];
689                }
690            }else if(band_type[idx] == NOISE_BT) {
691                for(; i < run_end; i++, idx++) {
692                    if(noise_flag-- > 0)
693                        offset[1] += get_bits(gb, 9) - 256;
694                    else
695                        offset[1] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
696                    if(offset[1] > 255U) {
697                        av_log(ac->avccontext, AV_LOG_ERROR,
698                            "%s (%d) out of range.\n", sf_str[1], offset[1]);
699                        return -1;
700                    }
701                    sf[idx]  = -ff_aac_pow2sf_tab[ offset[1] + sf_offset + 100];
702                }
703            }else {
704                for(; i < run_end; i++, idx++) {
705                    offset[0] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
706                    if(offset[0] > 255U) {
707                        av_log(ac->avccontext, AV_LOG_ERROR,
708                            "%s (%d) out of range.\n", sf_str[0], offset[0]);
709                        return -1;
710                    }
711                    sf[idx] = -ff_aac_pow2sf_tab[ offset[0] + sf_offset];
712                }
713            }
714        }
715    }
716    return 0;
717}
718
719/**
720 * Decode pulse data; reference: table 4.7.
721 */
722static int decode_pulses(Pulse * pulse, GetBitContext * gb, const uint16_t * swb_offset, int num_swb) {
723    int i, pulse_swb;
724    pulse->num_pulse = get_bits(gb, 2) + 1;
725    pulse_swb        = get_bits(gb, 6);
726    if (pulse_swb >= num_swb)
727        return -1;
728    pulse->pos[0]    = swb_offset[pulse_swb];
729    pulse->pos[0]   += get_bits(gb, 5);
730    if (pulse->pos[0] > 1023)
731        return -1;
732    pulse->amp[0]    = get_bits(gb, 4);
733    for (i = 1; i < pulse->num_pulse; i++) {
734        pulse->pos[i] = get_bits(gb, 5) + pulse->pos[i-1];
735        if (pulse->pos[i] > 1023)
736            return -1;
737        pulse->amp[i] = get_bits(gb, 4);
738    }
739    return 0;
740}
741
742/**
743 * Decode Temporal Noise Shaping data; reference: table 4.48.
744 *
745 * @return  Returns error status. 0 - OK, !0 - error
746 */
747static int decode_tns(AACContext * ac, TemporalNoiseShaping * tns,
748        GetBitContext * gb, const IndividualChannelStream * ics) {
749    int w, filt, i, coef_len, coef_res, coef_compress;
750    const int is8 = ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE;
751    const int tns_max_order = is8 ? 7 : ac->m4ac.object_type == AOT_AAC_MAIN ? 20 : 12;
752    for (w = 0; w < ics->num_windows; w++) {
753        if ((tns->n_filt[w] = get_bits(gb, 2 - is8))) {
754            coef_res = get_bits1(gb);
755
756            for (filt = 0; filt < tns->n_filt[w]; filt++) {
757                int tmp2_idx;
758                tns->length[w][filt] = get_bits(gb, 6 - 2*is8);
759
760                if ((tns->order[w][filt] = get_bits(gb, 5 - 2*is8)) > tns_max_order) {
761                    av_log(ac->avccontext, AV_LOG_ERROR, "TNS filter order %d is greater than maximum %d.",
762                           tns->order[w][filt], tns_max_order);
763                    tns->order[w][filt] = 0;
764                    return -1;
765                }
766                if (tns->order[w][filt]) {
767                    tns->direction[w][filt] = get_bits1(gb);
768                    coef_compress = get_bits1(gb);
769                    coef_len = coef_res + 3 - coef_compress;
770                    tmp2_idx = 2*coef_compress + coef_res;
771
772                    for (i = 0; i < tns->order[w][filt]; i++)
773                        tns->coef[w][filt][i] = tns_tmp2_map[tmp2_idx][get_bits(gb, coef_len)];
774                }
775            }
776        }
777    }
778    return 0;
779}
780
781/**
782 * Decode Mid/Side data; reference: table 4.54.
783 *
784 * @param   ms_present  Indicates mid/side stereo presence. [0] mask is all 0s;
785 *                      [1] mask is decoded from bitstream; [2] mask is all 1s;
786 *                      [3] reserved for scalable AAC
787 */
788static void decode_mid_side_stereo(ChannelElement * cpe, GetBitContext * gb,
789        int ms_present) {
790    int idx;
791    if (ms_present == 1) {
792        for (idx = 0; idx < cpe->ch[0].ics.num_window_groups * cpe->ch[0].ics.max_sfb; idx++)
793            cpe->ms_mask[idx] = get_bits1(gb);
794    } else if (ms_present == 2) {
795        memset(cpe->ms_mask, 1, cpe->ch[0].ics.num_window_groups * cpe->ch[0].ics.max_sfb * sizeof(cpe->ms_mask[0]));
796    }
797}
798
799/**
800 * Decode spectral data; reference: table 4.50.
801 * Dequantize and scale spectral data; reference: 4.6.3.3.
802 *
803 * @param   coef            array of dequantized, scaled spectral data
804 * @param   sf              array of scalefactors or intensity stereo positions
805 * @param   pulse_present   set if pulses are present
806 * @param   pulse           pointer to pulse data struct
807 * @param   band_type       array of the used band type
808 *
809 * @return  Returns error status. 0 - OK, !0 - error
810 */
811static int decode_spectrum_and_dequant(AACContext * ac, float coef[1024], GetBitContext * gb, float sf[120],
812        int pulse_present, const Pulse * pulse, const IndividualChannelStream * ics, enum BandType band_type[120]) {
813    int i, k, g, idx = 0;
814    const int c = 1024/ics->num_windows;
815    const uint16_t * offsets = ics->swb_offset;
816    float *coef_base = coef;
817    static const float sign_lookup[] = { 1.0f, -1.0f };
818
819    for (g = 0; g < ics->num_windows; g++)
820        memset(coef + g * 128 + offsets[ics->max_sfb], 0, sizeof(float)*(c - offsets[ics->max_sfb]));
821
822    for (g = 0; g < ics->num_window_groups; g++) {
823        for (i = 0; i < ics->max_sfb; i++, idx++) {
824            const int cur_band_type = band_type[idx];
825            const int dim = cur_band_type >= FIRST_PAIR_BT ? 2 : 4;
826            const int is_cb_unsigned = IS_CODEBOOK_UNSIGNED(cur_band_type);
827            int group;
828            if (cur_band_type == ZERO_BT || cur_band_type == INTENSITY_BT2 || cur_band_type == INTENSITY_BT) {
829                for (group = 0; group < ics->group_len[g]; group++) {
830                    memset(coef + group * 128 + offsets[i], 0, (offsets[i+1] - offsets[i])*sizeof(float));
831                }
832            }else if (cur_band_type == NOISE_BT) {
833                for (group = 0; group < ics->group_len[g]; group++) {
834                    float scale;
835                    float band_energy = 0;
836                    for (k = offsets[i]; k < offsets[i+1]; k++) {
837                        ac->random_state  = lcg_random(ac->random_state);
838                        coef[group*128+k] = ac->random_state;
839                        band_energy += coef[group*128+k]*coef[group*128+k];
840                    }
841                    scale = sf[idx] / sqrtf(band_energy);
842                    for (k = offsets[i]; k < offsets[i+1]; k++) {
843                        coef[group*128+k] *= scale;
844                    }
845                }
846            }else {
847                for (group = 0; group < ics->group_len[g]; group++) {
848                    for (k = offsets[i]; k < offsets[i+1]; k += dim) {
849                        const int index = get_vlc2(gb, vlc_spectral[cur_band_type - 1].table, 6, 3);
850                        const int coef_tmp_idx = (group << 7) + k;
851                        const float *vq_ptr;
852                        int j;
853                        if(index >= ff_aac_spectral_sizes[cur_band_type - 1]) {
854                            av_log(ac->avccontext, AV_LOG_ERROR,
855                                "Read beyond end of ff_aac_codebook_vectors[%d][]. index %d >= %d\n",
856                                cur_band_type - 1, index, ff_aac_spectral_sizes[cur_band_type - 1]);
857                            return -1;
858                        }
859                        vq_ptr = &ff_aac_codebook_vectors[cur_band_type - 1][index * dim];
860                        if (is_cb_unsigned) {
861                            if (vq_ptr[0]) coef[coef_tmp_idx    ] = sign_lookup[get_bits1(gb)];
862                            if (vq_ptr[1]) coef[coef_tmp_idx + 1] = sign_lookup[get_bits1(gb)];
863                            if (dim == 4) {
864                                if (vq_ptr[2]) coef[coef_tmp_idx + 2] = sign_lookup[get_bits1(gb)];
865                                if (vq_ptr[3]) coef[coef_tmp_idx + 3] = sign_lookup[get_bits1(gb)];
866                            }
867                            if (cur_band_type == ESC_BT) {
868                                for (j = 0; j < 2; j++) {
869                                    if (vq_ptr[j] == 64.0f) {
870                                        int n = 4;
871                                        /* The total length of escape_sequence must be < 22 bits according
872                                           to the specification (i.e. max is 11111111110xxxxxxxxxx). */
873                                        while (get_bits1(gb) && n < 15) n++;
874                                        if(n == 15) {
875                                            av_log(ac->avccontext, AV_LOG_ERROR, "error in spectral data, ESC overflow\n");
876                                            return -1;
877                                        }
878                                        n = (1<<n) + get_bits(gb, n);
879                                        coef[coef_tmp_idx + j] *= cbrtf(n) * n;
880                                    }else
881                                        coef[coef_tmp_idx + j] *= vq_ptr[j];
882                                }
883                            }else
884                            {
885                                coef[coef_tmp_idx    ] *= vq_ptr[0];
886                                coef[coef_tmp_idx + 1] *= vq_ptr[1];
887                                if (dim == 4) {
888                                    coef[coef_tmp_idx + 2] *= vq_ptr[2];
889                                    coef[coef_tmp_idx + 3] *= vq_ptr[3];
890                                }
891                            }
892                        }else {
893                            coef[coef_tmp_idx    ] = vq_ptr[0];
894                            coef[coef_tmp_idx + 1] = vq_ptr[1];
895                            if (dim == 4) {
896                                coef[coef_tmp_idx + 2] = vq_ptr[2];
897                                coef[coef_tmp_idx + 3] = vq_ptr[3];
898                            }
899                        }
900                        coef[coef_tmp_idx    ] *= sf[idx];
901                        coef[coef_tmp_idx + 1] *= sf[idx];
902                        if (dim == 4) {
903                            coef[coef_tmp_idx + 2] *= sf[idx];
904                            coef[coef_tmp_idx + 3] *= sf[idx];
905                        }
906                    }
907                }
908            }
909        }
910        coef += ics->group_len[g]<<7;
911    }
912
913    if (pulse_present) {
914        idx = 0;
915        for(i = 0; i < pulse->num_pulse; i++){
916            float co  = coef_base[ pulse->pos[i] ];
917            while(offsets[idx + 1] <= pulse->pos[i])
918                idx++;
919            if (band_type[idx] != NOISE_BT && sf[idx]) {
920                float ico = -pulse->amp[i];
921                if (co) {
922                    co /= sf[idx];
923                    ico = co / sqrtf(sqrtf(fabsf(co))) + (co > 0 ? -ico : ico);
924                }
925                coef_base[ pulse->pos[i] ] = cbrtf(fabsf(ico)) * ico * sf[idx];
926            }
927        }
928    }
929    return 0;
930}
931
932static av_always_inline float flt16_round(float pf) {
933    int exp;
934    pf = frexpf(pf, &exp);
935    pf = ldexpf(roundf(ldexpf(pf, 8)), exp-8);
936    return pf;
937}
938
939static av_always_inline float flt16_even(float pf) {
940    int exp;
941    pf = frexpf(pf, &exp);
942    pf = ldexpf(rintf(ldexpf(pf, 8)), exp-8);
943    return pf;
944}
945
946
947// Foxconn, added by Michael J.
948av_always_inline av_const float truncf(float x)
949{
950    return (x > 0) ? floor(x) : ceil(x);
951}
952
953
954static av_always_inline float flt16_trunc(float pf) {
955    int exp;
956    pf = frexpf(pf, &exp);
957    pf = ldexpf(truncf(ldexpf(pf, 8)), exp-8);
958    return pf;
959}
960
961static void predict(AACContext * ac, PredictorState * ps, float* coef, int output_enable) {
962    const float a     = 0.953125; // 61.0/64
963    const float alpha = 0.90625;  // 29.0/32
964    float e0, e1;
965    float pv;
966    float k1, k2;
967
968    k1 = ps->var0 > 1 ? ps->cor0 * flt16_even(a / ps->var0) : 0;
969    k2 = ps->var1 > 1 ? ps->cor1 * flt16_even(a / ps->var1) : 0;
970
971    pv = flt16_round(k1 * ps->r0 + k2 * ps->r1);
972    if (output_enable)
973        *coef += pv * ac->sf_scale;
974
975    e0 = *coef / ac->sf_scale;
976    e1 = e0 - k1 * ps->r0;
977
978    ps->cor1 = flt16_trunc(alpha * ps->cor1 + ps->r1 * e1);
979    ps->var1 = flt16_trunc(alpha * ps->var1 + 0.5 * (ps->r1 * ps->r1 + e1 * e1));
980    ps->cor0 = flt16_trunc(alpha * ps->cor0 + ps->r0 * e0);
981    ps->var0 = flt16_trunc(alpha * ps->var0 + 0.5 * (ps->r0 * ps->r0 + e0 * e0));
982
983    ps->r1 = flt16_trunc(a * (ps->r0 - k1 * e0));
984    ps->r0 = flt16_trunc(a * e0);
985}
986
987/**
988 * Apply AAC-Main style frequency domain prediction.
989 */
990static void apply_prediction(AACContext * ac, SingleChannelElement * sce) {
991    int sfb, k;
992
993    if (!sce->ics.predictor_initialized) {
994        reset_all_predictors(sce->predictor_state);
995        sce->ics.predictor_initialized = 1;
996    }
997
998    if (sce->ics.window_sequence[0] != EIGHT_SHORT_SEQUENCE) {
999        for (sfb = 0; sfb < ff_aac_pred_sfb_max[ac->m4ac.sampling_index]; sfb++) {
1000            for (k = sce->ics.swb_offset[sfb]; k < sce->ics.swb_offset[sfb + 1]; k++) {
1001                predict(ac, &sce->predictor_state[k], &sce->coeffs[k],
1002                    sce->ics.predictor_present && sce->ics.prediction_used[sfb]);
1003            }
1004        }
1005        if (sce->ics.predictor_reset_group)
1006            reset_predictor_group(sce->predictor_state, sce->ics.predictor_reset_group);
1007    } else
1008        reset_all_predictors(sce->predictor_state);
1009}
1010
1011/**
1012 * Decode an individual_channel_stream payload; reference: table 4.44.
1013 *
1014 * @param   common_window   Channels have independent [0], or shared [1], Individual Channel Stream information.
1015 * @param   scale_flag      scalable [1] or non-scalable [0] AAC (Unused until scalable AAC is implemented.)
1016 *
1017 * @return  Returns error status. 0 - OK, !0 - error
1018 */
1019static int decode_ics(AACContext * ac, SingleChannelElement * sce, GetBitContext * gb, int common_window, int scale_flag) {
1020    Pulse pulse;
1021    TemporalNoiseShaping * tns = &sce->tns;
1022    IndividualChannelStream * ics = &sce->ics;
1023    float * out = sce->coeffs;
1024    int global_gain, pulse_present = 0;
1025
1026    /* This assignment is to silence a GCC warning about the variable being used
1027     * uninitialized when in fact it always is.
1028     */
1029    pulse.num_pulse = 0;
1030
1031    global_gain = get_bits(gb, 8);
1032
1033    if (!common_window && !scale_flag) {
1034        if (decode_ics_info(ac, ics, gb, 0) < 0)
1035            return -1;
1036    }
1037
1038    if (decode_band_types(ac, sce->band_type, sce->band_type_run_end, gb, ics) < 0)
1039        return -1;
1040    if (decode_scalefactors(ac, sce->sf, gb, global_gain, ics, sce->band_type, sce->band_type_run_end) < 0)
1041        return -1;
1042
1043    pulse_present = 0;
1044    if (!scale_flag) {
1045        if ((pulse_present = get_bits1(gb))) {
1046            if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
1047                av_log(ac->avccontext, AV_LOG_ERROR, "Pulse tool not allowed in eight short sequence.\n");
1048                return -1;
1049            }
1050            if (decode_pulses(&pulse, gb, ics->swb_offset, ics->num_swb)) {
1051                av_log(ac->avccontext, AV_LOG_ERROR, "Pulse data corrupt or invalid.\n");
1052                return -1;
1053            }
1054        }
1055        if ((tns->present = get_bits1(gb)) && decode_tns(ac, tns, gb, ics))
1056            return -1;
1057        if (get_bits1(gb)) {
1058            ff_log_missing_feature(ac->avccontext, "SSR", 1);
1059            return -1;
1060        }
1061    }
1062
1063    if (decode_spectrum_and_dequant(ac, out, gb, sce->sf, pulse_present, &pulse, ics, sce->band_type) < 0)
1064        return -1;
1065
1066    if(ac->m4ac.object_type == AOT_AAC_MAIN && !common_window)
1067        apply_prediction(ac, sce);
1068
1069    return 0;
1070}
1071
1072/**
1073 * Mid/Side stereo decoding; reference: 4.6.8.1.3.
1074 */
1075static void apply_mid_side_stereo(ChannelElement * cpe) {
1076    const IndividualChannelStream * ics = &cpe->ch[0].ics;
1077    float *ch0 = cpe->ch[0].coeffs;
1078    float *ch1 = cpe->ch[1].coeffs;
1079    int g, i, k, group, idx = 0;
1080    const uint16_t * offsets = ics->swb_offset;
1081    for (g = 0; g < ics->num_window_groups; g++) {
1082        for (i = 0; i < ics->max_sfb; i++, idx++) {
1083            if (cpe->ms_mask[idx] &&
1084                cpe->ch[0].band_type[idx] < NOISE_BT && cpe->ch[1].band_type[idx] < NOISE_BT) {
1085                for (group = 0; group < ics->group_len[g]; group++) {
1086                    for (k = offsets[i]; k < offsets[i+1]; k++) {
1087                        float tmp = ch0[group*128 + k] - ch1[group*128 + k];
1088                        ch0[group*128 + k] += ch1[group*128 + k];
1089                        ch1[group*128 + k] = tmp;
1090                    }
1091                }
1092            }
1093        }
1094        ch0 += ics->group_len[g]*128;
1095        ch1 += ics->group_len[g]*128;
1096    }
1097}
1098
1099/**
1100 * intensity stereo decoding; reference: 4.6.8.2.3
1101 *
1102 * @param   ms_present  Indicates mid/side stereo presence. [0] mask is all 0s;
1103 *                      [1] mask is decoded from bitstream; [2] mask is all 1s;
1104 *                      [3] reserved for scalable AAC
1105 */
1106static void apply_intensity_stereo(ChannelElement * cpe, int ms_present) {
1107    const IndividualChannelStream * ics = &cpe->ch[1].ics;
1108    SingleChannelElement * sce1 = &cpe->ch[1];
1109    float *coef0 = cpe->ch[0].coeffs, *coef1 = cpe->ch[1].coeffs;
1110    const uint16_t * offsets = ics->swb_offset;
1111    int g, group, i, k, idx = 0;
1112    int c;
1113    float scale;
1114    for (g = 0; g < ics->num_window_groups; g++) {
1115        for (i = 0; i < ics->max_sfb;) {
1116            if (sce1->band_type[idx] == INTENSITY_BT || sce1->band_type[idx] == INTENSITY_BT2) {
1117                const int bt_run_end = sce1->band_type_run_end[idx];
1118                for (; i < bt_run_end; i++, idx++) {
1119                    c = -1 + 2 * (sce1->band_type[idx] - 14);
1120                    if (ms_present)
1121                        c *= 1 - 2 * cpe->ms_mask[idx];
1122                    scale = c * sce1->sf[idx];
1123                    for (group = 0; group < ics->group_len[g]; group++)
1124                        for (k = offsets[i]; k < offsets[i+1]; k++)
1125                            coef1[group*128 + k] = scale * coef0[group*128 + k];
1126                }
1127            } else {
1128                int bt_run_end = sce1->band_type_run_end[idx];
1129                idx += bt_run_end - i;
1130                i    = bt_run_end;
1131            }
1132        }
1133        coef0 += ics->group_len[g]*128;
1134        coef1 += ics->group_len[g]*128;
1135    }
1136}
1137
1138/**
1139 * Decode a channel_pair_element; reference: table 4.4.
1140 *
1141 * @param   elem_id Identifies the instance of a syntax element.
1142 *
1143 * @return  Returns error status. 0 - OK, !0 - error
1144 */
1145static int decode_cpe(AACContext * ac, GetBitContext * gb, ChannelElement * cpe) {
1146    int i, ret, common_window, ms_present = 0;
1147
1148    common_window = get_bits1(gb);
1149    if (common_window) {
1150        if (decode_ics_info(ac, &cpe->ch[0].ics, gb, 1))
1151            return -1;
1152        i = cpe->ch[1].ics.use_kb_window[0];
1153        cpe->ch[1].ics = cpe->ch[0].ics;
1154        cpe->ch[1].ics.use_kb_window[1] = i;
1155        ms_present = get_bits(gb, 2);
1156        if(ms_present == 3) {
1157            av_log(ac->avccontext, AV_LOG_ERROR, "ms_present = 3 is reserved.\n");
1158            return -1;
1159        } else if(ms_present)
1160            decode_mid_side_stereo(cpe, gb, ms_present);
1161    }
1162    if ((ret = decode_ics(ac, &cpe->ch[0], gb, common_window, 0)))
1163        return ret;
1164    if ((ret = decode_ics(ac, &cpe->ch[1], gb, common_window, 0)))
1165        return ret;
1166
1167    if (common_window) {
1168        if (ms_present)
1169            apply_mid_side_stereo(cpe);
1170        if (ac->m4ac.object_type == AOT_AAC_MAIN) {
1171            apply_prediction(ac, &cpe->ch[0]);
1172            apply_prediction(ac, &cpe->ch[1]);
1173        }
1174    }
1175
1176    apply_intensity_stereo(cpe, ms_present);
1177    return 0;
1178}
1179
1180/**
1181 * Decode coupling_channel_element; reference: table 4.8.
1182 *
1183 * @param   elem_id Identifies the instance of a syntax element.
1184 *
1185 * @return  Returns error status. 0 - OK, !0 - error
1186 */
1187static int decode_cce(AACContext * ac, GetBitContext * gb, ChannelElement * che) {
1188    int num_gain = 0;
1189    int c, g, sfb, ret;
1190    int sign;
1191    float scale;
1192    SingleChannelElement * sce = &che->ch[0];
1193    ChannelCoupling * coup     = &che->coup;
1194
1195    coup->coupling_point = 2*get_bits1(gb);
1196    coup->num_coupled = get_bits(gb, 3);
1197    for (c = 0; c <= coup->num_coupled; c++) {
1198        num_gain++;
1199        coup->type[c] = get_bits1(gb) ? TYPE_CPE : TYPE_SCE;
1200        coup->id_select[c] = get_bits(gb, 4);
1201        if (coup->type[c] == TYPE_CPE) {
1202            coup->ch_select[c] = get_bits(gb, 2);
1203            if (coup->ch_select[c] == 3)
1204                num_gain++;
1205        } else
1206            coup->ch_select[c] = 2;
1207    }
1208    coup->coupling_point += get_bits1(gb);
1209
1210    if (coup->coupling_point == 2) {
1211        av_log(ac->avccontext, AV_LOG_ERROR,
1212            "Independently switched CCE with 'invalid' domain signalled.\n");
1213        memset(coup, 0, sizeof(ChannelCoupling));
1214        return -1;
1215    }
1216
1217    sign = get_bits(gb, 1);
1218    scale = pow(2., pow(2., (int)get_bits(gb, 2) - 3));
1219
1220    if ((ret = decode_ics(ac, sce, gb, 0, 0)))
1221        return ret;
1222
1223    for (c = 0; c < num_gain; c++) {
1224        int idx = 0;
1225        int cge = 1;
1226        int gain = 0;
1227        float gain_cache = 1.;
1228        if (c) {
1229            cge = coup->coupling_point == AFTER_IMDCT ? 1 : get_bits1(gb);
1230            gain = cge ? get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60: 0;
1231            gain_cache = pow(scale, -gain);
1232        }
1233        if (coup->coupling_point == AFTER_IMDCT) {
1234            coup->gain[c][0] = gain_cache;
1235        } else {
1236            for (g = 0; g < sce->ics.num_window_groups; g++) {
1237                for (sfb = 0; sfb < sce->ics.max_sfb; sfb++, idx++) {
1238                    if (sce->band_type[idx] != ZERO_BT) {
1239                        if (!cge) {
1240                            int t = get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
1241                                if (t) {
1242                                int s = 1;
1243                                t = gain += t;
1244                                if (sign) {
1245                                    s  -= 2 * (t & 0x1);
1246                                    t >>= 1;
1247                                }
1248                                gain_cache = pow(scale, -t) * s;
1249                            }
1250                        }
1251                        coup->gain[c][idx] = gain_cache;
1252                    }
1253                }
1254            }
1255        }
1256    }
1257    return 0;
1258}
1259
1260/**
1261 * Decode Spectral Band Replication extension data; reference: table 4.55.
1262 *
1263 * @param   crc flag indicating the presence of CRC checksum
1264 * @param   cnt length of TYPE_FIL syntactic element in bytes
1265 *
1266 * @return  Returns number of bytes consumed from the TYPE_FIL element.
1267 */
1268static int decode_sbr_extension(AACContext * ac, GetBitContext * gb, int crc, int cnt) {
1269    // TODO : sbr_extension implementation
1270    ff_log_missing_feature(ac->avccontext, "SBR", 0);
1271    skip_bits_long(gb, 8*cnt - 4); // -4 due to reading extension type
1272    return cnt;
1273}
1274
1275/**
1276 * Parse whether channels are to be excluded from Dynamic Range Compression; reference: table 4.53.
1277 *
1278 * @return  Returns number of bytes consumed.
1279 */
1280static int decode_drc_channel_exclusions(DynamicRangeControl *che_drc, GetBitContext * gb) {
1281    int i;
1282    int num_excl_chan = 0;
1283
1284    do {
1285        for (i = 0; i < 7; i++)
1286            che_drc->exclude_mask[num_excl_chan++] = get_bits1(gb);
1287    } while (num_excl_chan < MAX_CHANNELS - 7 && get_bits1(gb));
1288
1289    return num_excl_chan / 7;
1290}
1291
1292/**
1293 * Decode dynamic range information; reference: table 4.52.
1294 *
1295 * @param   cnt length of TYPE_FIL syntactic element in bytes
1296 *
1297 * @return  Returns number of bytes consumed.
1298 */
1299static int decode_dynamic_range(DynamicRangeControl *che_drc, GetBitContext * gb, int cnt) {
1300    int n = 1;
1301    int drc_num_bands = 1;
1302    int i;
1303
1304    /* pce_tag_present? */
1305    if(get_bits1(gb)) {
1306        che_drc->pce_instance_tag  = get_bits(gb, 4);
1307        skip_bits(gb, 4); // tag_reserved_bits
1308        n++;
1309    }
1310
1311    /* excluded_chns_present? */
1312    if(get_bits1(gb)) {
1313        n += decode_drc_channel_exclusions(che_drc, gb);
1314    }
1315
1316    /* drc_bands_present? */
1317    if (get_bits1(gb)) {
1318        che_drc->band_incr            = get_bits(gb, 4);
1319        che_drc->interpolation_scheme = get_bits(gb, 4);
1320        n++;
1321        drc_num_bands += che_drc->band_incr;
1322        for (i = 0; i < drc_num_bands; i++) {
1323            che_drc->band_top[i] = get_bits(gb, 8);
1324            n++;
1325        }
1326    }
1327
1328    /* prog_ref_level_present? */
1329    if (get_bits1(gb)) {
1330        che_drc->prog_ref_level = get_bits(gb, 7);
1331        skip_bits1(gb); // prog_ref_level_reserved_bits
1332        n++;
1333    }
1334
1335    for (i = 0; i < drc_num_bands; i++) {
1336        che_drc->dyn_rng_sgn[i] = get_bits1(gb);
1337        che_drc->dyn_rng_ctl[i] = get_bits(gb, 7);
1338        n++;
1339    }
1340
1341    return n;
1342}
1343
1344/**
1345 * Decode extension data (incomplete); reference: table 4.51.
1346 *
1347 * @param   cnt length of TYPE_FIL syntactic element in bytes
1348 *
1349 * @return Returns number of bytes consumed
1350 */
1351static int decode_extension_payload(AACContext * ac, GetBitContext * gb, int cnt) {
1352    int crc_flag = 0;
1353    int res = cnt;
1354    switch (get_bits(gb, 4)) { // extension type
1355        case EXT_SBR_DATA_CRC:
1356            crc_flag++;
1357        case EXT_SBR_DATA:
1358            res = decode_sbr_extension(ac, gb, crc_flag, cnt);
1359            break;
1360        case EXT_DYNAMIC_RANGE:
1361            res = decode_dynamic_range(&ac->che_drc, gb, cnt);
1362            break;
1363        case EXT_FILL:
1364        case EXT_FILL_DATA:
1365        case EXT_DATA_ELEMENT:
1366        default:
1367            skip_bits_long(gb, 8*cnt - 4);
1368            break;
1369    };
1370    return res;
1371}
1372
1373/**
1374 * Decode Temporal Noise Shaping filter coefficients and apply all-pole filters; reference: 4.6.9.3.
1375 *
1376 * @param   decode  1 if tool is used normally, 0 if tool is used in LTP.
1377 * @param   coef    spectral coefficients
1378 */
1379static void apply_tns(float coef[1024], TemporalNoiseShaping * tns, IndividualChannelStream * ics, int decode) {
1380    const int mmm = FFMIN(ics->tns_max_bands,  ics->max_sfb);
1381    int w, filt, m, i;
1382    int bottom, top, order, start, end, size, inc;
1383    float lpc[TNS_MAX_ORDER];
1384
1385    for (w = 0; w < ics->num_windows; w++) {
1386        bottom = ics->num_swb;
1387        for (filt = 0; filt < tns->n_filt[w]; filt++) {
1388            top    = bottom;
1389            bottom = FFMAX(0, top - tns->length[w][filt]);
1390            order  = tns->order[w][filt];
1391            if (order == 0)
1392                continue;
1393
1394            // tns_decode_coef
1395            compute_lpc_coefs(tns->coef[w][filt], order, lpc, 0, 0, 0);
1396
1397            start = ics->swb_offset[FFMIN(bottom, mmm)];
1398            end   = ics->swb_offset[FFMIN(   top, mmm)];
1399            if ((size = end - start) <= 0)
1400                continue;
1401            if (tns->direction[w][filt]) {
1402                inc = -1; start = end - 1;
1403            } else {
1404                inc = 1;
1405            }
1406            start += w * 128;
1407
1408            // ar filter
1409            for (m = 0; m < size; m++, start += inc)
1410                for (i = 1; i <= FFMIN(m, order); i++)
1411                    coef[start] -= coef[start - i*inc] * lpc[i-1];
1412        }
1413    }
1414}
1415
1416/**
1417 * Conduct IMDCT and windowing.
1418 */
1419static void imdct_and_windowing(AACContext * ac, SingleChannelElement * sce) {
1420    IndividualChannelStream * ics = &sce->ics;
1421    float * in = sce->coeffs;
1422    float * out = sce->ret;
1423    float * saved = sce->saved;
1424    const float * swindow      = ics->use_kb_window[0] ? ff_aac_kbd_short_128 : ff_sine_128;
1425    const float * lwindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_long_1024 : ff_sine_1024;
1426    const float * swindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_short_128 : ff_sine_128;
1427    float * buf = ac->buf_mdct;
1428    float * temp = ac->temp;
1429    int i;
1430
1431    // imdct
1432    if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
1433        if (ics->window_sequence[1] == ONLY_LONG_SEQUENCE || ics->window_sequence[1] == LONG_STOP_SEQUENCE)
1434            av_log(ac->avccontext, AV_LOG_WARNING,
1435                   "Transition from an ONLY_LONG or LONG_STOP to an EIGHT_SHORT sequence detected. "
1436                   "If you heard an audible artifact, please submit the sample to the FFmpeg developers.\n");
1437        for (i = 0; i < 1024; i += 128)
1438            ff_imdct_half(&ac->mdct_small, buf + i, in + i);
1439    } else
1440        ff_imdct_half(&ac->mdct, buf, in);
1441
1442    /* window overlapping
1443     * NOTE: To simplify the overlapping code, all 'meaningless' short to long
1444     * and long to short transitions are considered to be short to short
1445     * transitions. This leaves just two cases (long to long and short to short)
1446     * with a little special sauce for EIGHT_SHORT_SEQUENCE.
1447     */
1448    if ((ics->window_sequence[1] == ONLY_LONG_SEQUENCE || ics->window_sequence[1] == LONG_STOP_SEQUENCE) &&
1449        (ics->window_sequence[0] == ONLY_LONG_SEQUENCE || ics->window_sequence[0] == LONG_START_SEQUENCE)) {
1450        ac->dsp.vector_fmul_window(    out,               saved,            buf,         lwindow_prev, ac->add_bias, 512);
1451    } else {
1452        for (i = 0; i < 448; i++)
1453            out[i] = saved[i] + ac->add_bias;
1454
1455        if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
1456            ac->dsp.vector_fmul_window(out + 448 + 0*128, saved + 448,      buf + 0*128, swindow_prev, ac->add_bias, 64);
1457            ac->dsp.vector_fmul_window(out + 448 + 1*128, buf + 0*128 + 64, buf + 1*128, swindow,      ac->add_bias, 64);
1458            ac->dsp.vector_fmul_window(out + 448 + 2*128, buf + 1*128 + 64, buf + 2*128, swindow,      ac->add_bias, 64);
1459            ac->dsp.vector_fmul_window(out + 448 + 3*128, buf + 2*128 + 64, buf + 3*128, swindow,      ac->add_bias, 64);
1460            ac->dsp.vector_fmul_window(temp,              buf + 3*128 + 64, buf + 4*128, swindow,      ac->add_bias, 64);
1461            memcpy(                    out + 448 + 4*128, temp, 64 * sizeof(float));
1462        } else {
1463            ac->dsp.vector_fmul_window(out + 448,         saved + 448,      buf,         swindow_prev, ac->add_bias, 64);
1464            for (i = 576; i < 1024; i++)
1465                out[i] = buf[i-512] + ac->add_bias;
1466        }
1467    }
1468
1469    // buffer update
1470    if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
1471        for (i = 0; i < 64; i++)
1472            saved[i] = temp[64 + i] - ac->add_bias;
1473        ac->dsp.vector_fmul_window(saved + 64,  buf + 4*128 + 64, buf + 5*128, swindow, 0, 64);
1474        ac->dsp.vector_fmul_window(saved + 192, buf + 5*128 + 64, buf + 6*128, swindow, 0, 64);
1475        ac->dsp.vector_fmul_window(saved + 320, buf + 6*128 + 64, buf + 7*128, swindow, 0, 64);
1476        memcpy(                    saved + 448, buf + 7*128 + 64,  64 * sizeof(float));
1477    } else if (ics->window_sequence[0] == LONG_START_SEQUENCE) {
1478        memcpy(                    saved,       buf + 512,        448 * sizeof(float));
1479        memcpy(                    saved + 448, buf + 7*128 + 64,  64 * sizeof(float));
1480    } else { // LONG_STOP or ONLY_LONG
1481        memcpy(                    saved,       buf + 512,        512 * sizeof(float));
1482    }
1483}
1484
1485/**
1486 * Apply dependent channel coupling (applied before IMDCT).
1487 *
1488 * @param   index   index into coupling gain array
1489 */
1490static void apply_dependent_coupling(AACContext * ac, SingleChannelElement * target, ChannelElement * cce, int index) {
1491    IndividualChannelStream * ics = &cce->ch[0].ics;
1492    const uint16_t * offsets = ics->swb_offset;
1493    float * dest = target->coeffs;
1494    const float * src = cce->ch[0].coeffs;
1495    int g, i, group, k, idx = 0;
1496    if(ac->m4ac.object_type == AOT_AAC_LTP) {
1497        av_log(ac->avccontext, AV_LOG_ERROR,
1498               "Dependent coupling is not supported together with LTP\n");
1499        return;
1500    }
1501    for (g = 0; g < ics->num_window_groups; g++) {
1502        for (i = 0; i < ics->max_sfb; i++, idx++) {
1503            if (cce->ch[0].band_type[idx] != ZERO_BT) {
1504                for (group = 0; group < ics->group_len[g]; group++) {
1505                    for (k = offsets[i]; k < offsets[i+1]; k++) {
1506                        // XXX dsputil-ize
1507                        dest[group*128+k] += cce->coup.gain[index][idx] * src[group*128+k];
1508                    }
1509                }
1510            }
1511        }
1512        dest += ics->group_len[g]*128;
1513        src  += ics->group_len[g]*128;
1514    }
1515}
1516
1517/**
1518 * Apply independent channel coupling (applied after IMDCT).
1519 *
1520 * @param   index   index into coupling gain array
1521 */
1522static void apply_independent_coupling(AACContext * ac, SingleChannelElement * target, ChannelElement * cce, int index) {
1523    int i;
1524    const float gain = cce->coup.gain[index][0];
1525    const float bias = ac->add_bias;
1526    const float* src = cce->ch[0].ret;
1527    float* dest = target->ret;
1528
1529    for (i = 0; i < 1024; i++)
1530        dest[i] += gain * (src[i] - bias);
1531}
1532
1533/**
1534 * channel coupling transformation interface
1535 *
1536 * @param   index   index into coupling gain array
1537 * @param   apply_coupling_method   pointer to (in)dependent coupling function
1538 */
1539static void apply_channel_coupling(AACContext * ac, ChannelElement * cc,
1540        enum RawDataBlockType type, int elem_id, enum CouplingPoint coupling_point,
1541        void (*apply_coupling_method)(AACContext * ac, SingleChannelElement * target, ChannelElement * cce, int index))
1542{
1543    int i, c;
1544
1545    for (i = 0; i < MAX_ELEM_ID; i++) {
1546        ChannelElement *cce = ac->che[TYPE_CCE][i];
1547        int index = 0;
1548
1549        if (cce && cce->coup.coupling_point == coupling_point) {
1550            ChannelCoupling * coup = &cce->coup;
1551
1552            for (c = 0; c <= coup->num_coupled; c++) {
1553                if (coup->type[c] == type && coup->id_select[c] == elem_id) {
1554                    if (coup->ch_select[c] != 1) {
1555                        apply_coupling_method(ac, &cc->ch[0], cce, index);
1556                        if (coup->ch_select[c] != 0)
1557                            index++;
1558                    }
1559                    if (coup->ch_select[c] != 2)
1560                        apply_coupling_method(ac, &cc->ch[1], cce, index++);
1561                } else
1562                    index += 1 + (coup->ch_select[c] == 3);
1563            }
1564        }
1565    }
1566}
1567
1568/**
1569 * Convert spectral data to float samples, applying all supported tools as appropriate.
1570 */
1571static void spectral_to_sample(AACContext * ac) {
1572    int i, type;
1573    for(type = 3; type >= 0; type--) {
1574        for (i = 0; i < MAX_ELEM_ID; i++) {
1575            ChannelElement *che = ac->che[type][i];
1576            if(che) {
1577                if(type <= TYPE_CPE)
1578                    apply_channel_coupling(ac, che, type, i, BEFORE_TNS, apply_dependent_coupling);
1579                if(che->ch[0].tns.present)
1580                    apply_tns(che->ch[0].coeffs, &che->ch[0].tns, &che->ch[0].ics, 1);
1581                if(che->ch[1].tns.present)
1582                    apply_tns(che->ch[1].coeffs, &che->ch[1].tns, &che->ch[1].ics, 1);
1583                if(type <= TYPE_CPE)
1584                    apply_channel_coupling(ac, che, type, i, BETWEEN_TNS_AND_IMDCT, apply_dependent_coupling);
1585                if(type != TYPE_CCE || che->coup.coupling_point == AFTER_IMDCT)
1586                    imdct_and_windowing(ac, &che->ch[0]);
1587                if(type == TYPE_CPE)
1588                    imdct_and_windowing(ac, &che->ch[1]);
1589                if(type <= TYPE_CCE)
1590                    apply_channel_coupling(ac, che, type, i, AFTER_IMDCT, apply_independent_coupling);
1591            }
1592        }
1593    }
1594}
1595
1596static int parse_adts_frame_header(AACContext * ac, GetBitContext * gb) {
1597
1598    int size;
1599    AACADTSHeaderInfo hdr_info;
1600
1601    size = ff_aac_parse_header(gb, &hdr_info);
1602    if (size > 0) {
1603        if (hdr_info.chan_config)
1604            ac->m4ac.chan_config = hdr_info.chan_config;
1605        ac->m4ac.sample_rate     = hdr_info.sample_rate;
1606        ac->m4ac.sampling_index  = hdr_info.sampling_index;
1607        ac->m4ac.object_type     = hdr_info.object_type;
1608        if (hdr_info.num_aac_frames == 1) {
1609            if (!hdr_info.crc_absent)
1610                skip_bits(gb, 16);
1611        } else {
1612            ff_log_missing_feature(ac->avccontext, "More than one AAC RDB per ADTS frame is", 0);
1613            return -1;
1614        }
1615    }
1616    return size;
1617}
1618
1619static int aac_decode_frame(AVCodecContext * avccontext, void * data, int * data_size, const uint8_t * buf, int buf_size) {
1620    AACContext * ac = avccontext->priv_data;
1621    ChannelElement * che = NULL;
1622    GetBitContext gb;
1623    enum RawDataBlockType elem_type;
1624    int err, elem_id, data_size_tmp;
1625
1626    init_get_bits(&gb, buf, buf_size*8);
1627
1628    if (show_bits(&gb, 12) == 0xfff) {
1629        if ((err = parse_adts_frame_header(ac, &gb)) < 0) {
1630            av_log(avccontext, AV_LOG_ERROR, "Error decoding AAC frame header.\n");
1631            return -1;
1632        }
1633        if (ac->m4ac.sampling_index > 12) {
1634            av_log(ac->avccontext, AV_LOG_ERROR, "invalid sampling rate index %d\n", ac->m4ac.sampling_index);
1635            return -1;
1636        }
1637    }
1638
1639    // parse
1640    while ((elem_type = get_bits(&gb, 3)) != TYPE_END) {
1641        elem_id = get_bits(&gb, 4);
1642        err = -1;
1643
1644        if(elem_type < TYPE_DSE && !(che=get_che(ac, elem_type, elem_id))) {
1645            av_log(ac->avccontext, AV_LOG_ERROR, "channel element %d.%d is not allocated\n", elem_type, elem_id);
1646            return -1;
1647        }
1648
1649        switch (elem_type) {
1650
1651        case TYPE_SCE:
1652            err = decode_ics(ac, &che->ch[0], &gb, 0, 0);
1653            break;
1654
1655        case TYPE_CPE:
1656            err = decode_cpe(ac, &gb, che);
1657            break;
1658
1659        case TYPE_CCE:
1660            err = decode_cce(ac, &gb, che);
1661            break;
1662
1663        case TYPE_LFE:
1664            err = decode_ics(ac, &che->ch[0], &gb, 0, 0);
1665            break;
1666
1667        case TYPE_DSE:
1668            skip_data_stream_element(&gb);
1669            err = 0;
1670            break;
1671
1672        case TYPE_PCE:
1673        {
1674            enum ChannelPosition new_che_pos[4][MAX_ELEM_ID];
1675            memset(new_che_pos, 0, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
1676            if((err = decode_pce(ac, new_che_pos, &gb)))
1677                break;
1678            err = output_configure(ac, ac->che_pos, new_che_pos, 0);
1679            break;
1680        }
1681
1682        case TYPE_FIL:
1683            if (elem_id == 15)
1684                elem_id += get_bits(&gb, 8) - 1;
1685            while (elem_id > 0)
1686                elem_id -= decode_extension_payload(ac, &gb, elem_id);
1687            err = 0; /* FIXME */
1688            break;
1689
1690        default:
1691            err = -1; /* should not happen, but keeps compiler happy */
1692            break;
1693        }
1694
1695        if(err)
1696            return err;
1697    }
1698
1699    spectral_to_sample(ac);
1700
1701    if (!ac->is_saved) {
1702        ac->is_saved = 1;
1703        *data_size = 0;
1704        return buf_size;
1705    }
1706
1707    data_size_tmp = 1024 * avccontext->channels * sizeof(int16_t);
1708    if(*data_size < data_size_tmp) {
1709        av_log(avccontext, AV_LOG_ERROR,
1710               "Output buffer too small (%d) or trying to output too many samples (%d) for this frame.\n",
1711               *data_size, data_size_tmp);
1712        return -1;
1713    }
1714    *data_size = data_size_tmp;
1715
1716    ac->dsp.float_to_int16_interleave(data, (const float **)ac->output_data, 1024, avccontext->channels);
1717
1718    return buf_size;
1719}
1720
1721static av_cold int aac_decode_close(AVCodecContext * avccontext) {
1722    AACContext * ac = avccontext->priv_data;
1723    int i, type;
1724
1725    for (i = 0; i < MAX_ELEM_ID; i++) {
1726        for(type = 0; type < 4; type++)
1727            av_freep(&ac->che[type][i]);
1728    }
1729
1730    ff_mdct_end(&ac->mdct);
1731    ff_mdct_end(&ac->mdct_small);
1732    return 0 ;
1733}
1734
1735AVCodec aac_decoder = {
1736    "aac",
1737    CODEC_TYPE_AUDIO,
1738    CODEC_ID_AAC,
1739    sizeof(AACContext),
1740    aac_decode_init,
1741    NULL,
1742    aac_decode_close,
1743    aac_decode_frame,
1744    .long_name = NULL_IF_CONFIG_SMALL("Advanced Audio Coding"),
1745    .sample_fmts = (enum SampleFormat[]){SAMPLE_FMT_S16,SAMPLE_FMT_NONE},
1746};
1747