1/* key.c: basic authentication token and access key management
2 *
3 * Copyright (C) 2004-6 Red Hat, Inc. All Rights Reserved.
4 * Written by David Howells (dhowells@redhat.com)
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11
12#include <linux/module.h>
13#include <linux/init.h>
14#include <linux/poison.h>
15#include <linux/sched.h>
16#include <linux/slab.h>
17#include <linux/security.h>
18#include <linux/workqueue.h>
19#include <linux/random.h>
20#include <linux/err.h>
21#include "internal.h"
22
23static struct kmem_cache	*key_jar;
24struct rb_root		key_serial_tree; /* tree of keys indexed by serial */
25DEFINE_SPINLOCK(key_serial_lock);
26
27struct rb_root	key_user_tree; /* tree of quota records indexed by UID */
28DEFINE_SPINLOCK(key_user_lock);
29
30static LIST_HEAD(key_types_list);
31static DECLARE_RWSEM(key_types_sem);
32
33static void key_cleanup(struct work_struct *work);
34static DECLARE_WORK(key_cleanup_task, key_cleanup);
35
36/* we serialise key instantiation and link */
37DECLARE_RWSEM(key_construction_sem);
38
39/* any key who's type gets unegistered will be re-typed to this */
40static struct key_type key_type_dead = {
41	.name		= "dead",
42};
43
44#ifdef KEY_DEBUGGING
45void __key_check(const struct key *key)
46{
47	printk("__key_check: key %p {%08x} should be {%08x}\n",
48	       key, key->magic, KEY_DEBUG_MAGIC);
49	BUG();
50}
51#endif
52
53/*****************************************************************************/
54/*
55 * get the key quota record for a user, allocating a new record if one doesn't
56 * already exist
57 */
58struct key_user *key_user_lookup(uid_t uid)
59{
60	struct key_user *candidate = NULL, *user;
61	struct rb_node *parent = NULL;
62	struct rb_node **p;
63
64 try_again:
65	p = &key_user_tree.rb_node;
66	spin_lock(&key_user_lock);
67
68	/* search the tree for a user record with a matching UID */
69	while (*p) {
70		parent = *p;
71		user = rb_entry(parent, struct key_user, node);
72
73		if (uid < user->uid)
74			p = &(*p)->rb_left;
75		else if (uid > user->uid)
76			p = &(*p)->rb_right;
77		else
78			goto found;
79	}
80
81	/* if we get here, we failed to find a match in the tree */
82	if (!candidate) {
83		/* allocate a candidate user record if we don't already have
84		 * one */
85		spin_unlock(&key_user_lock);
86
87		user = NULL;
88		candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
89		if (unlikely(!candidate))
90			goto out;
91
92		/* the allocation may have scheduled, so we need to repeat the
93		 * search lest someone else added the record whilst we were
94		 * asleep */
95		goto try_again;
96	}
97
98	/* if we get here, then the user record still hadn't appeared on the
99	 * second pass - so we use the candidate record */
100	atomic_set(&candidate->usage, 1);
101	atomic_set(&candidate->nkeys, 0);
102	atomic_set(&candidate->nikeys, 0);
103	candidate->uid = uid;
104	candidate->qnkeys = 0;
105	candidate->qnbytes = 0;
106	spin_lock_init(&candidate->lock);
107	INIT_LIST_HEAD(&candidate->consq);
108
109	rb_link_node(&candidate->node, parent, p);
110	rb_insert_color(&candidate->node, &key_user_tree);
111	spin_unlock(&key_user_lock);
112	user = candidate;
113	goto out;
114
115	/* okay - we found a user record for this UID */
116 found:
117	atomic_inc(&user->usage);
118	spin_unlock(&key_user_lock);
119	kfree(candidate);
120 out:
121	return user;
122
123} /* end key_user_lookup() */
124
125/*****************************************************************************/
126/*
127 * dispose of a user structure
128 */
129void key_user_put(struct key_user *user)
130{
131	if (atomic_dec_and_lock(&user->usage, &key_user_lock)) {
132		rb_erase(&user->node, &key_user_tree);
133		spin_unlock(&key_user_lock);
134
135		kfree(user);
136	}
137
138} /* end key_user_put() */
139
140/*****************************************************************************/
141/*
142 * insert a key with a fixed serial number
143 */
144static void __init __key_insert_serial(struct key *key)
145{
146	struct rb_node *parent, **p;
147	struct key *xkey;
148
149	parent = NULL;
150	p = &key_serial_tree.rb_node;
151
152	while (*p) {
153		parent = *p;
154		xkey = rb_entry(parent, struct key, serial_node);
155
156		if (key->serial < xkey->serial)
157			p = &(*p)->rb_left;
158		else if (key->serial > xkey->serial)
159			p = &(*p)->rb_right;
160		else
161			BUG();
162	}
163
164	/* we've found a suitable hole - arrange for this key to occupy it */
165	rb_link_node(&key->serial_node, parent, p);
166	rb_insert_color(&key->serial_node, &key_serial_tree);
167
168} /* end __key_insert_serial() */
169
170/*****************************************************************************/
171/*
172 * assign a key the next unique serial number
173 * - these are assigned randomly to avoid security issues through covert
174 *   channel problems
175 */
176static inline void key_alloc_serial(struct key *key)
177{
178	struct rb_node *parent, **p;
179	struct key *xkey;
180
181	/* propose a random serial number and look for a hole for it in the
182	 * serial number tree */
183	do {
184		get_random_bytes(&key->serial, sizeof(key->serial));
185
186		key->serial >>= 1; /* negative numbers are not permitted */
187	} while (key->serial < 3);
188
189	spin_lock(&key_serial_lock);
190
191attempt_insertion:
192	parent = NULL;
193	p = &key_serial_tree.rb_node;
194
195	while (*p) {
196		parent = *p;
197		xkey = rb_entry(parent, struct key, serial_node);
198
199		if (key->serial < xkey->serial)
200			p = &(*p)->rb_left;
201		else if (key->serial > xkey->serial)
202			p = &(*p)->rb_right;
203		else
204			goto serial_exists;
205	}
206
207	/* we've found a suitable hole - arrange for this key to occupy it */
208	rb_link_node(&key->serial_node, parent, p);
209	rb_insert_color(&key->serial_node, &key_serial_tree);
210
211	spin_unlock(&key_serial_lock);
212	return;
213
214	/* we found a key with the proposed serial number - walk the tree from
215	 * that point looking for the next unused serial number */
216serial_exists:
217	for (;;) {
218		key->serial++;
219		if (key->serial < 3) {
220			key->serial = 3;
221			goto attempt_insertion;
222		}
223
224		parent = rb_next(parent);
225		if (!parent)
226			goto attempt_insertion;
227
228		xkey = rb_entry(parent, struct key, serial_node);
229		if (key->serial < xkey->serial)
230			goto attempt_insertion;
231	}
232
233} /* end key_alloc_serial() */
234
235/*****************************************************************************/
236/*
237 * allocate a key of the specified type
238 * - update the user's quota to reflect the existence of the key
239 * - called from a key-type operation with key_types_sem read-locked by
240 *   key_create_or_update()
241 *   - this prevents unregistration of the key type
242 * - upon return the key is as yet uninstantiated; the caller needs to either
243 *   instantiate the key or discard it before returning
244 */
245struct key *key_alloc(struct key_type *type, const char *desc,
246		      uid_t uid, gid_t gid, struct task_struct *ctx,
247		      key_perm_t perm, unsigned long flags)
248{
249	struct key_user *user = NULL;
250	struct key *key;
251	size_t desclen, quotalen;
252	int ret;
253
254	key = ERR_PTR(-EINVAL);
255	if (!desc || !*desc)
256		goto error;
257
258	desclen = strlen(desc) + 1;
259	quotalen = desclen + type->def_datalen;
260
261	/* get hold of the key tracking for this user */
262	user = key_user_lookup(uid);
263	if (!user)
264		goto no_memory_1;
265
266	/* check that the user's quota permits allocation of another key and
267	 * its description */
268	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
269		spin_lock(&user->lock);
270		if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
271			if (user->qnkeys + 1 >= KEYQUOTA_MAX_KEYS ||
272			    user->qnbytes + quotalen >= KEYQUOTA_MAX_BYTES
273			    )
274				goto no_quota;
275		}
276
277		user->qnkeys++;
278		user->qnbytes += quotalen;
279		spin_unlock(&user->lock);
280	}
281
282	/* allocate and initialise the key and its description */
283	key = kmem_cache_alloc(key_jar, GFP_KERNEL);
284	if (!key)
285		goto no_memory_2;
286
287	if (desc) {
288		key->description = kmemdup(desc, desclen, GFP_KERNEL);
289		if (!key->description)
290			goto no_memory_3;
291	}
292
293	atomic_set(&key->usage, 1);
294	init_rwsem(&key->sem);
295	key->type = type;
296	key->user = user;
297	key->quotalen = quotalen;
298	key->datalen = type->def_datalen;
299	key->uid = uid;
300	key->gid = gid;
301	key->perm = perm;
302	key->flags = 0;
303	key->expiry = 0;
304	key->payload.data = NULL;
305	key->security = NULL;
306
307	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
308		key->flags |= 1 << KEY_FLAG_IN_QUOTA;
309
310	memset(&key->type_data, 0, sizeof(key->type_data));
311
312#ifdef KEY_DEBUGGING
313	key->magic = KEY_DEBUG_MAGIC;
314#endif
315
316	/* let the security module know about the key */
317	ret = security_key_alloc(key, ctx, flags);
318	if (ret < 0)
319		goto security_error;
320
321	/* publish the key by giving it a serial number */
322	atomic_inc(&user->nkeys);
323	key_alloc_serial(key);
324
325error:
326	return key;
327
328security_error:
329	kfree(key->description);
330	kmem_cache_free(key_jar, key);
331	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
332		spin_lock(&user->lock);
333		user->qnkeys--;
334		user->qnbytes -= quotalen;
335		spin_unlock(&user->lock);
336	}
337	key_user_put(user);
338	key = ERR_PTR(ret);
339	goto error;
340
341no_memory_3:
342	kmem_cache_free(key_jar, key);
343no_memory_2:
344	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
345		spin_lock(&user->lock);
346		user->qnkeys--;
347		user->qnbytes -= quotalen;
348		spin_unlock(&user->lock);
349	}
350	key_user_put(user);
351no_memory_1:
352	key = ERR_PTR(-ENOMEM);
353	goto error;
354
355no_quota:
356	spin_unlock(&user->lock);
357	key_user_put(user);
358	key = ERR_PTR(-EDQUOT);
359	goto error;
360
361} /* end key_alloc() */
362
363EXPORT_SYMBOL(key_alloc);
364
365/*****************************************************************************/
366/*
367 * reserve an amount of quota for the key's payload
368 */
369int key_payload_reserve(struct key *key, size_t datalen)
370{
371	int delta = (int) datalen - key->datalen;
372	int ret = 0;
373
374	key_check(key);
375
376	/* contemplate the quota adjustment */
377	if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
378		spin_lock(&key->user->lock);
379
380		if (delta > 0 &&
381		    key->user->qnbytes + delta > KEYQUOTA_MAX_BYTES
382		    ) {
383			ret = -EDQUOT;
384		}
385		else {
386			key->user->qnbytes += delta;
387			key->quotalen += delta;
388		}
389		spin_unlock(&key->user->lock);
390	}
391
392	/* change the recorded data length if that didn't generate an error */
393	if (ret == 0)
394		key->datalen = datalen;
395
396	return ret;
397
398} /* end key_payload_reserve() */
399
400EXPORT_SYMBOL(key_payload_reserve);
401
402/*****************************************************************************/
403/*
404 * instantiate a key and link it into the target keyring atomically
405 * - called with the target keyring's semaphore writelocked
406 */
407static int __key_instantiate_and_link(struct key *key,
408				      const void *data,
409				      size_t datalen,
410				      struct key *keyring,
411				      struct key *instkey)
412{
413	int ret, awaken;
414
415	key_check(key);
416	key_check(keyring);
417
418	awaken = 0;
419	ret = -EBUSY;
420
421	down_write(&key_construction_sem);
422
423	/* can't instantiate twice */
424	if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
425		/* instantiate the key */
426		ret = key->type->instantiate(key, data, datalen);
427
428		if (ret == 0) {
429			/* mark the key as being instantiated */
430			atomic_inc(&key->user->nikeys);
431			set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
432
433			if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
434				awaken = 1;
435
436			/* and link it into the destination keyring */
437			if (keyring)
438				ret = __key_link(keyring, key);
439
440			/* disable the authorisation key */
441			if (instkey)
442				key_revoke(instkey);
443		}
444	}
445
446	up_write(&key_construction_sem);
447
448	/* wake up anyone waiting for a key to be constructed */
449	if (awaken)
450		wake_up_all(&request_key_conswq);
451
452	return ret;
453
454} /* end __key_instantiate_and_link() */
455
456/*****************************************************************************/
457/*
458 * instantiate a key and link it into the target keyring atomically
459 */
460int key_instantiate_and_link(struct key *key,
461			     const void *data,
462			     size_t datalen,
463			     struct key *keyring,
464			     struct key *instkey)
465{
466	int ret;
467
468	if (keyring)
469		down_write(&keyring->sem);
470
471	ret = __key_instantiate_and_link(key, data, datalen, keyring, instkey);
472
473	if (keyring)
474		up_write(&keyring->sem);
475
476	return ret;
477
478} /* end key_instantiate_and_link() */
479
480EXPORT_SYMBOL(key_instantiate_and_link);
481
482/*****************************************************************************/
483/*
484 * negatively instantiate a key and link it into the target keyring atomically
485 */
486int key_negate_and_link(struct key *key,
487			unsigned timeout,
488			struct key *keyring,
489			struct key *instkey)
490{
491	struct timespec now;
492	int ret, awaken;
493
494	key_check(key);
495	key_check(keyring);
496
497	awaken = 0;
498	ret = -EBUSY;
499
500	if (keyring)
501		down_write(&keyring->sem);
502
503	down_write(&key_construction_sem);
504
505	/* can't instantiate twice */
506	if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
507		/* mark the key as being negatively instantiated */
508		atomic_inc(&key->user->nikeys);
509		set_bit(KEY_FLAG_NEGATIVE, &key->flags);
510		set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
511		now = current_kernel_time();
512		key->expiry = now.tv_sec + timeout;
513
514		if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
515			awaken = 1;
516
517		ret = 0;
518
519		/* and link it into the destination keyring */
520		if (keyring)
521			ret = __key_link(keyring, key);
522
523		/* disable the authorisation key */
524		if (instkey)
525			key_revoke(instkey);
526	}
527
528	up_write(&key_construction_sem);
529
530	if (keyring)
531		up_write(&keyring->sem);
532
533	/* wake up anyone waiting for a key to be constructed */
534	if (awaken)
535		wake_up_all(&request_key_conswq);
536
537	return ret;
538
539} /* end key_negate_and_link() */
540
541EXPORT_SYMBOL(key_negate_and_link);
542
543/*****************************************************************************/
544/*
545 * do cleaning up in process context so that we don't have to disable
546 * interrupts all over the place
547 */
548static void key_cleanup(struct work_struct *work)
549{
550	struct rb_node *_n;
551	struct key *key;
552
553 go_again:
554	/* look for a dead key in the tree */
555	spin_lock(&key_serial_lock);
556
557	for (_n = rb_first(&key_serial_tree); _n; _n = rb_next(_n)) {
558		key = rb_entry(_n, struct key, serial_node);
559
560		if (atomic_read(&key->usage) == 0)
561			goto found_dead_key;
562	}
563
564	spin_unlock(&key_serial_lock);
565	return;
566
567 found_dead_key:
568	/* we found a dead key - once we've removed it from the tree, we can
569	 * drop the lock */
570	rb_erase(&key->serial_node, &key_serial_tree);
571	spin_unlock(&key_serial_lock);
572
573	key_check(key);
574
575	security_key_free(key);
576
577	/* deal with the user's key tracking and quota */
578	if (test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
579		spin_lock(&key->user->lock);
580		key->user->qnkeys--;
581		key->user->qnbytes -= key->quotalen;
582		spin_unlock(&key->user->lock);
583	}
584
585	atomic_dec(&key->user->nkeys);
586	if (test_bit(KEY_FLAG_INSTANTIATED, &key->flags))
587		atomic_dec(&key->user->nikeys);
588
589	key_user_put(key->user);
590
591	/* now throw away the key memory */
592	if (key->type->destroy)
593		key->type->destroy(key);
594
595	kfree(key->description);
596
597#ifdef KEY_DEBUGGING
598	key->magic = KEY_DEBUG_MAGIC_X;
599#endif
600	kmem_cache_free(key_jar, key);
601
602	/* there may, of course, be more than one key to destroy */
603	goto go_again;
604
605} /* end key_cleanup() */
606
607/*****************************************************************************/
608/*
609 * dispose of a reference to a key
610 * - when all the references are gone, we schedule the cleanup task to come and
611 *   pull it out of the tree in definite process context
612 */
613void key_put(struct key *key)
614{
615	if (key) {
616		key_check(key);
617
618		if (atomic_dec_and_test(&key->usage))
619			schedule_work(&key_cleanup_task);
620	}
621
622} /* end key_put() */
623
624EXPORT_SYMBOL(key_put);
625
626/*****************************************************************************/
627/*
628 * find a key by its serial number
629 */
630struct key *key_lookup(key_serial_t id)
631{
632	struct rb_node *n;
633	struct key *key;
634
635	spin_lock(&key_serial_lock);
636
637	/* search the tree for the specified key */
638	n = key_serial_tree.rb_node;
639	while (n) {
640		key = rb_entry(n, struct key, serial_node);
641
642		if (id < key->serial)
643			n = n->rb_left;
644		else if (id > key->serial)
645			n = n->rb_right;
646		else
647			goto found;
648	}
649
650 not_found:
651	key = ERR_PTR(-ENOKEY);
652	goto error;
653
654 found:
655	/* pretend it doesn't exist if it's dead */
656	if (atomic_read(&key->usage) == 0 ||
657	    test_bit(KEY_FLAG_DEAD, &key->flags) ||
658	    key->type == &key_type_dead)
659		goto not_found;
660
661	/* this races with key_put(), but that doesn't matter since key_put()
662	 * doesn't actually change the key
663	 */
664	atomic_inc(&key->usage);
665
666 error:
667	spin_unlock(&key_serial_lock);
668	return key;
669
670} /* end key_lookup() */
671
672/*****************************************************************************/
673/*
674 * find and lock the specified key type against removal
675 * - we return with the sem readlocked
676 */
677struct key_type *key_type_lookup(const char *type)
678{
679	struct key_type *ktype;
680
681	down_read(&key_types_sem);
682
683	/* look up the key type to see if it's one of the registered kernel
684	 * types */
685	list_for_each_entry(ktype, &key_types_list, link) {
686		if (strcmp(ktype->name, type) == 0)
687			goto found_kernel_type;
688	}
689
690	up_read(&key_types_sem);
691	ktype = ERR_PTR(-ENOKEY);
692
693 found_kernel_type:
694	return ktype;
695
696} /* end key_type_lookup() */
697
698/*****************************************************************************/
699/*
700 * unlock a key type
701 */
702void key_type_put(struct key_type *ktype)
703{
704	up_read(&key_types_sem);
705
706} /* end key_type_put() */
707
708/*****************************************************************************/
709/*
710 * attempt to update an existing key
711 * - the key has an incremented refcount
712 * - we need to put the key if we get an error
713 */
714static inline key_ref_t __key_update(key_ref_t key_ref,
715				     const void *payload, size_t plen)
716{
717	struct key *key = key_ref_to_ptr(key_ref);
718	int ret;
719
720	/* need write permission on the key to update it */
721	ret = key_permission(key_ref, KEY_WRITE);
722	if (ret < 0)
723		goto error;
724
725	ret = -EEXIST;
726	if (!key->type->update)
727		goto error;
728
729	down_write(&key->sem);
730
731	ret = key->type->update(key, payload, plen);
732	if (ret == 0)
733		/* updating a negative key instantiates it */
734		clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
735
736	up_write(&key->sem);
737
738	if (ret < 0)
739		goto error;
740out:
741	return key_ref;
742
743error:
744	key_put(key);
745	key_ref = ERR_PTR(ret);
746	goto out;
747
748} /* end __key_update() */
749
750/*****************************************************************************/
751/*
752 * search the specified keyring for a key of the same description; if one is
753 * found, update it, otherwise add a new one
754 */
755key_ref_t key_create_or_update(key_ref_t keyring_ref,
756			       const char *type,
757			       const char *description,
758			       const void *payload,
759			       size_t plen,
760			       unsigned long flags)
761{
762	struct key_type *ktype;
763	struct key *keyring, *key = NULL;
764	key_perm_t perm;
765	key_ref_t key_ref;
766	int ret;
767
768	/* look up the key type to see if it's one of the registered kernel
769	 * types */
770	ktype = key_type_lookup(type);
771	if (IS_ERR(ktype)) {
772		key_ref = ERR_PTR(-ENODEV);
773		goto error;
774	}
775
776	key_ref = ERR_PTR(-EINVAL);
777	if (!ktype->match || !ktype->instantiate)
778		goto error_2;
779
780	keyring = key_ref_to_ptr(keyring_ref);
781
782	key_check(keyring);
783
784	key_ref = ERR_PTR(-ENOTDIR);
785	if (keyring->type != &key_type_keyring)
786		goto error_2;
787
788	down_write(&keyring->sem);
789
790	/* if we're going to allocate a new key, we're going to have
791	 * to modify the keyring */
792	ret = key_permission(keyring_ref, KEY_WRITE);
793	if (ret < 0) {
794		key_ref = ERR_PTR(ret);
795		goto error_3;
796	}
797
798	/* if it's possible to update this type of key, search for an existing
799	 * key of the same type and description in the destination keyring and
800	 * update that instead if possible
801	 */
802	if (ktype->update) {
803		key_ref = __keyring_search_one(keyring_ref, ktype, description,
804					       0);
805		if (!IS_ERR(key_ref))
806			goto found_matching_key;
807	}
808
809	/* decide on the permissions we want */
810	perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
811	perm |= KEY_USR_VIEW | KEY_USR_SEARCH | KEY_USR_LINK | KEY_USR_SETATTR;
812
813	if (ktype->read)
814		perm |= KEY_POS_READ | KEY_USR_READ;
815
816	if (ktype == &key_type_keyring || ktype->update)
817		perm |= KEY_USR_WRITE;
818
819	/* allocate a new key */
820	key = key_alloc(ktype, description, current->fsuid, current->fsgid,
821			current, perm, flags);
822	if (IS_ERR(key)) {
823		key_ref = ERR_PTR(PTR_ERR(key));
824		goto error_3;
825	}
826
827	/* instantiate it and link it into the target keyring */
828	ret = __key_instantiate_and_link(key, payload, plen, keyring, NULL);
829	if (ret < 0) {
830		key_put(key);
831		key_ref = ERR_PTR(ret);
832		goto error_3;
833	}
834
835	key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
836
837 error_3:
838	up_write(&keyring->sem);
839 error_2:
840	key_type_put(ktype);
841 error:
842	return key_ref;
843
844 found_matching_key:
845	/* we found a matching key, so we're going to try to update it
846	 * - we can drop the locks first as we have the key pinned
847	 */
848	up_write(&keyring->sem);
849	key_type_put(ktype);
850
851	key_ref = __key_update(key_ref, payload, plen);
852	goto error;
853
854} /* end key_create_or_update() */
855
856EXPORT_SYMBOL(key_create_or_update);
857
858/*****************************************************************************/
859/*
860 * update a key
861 */
862int key_update(key_ref_t key_ref, const void *payload, size_t plen)
863{
864	struct key *key = key_ref_to_ptr(key_ref);
865	int ret;
866
867	key_check(key);
868
869	/* the key must be writable */
870	ret = key_permission(key_ref, KEY_WRITE);
871	if (ret < 0)
872		goto error;
873
874	/* attempt to update it if supported */
875	ret = -EOPNOTSUPP;
876	if (key->type->update) {
877		down_write(&key->sem);
878
879		ret = key->type->update(key, payload, plen);
880		if (ret == 0)
881			/* updating a negative key instantiates it */
882			clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
883
884		up_write(&key->sem);
885	}
886
887 error:
888	return ret;
889
890} /* end key_update() */
891
892EXPORT_SYMBOL(key_update);
893
894/*****************************************************************************/
895/*
896 * revoke a key
897 */
898void key_revoke(struct key *key)
899{
900	key_check(key);
901
902	/* make sure no one's trying to change or use the key when we mark
903	 * it */
904	down_write(&key->sem);
905	set_bit(KEY_FLAG_REVOKED, &key->flags);
906
907	if (key->type->revoke)
908		key->type->revoke(key);
909
910	up_write(&key->sem);
911
912} /* end key_revoke() */
913
914EXPORT_SYMBOL(key_revoke);
915
916/*****************************************************************************/
917/*
918 * register a type of key
919 */
920int register_key_type(struct key_type *ktype)
921{
922	struct key_type *p;
923	int ret;
924
925	ret = -EEXIST;
926	down_write(&key_types_sem);
927
928	/* disallow key types with the same name */
929	list_for_each_entry(p, &key_types_list, link) {
930		if (strcmp(p->name, ktype->name) == 0)
931			goto out;
932	}
933
934	/* store the type */
935	list_add(&ktype->link, &key_types_list);
936	ret = 0;
937
938 out:
939	up_write(&key_types_sem);
940	return ret;
941
942} /* end register_key_type() */
943
944EXPORT_SYMBOL(register_key_type);
945
946/*****************************************************************************/
947/*
948 * unregister a type of key
949 */
950void unregister_key_type(struct key_type *ktype)
951{
952	struct rb_node *_n;
953	struct key *key;
954
955	down_write(&key_types_sem);
956
957	/* withdraw the key type */
958	list_del_init(&ktype->link);
959
960	/* mark all the keys of this type dead */
961	spin_lock(&key_serial_lock);
962
963	for (_n = rb_first(&key_serial_tree); _n; _n = rb_next(_n)) {
964		key = rb_entry(_n, struct key, serial_node);
965
966		if (key->type == ktype)
967			key->type = &key_type_dead;
968	}
969
970	spin_unlock(&key_serial_lock);
971
972	/* make sure everyone revalidates their keys */
973	synchronize_rcu();
974
975	/* we should now be able to destroy the payloads of all the keys of
976	 * this type with impunity */
977	spin_lock(&key_serial_lock);
978
979	for (_n = rb_first(&key_serial_tree); _n; _n = rb_next(_n)) {
980		key = rb_entry(_n, struct key, serial_node);
981
982		if (key->type == ktype) {
983			if (ktype->destroy)
984				ktype->destroy(key);
985			memset(&key->payload, KEY_DESTROY, sizeof(key->payload));
986		}
987	}
988
989	spin_unlock(&key_serial_lock);
990	up_write(&key_types_sem);
991
992} /* end unregister_key_type() */
993
994EXPORT_SYMBOL(unregister_key_type);
995
996/*****************************************************************************/
997/*
998 * initialise the key management stuff
999 */
1000void __init key_init(void)
1001{
1002	/* allocate a slab in which we can store keys */
1003	key_jar = kmem_cache_create("key_jar", sizeof(struct key),
1004			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1005
1006	/* add the special key types */
1007	list_add_tail(&key_type_keyring.link, &key_types_list);
1008	list_add_tail(&key_type_dead.link, &key_types_list);
1009	list_add_tail(&key_type_user.link, &key_types_list);
1010
1011	/* record the root user tracking */
1012	rb_link_node(&root_key_user.node,
1013		     NULL,
1014		     &key_user_tree.rb_node);
1015
1016	rb_insert_color(&root_key_user.node,
1017			&key_user_tree);
1018
1019	/* record root's user standard keyrings */
1020	key_check(&root_user_keyring);
1021	key_check(&root_session_keyring);
1022
1023	__key_insert_serial(&root_user_keyring);
1024	__key_insert_serial(&root_session_keyring);
1025
1026	keyring_publish_name(&root_user_keyring);
1027	keyring_publish_name(&root_session_keyring);
1028
1029	/* link the two root keyrings together */
1030	key_link(&root_session_keyring, &root_user_keyring);
1031
1032} /* end key_init() */
1033