1/* vi: set sw=4 ts=4: */
2/*
3 *  Based on shasum from http://www.netsw.org/crypto/hash/
4 *  Majorly hacked up to use Dr Brian Gladman's sha1 code
5 *
6 *  Copyright (C) 2002 Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK.
7 *  Copyright (C) 2003 Glenn L. McGrath
8 *  Copyright (C) 2003 Erik Andersen
9 *
10 * Licensed under GPLv2 or later, see file LICENSE in this tarball for details.
11 *
12 *  ---------------------------------------------------------------------------
13 *  Issue Date: 10/11/2002
14 *
15 *  This is a byte oriented version of SHA1 that operates on arrays of bytes
16 *  stored in memory. It runs at 22 cycles per byte on a Pentium P4 processor
17 */
18
19#include "libbb.h"
20
21#define SHA1_BLOCK_SIZE  64
22#define SHA1_DIGEST_SIZE 20
23#define SHA1_HASH_SIZE   SHA1_DIGEST_SIZE
24#define SHA2_GOOD        0
25#define SHA2_BAD         1
26
27#define rotl32(x,n)      (((x) << n) | ((x) >> (32 - n)))
28
29#define SHA1_MASK        (SHA1_BLOCK_SIZE - 1)
30
31/* reverse byte order in 32-bit words   */
32#define ch(x,y,z)        ((z) ^ ((x) & ((y) ^ (z))))
33#define parity(x,y,z)    ((x) ^ (y) ^ (z))
34#define maj(x,y,z)       (((x) & (y)) | ((z) & ((x) | (y))))
35
36/* A normal version as set out in the FIPS. This version uses   */
37/* partial loop unrolling and is optimised for the Pentium 4    */
38#define rnd(f,k) \
39	do { \
40		t = a; a = rotl32(a,5) + f(b,c,d) + e + k + w[i]; \
41		e = d; d = c; c = rotl32(b, 30); b = t; \
42	} while (0)
43
44static void sha1_compile(sha1_ctx_t *ctx)
45{
46	uint32_t w[80], i, a, b, c, d, e, t;
47
48	/* note that words are compiled from the buffer into 32-bit */
49	/* words in big-endian order so an order reversal is needed */
50	/* here on little endian machines                           */
51	for (i = 0; i < SHA1_BLOCK_SIZE / 4; ++i)
52		w[i] = htonl(ctx->wbuf[i]);
53
54	for (i = SHA1_BLOCK_SIZE / 4; i < 80; ++i)
55		w[i] = rotl32(w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16], 1);
56
57	a = ctx->hash[0];
58	b = ctx->hash[1];
59	c = ctx->hash[2];
60	d = ctx->hash[3];
61	e = ctx->hash[4];
62
63	for (i = 0; i < 20; ++i) {
64		rnd(ch, 0x5a827999);
65	}
66
67	for (i = 20; i < 40; ++i) {
68		rnd(parity, 0x6ed9eba1);
69	}
70
71	for (i = 40; i < 60; ++i) {
72		rnd(maj, 0x8f1bbcdc);
73	}
74
75	for (i = 60; i < 80; ++i) {
76		rnd(parity, 0xca62c1d6);
77	}
78
79	ctx->hash[0] += a;
80	ctx->hash[1] += b;
81	ctx->hash[2] += c;
82	ctx->hash[3] += d;
83	ctx->hash[4] += e;
84}
85
86void sha1_begin(sha1_ctx_t *ctx)
87{
88	ctx->count[0] = ctx->count[1] = 0;
89	ctx->hash[0] = 0x67452301;
90	ctx->hash[1] = 0xefcdab89;
91	ctx->hash[2] = 0x98badcfe;
92	ctx->hash[3] = 0x10325476;
93	ctx->hash[4] = 0xc3d2e1f0;
94}
95
96/* SHA1 hash data in an array of bytes into hash buffer and call the        */
97/* hash_compile function as required.                                       */
98void sha1_hash(const void *data, size_t length, sha1_ctx_t *ctx)
99{
100	uint32_t pos = (uint32_t) (ctx->count[0] & SHA1_MASK);
101	uint32_t freeb = SHA1_BLOCK_SIZE - pos;
102	const unsigned char *sp = data;
103
104	if ((ctx->count[0] += length) < length)
105		++(ctx->count[1]);
106
107	while (length >= freeb) {	/* tranfer whole blocks while possible  */
108		memcpy(((unsigned char *) ctx->wbuf) + pos, sp, freeb);
109		sp += freeb;
110		length -= freeb;
111		freeb = SHA1_BLOCK_SIZE;
112		pos = 0;
113		sha1_compile(ctx);
114	}
115
116	memcpy(((unsigned char *) ctx->wbuf) + pos, sp, length);
117}
118
119void *sha1_end(void *resbuf, sha1_ctx_t *ctx)
120{
121	/* SHA1 Final padding and digest calculation  */
122#if BB_BIG_ENDIAN
123	static uint32_t mask[4] = { 0x00000000, 0xff000000, 0xffff0000, 0xffffff00 };
124	static uint32_t bits[4] = { 0x80000000, 0x00800000, 0x00008000, 0x00000080 };
125#else
126	static uint32_t mask[4] = { 0x00000000, 0x000000ff, 0x0000ffff, 0x00ffffff };
127	static uint32_t bits[4] = { 0x00000080, 0x00008000, 0x00800000, 0x80000000 };
128#endif
129
130	uint8_t *hval = resbuf;
131	uint32_t i, cnt = (uint32_t) (ctx->count[0] & SHA1_MASK);
132
133	/* mask out the rest of any partial 32-bit word and then set    */
134	/* the next byte to 0x80. On big-endian machines any bytes in   */
135	/* the buffer will be at the top end of 32 bit words, on little */
136	/* endian machines they will be at the bottom. Hence the AND    */
137	/* and OR masks above are reversed for little endian systems    */
138	ctx->wbuf[cnt >> 2] =
139		(ctx->wbuf[cnt >> 2] & mask[cnt & 3]) | bits[cnt & 3];
140
141	/* we need 9 or more empty positions, one for the padding byte  */
142	/* (above) and eight for the length count.  If there is not     */
143	/* enough space pad and empty the buffer                        */
144	if (cnt > SHA1_BLOCK_SIZE - 9) {
145		if (cnt < 60)
146			ctx->wbuf[15] = 0;
147		sha1_compile(ctx);
148		cnt = 0;
149	} else				/* compute a word index for the empty buffer positions  */
150		cnt = (cnt >> 2) + 1;
151
152	while (cnt < 14)	/* and zero pad all but last two positions      */
153		ctx->wbuf[cnt++] = 0;
154
155	/* assemble the eight byte counter in the buffer in big-endian  */
156	/* format					                */
157
158	ctx->wbuf[14] = htonl((ctx->count[1] << 3) | (ctx->count[0] >> 29));
159	ctx->wbuf[15] = htonl(ctx->count[0] << 3);
160
161	sha1_compile(ctx);
162
163	/* extract the hash value as bytes in case the hash buffer is   */
164	/* misaligned for 32-bit words                                  */
165
166	for (i = 0; i < SHA1_DIGEST_SIZE; ++i)
167		hval[i] = (unsigned char) (ctx->hash[i >> 2] >> 8 * (~i & 3));
168
169	return resbuf;
170}
171