1/*
2 *  Copyright (c) by Jaroslav Kysela <perex@suse.cz>
3 *                   Takashi Iwai <tiwai@suse.de>
4 *
5 *  Generic memory allocators
6 *
7 *
8 *   This program is free software; you can redistribute it and/or modify
9 *   it under the terms of the GNU General Public License as published by
10 *   the Free Software Foundation; either version 2 of the License, or
11 *   (at your option) any later version.
12 *
13 *   This program is distributed in the hope that it will be useful,
14 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
15 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 *   GNU General Public License for more details.
17 *
18 *   You should have received a copy of the GNU General Public License
19 *   along with this program; if not, write to the Free Software
20 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
21 *
22 */
23
24#include <linux/module.h>
25#include <linux/proc_fs.h>
26#include <linux/init.h>
27#include <linux/pci.h>
28#include <linux/slab.h>
29#include <linux/mm.h>
30#include <asm/uaccess.h>
31#include <linux/dma-mapping.h>
32#include <linux/moduleparam.h>
33#include <linux/mutex.h>
34#include <sound/memalloc.h>
35#ifdef CONFIG_SBUS
36#include <asm/sbus.h>
37#endif
38
39
40MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>, Jaroslav Kysela <perex@suse.cz>");
41MODULE_DESCRIPTION("Memory allocator for ALSA system.");
42MODULE_LICENSE("GPL");
43
44
45/*
46 */
47
48void *snd_malloc_sgbuf_pages(struct device *device,
49                             size_t size, struct snd_dma_buffer *dmab,
50			     size_t *res_size);
51int snd_free_sgbuf_pages(struct snd_dma_buffer *dmab);
52
53/*
54 */
55
56static DEFINE_MUTEX(list_mutex);
57static LIST_HEAD(mem_list_head);
58
59/* buffer preservation list */
60struct snd_mem_list {
61	struct snd_dma_buffer buffer;
62	unsigned int id;
63	struct list_head list;
64};
65
66/* id for pre-allocated buffers */
67#define SNDRV_DMA_DEVICE_UNUSED (unsigned int)-1
68
69#ifdef CONFIG_SND_DEBUG
70#define __ASTRING__(x) #x
71#define snd_assert(expr, args...) do {\
72	if (!(expr)) {\
73		printk(KERN_ERR "snd-malloc: BUG? (%s) (called from %p)\n", __ASTRING__(expr), __builtin_return_address(0));\
74		args;\
75	}\
76} while (0)
77#else
78#define snd_assert(expr, args...) /**/
79#endif
80
81/*
82 *  Hacks
83 */
84
85#if defined(__i386__)
86/*
87 * A hack to allocate large buffers via dma_alloc_coherent()
88 *
89 * since dma_alloc_coherent always tries GFP_DMA when the requested
90 * pci memory region is below 32bit, it happens quite often that even
91 * 2 order of pages cannot be allocated.
92 *
93 * so in the following, we allocate at first without dma_mask, so that
94 * allocation will be done without GFP_DMA.  if the area doesn't match
95 * with the requested region, then realloate with the original dma_mask
96 * again.
97 *
98 * Really, we want to move this type of thing into dma_alloc_coherent()
99 * so dma_mask doesn't have to be messed with.
100 */
101
102static void *snd_dma_hack_alloc_coherent(struct device *dev, size_t size,
103					 dma_addr_t *dma_handle,
104					 gfp_t flags)
105{
106	void *ret;
107	u64 dma_mask, coherent_dma_mask;
108
109	if (dev == NULL || !dev->dma_mask)
110		return dma_alloc_coherent(dev, size, dma_handle, flags);
111	dma_mask = *dev->dma_mask;
112	coherent_dma_mask = dev->coherent_dma_mask;
113	*dev->dma_mask = 0xffffffff; 	/* do without masking */
114	dev->coherent_dma_mask = 0xffffffff; 	/* do without masking */
115	ret = dma_alloc_coherent(dev, size, dma_handle, flags);
116	*dev->dma_mask = dma_mask;	/* restore */
117	dev->coherent_dma_mask = coherent_dma_mask;	/* restore */
118	if (ret) {
119		/* obtained address is out of range? */
120		if (((unsigned long)*dma_handle + size - 1) & ~dma_mask) {
121			/* reallocate with the proper mask */
122			dma_free_coherent(dev, size, ret, *dma_handle);
123			ret = dma_alloc_coherent(dev, size, dma_handle, flags);
124		}
125	} else {
126		/* wish to success now with the proper mask... */
127		if (dma_mask != 0xffffffffUL) {
128			/* allocation with GFP_ATOMIC to avoid the long stall */
129			flags &= ~GFP_KERNEL;
130			flags |= GFP_ATOMIC;
131			ret = dma_alloc_coherent(dev, size, dma_handle, flags);
132		}
133	}
134	return ret;
135}
136
137/* redefine dma_alloc_coherent for some architectures */
138#undef dma_alloc_coherent
139#define dma_alloc_coherent snd_dma_hack_alloc_coherent
140
141#endif /* arch */
142
143/*
144 *
145 *  Generic memory allocators
146 *
147 */
148
149static long snd_allocated_pages; /* holding the number of allocated pages */
150
151static inline void inc_snd_pages(int order)
152{
153	snd_allocated_pages += 1 << order;
154}
155
156static inline void dec_snd_pages(int order)
157{
158	snd_allocated_pages -= 1 << order;
159}
160
161/**
162 * snd_malloc_pages - allocate pages with the given size
163 * @size: the size to allocate in bytes
164 * @gfp_flags: the allocation conditions, GFP_XXX
165 *
166 * Allocates the physically contiguous pages with the given size.
167 *
168 * Returns the pointer of the buffer, or NULL if no enoguh memory.
169 */
170void *snd_malloc_pages(size_t size, gfp_t gfp_flags)
171{
172	int pg;
173	void *res;
174
175	snd_assert(size > 0, return NULL);
176	snd_assert(gfp_flags != 0, return NULL);
177	gfp_flags |= __GFP_COMP;	/* compound page lets parts be mapped */
178	pg = get_order(size);
179	if ((res = (void *) __get_free_pages(gfp_flags, pg)) != NULL)
180		inc_snd_pages(pg);
181	return res;
182}
183
184/**
185 * snd_free_pages - release the pages
186 * @ptr: the buffer pointer to release
187 * @size: the allocated buffer size
188 *
189 * Releases the buffer allocated via snd_malloc_pages().
190 */
191void snd_free_pages(void *ptr, size_t size)
192{
193	int pg;
194
195	if (ptr == NULL)
196		return;
197	pg = get_order(size);
198	dec_snd_pages(pg);
199	free_pages((unsigned long) ptr, pg);
200}
201
202/*
203 *
204 *  Bus-specific memory allocators
205 *
206 */
207
208/* allocate the coherent DMA pages */
209static void *snd_malloc_dev_pages(struct device *dev, size_t size, dma_addr_t *dma)
210{
211	int pg;
212	void *res;
213	gfp_t gfp_flags;
214
215	snd_assert(size > 0, return NULL);
216	snd_assert(dma != NULL, return NULL);
217	pg = get_order(size);
218	gfp_flags = GFP_KERNEL
219		| __GFP_COMP	/* compound page lets parts be mapped */
220		| __GFP_NORETRY /* don't trigger OOM-killer */
221		| __GFP_NOWARN; /* no stack trace print - this call is non-critical */
222	res = dma_alloc_coherent(dev, PAGE_SIZE << pg, dma, gfp_flags);
223	if (res != NULL)
224		inc_snd_pages(pg);
225
226	return res;
227}
228
229/* free the coherent DMA pages */
230static void snd_free_dev_pages(struct device *dev, size_t size, void *ptr,
231			       dma_addr_t dma)
232{
233	int pg;
234
235	if (ptr == NULL)
236		return;
237	pg = get_order(size);
238	dec_snd_pages(pg);
239	dma_free_coherent(dev, PAGE_SIZE << pg, ptr, dma);
240}
241
242#ifdef CONFIG_SBUS
243
244static void *snd_malloc_sbus_pages(struct device *dev, size_t size,
245				   dma_addr_t *dma_addr)
246{
247	struct sbus_dev *sdev = (struct sbus_dev *)dev;
248	int pg;
249	void *res;
250
251	snd_assert(size > 0, return NULL);
252	snd_assert(dma_addr != NULL, return NULL);
253	pg = get_order(size);
254	res = sbus_alloc_consistent(sdev, PAGE_SIZE * (1 << pg), dma_addr);
255	if (res != NULL)
256		inc_snd_pages(pg);
257	return res;
258}
259
260static void snd_free_sbus_pages(struct device *dev, size_t size,
261				void *ptr, dma_addr_t dma_addr)
262{
263	struct sbus_dev *sdev = (struct sbus_dev *)dev;
264	int pg;
265
266	if (ptr == NULL)
267		return;
268	pg = get_order(size);
269	dec_snd_pages(pg);
270	sbus_free_consistent(sdev, PAGE_SIZE * (1 << pg), ptr, dma_addr);
271}
272
273#endif /* CONFIG_SBUS */
274
275/*
276 *
277 *  ALSA generic memory management
278 *
279 */
280
281
282/**
283 * snd_dma_alloc_pages - allocate the buffer area according to the given type
284 * @type: the DMA buffer type
285 * @device: the device pointer
286 * @size: the buffer size to allocate
287 * @dmab: buffer allocation record to store the allocated data
288 *
289 * Calls the memory-allocator function for the corresponding
290 * buffer type.
291 *
292 * Returns zero if the buffer with the given size is allocated successfuly,
293 * other a negative value at error.
294 */
295int snd_dma_alloc_pages(int type, struct device *device, size_t size,
296			struct snd_dma_buffer *dmab)
297{
298	snd_assert(size > 0, return -ENXIO);
299	snd_assert(dmab != NULL, return -ENXIO);
300
301	dmab->dev.type = type;
302	dmab->dev.dev = device;
303	dmab->bytes = 0;
304	switch (type) {
305	case SNDRV_DMA_TYPE_CONTINUOUS:
306		dmab->area = snd_malloc_pages(size, (unsigned long)device);
307		dmab->addr = 0;
308		break;
309#ifdef CONFIG_SBUS
310	case SNDRV_DMA_TYPE_SBUS:
311		dmab->area = snd_malloc_sbus_pages(device, size, &dmab->addr);
312		break;
313#endif
314	case SNDRV_DMA_TYPE_DEV:
315		dmab->area = snd_malloc_dev_pages(device, size, &dmab->addr);
316		break;
317	case SNDRV_DMA_TYPE_DEV_SG:
318		snd_malloc_sgbuf_pages(device, size, dmab, NULL);
319		break;
320	default:
321		printk(KERN_ERR "snd-malloc: invalid device type %d\n", type);
322		dmab->area = NULL;
323		dmab->addr = 0;
324		return -ENXIO;
325	}
326	if (! dmab->area)
327		return -ENOMEM;
328	dmab->bytes = size;
329	return 0;
330}
331
332/**
333 * snd_dma_alloc_pages_fallback - allocate the buffer area according to the given type with fallback
334 * @type: the DMA buffer type
335 * @device: the device pointer
336 * @size: the buffer size to allocate
337 * @dmab: buffer allocation record to store the allocated data
338 *
339 * Calls the memory-allocator function for the corresponding
340 * buffer type.  When no space is left, this function reduces the size and
341 * tries to allocate again.  The size actually allocated is stored in
342 * res_size argument.
343 *
344 * Returns zero if the buffer with the given size is allocated successfuly,
345 * other a negative value at error.
346 */
347int snd_dma_alloc_pages_fallback(int type, struct device *device, size_t size,
348				 struct snd_dma_buffer *dmab)
349{
350	int err;
351
352	snd_assert(size > 0, return -ENXIO);
353	snd_assert(dmab != NULL, return -ENXIO);
354
355	while ((err = snd_dma_alloc_pages(type, device, size, dmab)) < 0) {
356		if (err != -ENOMEM)
357			return err;
358		size >>= 1;
359		if (size <= PAGE_SIZE)
360			return -ENOMEM;
361	}
362	if (! dmab->area)
363		return -ENOMEM;
364	return 0;
365}
366
367
368/**
369 * snd_dma_free_pages - release the allocated buffer
370 * @dmab: the buffer allocation record to release
371 *
372 * Releases the allocated buffer via snd_dma_alloc_pages().
373 */
374void snd_dma_free_pages(struct snd_dma_buffer *dmab)
375{
376	switch (dmab->dev.type) {
377	case SNDRV_DMA_TYPE_CONTINUOUS:
378		snd_free_pages(dmab->area, dmab->bytes);
379		break;
380#ifdef CONFIG_SBUS
381	case SNDRV_DMA_TYPE_SBUS:
382		snd_free_sbus_pages(dmab->dev.dev, dmab->bytes, dmab->area, dmab->addr);
383		break;
384#endif
385	case SNDRV_DMA_TYPE_DEV:
386		snd_free_dev_pages(dmab->dev.dev, dmab->bytes, dmab->area, dmab->addr);
387		break;
388	case SNDRV_DMA_TYPE_DEV_SG:
389		snd_free_sgbuf_pages(dmab);
390		break;
391	default:
392		printk(KERN_ERR "snd-malloc: invalid device type %d\n", dmab->dev.type);
393	}
394}
395
396
397/**
398 * snd_dma_get_reserved - get the reserved buffer for the given device
399 * @dmab: the buffer allocation record to store
400 * @id: the buffer id
401 *
402 * Looks for the reserved-buffer list and re-uses if the same buffer
403 * is found in the list.  When the buffer is found, it's removed from the free list.
404 *
405 * Returns the size of buffer if the buffer is found, or zero if not found.
406 */
407size_t snd_dma_get_reserved_buf(struct snd_dma_buffer *dmab, unsigned int id)
408{
409	struct snd_mem_list *mem;
410
411	snd_assert(dmab, return 0);
412
413	mutex_lock(&list_mutex);
414	list_for_each_entry(mem, &mem_list_head, list) {
415		if (mem->id == id &&
416		    (mem->buffer.dev.dev == NULL || dmab->dev.dev == NULL ||
417		     ! memcmp(&mem->buffer.dev, &dmab->dev, sizeof(dmab->dev)))) {
418			struct device *dev = dmab->dev.dev;
419			list_del(&mem->list);
420			*dmab = mem->buffer;
421			if (dmab->dev.dev == NULL)
422				dmab->dev.dev = dev;
423			kfree(mem);
424			mutex_unlock(&list_mutex);
425			return dmab->bytes;
426		}
427	}
428	mutex_unlock(&list_mutex);
429	return 0;
430}
431
432/**
433 * snd_dma_reserve_buf - reserve the buffer
434 * @dmab: the buffer to reserve
435 * @id: the buffer id
436 *
437 * Reserves the given buffer as a reserved buffer.
438 *
439 * Returns zero if successful, or a negative code at error.
440 */
441int snd_dma_reserve_buf(struct snd_dma_buffer *dmab, unsigned int id)
442{
443	struct snd_mem_list *mem;
444
445	snd_assert(dmab, return -EINVAL);
446	mem = kmalloc(sizeof(*mem), GFP_KERNEL);
447	if (! mem)
448		return -ENOMEM;
449	mutex_lock(&list_mutex);
450	mem->buffer = *dmab;
451	mem->id = id;
452	list_add_tail(&mem->list, &mem_list_head);
453	mutex_unlock(&list_mutex);
454	return 0;
455}
456
457/*
458 * purge all reserved buffers
459 */
460static void free_all_reserved_pages(void)
461{
462	struct list_head *p;
463	struct snd_mem_list *mem;
464
465	mutex_lock(&list_mutex);
466	while (! list_empty(&mem_list_head)) {
467		p = mem_list_head.next;
468		mem = list_entry(p, struct snd_mem_list, list);
469		list_del(p);
470		snd_dma_free_pages(&mem->buffer);
471		kfree(mem);
472	}
473	mutex_unlock(&list_mutex);
474}
475
476
477#ifdef CONFIG_PROC_FS
478/*
479 * proc file interface
480 */
481#define SND_MEM_PROC_FILE	"driver/snd-page-alloc"
482static struct proc_dir_entry *snd_mem_proc;
483
484static int snd_mem_proc_read(char *page, char **start, off_t off,
485			     int count, int *eof, void *data)
486{
487	int len = 0;
488	long pages = snd_allocated_pages >> (PAGE_SHIFT-12);
489	struct snd_mem_list *mem;
490	int devno;
491	static char *types[] = { "UNKNOWN", "CONT", "DEV", "DEV-SG", "SBUS" };
492
493	mutex_lock(&list_mutex);
494	len += snprintf(page + len, count - len,
495			"pages  : %li bytes (%li pages per %likB)\n",
496			pages * PAGE_SIZE, pages, PAGE_SIZE / 1024);
497	devno = 0;
498	list_for_each_entry(mem, &mem_list_head, list) {
499		devno++;
500		len += snprintf(page + len, count - len,
501				"buffer %d : ID %08x : type %s\n",
502				devno, mem->id, types[mem->buffer.dev.type]);
503		len += snprintf(page + len, count - len,
504				"  addr = 0x%lx, size = %d bytes\n",
505				(unsigned long)mem->buffer.addr, (int)mem->buffer.bytes);
506	}
507	mutex_unlock(&list_mutex);
508	return len;
509}
510
511#ifdef CONFIG_PCI
512#define gettoken(bufp) strsep(bufp, " \t\n")
513
514static int snd_mem_proc_write(struct file *file, const char __user *buffer,
515			      unsigned long count, void *data)
516{
517	char buf[128];
518	char *token, *p;
519
520	if (count > ARRAY_SIZE(buf) - 1)
521		count = ARRAY_SIZE(buf) - 1;
522	if (copy_from_user(buf, buffer, count))
523		return -EFAULT;
524	buf[ARRAY_SIZE(buf) - 1] = '\0';
525
526	p = buf;
527	token = gettoken(&p);
528	if (! token || *token == '#')
529		return (int)count;
530	if (strcmp(token, "add") == 0) {
531		char *endp;
532		int vendor, device, size, buffers;
533		long mask;
534		int i, alloced;
535		struct pci_dev *pci;
536
537		if ((token = gettoken(&p)) == NULL ||
538		    (vendor = simple_strtol(token, NULL, 0)) <= 0 ||
539		    (token = gettoken(&p)) == NULL ||
540		    (device = simple_strtol(token, NULL, 0)) <= 0 ||
541		    (token = gettoken(&p)) == NULL ||
542		    (mask = simple_strtol(token, NULL, 0)) < 0 ||
543		    (token = gettoken(&p)) == NULL ||
544		    (size = memparse(token, &endp)) < 64*1024 ||
545		    size > 16*1024*1024 /* too big */ ||
546		    (token = gettoken(&p)) == NULL ||
547		    (buffers = simple_strtol(token, NULL, 0)) <= 0 ||
548		    buffers > 4) {
549			printk(KERN_ERR "snd-page-alloc: invalid proc write format\n");
550			return (int)count;
551		}
552		vendor &= 0xffff;
553		device &= 0xffff;
554
555		alloced = 0;
556		pci = NULL;
557		while ((pci = pci_get_device(vendor, device, pci)) != NULL) {
558			if (mask > 0 && mask < 0xffffffff) {
559				if (pci_set_dma_mask(pci, mask) < 0 ||
560				    pci_set_consistent_dma_mask(pci, mask) < 0) {
561					printk(KERN_ERR "snd-page-alloc: cannot set DMA mask %lx for pci %04x:%04x\n", mask, vendor, device);
562					return (int)count;
563				}
564			}
565			for (i = 0; i < buffers; i++) {
566				struct snd_dma_buffer dmab;
567				memset(&dmab, 0, sizeof(dmab));
568				if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(pci),
569							size, &dmab) < 0) {
570					printk(KERN_ERR "snd-page-alloc: cannot allocate buffer pages (size = %d)\n", size);
571					pci_dev_put(pci);
572					return (int)count;
573				}
574				snd_dma_reserve_buf(&dmab, snd_dma_pci_buf_id(pci));
575			}
576			alloced++;
577		}
578		if (! alloced) {
579			for (i = 0; i < buffers; i++) {
580				struct snd_dma_buffer dmab;
581				memset(&dmab, 0, sizeof(dmab));
582				if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, NULL,
583							size, &dmab) < 0) {
584					printk(KERN_ERR "snd-page-alloc: cannot allocate buffer pages (size = %d)\n", size);
585					break;
586				}
587				snd_dma_reserve_buf(&dmab, (unsigned int)((vendor << 16) | device));
588			}
589		}
590	} else if (strcmp(token, "erase") == 0)
591		free_all_reserved_pages();
592	else
593		printk(KERN_ERR "snd-page-alloc: invalid proc cmd\n");
594	return (int)count;
595}
596#endif /* CONFIG_PCI */
597#endif /* CONFIG_PROC_FS */
598
599/*
600 * module entry
601 */
602
603static int __init snd_mem_init(void)
604{
605#ifdef CONFIG_PROC_FS
606	snd_mem_proc = create_proc_entry(SND_MEM_PROC_FILE, 0644, NULL);
607	if (snd_mem_proc) {
608		snd_mem_proc->read_proc = snd_mem_proc_read;
609#ifdef CONFIG_PCI
610		snd_mem_proc->write_proc = snd_mem_proc_write;
611#endif
612	}
613#endif
614	return 0;
615}
616
617static void __exit snd_mem_exit(void)
618{
619	remove_proc_entry(SND_MEM_PROC_FILE, NULL);
620	free_all_reserved_pages();
621	if (snd_allocated_pages > 0)
622		printk(KERN_ERR "snd-malloc: Memory leak?  pages not freed = %li\n", snd_allocated_pages);
623}
624
625
626module_init(snd_mem_init)
627module_exit(snd_mem_exit)
628
629
630/*
631 * exports
632 */
633EXPORT_SYMBOL(snd_dma_alloc_pages);
634EXPORT_SYMBOL(snd_dma_alloc_pages_fallback);
635EXPORT_SYMBOL(snd_dma_free_pages);
636
637EXPORT_SYMBOL(snd_dma_get_reserved_buf);
638EXPORT_SYMBOL(snd_dma_reserve_buf);
639
640EXPORT_SYMBOL(snd_malloc_pages);
641EXPORT_SYMBOL(snd_free_pages);
642