1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Version:	$Id: tcp_input.c,v 1.1.1.1 2007/08/03 18:53:51 Exp $
9 *
10 * Authors:	Ross Biro
11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14 *		Florian La Roche, <flla@stud.uni-sb.de>
15 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
17 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
18 *		Matthew Dillon, <dillon@apollo.west.oic.com>
19 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 *		Jorge Cwik, <jorge@laser.satlink.net>
21 */
22
23/*
24 * Changes:
25 *		Pedro Roque	:	Fast Retransmit/Recovery.
26 *					Two receive queues.
27 *					Retransmit queue handled by TCP.
28 *					Better retransmit timer handling.
29 *					New congestion avoidance.
30 *					Header prediction.
31 *					Variable renaming.
32 *
33 *		Eric		:	Fast Retransmit.
34 *		Randy Scott	:	MSS option defines.
35 *		Eric Schenk	:	Fixes to slow start algorithm.
36 *		Eric Schenk	:	Yet another double ACK bug.
37 *		Eric Schenk	:	Delayed ACK bug fixes.
38 *		Eric Schenk	:	Floyd style fast retrans war avoidance.
39 *		David S. Miller	:	Don't allow zero congestion window.
40 *		Eric Schenk	:	Fix retransmitter so that it sends
41 *					next packet on ack of previous packet.
42 *		Andi Kleen	:	Moved open_request checking here
43 *					and process RSTs for open_requests.
44 *		Andi Kleen	:	Better prune_queue, and other fixes.
45 *		Andrey Savochkin:	Fix RTT measurements in the presence of
46 *					timestamps.
47 *		Andrey Savochkin:	Check sequence numbers correctly when
48 *					removing SACKs due to in sequence incoming
49 *					data segments.
50 *		Andi Kleen:		Make sure we never ack data there is not
51 *					enough room for. Also make this condition
52 *					a fatal error if it might still happen.
53 *		Andi Kleen:		Add tcp_measure_rcv_mss to make
54 *					connections with MSS<min(MTU,ann. MSS)
55 *					work without delayed acks.
56 *		Andi Kleen:		Process packets with PSH set in the
57 *					fast path.
58 *		J Hadi Salim:		ECN support
59 *	 	Andrei Gurtov,
60 *		Pasi Sarolahti,
61 *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
62 *					engine. Lots of bugs are found.
63 *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
64 */
65
66#include <linux/mm.h>
67#include <linux/module.h>
68#include <linux/sysctl.h>
69#include <net/tcp.h>
70#include <net/inet_common.h>
71#include <linux/ipsec.h>
72#include <asm/unaligned.h>
73#include <net/netdma.h>
74
75int sysctl_tcp_timestamps __read_mostly = 1;
76int sysctl_tcp_window_scaling __read_mostly = 1;
77int sysctl_tcp_sack __read_mostly = 1;
78int sysctl_tcp_fack __read_mostly = 1;
79int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80int sysctl_tcp_ecn __read_mostly;
81int sysctl_tcp_dsack __read_mostly = 1;
82int sysctl_tcp_app_win __read_mostly = 31;
83int sysctl_tcp_adv_win_scale __read_mostly = 2;
84
85int sysctl_tcp_stdurg __read_mostly;
86int sysctl_tcp_rfc1337 __read_mostly;
87int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88int sysctl_tcp_frto __read_mostly;
89int sysctl_tcp_frto_response __read_mostly;
90int sysctl_tcp_nometrics_save __read_mostly;
91
92int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
93int sysctl_tcp_abc __read_mostly;
94
95#define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
96#define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
97#define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
98#define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
99#define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
100#define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
101#define FLAG_ECE		0x40 /* ECE in this ACK				*/
102#define FLAG_DATA_LOST		0x80 /* SACK detected data lossage.		*/
103#define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
104#define FLAG_ONLY_ORIG_SACKED	0x200 /* SACKs only non-rexmit sent before RTO */
105
106#define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
107#define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
108#define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
109#define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
110
111#define IsReno(tp) ((tp)->rx_opt.sack_ok == 0)
112#define IsFack(tp) ((tp)->rx_opt.sack_ok & 2)
113#define IsDSack(tp) ((tp)->rx_opt.sack_ok & 4)
114
115#define IsSackFrto() (sysctl_tcp_frto == 0x2)
116
117#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
118
119/* Adapt the MSS value used to make delayed ack decision to the
120 * real world.
121 */
122static void tcp_measure_rcv_mss(struct sock *sk,
123				const struct sk_buff *skb)
124{
125	struct inet_connection_sock *icsk = inet_csk(sk);
126	const unsigned int lss = icsk->icsk_ack.last_seg_size;
127	unsigned int len;
128
129	icsk->icsk_ack.last_seg_size = 0;
130
131	/* skb->len may jitter because of SACKs, even if peer
132	 * sends good full-sized frames.
133	 */
134	len = skb_shinfo(skb)->gso_size ?: skb->len;
135	if (len >= icsk->icsk_ack.rcv_mss) {
136		icsk->icsk_ack.rcv_mss = len;
137	} else {
138		/* Otherwise, we make more careful check taking into account,
139		 * that SACKs block is variable.
140		 *
141		 * "len" is invariant segment length, including TCP header.
142		 */
143		len += skb->data - skb_transport_header(skb);
144		if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
145		    /* If PSH is not set, packet should be
146		     * full sized, provided peer TCP is not badly broken.
147		     * This observation (if it is correct 8)) allows
148		     * to handle super-low mtu links fairly.
149		     */
150		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
151		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
152			/* Subtract also invariant (if peer is RFC compliant),
153			 * tcp header plus fixed timestamp option length.
154			 * Resulting "len" is MSS free of SACK jitter.
155			 */
156			len -= tcp_sk(sk)->tcp_header_len;
157			icsk->icsk_ack.last_seg_size = len;
158			if (len == lss) {
159				icsk->icsk_ack.rcv_mss = len;
160				return;
161			}
162		}
163		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
164			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
165		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
166	}
167}
168
169static void tcp_incr_quickack(struct sock *sk)
170{
171	struct inet_connection_sock *icsk = inet_csk(sk);
172	unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
173
174	if (quickacks==0)
175		quickacks=2;
176	if (quickacks > icsk->icsk_ack.quick)
177		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
178}
179
180void tcp_enter_quickack_mode(struct sock *sk)
181{
182	struct inet_connection_sock *icsk = inet_csk(sk);
183	tcp_incr_quickack(sk);
184	icsk->icsk_ack.pingpong = 0;
185	icsk->icsk_ack.ato = TCP_ATO_MIN;
186}
187
188/* Send ACKs quickly, if "quick" count is not exhausted
189 * and the session is not interactive.
190 */
191
192static inline int tcp_in_quickack_mode(const struct sock *sk)
193{
194	const struct inet_connection_sock *icsk = inet_csk(sk);
195	return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
196}
197
198/* Buffer size and advertised window tuning.
199 *
200 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
201 */
202
203static void tcp_fixup_sndbuf(struct sock *sk)
204{
205	int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
206		     sizeof(struct sk_buff);
207
208	if (sk->sk_sndbuf < 3 * sndmem)
209		sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
210}
211
212/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
213 *
214 * All tcp_full_space() is split to two parts: "network" buffer, allocated
215 * forward and advertised in receiver window (tp->rcv_wnd) and
216 * "application buffer", required to isolate scheduling/application
217 * latencies from network.
218 * window_clamp is maximal advertised window. It can be less than
219 * tcp_full_space(), in this case tcp_full_space() - window_clamp
220 * is reserved for "application" buffer. The less window_clamp is
221 * the smoother our behaviour from viewpoint of network, but the lower
222 * throughput and the higher sensitivity of the connection to losses. 8)
223 *
224 * rcv_ssthresh is more strict window_clamp used at "slow start"
225 * phase to predict further behaviour of this connection.
226 * It is used for two goals:
227 * - to enforce header prediction at sender, even when application
228 *   requires some significant "application buffer". It is check #1.
229 * - to prevent pruning of receive queue because of misprediction
230 *   of receiver window. Check #2.
231 *
232 * The scheme does not work when sender sends good segments opening
233 * window and then starts to feed us spaghetti. But it should work
234 * in common situations. Otherwise, we have to rely on queue collapsing.
235 */
236
237/* Slow part of check#2. */
238static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
239{
240	struct tcp_sock *tp = tcp_sk(sk);
241	/* Optimize this! */
242	int truesize = tcp_win_from_space(skb->truesize)/2;
243	int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2;
244
245	while (tp->rcv_ssthresh <= window) {
246		if (truesize <= skb->len)
247			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
248
249		truesize >>= 1;
250		window >>= 1;
251	}
252	return 0;
253}
254
255static void tcp_grow_window(struct sock *sk,
256			    struct sk_buff *skb)
257{
258	struct tcp_sock *tp = tcp_sk(sk);
259
260	/* Check #1 */
261	if (tp->rcv_ssthresh < tp->window_clamp &&
262	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
263	    !tcp_memory_pressure) {
264		int incr;
265
266		/* Check #2. Increase window, if skb with such overhead
267		 * will fit to rcvbuf in future.
268		 */
269		if (tcp_win_from_space(skb->truesize) <= skb->len)
270			incr = 2*tp->advmss;
271		else
272			incr = __tcp_grow_window(sk, skb);
273
274		if (incr) {
275			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
276			inet_csk(sk)->icsk_ack.quick |= 1;
277		}
278	}
279}
280
281/* 3. Tuning rcvbuf, when connection enters established state. */
282
283static void tcp_fixup_rcvbuf(struct sock *sk)
284{
285	struct tcp_sock *tp = tcp_sk(sk);
286	int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
287
288	/* Try to select rcvbuf so that 4 mss-sized segments
289	 * will fit to window and corresponding skbs will fit to our rcvbuf.
290	 * (was 3; 4 is minimum to allow fast retransmit to work.)
291	 */
292	while (tcp_win_from_space(rcvmem) < tp->advmss)
293		rcvmem += 128;
294	if (sk->sk_rcvbuf < 4 * rcvmem)
295		sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
296}
297
298/* 4. Try to fixup all. It is made immediately after connection enters
299 *    established state.
300 */
301static void tcp_init_buffer_space(struct sock *sk)
302{
303	struct tcp_sock *tp = tcp_sk(sk);
304	int maxwin;
305
306	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
307		tcp_fixup_rcvbuf(sk);
308	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
309		tcp_fixup_sndbuf(sk);
310
311	tp->rcvq_space.space = tp->rcv_wnd;
312
313	maxwin = tcp_full_space(sk);
314
315	if (tp->window_clamp >= maxwin) {
316		tp->window_clamp = maxwin;
317
318		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
319			tp->window_clamp = max(maxwin -
320					       (maxwin >> sysctl_tcp_app_win),
321					       4 * tp->advmss);
322	}
323
324	/* Force reservation of one segment. */
325	if (sysctl_tcp_app_win &&
326	    tp->window_clamp > 2 * tp->advmss &&
327	    tp->window_clamp + tp->advmss > maxwin)
328		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
329
330	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
331	tp->snd_cwnd_stamp = tcp_time_stamp;
332}
333
334/* 5. Recalculate window clamp after socket hit its memory bounds. */
335static void tcp_clamp_window(struct sock *sk)
336{
337	struct tcp_sock *tp = tcp_sk(sk);
338	struct inet_connection_sock *icsk = inet_csk(sk);
339
340	icsk->icsk_ack.quick = 0;
341
342	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
343	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
344	    !tcp_memory_pressure &&
345	    atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
346		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
347				    sysctl_tcp_rmem[2]);
348	}
349	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
350		tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
351}
352
353
354/* Initialize RCV_MSS value.
355 * RCV_MSS is an our guess about MSS used by the peer.
356 * We haven't any direct information about the MSS.
357 * It's better to underestimate the RCV_MSS rather than overestimate.
358 * Overestimations make us ACKing less frequently than needed.
359 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
360 */
361void tcp_initialize_rcv_mss(struct sock *sk)
362{
363	struct tcp_sock *tp = tcp_sk(sk);
364	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
365
366	hint = min(hint, tp->rcv_wnd/2);
367	hint = min(hint, TCP_MIN_RCVMSS);
368	hint = max(hint, TCP_MIN_MSS);
369
370	inet_csk(sk)->icsk_ack.rcv_mss = hint;
371}
372
373/* Receiver "autotuning" code.
374 *
375 * The algorithm for RTT estimation w/o timestamps is based on
376 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
377 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
378 *
379 * More detail on this code can be found at
380 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
381 * though this reference is out of date.  A new paper
382 * is pending.
383 */
384static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
385{
386	u32 new_sample = tp->rcv_rtt_est.rtt;
387	long m = sample;
388
389	if (m == 0)
390		m = 1;
391
392	if (new_sample != 0) {
393		/* If we sample in larger samples in the non-timestamp
394		 * case, we could grossly overestimate the RTT especially
395		 * with chatty applications or bulk transfer apps which
396		 * are stalled on filesystem I/O.
397		 *
398		 * Also, since we are only going for a minimum in the
399		 * non-timestamp case, we do not smooth things out
400		 * else with timestamps disabled convergence takes too
401		 * long.
402		 */
403		if (!win_dep) {
404			m -= (new_sample >> 3);
405			new_sample += m;
406		} else if (m < new_sample)
407			new_sample = m << 3;
408	} else {
409		/* No previous measure. */
410		new_sample = m << 3;
411	}
412
413	if (tp->rcv_rtt_est.rtt != new_sample)
414		tp->rcv_rtt_est.rtt = new_sample;
415}
416
417static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
418{
419	if (tp->rcv_rtt_est.time == 0)
420		goto new_measure;
421	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
422		return;
423	tcp_rcv_rtt_update(tp,
424			   jiffies - tp->rcv_rtt_est.time,
425			   1);
426
427new_measure:
428	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
429	tp->rcv_rtt_est.time = tcp_time_stamp;
430}
431
432static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
433{
434	struct tcp_sock *tp = tcp_sk(sk);
435	if (tp->rx_opt.rcv_tsecr &&
436	    (TCP_SKB_CB(skb)->end_seq -
437	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
438		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
439}
440
441/*
442 * This function should be called every time data is copied to user space.
443 * It calculates the appropriate TCP receive buffer space.
444 */
445void tcp_rcv_space_adjust(struct sock *sk)
446{
447	struct tcp_sock *tp = tcp_sk(sk);
448	int time;
449	int space;
450
451	if (tp->rcvq_space.time == 0)
452		goto new_measure;
453
454	time = tcp_time_stamp - tp->rcvq_space.time;
455	if (time < (tp->rcv_rtt_est.rtt >> 3) ||
456	    tp->rcv_rtt_est.rtt == 0)
457		return;
458
459	space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
460
461	space = max(tp->rcvq_space.space, space);
462
463	if (tp->rcvq_space.space != space) {
464		int rcvmem;
465
466		tp->rcvq_space.space = space;
467
468		if (sysctl_tcp_moderate_rcvbuf &&
469		    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
470			int new_clamp = space;
471
472			/* Receive space grows, normalize in order to
473			 * take into account packet headers and sk_buff
474			 * structure overhead.
475			 */
476			space /= tp->advmss;
477			if (!space)
478				space = 1;
479			rcvmem = (tp->advmss + MAX_TCP_HEADER +
480				  16 + sizeof(struct sk_buff));
481			while (tcp_win_from_space(rcvmem) < tp->advmss)
482				rcvmem += 128;
483			space *= rcvmem;
484			space = min(space, sysctl_tcp_rmem[2]);
485			if (space > sk->sk_rcvbuf) {
486				sk->sk_rcvbuf = space;
487
488				/* Make the window clamp follow along.  */
489				tp->window_clamp = new_clamp;
490			}
491		}
492	}
493
494new_measure:
495	tp->rcvq_space.seq = tp->copied_seq;
496	tp->rcvq_space.time = tcp_time_stamp;
497}
498
499/* There is something which you must keep in mind when you analyze the
500 * behavior of the tp->ato delayed ack timeout interval.  When a
501 * connection starts up, we want to ack as quickly as possible.  The
502 * problem is that "good" TCP's do slow start at the beginning of data
503 * transmission.  The means that until we send the first few ACK's the
504 * sender will sit on his end and only queue most of his data, because
505 * he can only send snd_cwnd unacked packets at any given time.  For
506 * each ACK we send, he increments snd_cwnd and transmits more of his
507 * queue.  -DaveM
508 */
509static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
510{
511	struct tcp_sock *tp = tcp_sk(sk);
512	struct inet_connection_sock *icsk = inet_csk(sk);
513	u32 now;
514
515	inet_csk_schedule_ack(sk);
516
517	tcp_measure_rcv_mss(sk, skb);
518
519	tcp_rcv_rtt_measure(tp);
520
521	now = tcp_time_stamp;
522
523	if (!icsk->icsk_ack.ato) {
524		/* The _first_ data packet received, initialize
525		 * delayed ACK engine.
526		 */
527		tcp_incr_quickack(sk);
528		icsk->icsk_ack.ato = TCP_ATO_MIN;
529	} else {
530		int m = now - icsk->icsk_ack.lrcvtime;
531
532		if (m <= TCP_ATO_MIN/2) {
533			/* The fastest case is the first. */
534			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
535		} else if (m < icsk->icsk_ack.ato) {
536			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
537			if (icsk->icsk_ack.ato > icsk->icsk_rto)
538				icsk->icsk_ack.ato = icsk->icsk_rto;
539		} else if (m > icsk->icsk_rto) {
540			/* Too long gap. Apparently sender failed to
541			 * restart window, so that we send ACKs quickly.
542			 */
543			tcp_incr_quickack(sk);
544			sk_stream_mem_reclaim(sk);
545		}
546	}
547	icsk->icsk_ack.lrcvtime = now;
548
549	TCP_ECN_check_ce(tp, skb);
550
551	if (skb->len >= 128)
552		tcp_grow_window(sk, skb);
553}
554
555/* Called to compute a smoothed rtt estimate. The data fed to this
556 * routine either comes from timestamps, or from segments that were
557 * known _not_ to have been retransmitted [see Karn/Partridge
558 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
559 * piece by Van Jacobson.
560 * NOTE: the next three routines used to be one big routine.
561 * To save cycles in the RFC 1323 implementation it was better to break
562 * it up into three procedures. -- erics
563 */
564static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
565{
566	struct tcp_sock *tp = tcp_sk(sk);
567	long m = mrtt; /* RTT */
568
569	/*	The following amusing code comes from Jacobson's
570	 *	article in SIGCOMM '88.  Note that rtt and mdev
571	 *	are scaled versions of rtt and mean deviation.
572	 *	This is designed to be as fast as possible
573	 *	m stands for "measurement".
574	 *
575	 *	On a 1990 paper the rto value is changed to:
576	 *	RTO = rtt + 4 * mdev
577	 *
578	 * Funny. This algorithm seems to be very broken.
579	 * These formulae increase RTO, when it should be decreased, increase
580	 * too slowly, when it should be increased quickly, decrease too quickly
581	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
582	 * does not matter how to _calculate_ it. Seems, it was trap
583	 * that VJ failed to avoid. 8)
584	 */
585	if (m == 0)
586		m = 1;
587	if (tp->srtt != 0) {
588		m -= (tp->srtt >> 3);	/* m is now error in rtt est */
589		tp->srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
590		if (m < 0) {
591			m = -m;		/* m is now abs(error) */
592			m -= (tp->mdev >> 2);   /* similar update on mdev */
593			/* This is similar to one of Eifel findings.
594			 * Eifel blocks mdev updates when rtt decreases.
595			 * This solution is a bit different: we use finer gain
596			 * for mdev in this case (alpha*beta).
597			 * Like Eifel it also prevents growth of rto,
598			 * but also it limits too fast rto decreases,
599			 * happening in pure Eifel.
600			 */
601			if (m > 0)
602				m >>= 3;
603		} else {
604			m -= (tp->mdev >> 2);   /* similar update on mdev */
605		}
606		tp->mdev += m;	    	/* mdev = 3/4 mdev + 1/4 new */
607		if (tp->mdev > tp->mdev_max) {
608			tp->mdev_max = tp->mdev;
609			if (tp->mdev_max > tp->rttvar)
610				tp->rttvar = tp->mdev_max;
611		}
612		if (after(tp->snd_una, tp->rtt_seq)) {
613			if (tp->mdev_max < tp->rttvar)
614				tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
615			tp->rtt_seq = tp->snd_nxt;
616			tp->mdev_max = TCP_RTO_MIN;
617		}
618	} else {
619		/* no previous measure. */
620		tp->srtt = m<<3;	/* take the measured time to be rtt */
621		tp->mdev = m<<1;	/* make sure rto = 3*rtt */
622		tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
623		tp->rtt_seq = tp->snd_nxt;
624	}
625}
626
627/* Calculate rto without backoff.  This is the second half of Van Jacobson's
628 * routine referred to above.
629 */
630static inline void tcp_set_rto(struct sock *sk)
631{
632	const struct tcp_sock *tp = tcp_sk(sk);
633	/* Old crap is replaced with new one. 8)
634	 *
635	 * More seriously:
636	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
637	 *    It cannot be less due to utterly erratic ACK generation made
638	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
639	 *    to do with delayed acks, because at cwnd>2 true delack timeout
640	 *    is invisible. Actually, Linux-2.4 also generates erratic
641	 *    ACKs in some circumstances.
642	 */
643	inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
644
645	/* 2. Fixups made earlier cannot be right.
646	 *    If we do not estimate RTO correctly without them,
647	 *    all the algo is pure shit and should be replaced
648	 *    with correct one. It is exactly, which we pretend to do.
649	 */
650}
651
652/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
653 * guarantees that rto is higher.
654 */
655static inline void tcp_bound_rto(struct sock *sk)
656{
657	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
658		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
659}
660
661/* Save metrics learned by this TCP session.
662   This function is called only, when TCP finishes successfully
663   i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
664 */
665void tcp_update_metrics(struct sock *sk)
666{
667	struct tcp_sock *tp = tcp_sk(sk);
668	struct dst_entry *dst = __sk_dst_get(sk);
669
670	if (sysctl_tcp_nometrics_save)
671		return;
672
673	dst_confirm(dst);
674
675	if (dst && (dst->flags&DST_HOST)) {
676		const struct inet_connection_sock *icsk = inet_csk(sk);
677		int m;
678
679		if (icsk->icsk_backoff || !tp->srtt) {
680			/* This session failed to estimate rtt. Why?
681			 * Probably, no packets returned in time.
682			 * Reset our results.
683			 */
684			if (!(dst_metric_locked(dst, RTAX_RTT)))
685				dst->metrics[RTAX_RTT-1] = 0;
686			return;
687		}
688
689		m = dst_metric(dst, RTAX_RTT) - tp->srtt;
690
691		/* If newly calculated rtt larger than stored one,
692		 * store new one. Otherwise, use EWMA. Remember,
693		 * rtt overestimation is always better than underestimation.
694		 */
695		if (!(dst_metric_locked(dst, RTAX_RTT))) {
696			if (m <= 0)
697				dst->metrics[RTAX_RTT-1] = tp->srtt;
698			else
699				dst->metrics[RTAX_RTT-1] -= (m>>3);
700		}
701
702		if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
703			if (m < 0)
704				m = -m;
705
706			/* Scale deviation to rttvar fixed point */
707			m >>= 1;
708			if (m < tp->mdev)
709				m = tp->mdev;
710
711			if (m >= dst_metric(dst, RTAX_RTTVAR))
712				dst->metrics[RTAX_RTTVAR-1] = m;
713			else
714				dst->metrics[RTAX_RTTVAR-1] -=
715					(dst->metrics[RTAX_RTTVAR-1] - m)>>2;
716		}
717
718		if (tp->snd_ssthresh >= 0xFFFF) {
719			/* Slow start still did not finish. */
720			if (dst_metric(dst, RTAX_SSTHRESH) &&
721			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
722			    (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
723				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
724			if (!dst_metric_locked(dst, RTAX_CWND) &&
725			    tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
726				dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
727		} else if (tp->snd_cwnd > tp->snd_ssthresh &&
728			   icsk->icsk_ca_state == TCP_CA_Open) {
729			/* Cong. avoidance phase, cwnd is reliable. */
730			if (!dst_metric_locked(dst, RTAX_SSTHRESH))
731				dst->metrics[RTAX_SSTHRESH-1] =
732					max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
733			if (!dst_metric_locked(dst, RTAX_CWND))
734				dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
735		} else {
736			/* Else slow start did not finish, cwnd is non-sense,
737			   ssthresh may be also invalid.
738			 */
739			if (!dst_metric_locked(dst, RTAX_CWND))
740				dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
741			if (dst->metrics[RTAX_SSTHRESH-1] &&
742			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
743			    tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
744				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
745		}
746
747		if (!dst_metric_locked(dst, RTAX_REORDERING)) {
748			if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
749			    tp->reordering != sysctl_tcp_reordering)
750				dst->metrics[RTAX_REORDERING-1] = tp->reordering;
751		}
752	}
753}
754
755/* Numbers are taken from RFC2414.  */
756__u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
757{
758	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
759
760	if (!cwnd) {
761		if (tp->mss_cache > 1460)
762			cwnd = 2;
763		else
764			cwnd = (tp->mss_cache > 1095) ? 3 : 4;
765	}
766	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
767}
768
769/* Set slow start threshold and cwnd not falling to slow start */
770void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
771{
772	struct tcp_sock *tp = tcp_sk(sk);
773	const struct inet_connection_sock *icsk = inet_csk(sk);
774
775	tp->prior_ssthresh = 0;
776	tp->bytes_acked = 0;
777	if (icsk->icsk_ca_state < TCP_CA_CWR) {
778		tp->undo_marker = 0;
779		if (set_ssthresh)
780			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
781		tp->snd_cwnd = min(tp->snd_cwnd,
782				   tcp_packets_in_flight(tp) + 1U);
783		tp->snd_cwnd_cnt = 0;
784		tp->high_seq = tp->snd_nxt;
785		tp->snd_cwnd_stamp = tcp_time_stamp;
786		TCP_ECN_queue_cwr(tp);
787
788		tcp_set_ca_state(sk, TCP_CA_CWR);
789	}
790}
791
792/* Initialize metrics on socket. */
793
794static void tcp_init_metrics(struct sock *sk)
795{
796	struct tcp_sock *tp = tcp_sk(sk);
797	struct dst_entry *dst = __sk_dst_get(sk);
798
799	if (dst == NULL)
800		goto reset;
801
802	dst_confirm(dst);
803
804	if (dst_metric_locked(dst, RTAX_CWND))
805		tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
806	if (dst_metric(dst, RTAX_SSTHRESH)) {
807		tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
808		if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
809			tp->snd_ssthresh = tp->snd_cwnd_clamp;
810	}
811	if (dst_metric(dst, RTAX_REORDERING) &&
812	    tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
813		tp->rx_opt.sack_ok &= ~2;
814		tp->reordering = dst_metric(dst, RTAX_REORDERING);
815	}
816
817	if (dst_metric(dst, RTAX_RTT) == 0)
818		goto reset;
819
820	if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
821		goto reset;
822
823	/* Initial rtt is determined from SYN,SYN-ACK.
824	 * The segment is small and rtt may appear much
825	 * less than real one. Use per-dst memory
826	 * to make it more realistic.
827	 *
828	 * A bit of theory. RTT is time passed after "normal" sized packet
829	 * is sent until it is ACKed. In normal circumstances sending small
830	 * packets force peer to delay ACKs and calculation is correct too.
831	 * The algorithm is adaptive and, provided we follow specs, it
832	 * NEVER underestimate RTT. BUT! If peer tries to make some clever
833	 * tricks sort of "quick acks" for time long enough to decrease RTT
834	 * to low value, and then abruptly stops to do it and starts to delay
835	 * ACKs, wait for troubles.
836	 */
837	if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
838		tp->srtt = dst_metric(dst, RTAX_RTT);
839		tp->rtt_seq = tp->snd_nxt;
840	}
841	if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
842		tp->mdev = dst_metric(dst, RTAX_RTTVAR);
843		tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
844	}
845	tcp_set_rto(sk);
846	tcp_bound_rto(sk);
847	if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
848		goto reset;
849	tp->snd_cwnd = tcp_init_cwnd(tp, dst);
850	tp->snd_cwnd_stamp = tcp_time_stamp;
851	return;
852
853reset:
854	/* Play conservative. If timestamps are not
855	 * supported, TCP will fail to recalculate correct
856	 * rtt, if initial rto is too small. FORGET ALL AND RESET!
857	 */
858	if (!tp->rx_opt.saw_tstamp && tp->srtt) {
859		tp->srtt = 0;
860		tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
861		inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
862	}
863}
864
865static void tcp_update_reordering(struct sock *sk, const int metric,
866				  const int ts)
867{
868	struct tcp_sock *tp = tcp_sk(sk);
869	if (metric > tp->reordering) {
870		tp->reordering = min(TCP_MAX_REORDERING, metric);
871
872		/* This exciting event is worth to be remembered. 8) */
873		if (ts)
874			NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
875		else if (IsReno(tp))
876			NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
877		else if (IsFack(tp))
878			NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
879		else
880			NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
881#if FASTRETRANS_DEBUG > 1
882		printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
883		       tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
884		       tp->reordering,
885		       tp->fackets_out,
886		       tp->sacked_out,
887		       tp->undo_marker ? tp->undo_retrans : 0);
888#endif
889		/* Disable FACK yet. */
890		tp->rx_opt.sack_ok &= ~2;
891	}
892}
893
894/* This procedure tags the retransmission queue when SACKs arrive.
895 *
896 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
897 * Packets in queue with these bits set are counted in variables
898 * sacked_out, retrans_out and lost_out, correspondingly.
899 *
900 * Valid combinations are:
901 * Tag  InFlight	Description
902 * 0	1		- orig segment is in flight.
903 * S	0		- nothing flies, orig reached receiver.
904 * L	0		- nothing flies, orig lost by net.
905 * R	2		- both orig and retransmit are in flight.
906 * L|R	1		- orig is lost, retransmit is in flight.
907 * S|R  1		- orig reached receiver, retrans is still in flight.
908 * (L|S|R is logically valid, it could occur when L|R is sacked,
909 *  but it is equivalent to plain S and code short-curcuits it to S.
910 *  L|S is logically invalid, it would mean -1 packet in flight 8))
911 *
912 * These 6 states form finite state machine, controlled by the following events:
913 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
914 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
915 * 3. Loss detection event of one of three flavors:
916 *	A. Scoreboard estimator decided the packet is lost.
917 *	   A'. Reno "three dupacks" marks head of queue lost.
918 *	   A''. Its FACK modfication, head until snd.fack is lost.
919 *	B. SACK arrives sacking data transmitted after never retransmitted
920 *	   hole was sent out.
921 *	C. SACK arrives sacking SND.NXT at the moment, when the
922 *	   segment was retransmitted.
923 * 4. D-SACK added new rule: D-SACK changes any tag to S.
924 *
925 * It is pleasant to note, that state diagram turns out to be commutative,
926 * so that we are allowed not to be bothered by order of our actions,
927 * when multiple events arrive simultaneously. (see the function below).
928 *
929 * Reordering detection.
930 * --------------------
931 * Reordering metric is maximal distance, which a packet can be displaced
932 * in packet stream. With SACKs we can estimate it:
933 *
934 * 1. SACK fills old hole and the corresponding segment was not
935 *    ever retransmitted -> reordering. Alas, we cannot use it
936 *    when segment was retransmitted.
937 * 2. The last flaw is solved with D-SACK. D-SACK arrives
938 *    for retransmitted and already SACKed segment -> reordering..
939 * Both of these heuristics are not used in Loss state, when we cannot
940 * account for retransmits accurately.
941 */
942static int
943tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
944{
945	const struct inet_connection_sock *icsk = inet_csk(sk);
946	struct tcp_sock *tp = tcp_sk(sk);
947	unsigned char *ptr = (skb_transport_header(ack_skb) +
948			      TCP_SKB_CB(ack_skb)->sacked);
949	struct tcp_sack_block_wire *sp = (struct tcp_sack_block_wire *)(ptr+2);
950	struct sk_buff *cached_skb;
951	int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
952	int reord = tp->packets_out;
953	int prior_fackets;
954	u32 lost_retrans = 0;
955	int flag = 0;
956	int found_dup_sack = 0;
957	int cached_fack_count;
958	int i;
959	int first_sack_index;
960
961	if (!tp->sacked_out)
962		tp->fackets_out = 0;
963	prior_fackets = tp->fackets_out;
964
965	/* Check for D-SACK. */
966	if (before(ntohl(sp[0].start_seq), TCP_SKB_CB(ack_skb)->ack_seq)) {
967		found_dup_sack = 1;
968		tp->rx_opt.sack_ok |= 4;
969		NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
970	} else if (num_sacks > 1 &&
971			!after(ntohl(sp[0].end_seq), ntohl(sp[1].end_seq)) &&
972			!before(ntohl(sp[0].start_seq), ntohl(sp[1].start_seq))) {
973		found_dup_sack = 1;
974		tp->rx_opt.sack_ok |= 4;
975		NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
976	}
977
978	/* D-SACK for already forgotten data...
979	 * Do dumb counting. */
980	if (found_dup_sack &&
981			!after(ntohl(sp[0].end_seq), prior_snd_una) &&
982			after(ntohl(sp[0].end_seq), tp->undo_marker))
983		tp->undo_retrans--;
984
985	/* Eliminate too old ACKs, but take into
986	 * account more or less fresh ones, they can
987	 * contain valid SACK info.
988	 */
989	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
990		return 0;
991
992	/* SACK fastpath:
993	 * if the only SACK change is the increase of the end_seq of
994	 * the first block then only apply that SACK block
995	 * and use retrans queue hinting otherwise slowpath */
996	flag = 1;
997	for (i = 0; i < num_sacks; i++) {
998		__be32 start_seq = sp[i].start_seq;
999		__be32 end_seq = sp[i].end_seq;
1000
1001		if (i == 0) {
1002			if (tp->recv_sack_cache[i].start_seq != start_seq)
1003				flag = 0;
1004		} else {
1005			if ((tp->recv_sack_cache[i].start_seq != start_seq) ||
1006			    (tp->recv_sack_cache[i].end_seq != end_seq))
1007				flag = 0;
1008		}
1009		tp->recv_sack_cache[i].start_seq = start_seq;
1010		tp->recv_sack_cache[i].end_seq = end_seq;
1011	}
1012	/* Clear the rest of the cache sack blocks so they won't match mistakenly. */
1013	for (; i < ARRAY_SIZE(tp->recv_sack_cache); i++) {
1014		tp->recv_sack_cache[i].start_seq = 0;
1015		tp->recv_sack_cache[i].end_seq = 0;
1016	}
1017
1018	first_sack_index = 0;
1019	if (flag)
1020		num_sacks = 1;
1021	else {
1022		int j;
1023		tp->fastpath_skb_hint = NULL;
1024
1025		/* order SACK blocks to allow in order walk of the retrans queue */
1026		for (i = num_sacks-1; i > 0; i--) {
1027			for (j = 0; j < i; j++){
1028				if (after(ntohl(sp[j].start_seq),
1029					  ntohl(sp[j+1].start_seq))){
1030					struct tcp_sack_block_wire tmp;
1031
1032					tmp = sp[j];
1033					sp[j] = sp[j+1];
1034					sp[j+1] = tmp;
1035
1036					/* Track where the first SACK block goes to */
1037					if (j == first_sack_index)
1038						first_sack_index = j+1;
1039				}
1040
1041			}
1042		}
1043	}
1044
1045	/* clear flag as used for different purpose in following code */
1046	flag = 0;
1047
1048	/* Use SACK fastpath hint if valid */
1049	cached_skb = tp->fastpath_skb_hint;
1050	cached_fack_count = tp->fastpath_cnt_hint;
1051	if (!cached_skb) {
1052		cached_skb = tcp_write_queue_head(sk);
1053		cached_fack_count = 0;
1054	}
1055
1056	for (i=0; i<num_sacks; i++, sp++) {
1057		struct sk_buff *skb;
1058		__u32 start_seq = ntohl(sp->start_seq);
1059		__u32 end_seq = ntohl(sp->end_seq);
1060		int fack_count;
1061		int dup_sack = (found_dup_sack && (i == first_sack_index));
1062
1063		skb = cached_skb;
1064		fack_count = cached_fack_count;
1065
1066		/* Event "B" in the comment above. */
1067		if (after(end_seq, tp->high_seq))
1068			flag |= FLAG_DATA_LOST;
1069
1070		tcp_for_write_queue_from(skb, sk) {
1071			int in_sack, pcount;
1072			u8 sacked;
1073
1074			if (skb == tcp_send_head(sk))
1075				break;
1076
1077			cached_skb = skb;
1078			cached_fack_count = fack_count;
1079			if (i == first_sack_index) {
1080				tp->fastpath_skb_hint = skb;
1081				tp->fastpath_cnt_hint = fack_count;
1082			}
1083
1084			/* The retransmission queue is always in order, so
1085			 * we can short-circuit the walk early.
1086			 */
1087			if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1088				break;
1089
1090			in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1091				!before(end_seq, TCP_SKB_CB(skb)->end_seq);
1092
1093			pcount = tcp_skb_pcount(skb);
1094
1095			if (pcount > 1 && !in_sack &&
1096			    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1097				unsigned int pkt_len;
1098
1099				in_sack = !after(start_seq,
1100						 TCP_SKB_CB(skb)->seq);
1101
1102				if (!in_sack)
1103					pkt_len = (start_seq -
1104						   TCP_SKB_CB(skb)->seq);
1105				else
1106					pkt_len = (end_seq -
1107						   TCP_SKB_CB(skb)->seq);
1108				if (tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size))
1109					break;
1110				pcount = tcp_skb_pcount(skb);
1111			}
1112
1113			fack_count += pcount;
1114
1115			sacked = TCP_SKB_CB(skb)->sacked;
1116
1117			/* Account D-SACK for retransmitted packet. */
1118			if ((dup_sack && in_sack) &&
1119			    (sacked & TCPCB_RETRANS) &&
1120			    after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1121				tp->undo_retrans--;
1122
1123			/* The frame is ACKed. */
1124			if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
1125				if (sacked&TCPCB_RETRANS) {
1126					if ((dup_sack && in_sack) &&
1127					    (sacked&TCPCB_SACKED_ACKED))
1128						reord = min(fack_count, reord);
1129				} else {
1130					/* If it was in a hole, we detected reordering. */
1131					if (fack_count < prior_fackets &&
1132					    !(sacked&TCPCB_SACKED_ACKED))
1133						reord = min(fack_count, reord);
1134				}
1135
1136				/* Nothing to do; acked frame is about to be dropped. */
1137				continue;
1138			}
1139
1140			if ((sacked&TCPCB_SACKED_RETRANS) &&
1141			    after(end_seq, TCP_SKB_CB(skb)->ack_seq) &&
1142			    (!lost_retrans || after(end_seq, lost_retrans)))
1143				lost_retrans = end_seq;
1144
1145			if (!in_sack)
1146				continue;
1147
1148			if (!(sacked&TCPCB_SACKED_ACKED)) {
1149				if (sacked & TCPCB_SACKED_RETRANS) {
1150					/* If the segment is not tagged as lost,
1151					 * we do not clear RETRANS, believing
1152					 * that retransmission is still in flight.
1153					 */
1154					if (sacked & TCPCB_LOST) {
1155						TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1156						tp->lost_out -= tcp_skb_pcount(skb);
1157						tp->retrans_out -= tcp_skb_pcount(skb);
1158
1159						/* clear lost hint */
1160						tp->retransmit_skb_hint = NULL;
1161					}
1162				} else {
1163					/* New sack for not retransmitted frame,
1164					 * which was in hole. It is reordering.
1165					 */
1166					if (!(sacked & TCPCB_RETRANS) &&
1167					    fack_count < prior_fackets)
1168						reord = min(fack_count, reord);
1169
1170					if (sacked & TCPCB_LOST) {
1171						TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1172						tp->lost_out -= tcp_skb_pcount(skb);
1173
1174						/* clear lost hint */
1175						tp->retransmit_skb_hint = NULL;
1176					}
1177					/* SACK enhanced F-RTO detection.
1178					 * Set flag if and only if non-rexmitted
1179					 * segments below frto_highmark are
1180					 * SACKed (RFC4138; Appendix B).
1181					 * Clearing correct due to in-order walk
1182					 */
1183					if (after(end_seq, tp->frto_highmark)) {
1184						flag &= ~FLAG_ONLY_ORIG_SACKED;
1185					} else {
1186						if (!(sacked & TCPCB_RETRANS))
1187							flag |= FLAG_ONLY_ORIG_SACKED;
1188					}
1189				}
1190
1191				TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1192				flag |= FLAG_DATA_SACKED;
1193				tp->sacked_out += tcp_skb_pcount(skb);
1194
1195				if (fack_count > tp->fackets_out)
1196					tp->fackets_out = fack_count;
1197			} else {
1198				if (dup_sack && (sacked&TCPCB_RETRANS))
1199					reord = min(fack_count, reord);
1200			}
1201
1202			/* D-SACK. We can detect redundant retransmission
1203			 * in S|R and plain R frames and clear it.
1204			 * undo_retrans is decreased above, L|R frames
1205			 * are accounted above as well.
1206			 */
1207			if (dup_sack &&
1208			    (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
1209				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1210				tp->retrans_out -= tcp_skb_pcount(skb);
1211				tp->retransmit_skb_hint = NULL;
1212			}
1213		}
1214	}
1215
1216	/* Check for lost retransmit. This superb idea is
1217	 * borrowed from "ratehalving". Event "C".
1218	 * Later note: FACK people cheated me again 8),
1219	 * we have to account for reordering! Ugly,
1220	 * but should help.
1221	 */
1222	if (lost_retrans && icsk->icsk_ca_state == TCP_CA_Recovery) {
1223		struct sk_buff *skb;
1224
1225		tcp_for_write_queue(skb, sk) {
1226			if (skb == tcp_send_head(sk))
1227				break;
1228			if (after(TCP_SKB_CB(skb)->seq, lost_retrans))
1229				break;
1230			if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1231				continue;
1232			if ((TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) &&
1233			    after(lost_retrans, TCP_SKB_CB(skb)->ack_seq) &&
1234			    (IsFack(tp) ||
1235			     !before(lost_retrans,
1236				     TCP_SKB_CB(skb)->ack_seq + tp->reordering *
1237				     tp->mss_cache))) {
1238				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1239				tp->retrans_out -= tcp_skb_pcount(skb);
1240
1241				/* clear lost hint */
1242				tp->retransmit_skb_hint = NULL;
1243
1244				if (!(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1245					tp->lost_out += tcp_skb_pcount(skb);
1246					TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1247					flag |= FLAG_DATA_SACKED;
1248					NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1249				}
1250			}
1251		}
1252	}
1253
1254	tp->left_out = tp->sacked_out + tp->lost_out;
1255
1256	if ((reord < tp->fackets_out) && icsk->icsk_ca_state != TCP_CA_Loss &&
1257	    (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1258		tcp_update_reordering(sk, ((tp->fackets_out + 1) - reord), 0);
1259
1260#if FASTRETRANS_DEBUG > 0
1261	BUG_TRAP((int)tp->sacked_out >= 0);
1262	BUG_TRAP((int)tp->lost_out >= 0);
1263	BUG_TRAP((int)tp->retrans_out >= 0);
1264	BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1265#endif
1266	return flag;
1267}
1268
1269/* F-RTO can only be used if TCP has never retransmitted anything other than
1270 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1271 */
1272int tcp_use_frto(struct sock *sk)
1273{
1274	const struct tcp_sock *tp = tcp_sk(sk);
1275	struct sk_buff *skb;
1276
1277	if (!sysctl_tcp_frto)
1278		return 0;
1279
1280	if (IsSackFrto())
1281		return 1;
1282
1283	/* Avoid expensive walking of rexmit queue if possible */
1284	if (tp->retrans_out > 1)
1285		return 0;
1286
1287	skb = tcp_write_queue_head(sk);
1288	skb = tcp_write_queue_next(sk, skb);	/* Skips head */
1289	tcp_for_write_queue_from(skb, sk) {
1290		if (skb == tcp_send_head(sk))
1291			break;
1292		if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1293			return 0;
1294		/* Short-circuit when first non-SACKed skb has been checked */
1295		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED))
1296			break;
1297	}
1298	return 1;
1299}
1300
1301/* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1302 * recovery a bit and use heuristics in tcp_process_frto() to detect if
1303 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1304 * keep retrans_out counting accurate (with SACK F-RTO, other than head
1305 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1306 * bits are handled if the Loss state is really to be entered (in
1307 * tcp_enter_frto_loss).
1308 *
1309 * Do like tcp_enter_loss() would; when RTO expires the second time it
1310 * does:
1311 *  "Reduce ssthresh if it has not yet been made inside this window."
1312 */
1313void tcp_enter_frto(struct sock *sk)
1314{
1315	const struct inet_connection_sock *icsk = inet_csk(sk);
1316	struct tcp_sock *tp = tcp_sk(sk);
1317	struct sk_buff *skb;
1318
1319	if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
1320	    tp->snd_una == tp->high_seq ||
1321	    ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1322	     !icsk->icsk_retransmits)) {
1323		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1324		/* Our state is too optimistic in ssthresh() call because cwnd
1325		 * is not reduced until tcp_enter_frto_loss() when previous FRTO
1326		 * recovery has not yet completed. Pattern would be this: RTO,
1327		 * Cumulative ACK, RTO (2xRTO for the same segment does not end
1328		 * up here twice).
1329		 * RFC4138 should be more specific on what to do, even though
1330		 * RTO is quite unlikely to occur after the first Cumulative ACK
1331		 * due to back-off and complexity of triggering events ...
1332		 */
1333		if (tp->frto_counter) {
1334			u32 stored_cwnd;
1335			stored_cwnd = tp->snd_cwnd;
1336			tp->snd_cwnd = 2;
1337			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1338			tp->snd_cwnd = stored_cwnd;
1339		} else {
1340			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1341		}
1342		/* ... in theory, cong.control module could do "any tricks" in
1343		 * ssthresh(), which means that ca_state, lost bits and lost_out
1344		 * counter would have to be faked before the call occurs. We
1345		 * consider that too expensive, unlikely and hacky, so modules
1346		 * using these in ssthresh() must deal these incompatibility
1347		 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1348		 */
1349		tcp_ca_event(sk, CA_EVENT_FRTO);
1350	}
1351
1352	tp->undo_marker = tp->snd_una;
1353	tp->undo_retrans = 0;
1354
1355	skb = tcp_write_queue_head(sk);
1356	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1357		TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1358		tp->retrans_out -= tcp_skb_pcount(skb);
1359	}
1360	tcp_sync_left_out(tp);
1361
1362	/* Earlier loss recovery underway (see RFC4138; Appendix B).
1363	 * The last condition is necessary at least in tp->frto_counter case.
1364	 */
1365	if (IsSackFrto() && (tp->frto_counter ||
1366	    ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1367	    after(tp->high_seq, tp->snd_una)) {
1368		tp->frto_highmark = tp->high_seq;
1369	} else {
1370		tp->frto_highmark = tp->snd_nxt;
1371	}
1372	tcp_set_ca_state(sk, TCP_CA_Disorder);
1373	tp->high_seq = tp->snd_nxt;
1374	tp->frto_counter = 1;
1375}
1376
1377/* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1378 * which indicates that we should follow the traditional RTO recovery,
1379 * i.e. mark everything lost and do go-back-N retransmission.
1380 */
1381static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1382{
1383	struct tcp_sock *tp = tcp_sk(sk);
1384	struct sk_buff *skb;
1385	int cnt = 0;
1386
1387	tp->sacked_out = 0;
1388	tp->lost_out = 0;
1389	tp->fackets_out = 0;
1390	tp->retrans_out = 0;
1391
1392	tcp_for_write_queue(skb, sk) {
1393		if (skb == tcp_send_head(sk))
1394			break;
1395		cnt += tcp_skb_pcount(skb);
1396		/*
1397		 * Count the retransmission made on RTO correctly (only when
1398		 * waiting for the first ACK and did not get it)...
1399		 */
1400		if ((tp->frto_counter == 1) && !(flag&FLAG_DATA_ACKED)) {
1401			tp->retrans_out += tcp_skb_pcount(skb);
1402			/* ...enter this if branch just for the first segment */
1403			flag |= FLAG_DATA_ACKED;
1404		} else {
1405			TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1406		}
1407		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) {
1408
1409			/* Do not mark those segments lost that were
1410			 * forward transmitted after RTO
1411			 */
1412			if (!after(TCP_SKB_CB(skb)->end_seq,
1413				   tp->frto_highmark)) {
1414				TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1415				tp->lost_out += tcp_skb_pcount(skb);
1416			}
1417		} else {
1418			tp->sacked_out += tcp_skb_pcount(skb);
1419			tp->fackets_out = cnt;
1420		}
1421	}
1422	tcp_sync_left_out(tp);
1423
1424	tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1425	tp->snd_cwnd_cnt = 0;
1426	tp->snd_cwnd_stamp = tcp_time_stamp;
1427	tp->undo_marker = 0;
1428	tp->frto_counter = 0;
1429
1430	tp->reordering = min_t(unsigned int, tp->reordering,
1431					     sysctl_tcp_reordering);
1432	tcp_set_ca_state(sk, TCP_CA_Loss);
1433	tp->high_seq = tp->frto_highmark;
1434	TCP_ECN_queue_cwr(tp);
1435
1436	clear_all_retrans_hints(tp);
1437}
1438
1439void tcp_clear_retrans(struct tcp_sock *tp)
1440{
1441	tp->left_out = 0;
1442	tp->retrans_out = 0;
1443
1444	tp->fackets_out = 0;
1445	tp->sacked_out = 0;
1446	tp->lost_out = 0;
1447
1448	tp->undo_marker = 0;
1449	tp->undo_retrans = 0;
1450}
1451
1452/* Enter Loss state. If "how" is not zero, forget all SACK information
1453 * and reset tags completely, otherwise preserve SACKs. If receiver
1454 * dropped its ofo queue, we will know this due to reneging detection.
1455 */
1456void tcp_enter_loss(struct sock *sk, int how)
1457{
1458	const struct inet_connection_sock *icsk = inet_csk(sk);
1459	struct tcp_sock *tp = tcp_sk(sk);
1460	struct sk_buff *skb;
1461	int cnt = 0;
1462
1463	/* Reduce ssthresh if it has not yet been made inside this window. */
1464	if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1465	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1466		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1467		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1468		tcp_ca_event(sk, CA_EVENT_LOSS);
1469	}
1470	tp->snd_cwnd	   = 1;
1471	tp->snd_cwnd_cnt   = 0;
1472	tp->snd_cwnd_stamp = tcp_time_stamp;
1473
1474	tp->bytes_acked = 0;
1475	tcp_clear_retrans(tp);
1476
1477	/* Push undo marker, if it was plain RTO and nothing
1478	 * was retransmitted. */
1479	if (!how)
1480		tp->undo_marker = tp->snd_una;
1481
1482	tcp_for_write_queue(skb, sk) {
1483		if (skb == tcp_send_head(sk))
1484			break;
1485		cnt += tcp_skb_pcount(skb);
1486		if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1487			tp->undo_marker = 0;
1488		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1489		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1490			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1491			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1492			tp->lost_out += tcp_skb_pcount(skb);
1493		} else {
1494			tp->sacked_out += tcp_skb_pcount(skb);
1495			tp->fackets_out = cnt;
1496		}
1497	}
1498	tcp_sync_left_out(tp);
1499
1500	tp->reordering = min_t(unsigned int, tp->reordering,
1501					     sysctl_tcp_reordering);
1502	tcp_set_ca_state(sk, TCP_CA_Loss);
1503	tp->high_seq = tp->snd_nxt;
1504	TCP_ECN_queue_cwr(tp);
1505	/* Abort FRTO algorithm if one is in progress */
1506	tp->frto_counter = 0;
1507
1508	clear_all_retrans_hints(tp);
1509}
1510
1511static int tcp_check_sack_reneging(struct sock *sk)
1512{
1513	struct sk_buff *skb;
1514
1515	/* If ACK arrived pointing to a remembered SACK,
1516	 * it means that our remembered SACKs do not reflect
1517	 * real state of receiver i.e.
1518	 * receiver _host_ is heavily congested (or buggy).
1519	 * Do processing similar to RTO timeout.
1520	 */
1521	if ((skb = tcp_write_queue_head(sk)) != NULL &&
1522	    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1523		struct inet_connection_sock *icsk = inet_csk(sk);
1524		NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1525
1526		tcp_enter_loss(sk, 1);
1527		icsk->icsk_retransmits++;
1528		tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1529		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1530					  icsk->icsk_rto, TCP_RTO_MAX);
1531		return 1;
1532	}
1533	return 0;
1534}
1535
1536static inline int tcp_fackets_out(struct tcp_sock *tp)
1537{
1538	return IsReno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1539}
1540
1541static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1542{
1543	return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1544}
1545
1546static inline int tcp_head_timedout(struct sock *sk)
1547{
1548	struct tcp_sock *tp = tcp_sk(sk);
1549
1550	return tp->packets_out &&
1551	       tcp_skb_timedout(sk, tcp_write_queue_head(sk));
1552}
1553
1554/* Linux NewReno/SACK/FACK/ECN state machine.
1555 * --------------------------------------
1556 *
1557 * "Open"	Normal state, no dubious events, fast path.
1558 * "Disorder"   In all the respects it is "Open",
1559 *		but requires a bit more attention. It is entered when
1560 *		we see some SACKs or dupacks. It is split of "Open"
1561 *		mainly to move some processing from fast path to slow one.
1562 * "CWR"	CWND was reduced due to some Congestion Notification event.
1563 *		It can be ECN, ICMP source quench, local device congestion.
1564 * "Recovery"	CWND was reduced, we are fast-retransmitting.
1565 * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
1566 *
1567 * tcp_fastretrans_alert() is entered:
1568 * - each incoming ACK, if state is not "Open"
1569 * - when arrived ACK is unusual, namely:
1570 *	* SACK
1571 *	* Duplicate ACK.
1572 *	* ECN ECE.
1573 *
1574 * Counting packets in flight is pretty simple.
1575 *
1576 *	in_flight = packets_out - left_out + retrans_out
1577 *
1578 *	packets_out is SND.NXT-SND.UNA counted in packets.
1579 *
1580 *	retrans_out is number of retransmitted segments.
1581 *
1582 *	left_out is number of segments left network, but not ACKed yet.
1583 *
1584 *		left_out = sacked_out + lost_out
1585 *
1586 *     sacked_out: Packets, which arrived to receiver out of order
1587 *		   and hence not ACKed. With SACKs this number is simply
1588 *		   amount of SACKed data. Even without SACKs
1589 *		   it is easy to give pretty reliable estimate of this number,
1590 *		   counting duplicate ACKs.
1591 *
1592 *       lost_out: Packets lost by network. TCP has no explicit
1593 *		   "loss notification" feedback from network (for now).
1594 *		   It means that this number can be only _guessed_.
1595 *		   Actually, it is the heuristics to predict lossage that
1596 *		   distinguishes different algorithms.
1597 *
1598 *	F.e. after RTO, when all the queue is considered as lost,
1599 *	lost_out = packets_out and in_flight = retrans_out.
1600 *
1601 *		Essentially, we have now two algorithms counting
1602 *		lost packets.
1603 *
1604 *		FACK: It is the simplest heuristics. As soon as we decided
1605 *		that something is lost, we decide that _all_ not SACKed
1606 *		packets until the most forward SACK are lost. I.e.
1607 *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
1608 *		It is absolutely correct estimate, if network does not reorder
1609 *		packets. And it loses any connection to reality when reordering
1610 *		takes place. We use FACK by default until reordering
1611 *		is suspected on the path to this destination.
1612 *
1613 *		NewReno: when Recovery is entered, we assume that one segment
1614 *		is lost (classic Reno). While we are in Recovery and
1615 *		a partial ACK arrives, we assume that one more packet
1616 *		is lost (NewReno). This heuristics are the same in NewReno
1617 *		and SACK.
1618 *
1619 *  Imagine, that's all! Forget about all this shamanism about CWND inflation
1620 *  deflation etc. CWND is real congestion window, never inflated, changes
1621 *  only according to classic VJ rules.
1622 *
1623 * Really tricky (and requiring careful tuning) part of algorithm
1624 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1625 * The first determines the moment _when_ we should reduce CWND and,
1626 * hence, slow down forward transmission. In fact, it determines the moment
1627 * when we decide that hole is caused by loss, rather than by a reorder.
1628 *
1629 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1630 * holes, caused by lost packets.
1631 *
1632 * And the most logically complicated part of algorithm is undo
1633 * heuristics. We detect false retransmits due to both too early
1634 * fast retransmit (reordering) and underestimated RTO, analyzing
1635 * timestamps and D-SACKs. When we detect that some segments were
1636 * retransmitted by mistake and CWND reduction was wrong, we undo
1637 * window reduction and abort recovery phase. This logic is hidden
1638 * inside several functions named tcp_try_undo_<something>.
1639 */
1640
1641/* This function decides, when we should leave Disordered state
1642 * and enter Recovery phase, reducing congestion window.
1643 *
1644 * Main question: may we further continue forward transmission
1645 * with the same cwnd?
1646 */
1647static int tcp_time_to_recover(struct sock *sk)
1648{
1649	struct tcp_sock *tp = tcp_sk(sk);
1650	__u32 packets_out;
1651
1652	/* Do not perform any recovery during FRTO algorithm */
1653	if (tp->frto_counter)
1654		return 0;
1655
1656	/* Trick#1: The loss is proven. */
1657	if (tp->lost_out)
1658		return 1;
1659
1660	/* Not-A-Trick#2 : Classic rule... */
1661	if (tcp_fackets_out(tp) > tp->reordering)
1662		return 1;
1663
1664	/* Trick#3 : when we use RFC2988 timer restart, fast
1665	 * retransmit can be triggered by timeout of queue head.
1666	 */
1667	if (tcp_head_timedout(sk))
1668		return 1;
1669
1670	/* Trick#4: It is still not OK... But will it be useful to delay
1671	 * recovery more?
1672	 */
1673	packets_out = tp->packets_out;
1674	if (packets_out <= tp->reordering &&
1675	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
1676	    !tcp_may_send_now(sk)) {
1677		/* We have nothing to send. This connection is limited
1678		 * either by receiver window or by application.
1679		 */
1680		return 1;
1681	}
1682
1683	return 0;
1684}
1685
1686/* If we receive more dupacks than we expected counting segments
1687 * in assumption of absent reordering, interpret this as reordering.
1688 * The only another reason could be bug in receiver TCP.
1689 */
1690static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1691{
1692	struct tcp_sock *tp = tcp_sk(sk);
1693	u32 holes;
1694
1695	holes = max(tp->lost_out, 1U);
1696	holes = min(holes, tp->packets_out);
1697
1698	if ((tp->sacked_out + holes) > tp->packets_out) {
1699		tp->sacked_out = tp->packets_out - holes;
1700		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1701	}
1702}
1703
1704/* Emulate SACKs for SACKless connection: account for a new dupack. */
1705
1706static void tcp_add_reno_sack(struct sock *sk)
1707{
1708	struct tcp_sock *tp = tcp_sk(sk);
1709	tp->sacked_out++;
1710	tcp_check_reno_reordering(sk, 0);
1711	tcp_sync_left_out(tp);
1712}
1713
1714/* Account for ACK, ACKing some data in Reno Recovery phase. */
1715
1716static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1717{
1718	struct tcp_sock *tp = tcp_sk(sk);
1719
1720	if (acked > 0) {
1721		/* One ACK acked hole. The rest eat duplicate ACKs. */
1722		if (acked-1 >= tp->sacked_out)
1723			tp->sacked_out = 0;
1724		else
1725			tp->sacked_out -= acked-1;
1726	}
1727	tcp_check_reno_reordering(sk, acked);
1728	tcp_sync_left_out(tp);
1729}
1730
1731static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1732{
1733	tp->sacked_out = 0;
1734	tp->left_out = tp->lost_out;
1735}
1736
1737/* Mark head of queue up as lost. */
1738static void tcp_mark_head_lost(struct sock *sk,
1739			       int packets, u32 high_seq)
1740{
1741	struct tcp_sock *tp = tcp_sk(sk);
1742	struct sk_buff *skb;
1743	int cnt;
1744
1745	BUG_TRAP(packets <= tp->packets_out);
1746	if (tp->lost_skb_hint) {
1747		skb = tp->lost_skb_hint;
1748		cnt = tp->lost_cnt_hint;
1749	} else {
1750		skb = tcp_write_queue_head(sk);
1751		cnt = 0;
1752	}
1753
1754	tcp_for_write_queue_from(skb, sk) {
1755		if (skb == tcp_send_head(sk))
1756			break;
1757		/* TODO: do this better */
1758		/* this is not the most efficient way to do this... */
1759		tp->lost_skb_hint = skb;
1760		tp->lost_cnt_hint = cnt;
1761		cnt += tcp_skb_pcount(skb);
1762		if (cnt > packets || after(TCP_SKB_CB(skb)->end_seq, high_seq))
1763			break;
1764		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1765			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1766			tp->lost_out += tcp_skb_pcount(skb);
1767
1768			/* clear xmit_retransmit_queue hints
1769			 *  if this is beyond hint */
1770			if (tp->retransmit_skb_hint != NULL &&
1771			    before(TCP_SKB_CB(skb)->seq,
1772				   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
1773				tp->retransmit_skb_hint = NULL;
1774
1775		}
1776	}
1777	tcp_sync_left_out(tp);
1778}
1779
1780/* Account newly detected lost packet(s) */
1781
1782static void tcp_update_scoreboard(struct sock *sk)
1783{
1784	struct tcp_sock *tp = tcp_sk(sk);
1785
1786	if (IsFack(tp)) {
1787		int lost = tp->fackets_out - tp->reordering;
1788		if (lost <= 0)
1789			lost = 1;
1790		tcp_mark_head_lost(sk, lost, tp->high_seq);
1791	} else {
1792		tcp_mark_head_lost(sk, 1, tp->high_seq);
1793	}
1794
1795	/* New heuristics: it is possible only after we switched
1796	 * to restart timer each time when something is ACKed.
1797	 * Hence, we can detect timed out packets during fast
1798	 * retransmit without falling to slow start.
1799	 */
1800	if (!IsReno(tp) && tcp_head_timedout(sk)) {
1801		struct sk_buff *skb;
1802
1803		skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
1804			: tcp_write_queue_head(sk);
1805
1806		tcp_for_write_queue_from(skb, sk) {
1807			if (skb == tcp_send_head(sk))
1808				break;
1809			if (!tcp_skb_timedout(sk, skb))
1810				break;
1811
1812			if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1813				TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1814				tp->lost_out += tcp_skb_pcount(skb);
1815
1816				/* clear xmit_retrans hint */
1817				if (tp->retransmit_skb_hint &&
1818				    before(TCP_SKB_CB(skb)->seq,
1819					   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
1820
1821					tp->retransmit_skb_hint = NULL;
1822			}
1823		}
1824
1825		tp->scoreboard_skb_hint = skb;
1826
1827		tcp_sync_left_out(tp);
1828	}
1829}
1830
1831/* CWND moderation, preventing bursts due to too big ACKs
1832 * in dubious situations.
1833 */
1834static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
1835{
1836	tp->snd_cwnd = min(tp->snd_cwnd,
1837			   tcp_packets_in_flight(tp)+tcp_max_burst(tp));
1838	tp->snd_cwnd_stamp = tcp_time_stamp;
1839}
1840
1841/* Lower bound on congestion window is slow start threshold
1842 * unless congestion avoidance choice decides to overide it.
1843 */
1844static inline u32 tcp_cwnd_min(const struct sock *sk)
1845{
1846	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1847
1848	return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
1849}
1850
1851/* Decrease cwnd each second ack. */
1852static void tcp_cwnd_down(struct sock *sk)
1853{
1854	struct tcp_sock *tp = tcp_sk(sk);
1855	int decr = tp->snd_cwnd_cnt + 1;
1856
1857	tp->snd_cwnd_cnt = decr&1;
1858	decr >>= 1;
1859
1860	if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
1861		tp->snd_cwnd -= decr;
1862
1863	tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
1864	tp->snd_cwnd_stamp = tcp_time_stamp;
1865}
1866
1867/* Nothing was retransmitted or returned timestamp is less
1868 * than timestamp of the first retransmission.
1869 */
1870static inline int tcp_packet_delayed(struct tcp_sock *tp)
1871{
1872	return !tp->retrans_stamp ||
1873		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
1874		 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
1875}
1876
1877/* Undo procedures. */
1878
1879#if FASTRETRANS_DEBUG > 1
1880static void DBGUNDO(struct sock *sk, const char *msg)
1881{
1882	struct tcp_sock *tp = tcp_sk(sk);
1883	struct inet_sock *inet = inet_sk(sk);
1884
1885	printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
1886	       msg,
1887	       NIPQUAD(inet->daddr), ntohs(inet->dport),
1888	       tp->snd_cwnd, tp->left_out,
1889	       tp->snd_ssthresh, tp->prior_ssthresh,
1890	       tp->packets_out);
1891}
1892#else
1893#define DBGUNDO(x...) do { } while (0)
1894#endif
1895
1896static void tcp_undo_cwr(struct sock *sk, const int undo)
1897{
1898	struct tcp_sock *tp = tcp_sk(sk);
1899
1900	if (tp->prior_ssthresh) {
1901		const struct inet_connection_sock *icsk = inet_csk(sk);
1902
1903		if (icsk->icsk_ca_ops->undo_cwnd)
1904			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
1905		else
1906			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
1907
1908		if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
1909			tp->snd_ssthresh = tp->prior_ssthresh;
1910			TCP_ECN_withdraw_cwr(tp);
1911		}
1912	} else {
1913		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
1914	}
1915	tcp_moderate_cwnd(tp);
1916	tp->snd_cwnd_stamp = tcp_time_stamp;
1917
1918	/* There is something screwy going on with the retrans hints after
1919	   an undo */
1920	clear_all_retrans_hints(tp);
1921}
1922
1923static inline int tcp_may_undo(struct tcp_sock *tp)
1924{
1925	return tp->undo_marker &&
1926		(!tp->undo_retrans || tcp_packet_delayed(tp));
1927}
1928
1929/* People celebrate: "We love our President!" */
1930static int tcp_try_undo_recovery(struct sock *sk)
1931{
1932	struct tcp_sock *tp = tcp_sk(sk);
1933
1934	if (tcp_may_undo(tp)) {
1935		/* Happy end! We did not retransmit anything
1936		 * or our original transmission succeeded.
1937		 */
1938		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
1939		tcp_undo_cwr(sk, 1);
1940		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
1941			NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1942		else
1943			NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
1944		tp->undo_marker = 0;
1945	}
1946	if (tp->snd_una == tp->high_seq && IsReno(tp)) {
1947		/* Hold old state until something *above* high_seq
1948		 * is ACKed. For Reno it is MUST to prevent false
1949		 * fast retransmits (RFC2582). SACK TCP is safe. */
1950		tcp_moderate_cwnd(tp);
1951		return 1;
1952	}
1953	tcp_set_ca_state(sk, TCP_CA_Open);
1954	return 0;
1955}
1956
1957/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
1958static void tcp_try_undo_dsack(struct sock *sk)
1959{
1960	struct tcp_sock *tp = tcp_sk(sk);
1961
1962	if (tp->undo_marker && !tp->undo_retrans) {
1963		DBGUNDO(sk, "D-SACK");
1964		tcp_undo_cwr(sk, 1);
1965		tp->undo_marker = 0;
1966		NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
1967	}
1968}
1969
1970/* Undo during fast recovery after partial ACK. */
1971
1972static int tcp_try_undo_partial(struct sock *sk, int acked)
1973{
1974	struct tcp_sock *tp = tcp_sk(sk);
1975	/* Partial ACK arrived. Force Hoe's retransmit. */
1976	int failed = IsReno(tp) || tp->fackets_out>tp->reordering;
1977
1978	if (tcp_may_undo(tp)) {
1979		/* Plain luck! Hole if filled with delayed
1980		 * packet, rather than with a retransmit.
1981		 */
1982		if (tp->retrans_out == 0)
1983			tp->retrans_stamp = 0;
1984
1985		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
1986
1987		DBGUNDO(sk, "Hoe");
1988		tcp_undo_cwr(sk, 0);
1989		NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
1990
1991		/* So... Do not make Hoe's retransmit yet.
1992		 * If the first packet was delayed, the rest
1993		 * ones are most probably delayed as well.
1994		 */
1995		failed = 0;
1996	}
1997	return failed;
1998}
1999
2000/* Undo during loss recovery after partial ACK. */
2001static int tcp_try_undo_loss(struct sock *sk)
2002{
2003	struct tcp_sock *tp = tcp_sk(sk);
2004
2005	if (tcp_may_undo(tp)) {
2006		struct sk_buff *skb;
2007		tcp_for_write_queue(skb, sk) {
2008			if (skb == tcp_send_head(sk))
2009				break;
2010			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2011		}
2012
2013		clear_all_retrans_hints(tp);
2014
2015		DBGUNDO(sk, "partial loss");
2016		tp->lost_out = 0;
2017		tp->left_out = tp->sacked_out;
2018		tcp_undo_cwr(sk, 1);
2019		NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2020		inet_csk(sk)->icsk_retransmits = 0;
2021		tp->undo_marker = 0;
2022		if (!IsReno(tp))
2023			tcp_set_ca_state(sk, TCP_CA_Open);
2024		return 1;
2025	}
2026	return 0;
2027}
2028
2029static inline void tcp_complete_cwr(struct sock *sk)
2030{
2031	struct tcp_sock *tp = tcp_sk(sk);
2032	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2033	tp->snd_cwnd_stamp = tcp_time_stamp;
2034	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2035}
2036
2037static void tcp_try_to_open(struct sock *sk, int flag)
2038{
2039	struct tcp_sock *tp = tcp_sk(sk);
2040
2041	tcp_sync_left_out(tp);
2042
2043	if (tp->retrans_out == 0)
2044		tp->retrans_stamp = 0;
2045
2046	if (flag&FLAG_ECE)
2047		tcp_enter_cwr(sk, 1);
2048
2049	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2050		int state = TCP_CA_Open;
2051
2052		if (tp->left_out || tp->retrans_out || tp->undo_marker)
2053			state = TCP_CA_Disorder;
2054
2055		if (inet_csk(sk)->icsk_ca_state != state) {
2056			tcp_set_ca_state(sk, state);
2057			tp->high_seq = tp->snd_nxt;
2058		}
2059		tcp_moderate_cwnd(tp);
2060	} else {
2061		tcp_cwnd_down(sk);
2062	}
2063}
2064
2065static void tcp_mtup_probe_failed(struct sock *sk)
2066{
2067	struct inet_connection_sock *icsk = inet_csk(sk);
2068
2069	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2070	icsk->icsk_mtup.probe_size = 0;
2071}
2072
2073static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2074{
2075	struct tcp_sock *tp = tcp_sk(sk);
2076	struct inet_connection_sock *icsk = inet_csk(sk);
2077
2078	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2079	tp->snd_cwnd = tp->snd_cwnd *
2080		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2081		       icsk->icsk_mtup.probe_size;
2082	tp->snd_cwnd_cnt = 0;
2083	tp->snd_cwnd_stamp = tcp_time_stamp;
2084	tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2085
2086	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2087	icsk->icsk_mtup.probe_size = 0;
2088	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2089}
2090
2091
2092/* Process an event, which can update packets-in-flight not trivially.
2093 * Main goal of this function is to calculate new estimate for left_out,
2094 * taking into account both packets sitting in receiver's buffer and
2095 * packets lost by network.
2096 *
2097 * Besides that it does CWND reduction, when packet loss is detected
2098 * and changes state of machine.
2099 *
2100 * It does _not_ decide what to send, it is made in function
2101 * tcp_xmit_retransmit_queue().
2102 */
2103static void
2104tcp_fastretrans_alert(struct sock *sk, u32 prior_snd_una,
2105		      int prior_packets, int flag)
2106{
2107	struct inet_connection_sock *icsk = inet_csk(sk);
2108	struct tcp_sock *tp = tcp_sk(sk);
2109	int is_dupack = (tp->snd_una == prior_snd_una && !(flag&FLAG_NOT_DUP));
2110
2111	/* Some technical things:
2112	 * 1. Reno does not count dupacks (sacked_out) automatically. */
2113	if (!tp->packets_out)
2114		tp->sacked_out = 0;
2115	/* 2. SACK counts snd_fack in packets inaccurately. */
2116	if (tp->sacked_out == 0)
2117		tp->fackets_out = 0;
2118
2119	/* Now state machine starts.
2120	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2121	if (flag&FLAG_ECE)
2122		tp->prior_ssthresh = 0;
2123
2124	/* B. In all the states check for reneging SACKs. */
2125	if (tp->sacked_out && tcp_check_sack_reneging(sk))
2126		return;
2127
2128	/* C. Process data loss notification, provided it is valid. */
2129	if ((flag&FLAG_DATA_LOST) &&
2130	    before(tp->snd_una, tp->high_seq) &&
2131	    icsk->icsk_ca_state != TCP_CA_Open &&
2132	    tp->fackets_out > tp->reordering) {
2133		tcp_mark_head_lost(sk, tp->fackets_out-tp->reordering, tp->high_seq);
2134		NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
2135	}
2136
2137	/* D. Synchronize left_out to current state. */
2138	tcp_sync_left_out(tp);
2139
2140	/* E. Check state exit conditions. State can be terminated
2141	 *    when high_seq is ACKed. */
2142	if (icsk->icsk_ca_state == TCP_CA_Open) {
2143		BUG_TRAP(tp->retrans_out == 0);
2144		tp->retrans_stamp = 0;
2145	} else if (!before(tp->snd_una, tp->high_seq)) {
2146		switch (icsk->icsk_ca_state) {
2147		case TCP_CA_Loss:
2148			icsk->icsk_retransmits = 0;
2149			if (tcp_try_undo_recovery(sk))
2150				return;
2151			break;
2152
2153		case TCP_CA_CWR:
2154			/* CWR is to be held something *above* high_seq
2155			 * is ACKed for CWR bit to reach receiver. */
2156			if (tp->snd_una != tp->high_seq) {
2157				tcp_complete_cwr(sk);
2158				tcp_set_ca_state(sk, TCP_CA_Open);
2159			}
2160			break;
2161
2162		case TCP_CA_Disorder:
2163			tcp_try_undo_dsack(sk);
2164			if (!tp->undo_marker ||
2165			    /* For SACK case do not Open to allow to undo
2166			     * catching for all duplicate ACKs. */
2167			    IsReno(tp) || tp->snd_una != tp->high_seq) {
2168				tp->undo_marker = 0;
2169				tcp_set_ca_state(sk, TCP_CA_Open);
2170			}
2171			break;
2172
2173		case TCP_CA_Recovery:
2174			if (IsReno(tp))
2175				tcp_reset_reno_sack(tp);
2176			if (tcp_try_undo_recovery(sk))
2177				return;
2178			tcp_complete_cwr(sk);
2179			break;
2180		}
2181	}
2182
2183	/* F. Process state. */
2184	switch (icsk->icsk_ca_state) {
2185	case TCP_CA_Recovery:
2186		if (prior_snd_una == tp->snd_una) {
2187			if (IsReno(tp) && is_dupack)
2188				tcp_add_reno_sack(sk);
2189		} else {
2190			int acked = prior_packets - tp->packets_out;
2191			if (IsReno(tp))
2192				tcp_remove_reno_sacks(sk, acked);
2193			is_dupack = tcp_try_undo_partial(sk, acked);
2194		}
2195		break;
2196	case TCP_CA_Loss:
2197		if (flag&FLAG_DATA_ACKED)
2198			icsk->icsk_retransmits = 0;
2199		if (!tcp_try_undo_loss(sk)) {
2200			tcp_moderate_cwnd(tp);
2201			tcp_xmit_retransmit_queue(sk);
2202			return;
2203		}
2204		if (icsk->icsk_ca_state != TCP_CA_Open)
2205			return;
2206		/* Loss is undone; fall through to processing in Open state. */
2207	default:
2208		if (IsReno(tp)) {
2209			if (tp->snd_una != prior_snd_una)
2210				tcp_reset_reno_sack(tp);
2211			if (is_dupack)
2212				tcp_add_reno_sack(sk);
2213		}
2214
2215		if (icsk->icsk_ca_state == TCP_CA_Disorder)
2216			tcp_try_undo_dsack(sk);
2217
2218		if (!tcp_time_to_recover(sk)) {
2219			tcp_try_to_open(sk, flag);
2220			return;
2221		}
2222
2223		/* MTU probe failure: don't reduce cwnd */
2224		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2225		    icsk->icsk_mtup.probe_size &&
2226		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2227			tcp_mtup_probe_failed(sk);
2228			/* Restores the reduction we did in tcp_mtup_probe() */
2229			tp->snd_cwnd++;
2230			tcp_simple_retransmit(sk);
2231			return;
2232		}
2233
2234		/* Otherwise enter Recovery state */
2235
2236		if (IsReno(tp))
2237			NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2238		else
2239			NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2240
2241		tp->high_seq = tp->snd_nxt;
2242		tp->prior_ssthresh = 0;
2243		tp->undo_marker = tp->snd_una;
2244		tp->undo_retrans = tp->retrans_out;
2245
2246		if (icsk->icsk_ca_state < TCP_CA_CWR) {
2247			if (!(flag&FLAG_ECE))
2248				tp->prior_ssthresh = tcp_current_ssthresh(sk);
2249			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2250			TCP_ECN_queue_cwr(tp);
2251		}
2252
2253		tp->bytes_acked = 0;
2254		tp->snd_cwnd_cnt = 0;
2255		tcp_set_ca_state(sk, TCP_CA_Recovery);
2256	}
2257
2258	if (is_dupack || tcp_head_timedout(sk))
2259		tcp_update_scoreboard(sk);
2260	tcp_cwnd_down(sk);
2261	tcp_xmit_retransmit_queue(sk);
2262}
2263
2264/* Read draft-ietf-tcplw-high-performance before mucking
2265 * with this code. (Supersedes RFC1323)
2266 */
2267static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2268{
2269	/* RTTM Rule: A TSecr value received in a segment is used to
2270	 * update the averaged RTT measurement only if the segment
2271	 * acknowledges some new data, i.e., only if it advances the
2272	 * left edge of the send window.
2273	 *
2274	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2275	 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2276	 *
2277	 * Changed: reset backoff as soon as we see the first valid sample.
2278	 * If we do not, we get strongly overestimated rto. With timestamps
2279	 * samples are accepted even from very old segments: f.e., when rtt=1
2280	 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2281	 * answer arrives rto becomes 120 seconds! If at least one of segments
2282	 * in window is lost... Voila.	 			--ANK (010210)
2283	 */
2284	struct tcp_sock *tp = tcp_sk(sk);
2285	const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2286	tcp_rtt_estimator(sk, seq_rtt);
2287	tcp_set_rto(sk);
2288	inet_csk(sk)->icsk_backoff = 0;
2289	tcp_bound_rto(sk);
2290}
2291
2292static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2293{
2294	/* We don't have a timestamp. Can only use
2295	 * packets that are not retransmitted to determine
2296	 * rtt estimates. Also, we must not reset the
2297	 * backoff for rto until we get a non-retransmitted
2298	 * packet. This allows us to deal with a situation
2299	 * where the network delay has increased suddenly.
2300	 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2301	 */
2302
2303	if (flag & FLAG_RETRANS_DATA_ACKED)
2304		return;
2305
2306	tcp_rtt_estimator(sk, seq_rtt);
2307	tcp_set_rto(sk);
2308	inet_csk(sk)->icsk_backoff = 0;
2309	tcp_bound_rto(sk);
2310}
2311
2312static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2313				      const s32 seq_rtt)
2314{
2315	const struct tcp_sock *tp = tcp_sk(sk);
2316	/* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2317	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2318		tcp_ack_saw_tstamp(sk, flag);
2319	else if (seq_rtt >= 0)
2320		tcp_ack_no_tstamp(sk, seq_rtt, flag);
2321}
2322
2323static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 rtt,
2324			   u32 in_flight, int good)
2325{
2326	const struct inet_connection_sock *icsk = inet_csk(sk);
2327	icsk->icsk_ca_ops->cong_avoid(sk, ack, rtt, in_flight, good);
2328	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2329}
2330
2331/* Restart timer after forward progress on connection.
2332 * RFC2988 recommends to restart timer to now+rto.
2333 */
2334
2335static void tcp_ack_packets_out(struct sock *sk)
2336{
2337	struct tcp_sock *tp = tcp_sk(sk);
2338
2339	if (!tp->packets_out) {
2340		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2341	} else {
2342		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2343	}
2344}
2345
2346static int tcp_tso_acked(struct sock *sk, struct sk_buff *skb,
2347			 __u32 now, __s32 *seq_rtt)
2348{
2349	struct tcp_sock *tp = tcp_sk(sk);
2350	struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2351	__u32 seq = tp->snd_una;
2352	__u32 packets_acked;
2353	int acked = 0;
2354
2355	/* If we get here, the whole TSO packet has not been
2356	 * acked.
2357	 */
2358	BUG_ON(!after(scb->end_seq, seq));
2359
2360	packets_acked = tcp_skb_pcount(skb);
2361	if (tcp_trim_head(sk, skb, seq - scb->seq))
2362		return 0;
2363	packets_acked -= tcp_skb_pcount(skb);
2364
2365	if (packets_acked) {
2366		__u8 sacked = scb->sacked;
2367
2368		acked |= FLAG_DATA_ACKED;
2369		if (sacked) {
2370			if (sacked & TCPCB_RETRANS) {
2371				if (sacked & TCPCB_SACKED_RETRANS)
2372					tp->retrans_out -= packets_acked;
2373				acked |= FLAG_RETRANS_DATA_ACKED;
2374				*seq_rtt = -1;
2375			} else if (*seq_rtt < 0)
2376				*seq_rtt = now - scb->when;
2377			if (sacked & TCPCB_SACKED_ACKED)
2378				tp->sacked_out -= packets_acked;
2379			if (sacked & TCPCB_LOST)
2380				tp->lost_out -= packets_acked;
2381			if (sacked & TCPCB_URG) {
2382				if (tp->urg_mode &&
2383				    !before(seq, tp->snd_up))
2384					tp->urg_mode = 0;
2385			}
2386		} else if (*seq_rtt < 0)
2387			*seq_rtt = now - scb->when;
2388
2389		if (tp->fackets_out) {
2390			__u32 dval = min(tp->fackets_out, packets_acked);
2391			tp->fackets_out -= dval;
2392		}
2393		tp->packets_out -= packets_acked;
2394
2395		BUG_ON(tcp_skb_pcount(skb) == 0);
2396		BUG_ON(!before(scb->seq, scb->end_seq));
2397	}
2398
2399	return acked;
2400}
2401
2402/* Remove acknowledged frames from the retransmission queue. */
2403static int tcp_clean_rtx_queue(struct sock *sk, __s32 *seq_rtt_p)
2404{
2405	struct tcp_sock *tp = tcp_sk(sk);
2406	const struct inet_connection_sock *icsk = inet_csk(sk);
2407	struct sk_buff *skb;
2408	__u32 now = tcp_time_stamp;
2409	int acked = 0;
2410	int prior_packets = tp->packets_out;
2411	__s32 seq_rtt = -1;
2412	ktime_t last_ackt = net_invalid_timestamp();
2413
2414	while ((skb = tcp_write_queue_head(sk)) &&
2415	       skb != tcp_send_head(sk)) {
2416		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2417		__u8 sacked = scb->sacked;
2418
2419		/* If our packet is before the ack sequence we can
2420		 * discard it as it's confirmed to have arrived at
2421		 * the other end.
2422		 */
2423		if (after(scb->end_seq, tp->snd_una)) {
2424			if (tcp_skb_pcount(skb) > 1 &&
2425			    after(tp->snd_una, scb->seq))
2426				acked |= tcp_tso_acked(sk, skb,
2427						       now, &seq_rtt);
2428			break;
2429		}
2430
2431		/* Initial outgoing SYN's get put onto the write_queue
2432		 * just like anything else we transmit.  It is not
2433		 * true data, and if we misinform our callers that
2434		 * this ACK acks real data, we will erroneously exit
2435		 * connection startup slow start one packet too
2436		 * quickly.  This is severely frowned upon behavior.
2437		 */
2438		if (!(scb->flags & TCPCB_FLAG_SYN)) {
2439			acked |= FLAG_DATA_ACKED;
2440		} else {
2441			acked |= FLAG_SYN_ACKED;
2442			tp->retrans_stamp = 0;
2443		}
2444
2445		/* MTU probing checks */
2446		if (icsk->icsk_mtup.probe_size) {
2447			if (!after(tp->mtu_probe.probe_seq_end, TCP_SKB_CB(skb)->end_seq)) {
2448				tcp_mtup_probe_success(sk, skb);
2449			}
2450		}
2451
2452		if (sacked) {
2453			if (sacked & TCPCB_RETRANS) {
2454				if (sacked & TCPCB_SACKED_RETRANS)
2455					tp->retrans_out -= tcp_skb_pcount(skb);
2456				acked |= FLAG_RETRANS_DATA_ACKED;
2457				seq_rtt = -1;
2458			} else if (seq_rtt < 0) {
2459				seq_rtt = now - scb->when;
2460				last_ackt = skb->tstamp;
2461			}
2462			if (sacked & TCPCB_SACKED_ACKED)
2463				tp->sacked_out -= tcp_skb_pcount(skb);
2464			if (sacked & TCPCB_LOST)
2465				tp->lost_out -= tcp_skb_pcount(skb);
2466			if (sacked & TCPCB_URG) {
2467				if (tp->urg_mode &&
2468				    !before(scb->end_seq, tp->snd_up))
2469					tp->urg_mode = 0;
2470			}
2471		} else if (seq_rtt < 0) {
2472			seq_rtt = now - scb->when;
2473			last_ackt = skb->tstamp;
2474		}
2475		tcp_dec_pcount_approx(&tp->fackets_out, skb);
2476		tcp_packets_out_dec(tp, skb);
2477		tcp_unlink_write_queue(skb, sk);
2478		sk_stream_free_skb(sk, skb);
2479		clear_all_retrans_hints(tp);
2480	}
2481
2482	if (acked&FLAG_ACKED) {
2483		u32 pkts_acked = prior_packets - tp->packets_out;
2484		const struct tcp_congestion_ops *ca_ops
2485			= inet_csk(sk)->icsk_ca_ops;
2486
2487		tcp_ack_update_rtt(sk, acked, seq_rtt);
2488		tcp_ack_packets_out(sk);
2489
2490		/* Is the ACK triggering packet unambiguous? */
2491		if (acked & FLAG_RETRANS_DATA_ACKED)
2492			last_ackt = net_invalid_timestamp();
2493
2494		if (ca_ops->pkts_acked)
2495			ca_ops->pkts_acked(sk, pkts_acked, last_ackt);
2496	}
2497
2498#if FASTRETRANS_DEBUG > 0
2499	BUG_TRAP((int)tp->sacked_out >= 0);
2500	BUG_TRAP((int)tp->lost_out >= 0);
2501	BUG_TRAP((int)tp->retrans_out >= 0);
2502	if (!tp->packets_out && tp->rx_opt.sack_ok) {
2503		const struct inet_connection_sock *icsk = inet_csk(sk);
2504		if (tp->lost_out) {
2505			printk(KERN_DEBUG "Leak l=%u %d\n",
2506			       tp->lost_out, icsk->icsk_ca_state);
2507			tp->lost_out = 0;
2508		}
2509		if (tp->sacked_out) {
2510			printk(KERN_DEBUG "Leak s=%u %d\n",
2511			       tp->sacked_out, icsk->icsk_ca_state);
2512			tp->sacked_out = 0;
2513		}
2514		if (tp->retrans_out) {
2515			printk(KERN_DEBUG "Leak r=%u %d\n",
2516			       tp->retrans_out, icsk->icsk_ca_state);
2517			tp->retrans_out = 0;
2518		}
2519	}
2520#endif
2521	*seq_rtt_p = seq_rtt;
2522	return acked;
2523}
2524
2525static void tcp_ack_probe(struct sock *sk)
2526{
2527	const struct tcp_sock *tp = tcp_sk(sk);
2528	struct inet_connection_sock *icsk = inet_csk(sk);
2529
2530	/* Was it a usable window open? */
2531
2532	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
2533		   tp->snd_una + tp->snd_wnd)) {
2534		icsk->icsk_backoff = 0;
2535		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
2536		/* Socket must be waked up by subsequent tcp_data_snd_check().
2537		 * This function is not for random using!
2538		 */
2539	} else {
2540		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2541					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2542					  TCP_RTO_MAX);
2543	}
2544}
2545
2546static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
2547{
2548	return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
2549		inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
2550}
2551
2552static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
2553{
2554	const struct tcp_sock *tp = tcp_sk(sk);
2555	return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
2556		!((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
2557}
2558
2559/* Check that window update is acceptable.
2560 * The function assumes that snd_una<=ack<=snd_next.
2561 */
2562static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
2563					const u32 ack_seq, const u32 nwin)
2564{
2565	return (after(ack, tp->snd_una) ||
2566		after(ack_seq, tp->snd_wl1) ||
2567		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2568}
2569
2570/* Update our send window.
2571 *
2572 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2573 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2574 */
2575static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
2576				 u32 ack_seq)
2577{
2578	struct tcp_sock *tp = tcp_sk(sk);
2579	int flag = 0;
2580	u32 nwin = ntohs(tcp_hdr(skb)->window);
2581
2582	if (likely(!tcp_hdr(skb)->syn))
2583		nwin <<= tp->rx_opt.snd_wscale;
2584
2585	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2586		flag |= FLAG_WIN_UPDATE;
2587		tcp_update_wl(tp, ack, ack_seq);
2588
2589		if (tp->snd_wnd != nwin) {
2590			tp->snd_wnd = nwin;
2591
2592			/* Note, it is the only place, where
2593			 * fast path is recovered for sending TCP.
2594			 */
2595			tp->pred_flags = 0;
2596			tcp_fast_path_check(sk);
2597
2598			if (nwin > tp->max_window) {
2599				tp->max_window = nwin;
2600				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
2601			}
2602		}
2603	}
2604
2605	tp->snd_una = ack;
2606
2607	return flag;
2608}
2609
2610/* A very conservative spurious RTO response algorithm: reduce cwnd and
2611 * continue in congestion avoidance.
2612 */
2613static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
2614{
2615	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2616	tp->snd_cwnd_cnt = 0;
2617	TCP_ECN_queue_cwr(tp);
2618	tcp_moderate_cwnd(tp);
2619}
2620
2621/* A conservative spurious RTO response algorithm: reduce cwnd using
2622 * rate halving and continue in congestion avoidance.
2623 */
2624static void tcp_ratehalving_spur_to_response(struct sock *sk)
2625{
2626	tcp_enter_cwr(sk, 0);
2627}
2628
2629static void tcp_undo_spur_to_response(struct sock *sk, int flag)
2630{
2631	if (flag&FLAG_ECE)
2632		tcp_ratehalving_spur_to_response(sk);
2633	else
2634		tcp_undo_cwr(sk, 1);
2635}
2636
2637/* F-RTO spurious RTO detection algorithm (RFC4138)
2638 *
2639 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
2640 * comments). State (ACK number) is kept in frto_counter. When ACK advances
2641 * window (but not to or beyond highest sequence sent before RTO):
2642 *   On First ACK,  send two new segments out.
2643 *   On Second ACK, RTO was likely spurious. Do spurious response (response
2644 *                  algorithm is not part of the F-RTO detection algorithm
2645 *                  given in RFC4138 but can be selected separately).
2646 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
2647 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
2648 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
2649 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
2650 *
2651 * Rationale: if the RTO was spurious, new ACKs should arrive from the
2652 * original window even after we transmit two new data segments.
2653 *
2654 * SACK version:
2655 *   on first step, wait until first cumulative ACK arrives, then move to
2656 *   the second step. In second step, the next ACK decides.
2657 *
2658 * F-RTO is implemented (mainly) in four functions:
2659 *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
2660 *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
2661 *     called when tcp_use_frto() showed green light
2662 *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
2663 *   - tcp_enter_frto_loss() is called if there is not enough evidence
2664 *     to prove that the RTO is indeed spurious. It transfers the control
2665 *     from F-RTO to the conventional RTO recovery
2666 */
2667static int tcp_process_frto(struct sock *sk, u32 prior_snd_una, int flag)
2668{
2669	struct tcp_sock *tp = tcp_sk(sk);
2670
2671	tcp_sync_left_out(tp);
2672
2673	/* Duplicate the behavior from Loss state (fastretrans_alert) */
2674	if (flag&FLAG_DATA_ACKED)
2675		inet_csk(sk)->icsk_retransmits = 0;
2676
2677	if (!before(tp->snd_una, tp->frto_highmark)) {
2678		tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
2679		return 1;
2680	}
2681
2682	if (!IsSackFrto() || IsReno(tp)) {
2683		/* RFC4138 shortcoming in step 2; should also have case c):
2684		 * ACK isn't duplicate nor advances window, e.g., opposite dir
2685		 * data, winupdate
2686		 */
2687		if ((tp->snd_una == prior_snd_una) && (flag&FLAG_NOT_DUP) &&
2688		    !(flag&FLAG_FORWARD_PROGRESS))
2689			return 1;
2690
2691		if (!(flag&FLAG_DATA_ACKED)) {
2692			tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
2693					    flag);
2694			return 1;
2695		}
2696	} else {
2697		if (!(flag&FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
2698			/* Prevent sending of new data. */
2699			tp->snd_cwnd = min(tp->snd_cwnd,
2700					   tcp_packets_in_flight(tp));
2701			return 1;
2702		}
2703
2704		if ((tp->frto_counter >= 2) &&
2705		    (!(flag&FLAG_FORWARD_PROGRESS) ||
2706		     ((flag&FLAG_DATA_SACKED) && !(flag&FLAG_ONLY_ORIG_SACKED)))) {
2707			/* RFC4138 shortcoming (see comment above) */
2708			if (!(flag&FLAG_FORWARD_PROGRESS) && (flag&FLAG_NOT_DUP))
2709				return 1;
2710
2711			tcp_enter_frto_loss(sk, 3, flag);
2712			return 1;
2713		}
2714	}
2715
2716	if (tp->frto_counter == 1) {
2717		/* Sending of the next skb must be allowed or no FRTO */
2718		if (!tcp_send_head(sk) ||
2719		    after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
2720				     tp->snd_una + tp->snd_wnd)) {
2721			tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3),
2722					    flag);
2723			return 1;
2724		}
2725
2726		tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
2727		tp->frto_counter = 2;
2728		return 1;
2729	} else {
2730		switch (sysctl_tcp_frto_response) {
2731		case 2:
2732			tcp_undo_spur_to_response(sk, flag);
2733			break;
2734		case 1:
2735			tcp_conservative_spur_to_response(tp);
2736			break;
2737		default:
2738			tcp_ratehalving_spur_to_response(sk);
2739			break;
2740		}
2741		tp->frto_counter = 0;
2742	}
2743	return 0;
2744}
2745
2746/* This routine deals with incoming acks, but not outgoing ones. */
2747static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
2748{
2749	struct inet_connection_sock *icsk = inet_csk(sk);
2750	struct tcp_sock *tp = tcp_sk(sk);
2751	u32 prior_snd_una = tp->snd_una;
2752	u32 ack_seq = TCP_SKB_CB(skb)->seq;
2753	u32 ack = TCP_SKB_CB(skb)->ack_seq;
2754	u32 prior_in_flight;
2755	s32 seq_rtt;
2756	int prior_packets;
2757	int frto_cwnd = 0;
2758
2759	/* If the ack is newer than sent or older than previous acks
2760	 * then we can probably ignore it.
2761	 */
2762	if (after(ack, tp->snd_nxt))
2763		goto uninteresting_ack;
2764
2765	if (before(ack, prior_snd_una))
2766		goto old_ack;
2767
2768	if (sysctl_tcp_abc) {
2769		if (icsk->icsk_ca_state < TCP_CA_CWR)
2770			tp->bytes_acked += ack - prior_snd_una;
2771		else if (icsk->icsk_ca_state == TCP_CA_Loss)
2772			/* we assume just one segment left network */
2773			tp->bytes_acked += min(ack - prior_snd_una, tp->mss_cache);
2774	}
2775
2776	if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
2777		/* Window is constant, pure forward advance.
2778		 * No more checks are required.
2779		 * Note, we use the fact that SND.UNA>=SND.WL2.
2780		 */
2781		tcp_update_wl(tp, ack, ack_seq);
2782		tp->snd_una = ack;
2783		flag |= FLAG_WIN_UPDATE;
2784
2785		tcp_ca_event(sk, CA_EVENT_FAST_ACK);
2786
2787		NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
2788	} else {
2789		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
2790			flag |= FLAG_DATA;
2791		else
2792			NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
2793
2794		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
2795
2796		if (TCP_SKB_CB(skb)->sacked)
2797			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2798
2799		if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
2800			flag |= FLAG_ECE;
2801
2802		tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
2803	}
2804
2805	/* We passed data and got it acked, remove any soft error
2806	 * log. Something worked...
2807	 */
2808	sk->sk_err_soft = 0;
2809	tp->rcv_tstamp = tcp_time_stamp;
2810	prior_packets = tp->packets_out;
2811	if (!prior_packets)
2812		goto no_queue;
2813
2814	prior_in_flight = tcp_packets_in_flight(tp);
2815
2816	/* See if we can take anything off of the retransmit queue. */
2817	flag |= tcp_clean_rtx_queue(sk, &seq_rtt);
2818
2819	if (tp->frto_counter)
2820		frto_cwnd = tcp_process_frto(sk, prior_snd_una, flag);
2821
2822	if (tcp_ack_is_dubious(sk, flag)) {
2823		/* Advance CWND, if state allows this. */
2824		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
2825		    tcp_may_raise_cwnd(sk, flag))
2826			tcp_cong_avoid(sk, ack,  seq_rtt, prior_in_flight, 0);
2827		tcp_fastretrans_alert(sk, prior_snd_una, prior_packets, flag);
2828	} else {
2829		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
2830			tcp_cong_avoid(sk, ack, seq_rtt, prior_in_flight, 1);
2831	}
2832
2833	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
2834		dst_confirm(sk->sk_dst_cache);
2835
2836	return 1;
2837
2838no_queue:
2839	icsk->icsk_probes_out = 0;
2840
2841	/* If this ack opens up a zero window, clear backoff.  It was
2842	 * being used to time the probes, and is probably far higher than
2843	 * it needs to be for normal retransmission.
2844	 */
2845	if (tcp_send_head(sk))
2846		tcp_ack_probe(sk);
2847	return 1;
2848
2849old_ack:
2850	if (TCP_SKB_CB(skb)->sacked)
2851		tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2852
2853uninteresting_ack:
2854	SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
2855	return 0;
2856}
2857
2858
2859/* Look for tcp options. Normally only called on SYN and SYNACK packets.
2860 * But, this can also be called on packets in the established flow when
2861 * the fast version below fails.
2862 */
2863void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
2864{
2865	unsigned char *ptr;
2866	struct tcphdr *th = tcp_hdr(skb);
2867	int length=(th->doff*4)-sizeof(struct tcphdr);
2868
2869	ptr = (unsigned char *)(th + 1);
2870	opt_rx->saw_tstamp = 0;
2871
2872	while (length > 0) {
2873		int opcode=*ptr++;
2874		int opsize;
2875
2876		switch (opcode) {
2877			case TCPOPT_EOL:
2878				return;
2879			case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
2880				length--;
2881				continue;
2882			default:
2883				opsize=*ptr++;
2884				if (opsize < 2) /* "silly options" */
2885					return;
2886				if (opsize > length)
2887					return;	/* don't parse partial options */
2888				switch (opcode) {
2889				case TCPOPT_MSS:
2890					if (opsize==TCPOLEN_MSS && th->syn && !estab) {
2891						u16 in_mss = ntohs(get_unaligned((__be16 *)ptr));
2892						if (in_mss) {
2893							if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
2894								in_mss = opt_rx->user_mss;
2895							opt_rx->mss_clamp = in_mss;
2896						}
2897					}
2898					break;
2899				case TCPOPT_WINDOW:
2900					if (opsize==TCPOLEN_WINDOW && th->syn && !estab)
2901						if (sysctl_tcp_window_scaling) {
2902							__u8 snd_wscale = *(__u8 *) ptr;
2903							opt_rx->wscale_ok = 1;
2904							if (snd_wscale > 14) {
2905								if (net_ratelimit())
2906									printk(KERN_INFO "tcp_parse_options: Illegal window "
2907									       "scaling value %d >14 received.\n",
2908									       snd_wscale);
2909								snd_wscale = 14;
2910							}
2911							opt_rx->snd_wscale = snd_wscale;
2912						}
2913					break;
2914				case TCPOPT_TIMESTAMP:
2915					if (opsize==TCPOLEN_TIMESTAMP) {
2916						if ((estab && opt_rx->tstamp_ok) ||
2917						    (!estab && sysctl_tcp_timestamps)) {
2918							opt_rx->saw_tstamp = 1;
2919							opt_rx->rcv_tsval = ntohl(get_unaligned((__be32 *)ptr));
2920							opt_rx->rcv_tsecr = ntohl(get_unaligned((__be32 *)(ptr+4)));
2921						}
2922					}
2923					break;
2924				case TCPOPT_SACK_PERM:
2925					if (opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
2926						if (sysctl_tcp_sack) {
2927							opt_rx->sack_ok = 1;
2928							tcp_sack_reset(opt_rx);
2929						}
2930					}
2931					break;
2932
2933				case TCPOPT_SACK:
2934					if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
2935					   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
2936					   opt_rx->sack_ok) {
2937						TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
2938					}
2939					break;
2940#ifdef CONFIG_TCP_MD5SIG
2941				case TCPOPT_MD5SIG:
2942					/*
2943					 * The MD5 Hash has already been
2944					 * checked (see tcp_v{4,6}_do_rcv()).
2945					 */
2946					break;
2947#endif
2948				}
2949
2950				ptr+=opsize-2;
2951				length-=opsize;
2952		}
2953	}
2954}
2955
2956/* Fast parse options. This hopes to only see timestamps.
2957 * If it is wrong it falls back on tcp_parse_options().
2958 */
2959static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
2960				  struct tcp_sock *tp)
2961{
2962	if (th->doff == sizeof(struct tcphdr)>>2) {
2963		tp->rx_opt.saw_tstamp = 0;
2964		return 0;
2965	} else if (tp->rx_opt.tstamp_ok &&
2966		   th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
2967		__be32 *ptr = (__be32 *)(th + 1);
2968		if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
2969				  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
2970			tp->rx_opt.saw_tstamp = 1;
2971			++ptr;
2972			tp->rx_opt.rcv_tsval = ntohl(*ptr);
2973			++ptr;
2974			tp->rx_opt.rcv_tsecr = ntohl(*ptr);
2975			return 1;
2976		}
2977	}
2978	tcp_parse_options(skb, &tp->rx_opt, 1);
2979	return 1;
2980}
2981
2982static inline void tcp_store_ts_recent(struct tcp_sock *tp)
2983{
2984	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
2985	tp->rx_opt.ts_recent_stamp = get_seconds();
2986}
2987
2988static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
2989{
2990	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
2991
2992		if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
2993		   get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
2994			tcp_store_ts_recent(tp);
2995	}
2996}
2997
2998/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
2999 *
3000 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3001 * it can pass through stack. So, the following predicate verifies that
3002 * this segment is not used for anything but congestion avoidance or
3003 * fast retransmit. Moreover, we even are able to eliminate most of such
3004 * second order effects, if we apply some small "replay" window (~RTO)
3005 * to timestamp space.
3006 *
3007 * All these measures still do not guarantee that we reject wrapped ACKs
3008 * on networks with high bandwidth, when sequence space is recycled fastly,
3009 * but it guarantees that such events will be very rare and do not affect
3010 * connection seriously. This doesn't look nice, but alas, PAWS is really
3011 * buggy extension.
3012 *
3013 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3014 * states that events when retransmit arrives after original data are rare.
3015 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3016 * the biggest problem on large power networks even with minor reordering.
3017 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3018 * up to bandwidth of 18Gigabit/sec. 8) ]
3019 */
3020
3021static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3022{
3023	struct tcp_sock *tp = tcp_sk(sk);
3024	struct tcphdr *th = tcp_hdr(skb);
3025	u32 seq = TCP_SKB_CB(skb)->seq;
3026	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3027
3028	return (/* 1. Pure ACK with correct sequence number. */
3029		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3030
3031		/* 2. ... and duplicate ACK. */
3032		ack == tp->snd_una &&
3033
3034		/* 3. ... and does not update window. */
3035		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3036
3037		/* 4. ... and sits in replay window. */
3038		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3039}
3040
3041static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
3042{
3043	const struct tcp_sock *tp = tcp_sk(sk);
3044	return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
3045		get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
3046		!tcp_disordered_ack(sk, skb));
3047}
3048
3049/* Check segment sequence number for validity.
3050 *
3051 * Segment controls are considered valid, if the segment
3052 * fits to the window after truncation to the window. Acceptability
3053 * of data (and SYN, FIN, of course) is checked separately.
3054 * See tcp_data_queue(), for example.
3055 *
3056 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3057 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3058 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3059 * (borrowed from freebsd)
3060 */
3061
3062static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3063{
3064	return	!before(end_seq, tp->rcv_wup) &&
3065		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3066}
3067
3068/* When we get a reset we do this. */
3069static void tcp_reset(struct sock *sk)
3070{
3071	/* We want the right error as BSD sees it (and indeed as we do). */
3072	switch (sk->sk_state) {
3073		case TCP_SYN_SENT:
3074			sk->sk_err = ECONNREFUSED;
3075			break;
3076		case TCP_CLOSE_WAIT:
3077			sk->sk_err = EPIPE;
3078			break;
3079		case TCP_CLOSE:
3080			return;
3081		default:
3082			sk->sk_err = ECONNRESET;
3083	}
3084
3085	if (!sock_flag(sk, SOCK_DEAD))
3086		sk->sk_error_report(sk);
3087
3088	tcp_done(sk);
3089}
3090
3091/*
3092 * 	Process the FIN bit. This now behaves as it is supposed to work
3093 *	and the FIN takes effect when it is validly part of sequence
3094 *	space. Not before when we get holes.
3095 *
3096 *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3097 *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
3098 *	TIME-WAIT)
3099 *
3100 *	If we are in FINWAIT-1, a received FIN indicates simultaneous
3101 *	close and we go into CLOSING (and later onto TIME-WAIT)
3102 *
3103 *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3104 */
3105static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3106{
3107	struct tcp_sock *tp = tcp_sk(sk);
3108
3109	inet_csk_schedule_ack(sk);
3110
3111	sk->sk_shutdown |= RCV_SHUTDOWN;
3112	sock_set_flag(sk, SOCK_DONE);
3113
3114	switch (sk->sk_state) {
3115		case TCP_SYN_RECV:
3116		case TCP_ESTABLISHED:
3117			/* Move to CLOSE_WAIT */
3118			tcp_set_state(sk, TCP_CLOSE_WAIT);
3119			inet_csk(sk)->icsk_ack.pingpong = 1;
3120			break;
3121
3122		case TCP_CLOSE_WAIT:
3123		case TCP_CLOSING:
3124			/* Received a retransmission of the FIN, do
3125			 * nothing.
3126			 */
3127			break;
3128		case TCP_LAST_ACK:
3129			/* RFC793: Remain in the LAST-ACK state. */
3130			break;
3131
3132		case TCP_FIN_WAIT1:
3133			/* This case occurs when a simultaneous close
3134			 * happens, we must ack the received FIN and
3135			 * enter the CLOSING state.
3136			 */
3137			tcp_send_ack(sk);
3138			tcp_set_state(sk, TCP_CLOSING);
3139			break;
3140		case TCP_FIN_WAIT2:
3141			/* Received a FIN -- send ACK and enter TIME_WAIT. */
3142			tcp_send_ack(sk);
3143			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3144			break;
3145		default:
3146			/* Only TCP_LISTEN and TCP_CLOSE are left, in these
3147			 * cases we should never reach this piece of code.
3148			 */
3149			printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
3150			       __FUNCTION__, sk->sk_state);
3151			break;
3152	}
3153
3154	/* It _is_ possible, that we have something out-of-order _after_ FIN.
3155	 * Probably, we should reset in this case. For now drop them.
3156	 */
3157	__skb_queue_purge(&tp->out_of_order_queue);
3158	if (tp->rx_opt.sack_ok)
3159		tcp_sack_reset(&tp->rx_opt);
3160	sk_stream_mem_reclaim(sk);
3161
3162	if (!sock_flag(sk, SOCK_DEAD)) {
3163		sk->sk_state_change(sk);
3164
3165		/* Do not send POLL_HUP for half duplex close. */
3166		if (sk->sk_shutdown == SHUTDOWN_MASK ||
3167		    sk->sk_state == TCP_CLOSE)
3168			sk_wake_async(sk, 1, POLL_HUP);
3169		else
3170			sk_wake_async(sk, 1, POLL_IN);
3171	}
3172}
3173
3174static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
3175{
3176	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3177		if (before(seq, sp->start_seq))
3178			sp->start_seq = seq;
3179		if (after(end_seq, sp->end_seq))
3180			sp->end_seq = end_seq;
3181		return 1;
3182	}
3183	return 0;
3184}
3185
3186static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
3187{
3188	if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
3189		if (before(seq, tp->rcv_nxt))
3190			NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
3191		else
3192			NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
3193
3194		tp->rx_opt.dsack = 1;
3195		tp->duplicate_sack[0].start_seq = seq;
3196		tp->duplicate_sack[0].end_seq = end_seq;
3197		tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
3198	}
3199}
3200
3201static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
3202{
3203	if (!tp->rx_opt.dsack)
3204		tcp_dsack_set(tp, seq, end_seq);
3205	else
3206		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3207}
3208
3209static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3210{
3211	struct tcp_sock *tp = tcp_sk(sk);
3212
3213	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3214	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3215		NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3216		tcp_enter_quickack_mode(sk);
3217
3218		if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
3219			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3220
3221			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3222				end_seq = tp->rcv_nxt;
3223			tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
3224		}
3225	}
3226
3227	tcp_send_ack(sk);
3228}
3229
3230/* These routines update the SACK block as out-of-order packets arrive or
3231 * in-order packets close up the sequence space.
3232 */
3233static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3234{
3235	int this_sack;
3236	struct tcp_sack_block *sp = &tp->selective_acks[0];
3237	struct tcp_sack_block *swalk = sp+1;
3238
3239	/* See if the recent change to the first SACK eats into
3240	 * or hits the sequence space of other SACK blocks, if so coalesce.
3241	 */
3242	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
3243		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3244			int i;
3245
3246			/* Zap SWALK, by moving every further SACK up by one slot.
3247			 * Decrease num_sacks.
3248			 */
3249			tp->rx_opt.num_sacks--;
3250			tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3251			for (i=this_sack; i < tp->rx_opt.num_sacks; i++)
3252				sp[i] = sp[i+1];
3253			continue;
3254		}
3255		this_sack++, swalk++;
3256	}
3257}
3258
3259static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
3260{
3261	__u32 tmp;
3262
3263	tmp = sack1->start_seq;
3264	sack1->start_seq = sack2->start_seq;
3265	sack2->start_seq = tmp;
3266
3267	tmp = sack1->end_seq;
3268	sack1->end_seq = sack2->end_seq;
3269	sack2->end_seq = tmp;
3270}
3271
3272static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3273{
3274	struct tcp_sock *tp = tcp_sk(sk);
3275	struct tcp_sack_block *sp = &tp->selective_acks[0];
3276	int cur_sacks = tp->rx_opt.num_sacks;
3277	int this_sack;
3278
3279	if (!cur_sacks)
3280		goto new_sack;
3281
3282	for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
3283		if (tcp_sack_extend(sp, seq, end_seq)) {
3284			/* Rotate this_sack to the first one. */
3285			for (; this_sack>0; this_sack--, sp--)
3286				tcp_sack_swap(sp, sp-1);
3287			if (cur_sacks > 1)
3288				tcp_sack_maybe_coalesce(tp);
3289			return;
3290		}
3291	}
3292
3293	/* Could not find an adjacent existing SACK, build a new one,
3294	 * put it at the front, and shift everyone else down.  We
3295	 * always know there is at least one SACK present already here.
3296	 *
3297	 * If the sack array is full, forget about the last one.
3298	 */
3299	if (this_sack >= 4) {
3300		this_sack--;
3301		tp->rx_opt.num_sacks--;
3302		sp--;
3303	}
3304	for (; this_sack > 0; this_sack--, sp--)
3305		*sp = *(sp-1);
3306
3307new_sack:
3308	/* Build the new head SACK, and we're done. */
3309	sp->start_seq = seq;
3310	sp->end_seq = end_seq;
3311	tp->rx_opt.num_sacks++;
3312	tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3313}
3314
3315/* RCV.NXT advances, some SACKs should be eaten. */
3316
3317static void tcp_sack_remove(struct tcp_sock *tp)
3318{
3319	struct tcp_sack_block *sp = &tp->selective_acks[0];
3320	int num_sacks = tp->rx_opt.num_sacks;
3321	int this_sack;
3322
3323	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3324	if (skb_queue_empty(&tp->out_of_order_queue)) {
3325		tp->rx_opt.num_sacks = 0;
3326		tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3327		return;
3328	}
3329
3330	for (this_sack = 0; this_sack < num_sacks; ) {
3331		/* Check if the start of the sack is covered by RCV.NXT. */
3332		if (!before(tp->rcv_nxt, sp->start_seq)) {
3333			int i;
3334
3335			/* RCV.NXT must cover all the block! */
3336			BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3337
3338			/* Zap this SACK, by moving forward any other SACKS. */
3339			for (i=this_sack+1; i < num_sacks; i++)
3340				tp->selective_acks[i-1] = tp->selective_acks[i];
3341			num_sacks--;
3342			continue;
3343		}
3344		this_sack++;
3345		sp++;
3346	}
3347	if (num_sacks != tp->rx_opt.num_sacks) {
3348		tp->rx_opt.num_sacks = num_sacks;
3349		tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3350	}
3351}
3352
3353/* This one checks to see if we can put data from the
3354 * out_of_order queue into the receive_queue.
3355 */
3356static void tcp_ofo_queue(struct sock *sk)
3357{
3358	struct tcp_sock *tp = tcp_sk(sk);
3359	__u32 dsack_high = tp->rcv_nxt;
3360	struct sk_buff *skb;
3361
3362	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3363		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3364			break;
3365
3366		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3367			__u32 dsack = dsack_high;
3368			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3369				dsack_high = TCP_SKB_CB(skb)->end_seq;
3370			tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3371		}
3372
3373		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3374			SOCK_DEBUG(sk, "ofo packet was already received \n");
3375			__skb_unlink(skb, &tp->out_of_order_queue);
3376			__kfree_skb(skb);
3377			continue;
3378		}
3379		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3380			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3381			   TCP_SKB_CB(skb)->end_seq);
3382
3383		__skb_unlink(skb, &tp->out_of_order_queue);
3384		__skb_queue_tail(&sk->sk_receive_queue, skb);
3385		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3386		if (tcp_hdr(skb)->fin)
3387			tcp_fin(skb, sk, tcp_hdr(skb));
3388	}
3389}
3390
3391static int tcp_prune_queue(struct sock *sk);
3392
3393static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3394{
3395	struct tcphdr *th = tcp_hdr(skb);
3396	struct tcp_sock *tp = tcp_sk(sk);
3397	int eaten = -1;
3398
3399	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3400		goto drop;
3401
3402	__skb_pull(skb, th->doff*4);
3403
3404	TCP_ECN_accept_cwr(tp, skb);
3405
3406	if (tp->rx_opt.dsack) {
3407		tp->rx_opt.dsack = 0;
3408		tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3409						    4 - tp->rx_opt.tstamp_ok);
3410	}
3411
3412	/*  Queue data for delivery to the user.
3413	 *  Packets in sequence go to the receive queue.
3414	 *  Out of sequence packets to the out_of_order_queue.
3415	 */
3416	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3417		if (tcp_receive_window(tp) == 0)
3418			goto out_of_window;
3419
3420		/* Ok. In sequence. In window. */
3421		if (tp->ucopy.task == current &&
3422		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3423		    sock_owned_by_user(sk) && !tp->urg_data) {
3424			int chunk = min_t(unsigned int, skb->len,
3425							tp->ucopy.len);
3426
3427			__set_current_state(TASK_RUNNING);
3428
3429			local_bh_enable();
3430			if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3431				tp->ucopy.len -= chunk;
3432				tp->copied_seq += chunk;
3433				eaten = (chunk == skb->len && !th->fin);
3434				tcp_rcv_space_adjust(sk);
3435			}
3436			local_bh_disable();
3437		}
3438
3439		if (eaten <= 0) {
3440queue_and_out:
3441			if (eaten < 0 &&
3442			    (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3443			     !sk_stream_rmem_schedule(sk, skb))) {
3444				if (tcp_prune_queue(sk) < 0 ||
3445				    !sk_stream_rmem_schedule(sk, skb))
3446					goto drop;
3447			}
3448			sk_stream_set_owner_r(skb, sk);
3449			__skb_queue_tail(&sk->sk_receive_queue, skb);
3450		}
3451		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3452		if (skb->len)
3453			tcp_event_data_recv(sk, skb);
3454		if (th->fin)
3455			tcp_fin(skb, sk, th);
3456
3457		if (!skb_queue_empty(&tp->out_of_order_queue)) {
3458			tcp_ofo_queue(sk);
3459
3460			/* RFC2581. 4.2. SHOULD send immediate ACK, when
3461			 * gap in queue is filled.
3462			 */
3463			if (skb_queue_empty(&tp->out_of_order_queue))
3464				inet_csk(sk)->icsk_ack.pingpong = 0;
3465		}
3466
3467		if (tp->rx_opt.num_sacks)
3468			tcp_sack_remove(tp);
3469
3470		tcp_fast_path_check(sk);
3471
3472		if (eaten > 0)
3473			__kfree_skb(skb);
3474		else if (!sock_flag(sk, SOCK_DEAD))
3475			sk->sk_data_ready(sk, 0);
3476		return;
3477	}
3478
3479	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3480		/* A retransmit, 2nd most common case.  Force an immediate ack. */
3481		NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3482		tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3483
3484out_of_window:
3485		tcp_enter_quickack_mode(sk);
3486		inet_csk_schedule_ack(sk);
3487drop:
3488		__kfree_skb(skb);
3489		return;
3490	}
3491
3492	/* Out of window. F.e. zero window probe. */
3493	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3494		goto out_of_window;
3495
3496	tcp_enter_quickack_mode(sk);
3497
3498	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3499		/* Partial packet, seq < rcv_next < end_seq */
3500		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3501			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3502			   TCP_SKB_CB(skb)->end_seq);
3503
3504		tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
3505
3506		/* If window is closed, drop tail of packet. But after
3507		 * remembering D-SACK for its head made in previous line.
3508		 */
3509		if (!tcp_receive_window(tp))
3510			goto out_of_window;
3511		goto queue_and_out;
3512	}
3513
3514	TCP_ECN_check_ce(tp, skb);
3515
3516	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3517	    !sk_stream_rmem_schedule(sk, skb)) {
3518		if (tcp_prune_queue(sk) < 0 ||
3519		    !sk_stream_rmem_schedule(sk, skb))
3520			goto drop;
3521	}
3522
3523	/* Disable header prediction. */
3524	tp->pred_flags = 0;
3525	inet_csk_schedule_ack(sk);
3526
3527	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3528		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3529
3530	sk_stream_set_owner_r(skb, sk);
3531
3532	if (!skb_peek(&tp->out_of_order_queue)) {
3533		/* Initial out of order segment, build 1 SACK. */
3534		if (tp->rx_opt.sack_ok) {
3535			tp->rx_opt.num_sacks = 1;
3536			tp->rx_opt.dsack     = 0;
3537			tp->rx_opt.eff_sacks = 1;
3538			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3539			tp->selective_acks[0].end_seq =
3540						TCP_SKB_CB(skb)->end_seq;
3541		}
3542		__skb_queue_head(&tp->out_of_order_queue,skb);
3543	} else {
3544		struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3545		u32 seq = TCP_SKB_CB(skb)->seq;
3546		u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3547
3548		if (seq == TCP_SKB_CB(skb1)->end_seq) {
3549			__skb_append(skb1, skb, &tp->out_of_order_queue);
3550
3551			if (!tp->rx_opt.num_sacks ||
3552			    tp->selective_acks[0].end_seq != seq)
3553				goto add_sack;
3554
3555			/* Common case: data arrive in order after hole. */
3556			tp->selective_acks[0].end_seq = end_seq;
3557			return;
3558		}
3559
3560		/* Find place to insert this segment. */
3561		do {
3562			if (!after(TCP_SKB_CB(skb1)->seq, seq))
3563				break;
3564		} while ((skb1 = skb1->prev) !=
3565			 (struct sk_buff*)&tp->out_of_order_queue);
3566
3567		/* Do skb overlap to previous one? */
3568		if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3569		    before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3570			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3571				/* All the bits are present. Drop. */
3572				__kfree_skb(skb);
3573				tcp_dsack_set(tp, seq, end_seq);
3574				goto add_sack;
3575			}
3576			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3577				/* Partial overlap. */
3578				tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
3579			} else {
3580				skb1 = skb1->prev;
3581			}
3582		}
3583		__skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
3584
3585		/* And clean segments covered by new one as whole. */
3586		while ((skb1 = skb->next) !=
3587		       (struct sk_buff*)&tp->out_of_order_queue &&
3588		       after(end_seq, TCP_SKB_CB(skb1)->seq)) {
3589		       if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3590			       tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
3591			       break;
3592		       }
3593		       __skb_unlink(skb1, &tp->out_of_order_queue);
3594		       tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
3595		       __kfree_skb(skb1);
3596		}
3597
3598add_sack:
3599		if (tp->rx_opt.sack_ok)
3600			tcp_sack_new_ofo_skb(sk, seq, end_seq);
3601	}
3602}
3603
3604/* Collapse contiguous sequence of skbs head..tail with
3605 * sequence numbers start..end.
3606 * Segments with FIN/SYN are not collapsed (only because this
3607 * simplifies code)
3608 */
3609static void
3610tcp_collapse(struct sock *sk, struct sk_buff_head *list,
3611	     struct sk_buff *head, struct sk_buff *tail,
3612	     u32 start, u32 end)
3613{
3614	struct sk_buff *skb;
3615
3616	/* First, check that queue is collapsible and find
3617	 * the point where collapsing can be useful. */
3618	for (skb = head; skb != tail; ) {
3619		/* No new bits? It is possible on ofo queue. */
3620		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3621			struct sk_buff *next = skb->next;
3622			__skb_unlink(skb, list);
3623			__kfree_skb(skb);
3624			NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3625			skb = next;
3626			continue;
3627		}
3628
3629		/* The first skb to collapse is:
3630		 * - not SYN/FIN and
3631		 * - bloated or contains data before "start" or
3632		 *   overlaps to the next one.
3633		 */
3634		if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
3635		    (tcp_win_from_space(skb->truesize) > skb->len ||
3636		     before(TCP_SKB_CB(skb)->seq, start) ||
3637		     (skb->next != tail &&
3638		      TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
3639			break;
3640
3641		/* Decided to skip this, advance start seq. */
3642		start = TCP_SKB_CB(skb)->end_seq;
3643		skb = skb->next;
3644	}
3645	if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
3646		return;
3647
3648	while (before(start, end)) {
3649		struct sk_buff *nskb;
3650		int header = skb_headroom(skb);
3651		int copy = SKB_MAX_ORDER(header, 0);
3652
3653		/* Too big header? This can happen with IPv6. */
3654		if (copy < 0)
3655			return;
3656		if (end-start < copy)
3657			copy = end-start;
3658		nskb = alloc_skb(copy+header, GFP_ATOMIC);
3659		if (!nskb)
3660			return;
3661
3662		skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
3663		skb_set_network_header(nskb, (skb_network_header(skb) -
3664					      skb->head));
3665		skb_set_transport_header(nskb, (skb_transport_header(skb) -
3666						skb->head));
3667		skb_reserve(nskb, header);
3668		memcpy(nskb->head, skb->head, header);
3669		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
3670		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
3671		__skb_insert(nskb, skb->prev, skb, list);
3672		sk_stream_set_owner_r(nskb, sk);
3673
3674		/* Copy data, releasing collapsed skbs. */
3675		while (copy > 0) {
3676			int offset = start - TCP_SKB_CB(skb)->seq;
3677			int size = TCP_SKB_CB(skb)->end_seq - start;
3678
3679			BUG_ON(offset < 0);
3680			if (size > 0) {
3681				size = min(copy, size);
3682				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
3683					BUG();
3684				TCP_SKB_CB(nskb)->end_seq += size;
3685				copy -= size;
3686				start += size;
3687			}
3688			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3689				struct sk_buff *next = skb->next;
3690				__skb_unlink(skb, list);
3691				__kfree_skb(skb);
3692				NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3693				skb = next;
3694				if (skb == tail ||
3695				    tcp_hdr(skb)->syn ||
3696				    tcp_hdr(skb)->fin)
3697					return;
3698			}
3699		}
3700	}
3701}
3702
3703/* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
3704 * and tcp_collapse() them until all the queue is collapsed.
3705 */
3706static void tcp_collapse_ofo_queue(struct sock *sk)
3707{
3708	struct tcp_sock *tp = tcp_sk(sk);
3709	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
3710	struct sk_buff *head;
3711	u32 start, end;
3712
3713	if (skb == NULL)
3714		return;
3715
3716	start = TCP_SKB_CB(skb)->seq;
3717	end = TCP_SKB_CB(skb)->end_seq;
3718	head = skb;
3719
3720	for (;;) {
3721		skb = skb->next;
3722
3723		/* Segment is terminated when we see gap or when
3724		 * we are at the end of all the queue. */
3725		if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
3726		    after(TCP_SKB_CB(skb)->seq, end) ||
3727		    before(TCP_SKB_CB(skb)->end_seq, start)) {
3728			tcp_collapse(sk, &tp->out_of_order_queue,
3729				     head, skb, start, end);
3730			head = skb;
3731			if (skb == (struct sk_buff *)&tp->out_of_order_queue)
3732				break;
3733			/* Start new segment */
3734			start = TCP_SKB_CB(skb)->seq;
3735			end = TCP_SKB_CB(skb)->end_seq;
3736		} else {
3737			if (before(TCP_SKB_CB(skb)->seq, start))
3738				start = TCP_SKB_CB(skb)->seq;
3739			if (after(TCP_SKB_CB(skb)->end_seq, end))
3740				end = TCP_SKB_CB(skb)->end_seq;
3741		}
3742	}
3743}
3744
3745/* Reduce allocated memory if we can, trying to get
3746 * the socket within its memory limits again.
3747 *
3748 * Return less than zero if we should start dropping frames
3749 * until the socket owning process reads some of the data
3750 * to stabilize the situation.
3751 */
3752static int tcp_prune_queue(struct sock *sk)
3753{
3754	struct tcp_sock *tp = tcp_sk(sk);
3755
3756	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
3757
3758	NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
3759
3760	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
3761		tcp_clamp_window(sk);
3762	else if (tcp_memory_pressure)
3763		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
3764
3765	tcp_collapse_ofo_queue(sk);
3766	tcp_collapse(sk, &sk->sk_receive_queue,
3767		     sk->sk_receive_queue.next,
3768		     (struct sk_buff*)&sk->sk_receive_queue,
3769		     tp->copied_seq, tp->rcv_nxt);
3770	sk_stream_mem_reclaim(sk);
3771
3772	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3773		return 0;
3774
3775	/* Collapsing did not help, destructive actions follow.
3776	 * This must not ever occur. */
3777
3778	/* First, purge the out_of_order queue. */
3779	if (!skb_queue_empty(&tp->out_of_order_queue)) {
3780		NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
3781		__skb_queue_purge(&tp->out_of_order_queue);
3782
3783		/* Reset SACK state.  A conforming SACK implementation will
3784		 * do the same at a timeout based retransmit.  When a connection
3785		 * is in a sad state like this, we care only about integrity
3786		 * of the connection not performance.
3787		 */
3788		if (tp->rx_opt.sack_ok)
3789			tcp_sack_reset(&tp->rx_opt);
3790		sk_stream_mem_reclaim(sk);
3791	}
3792
3793	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3794		return 0;
3795
3796	/* If we are really being abused, tell the caller to silently
3797	 * drop receive data on the floor.  It will get retransmitted
3798	 * and hopefully then we'll have sufficient space.
3799	 */
3800	NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
3801
3802	/* Massive buffer overcommit. */
3803	tp->pred_flags = 0;
3804	return -1;
3805}
3806
3807
3808/* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
3809 * As additional protections, we do not touch cwnd in retransmission phases,
3810 * and if application hit its sndbuf limit recently.
3811 */
3812void tcp_cwnd_application_limited(struct sock *sk)
3813{
3814	struct tcp_sock *tp = tcp_sk(sk);
3815
3816	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
3817	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
3818		/* Limited by application or receiver window. */
3819		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
3820		u32 win_used = max(tp->snd_cwnd_used, init_win);
3821		if (win_used < tp->snd_cwnd) {
3822			tp->snd_ssthresh = tcp_current_ssthresh(sk);
3823			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
3824		}
3825		tp->snd_cwnd_used = 0;
3826	}
3827	tp->snd_cwnd_stamp = tcp_time_stamp;
3828}
3829
3830static int tcp_should_expand_sndbuf(struct sock *sk)
3831{
3832	struct tcp_sock *tp = tcp_sk(sk);
3833
3834	/* If the user specified a specific send buffer setting, do
3835	 * not modify it.
3836	 */
3837	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
3838		return 0;
3839
3840	/* If we are under global TCP memory pressure, do not expand.  */
3841	if (tcp_memory_pressure)
3842		return 0;
3843
3844	/* If we are under soft global TCP memory pressure, do not expand.  */
3845	if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
3846		return 0;
3847
3848	/* If we filled the congestion window, do not expand.  */
3849	if (tp->packets_out >= tp->snd_cwnd)
3850		return 0;
3851
3852	return 1;
3853}
3854
3855/* When incoming ACK allowed to free some skb from write_queue,
3856 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
3857 * on the exit from tcp input handler.
3858 *
3859 * PROBLEM: sndbuf expansion does not work well with largesend.
3860 */
3861static void tcp_new_space(struct sock *sk)
3862{
3863	struct tcp_sock *tp = tcp_sk(sk);
3864
3865	if (tcp_should_expand_sndbuf(sk)) {
3866		int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
3867			MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
3868		    demanded = max_t(unsigned int, tp->snd_cwnd,
3869						   tp->reordering + 1);
3870		sndmem *= 2*demanded;
3871		if (sndmem > sk->sk_sndbuf)
3872			sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
3873		tp->snd_cwnd_stamp = tcp_time_stamp;
3874	}
3875
3876	sk->sk_write_space(sk);
3877}
3878
3879static void tcp_check_space(struct sock *sk)
3880{
3881	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
3882		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
3883		if (sk->sk_socket &&
3884		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
3885			tcp_new_space(sk);
3886	}
3887}
3888
3889static inline void tcp_data_snd_check(struct sock *sk)
3890{
3891	tcp_push_pending_frames(sk);
3892	tcp_check_space(sk);
3893}
3894
3895/*
3896 * Check if sending an ack is needed.
3897 */
3898static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
3899{
3900	struct tcp_sock *tp = tcp_sk(sk);
3901
3902	    /* More than one full frame received... */
3903	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
3904	     /* ... and right edge of window advances far enough.
3905	      * (tcp_recvmsg() will send ACK otherwise). Or...
3906	      */
3907	     && __tcp_select_window(sk) >= tp->rcv_wnd) ||
3908	    /* We ACK each frame or... */
3909	    tcp_in_quickack_mode(sk) ||
3910	    /* We have out of order data. */
3911	    (ofo_possible &&
3912	     skb_peek(&tp->out_of_order_queue))) {
3913		/* Then ack it now */
3914		tcp_send_ack(sk);
3915	} else {
3916		/* Else, send delayed ack. */
3917		tcp_send_delayed_ack(sk);
3918	}
3919}
3920
3921static inline void tcp_ack_snd_check(struct sock *sk)
3922{
3923	if (!inet_csk_ack_scheduled(sk)) {
3924		/* We sent a data segment already. */
3925		return;
3926	}
3927	__tcp_ack_snd_check(sk, 1);
3928}
3929
3930/*
3931 *	This routine is only called when we have urgent data
3932 *	signaled. Its the 'slow' part of tcp_urg. It could be
3933 *	moved inline now as tcp_urg is only called from one
3934 *	place. We handle URGent data wrong. We have to - as
3935 *	BSD still doesn't use the correction from RFC961.
3936 *	For 1003.1g we should support a new option TCP_STDURG to permit
3937 *	either form (or just set the sysctl tcp_stdurg).
3938 */
3939
3940static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
3941{
3942	struct tcp_sock *tp = tcp_sk(sk);
3943	u32 ptr = ntohs(th->urg_ptr);
3944
3945	if (ptr && !sysctl_tcp_stdurg)
3946		ptr--;
3947	ptr += ntohl(th->seq);
3948
3949	/* Ignore urgent data that we've already seen and read. */
3950	if (after(tp->copied_seq, ptr))
3951		return;
3952
3953	/* Do not replay urg ptr.
3954	 *
3955	 * NOTE: interesting situation not covered by specs.
3956	 * Misbehaving sender may send urg ptr, pointing to segment,
3957	 * which we already have in ofo queue. We are not able to fetch
3958	 * such data and will stay in TCP_URG_NOTYET until will be eaten
3959	 * by recvmsg(). Seems, we are not obliged to handle such wicked
3960	 * situations. But it is worth to think about possibility of some
3961	 * DoSes using some hypothetical application level deadlock.
3962	 */
3963	if (before(ptr, tp->rcv_nxt))
3964		return;
3965
3966	/* Do we already have a newer (or duplicate) urgent pointer? */
3967	if (tp->urg_data && !after(ptr, tp->urg_seq))
3968		return;
3969
3970	/* Tell the world about our new urgent pointer. */
3971	sk_send_sigurg(sk);
3972
3973	/* We may be adding urgent data when the last byte read was
3974	 * urgent. To do this requires some care. We cannot just ignore
3975	 * tp->copied_seq since we would read the last urgent byte again
3976	 * as data, nor can we alter copied_seq until this data arrives
3977	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
3978	 *
3979	 * NOTE. Double Dutch. Rendering to plain English: author of comment
3980	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
3981	 * and expect that both A and B disappear from stream. This is _wrong_.
3982	 * Though this happens in BSD with high probability, this is occasional.
3983	 * Any application relying on this is buggy. Note also, that fix "works"
3984	 * only in this artificial test. Insert some normal data between A and B and we will
3985	 * decline of BSD again. Verdict: it is better to remove to trap
3986	 * buggy users.
3987	 */
3988	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
3989	    !sock_flag(sk, SOCK_URGINLINE) &&
3990	    tp->copied_seq != tp->rcv_nxt) {
3991		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
3992		tp->copied_seq++;
3993		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
3994			__skb_unlink(skb, &sk->sk_receive_queue);
3995			__kfree_skb(skb);
3996		}
3997	}
3998
3999	tp->urg_data   = TCP_URG_NOTYET;
4000	tp->urg_seq    = ptr;
4001
4002	/* Disable header prediction. */
4003	tp->pred_flags = 0;
4004}
4005
4006/* This is the 'fast' part of urgent handling. */
4007static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4008{
4009	struct tcp_sock *tp = tcp_sk(sk);
4010
4011	/* Check if we get a new urgent pointer - normally not. */
4012	if (th->urg)
4013		tcp_check_urg(sk,th);
4014
4015	/* Do we wait for any urgent data? - normally not... */
4016	if (tp->urg_data == TCP_URG_NOTYET) {
4017		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4018			  th->syn;
4019
4020		/* Is the urgent pointer pointing into this packet? */
4021		if (ptr < skb->len) {
4022			u8 tmp;
4023			if (skb_copy_bits(skb, ptr, &tmp, 1))
4024				BUG();
4025			tp->urg_data = TCP_URG_VALID | tmp;
4026			if (!sock_flag(sk, SOCK_DEAD))
4027				sk->sk_data_ready(sk, 0);
4028		}
4029	}
4030}
4031
4032static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4033{
4034	struct tcp_sock *tp = tcp_sk(sk);
4035	int chunk = skb->len - hlen;
4036	int err;
4037
4038	local_bh_enable();
4039	if (skb_csum_unnecessary(skb))
4040		err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4041	else
4042		err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4043						       tp->ucopy.iov);
4044
4045	if (!err) {
4046		tp->ucopy.len -= chunk;
4047		tp->copied_seq += chunk;
4048		tcp_rcv_space_adjust(sk);
4049	}
4050
4051	local_bh_disable();
4052	return err;
4053}
4054
4055static __sum16 __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
4056{
4057	__sum16 result;
4058
4059	if (sock_owned_by_user(sk)) {
4060		local_bh_enable();
4061		result = __tcp_checksum_complete(skb);
4062		local_bh_disable();
4063	} else {
4064		result = __tcp_checksum_complete(skb);
4065	}
4066	return result;
4067}
4068
4069static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
4070{
4071	return !skb_csum_unnecessary(skb) &&
4072		__tcp_checksum_complete_user(sk, skb);
4073}
4074
4075#ifdef CONFIG_NET_DMA
4076static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, int hlen)
4077{
4078	struct tcp_sock *tp = tcp_sk(sk);
4079	int chunk = skb->len - hlen;
4080	int dma_cookie;
4081	int copied_early = 0;
4082
4083	if (tp->ucopy.wakeup)
4084		return 0;
4085
4086	if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4087		tp->ucopy.dma_chan = get_softnet_dma();
4088
4089	if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4090
4091		dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4092			skb, hlen, tp->ucopy.iov, chunk, tp->ucopy.pinned_list);
4093
4094		if (dma_cookie < 0)
4095			goto out;
4096
4097		tp->ucopy.dma_cookie = dma_cookie;
4098		copied_early = 1;
4099
4100		tp->ucopy.len -= chunk;
4101		tp->copied_seq += chunk;
4102		tcp_rcv_space_adjust(sk);
4103
4104		if ((tp->ucopy.len == 0) ||
4105		    (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4106		    (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4107			tp->ucopy.wakeup = 1;
4108			sk->sk_data_ready(sk, 0);
4109		}
4110	} else if (chunk > 0) {
4111		tp->ucopy.wakeup = 1;
4112		sk->sk_data_ready(sk, 0);
4113	}
4114out:
4115	return copied_early;
4116}
4117#endif /* CONFIG_NET_DMA */
4118
4119/*
4120 *	TCP receive function for the ESTABLISHED state.
4121 *
4122 *	It is split into a fast path and a slow path. The fast path is
4123 * 	disabled when:
4124 *	- A zero window was announced from us - zero window probing
4125 *        is only handled properly in the slow path.
4126 *	- Out of order segments arrived.
4127 *	- Urgent data is expected.
4128 *	- There is no buffer space left
4129 *	- Unexpected TCP flags/window values/header lengths are received
4130 *	  (detected by checking the TCP header against pred_flags)
4131 *	- Data is sent in both directions. Fast path only supports pure senders
4132 *	  or pure receivers (this means either the sequence number or the ack
4133 *	  value must stay constant)
4134 *	- Unexpected TCP option.
4135 *
4136 *	When these conditions are not satisfied it drops into a standard
4137 *	receive procedure patterned after RFC793 to handle all cases.
4138 *	The first three cases are guaranteed by proper pred_flags setting,
4139 *	the rest is checked inline. Fast processing is turned on in
4140 *	tcp_data_queue when everything is OK.
4141 */
4142int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
4143			struct tcphdr *th, unsigned len)
4144{
4145	struct tcp_sock *tp = tcp_sk(sk);
4146
4147	/*
4148	 *	Header prediction.
4149	 *	The code loosely follows the one in the famous
4150	 *	"30 instruction TCP receive" Van Jacobson mail.
4151	 *
4152	 *	Van's trick is to deposit buffers into socket queue
4153	 *	on a device interrupt, to call tcp_recv function
4154	 *	on the receive process context and checksum and copy
4155	 *	the buffer to user space. smart...
4156	 *
4157	 *	Our current scheme is not silly either but we take the
4158	 *	extra cost of the net_bh soft interrupt processing...
4159	 *	We do checksum and copy also but from device to kernel.
4160	 */
4161
4162	tp->rx_opt.saw_tstamp = 0;
4163
4164	/*	pred_flags is 0xS?10 << 16 + snd_wnd
4165	 *	if header_prediction is to be made
4166	 *	'S' will always be tp->tcp_header_len >> 2
4167	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
4168	 *  turn it off	(when there are holes in the receive
4169	 *	 space for instance)
4170	 *	PSH flag is ignored.
4171	 */
4172
4173	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
4174		TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4175		int tcp_header_len = tp->tcp_header_len;
4176
4177		/* Timestamp header prediction: tcp_header_len
4178		 * is automatically equal to th->doff*4 due to pred_flags
4179		 * match.
4180		 */
4181
4182		/* Check timestamp */
4183		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4184			__be32 *ptr = (__be32 *)(th + 1);
4185
4186			/* No? Slow path! */
4187			if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4188					  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
4189				goto slow_path;
4190
4191			tp->rx_opt.saw_tstamp = 1;
4192			++ptr;
4193			tp->rx_opt.rcv_tsval = ntohl(*ptr);
4194			++ptr;
4195			tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4196
4197			/* If PAWS failed, check it more carefully in slow path */
4198			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4199				goto slow_path;
4200
4201			/* DO NOT update ts_recent here, if checksum fails
4202			 * and timestamp was corrupted part, it will result
4203			 * in a hung connection since we will drop all
4204			 * future packets due to the PAWS test.
4205			 */
4206		}
4207
4208		if (len <= tcp_header_len) {
4209			/* Bulk data transfer: sender */
4210			if (len == tcp_header_len) {
4211				/* Predicted packet is in window by definition.
4212				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4213				 * Hence, check seq<=rcv_wup reduces to:
4214				 */
4215				if (tcp_header_len ==
4216				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4217				    tp->rcv_nxt == tp->rcv_wup)
4218					tcp_store_ts_recent(tp);
4219
4220				/* We know that such packets are checksummed
4221				 * on entry.
4222				 */
4223				tcp_ack(sk, skb, 0);
4224				__kfree_skb(skb);
4225				tcp_data_snd_check(sk);
4226				return 0;
4227			} else { /* Header too small */
4228				TCP_INC_STATS_BH(TCP_MIB_INERRS);
4229				goto discard;
4230			}
4231		} else {
4232			int eaten = 0;
4233			int copied_early = 0;
4234
4235			if (tp->copied_seq == tp->rcv_nxt &&
4236			    len - tcp_header_len <= tp->ucopy.len) {
4237#ifdef CONFIG_NET_DMA
4238				if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4239					copied_early = 1;
4240					eaten = 1;
4241				}
4242#endif
4243				if (tp->ucopy.task == current && sock_owned_by_user(sk) && !copied_early) {
4244					__set_current_state(TASK_RUNNING);
4245
4246					if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4247						eaten = 1;
4248				}
4249				if (eaten) {
4250					/* Predicted packet is in window by definition.
4251					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4252					 * Hence, check seq<=rcv_wup reduces to:
4253					 */
4254					if (tcp_header_len ==
4255					    (sizeof(struct tcphdr) +
4256					     TCPOLEN_TSTAMP_ALIGNED) &&
4257					    tp->rcv_nxt == tp->rcv_wup)
4258						tcp_store_ts_recent(tp);
4259
4260					tcp_rcv_rtt_measure_ts(sk, skb);
4261
4262					__skb_pull(skb, tcp_header_len);
4263					tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4264					NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
4265				}
4266				if (copied_early)
4267					tcp_cleanup_rbuf(sk, skb->len);
4268			}
4269			if (!eaten) {
4270				if (tcp_checksum_complete_user(sk, skb))
4271					goto csum_error;
4272
4273				/* Predicted packet is in window by definition.
4274				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4275				 * Hence, check seq<=rcv_wup reduces to:
4276				 */
4277				if (tcp_header_len ==
4278				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4279				    tp->rcv_nxt == tp->rcv_wup)
4280					tcp_store_ts_recent(tp);
4281
4282				tcp_rcv_rtt_measure_ts(sk, skb);
4283
4284				if ((int)skb->truesize > sk->sk_forward_alloc)
4285					goto step5;
4286
4287				NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4288
4289				/* Bulk data transfer: receiver */
4290				__skb_pull(skb,tcp_header_len);
4291				__skb_queue_tail(&sk->sk_receive_queue, skb);
4292				sk_stream_set_owner_r(skb, sk);
4293				tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4294			}
4295
4296			tcp_event_data_recv(sk, skb);
4297
4298			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4299				/* Well, only one small jumplet in fast path... */
4300				tcp_ack(sk, skb, FLAG_DATA);
4301				tcp_data_snd_check(sk);
4302				if (!inet_csk_ack_scheduled(sk))
4303					goto no_ack;
4304			}
4305
4306			__tcp_ack_snd_check(sk, 0);
4307no_ack:
4308#ifdef CONFIG_NET_DMA
4309			if (copied_early)
4310				__skb_queue_tail(&sk->sk_async_wait_queue, skb);
4311			else
4312#endif
4313			if (eaten)
4314				__kfree_skb(skb);
4315			else
4316				sk->sk_data_ready(sk, 0);
4317			return 0;
4318		}
4319	}
4320
4321slow_path:
4322	if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
4323		goto csum_error;
4324
4325	/*
4326	 * RFC1323: H1. Apply PAWS check first.
4327	 */
4328	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4329	    tcp_paws_discard(sk, skb)) {
4330		if (!th->rst) {
4331			NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4332			tcp_send_dupack(sk, skb);
4333			goto discard;
4334		}
4335		/* Resets are accepted even if PAWS failed.
4336
4337		   ts_recent update must be made after we are sure
4338		   that the packet is in window.
4339		 */
4340	}
4341
4342	/*
4343	 *	Standard slow path.
4344	 */
4345
4346	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4347		/* RFC793, page 37: "In all states except SYN-SENT, all reset
4348		 * (RST) segments are validated by checking their SEQ-fields."
4349		 * And page 69: "If an incoming segment is not acceptable,
4350		 * an acknowledgment should be sent in reply (unless the RST bit
4351		 * is set, if so drop the segment and return)".
4352		 */
4353		if (!th->rst)
4354			tcp_send_dupack(sk, skb);
4355		goto discard;
4356	}
4357
4358	if (th->rst) {
4359		tcp_reset(sk);
4360		goto discard;
4361	}
4362
4363	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4364
4365	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4366		TCP_INC_STATS_BH(TCP_MIB_INERRS);
4367		NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4368		tcp_reset(sk);
4369		return 1;
4370	}
4371
4372step5:
4373	if (th->ack)
4374		tcp_ack(sk, skb, FLAG_SLOWPATH);
4375
4376	tcp_rcv_rtt_measure_ts(sk, skb);
4377
4378	/* Process urgent data. */
4379	tcp_urg(sk, skb, th);
4380
4381	/* step 7: process the segment text */
4382	tcp_data_queue(sk, skb);
4383
4384	tcp_data_snd_check(sk);
4385	tcp_ack_snd_check(sk);
4386	return 0;
4387
4388csum_error:
4389	TCP_INC_STATS_BH(TCP_MIB_INERRS);
4390
4391discard:
4392	__kfree_skb(skb);
4393	return 0;
4394}
4395
4396static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4397					 struct tcphdr *th, unsigned len)
4398{
4399	struct tcp_sock *tp = tcp_sk(sk);
4400	struct inet_connection_sock *icsk = inet_csk(sk);
4401	int saved_clamp = tp->rx_opt.mss_clamp;
4402
4403	tcp_parse_options(skb, &tp->rx_opt, 0);
4404
4405	if (th->ack) {
4406		/* rfc793:
4407		 * "If the state is SYN-SENT then
4408		 *    first check the ACK bit
4409		 *      If the ACK bit is set
4410		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4411		 *        a reset (unless the RST bit is set, if so drop
4412		 *        the segment and return)"
4413		 *
4414		 *  We do not send data with SYN, so that RFC-correct
4415		 *  test reduces to:
4416		 */
4417		if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4418			goto reset_and_undo;
4419
4420		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4421		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4422			     tcp_time_stamp)) {
4423			NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4424			goto reset_and_undo;
4425		}
4426
4427		/* Now ACK is acceptable.
4428		 *
4429		 * "If the RST bit is set
4430		 *    If the ACK was acceptable then signal the user "error:
4431		 *    connection reset", drop the segment, enter CLOSED state,
4432		 *    delete TCB, and return."
4433		 */
4434
4435		if (th->rst) {
4436			tcp_reset(sk);
4437			goto discard;
4438		}
4439
4440		/* rfc793:
4441		 *   "fifth, if neither of the SYN or RST bits is set then
4442		 *    drop the segment and return."
4443		 *
4444		 *    See note below!
4445		 *                                        --ANK(990513)
4446		 */
4447		if (!th->syn)
4448			goto discard_and_undo;
4449
4450		/* rfc793:
4451		 *   "If the SYN bit is on ...
4452		 *    are acceptable then ...
4453		 *    (our SYN has been ACKed), change the connection
4454		 *    state to ESTABLISHED..."
4455		 */
4456
4457		TCP_ECN_rcv_synack(tp, th);
4458
4459		tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4460		tcp_ack(sk, skb, FLAG_SLOWPATH);
4461
4462		/* Ok.. it's good. Set up sequence numbers and
4463		 * move to established.
4464		 */
4465		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4466		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4467
4468		/* RFC1323: The window in SYN & SYN/ACK segments is
4469		 * never scaled.
4470		 */
4471		tp->snd_wnd = ntohs(th->window);
4472		tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
4473
4474		if (!tp->rx_opt.wscale_ok) {
4475			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
4476			tp->window_clamp = min(tp->window_clamp, 65535U);
4477		}
4478
4479		if (tp->rx_opt.saw_tstamp) {
4480			tp->rx_opt.tstamp_ok	   = 1;
4481			tp->tcp_header_len =
4482				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4483			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
4484			tcp_store_ts_recent(tp);
4485		} else {
4486			tp->tcp_header_len = sizeof(struct tcphdr);
4487		}
4488
4489		if (tp->rx_opt.sack_ok && sysctl_tcp_fack)
4490			tp->rx_opt.sack_ok |= 2;
4491
4492		tcp_mtup_init(sk);
4493		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4494		tcp_initialize_rcv_mss(sk);
4495
4496		/* Remember, tcp_poll() does not lock socket!
4497		 * Change state from SYN-SENT only after copied_seq
4498		 * is initialized. */
4499		tp->copied_seq = tp->rcv_nxt;
4500		smp_mb();
4501		tcp_set_state(sk, TCP_ESTABLISHED);
4502
4503		security_inet_conn_established(sk, skb);
4504
4505		/* Make sure socket is routed, for correct metrics.  */
4506		icsk->icsk_af_ops->rebuild_header(sk);
4507
4508		tcp_init_metrics(sk);
4509
4510		tcp_init_congestion_control(sk);
4511
4512		/* Prevent spurious tcp_cwnd_restart() on first data
4513		 * packet.
4514		 */
4515		tp->lsndtime = tcp_time_stamp;
4516
4517		tcp_init_buffer_space(sk);
4518
4519		if (sock_flag(sk, SOCK_KEEPOPEN))
4520			inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
4521
4522		if (!tp->rx_opt.snd_wscale)
4523			__tcp_fast_path_on(tp, tp->snd_wnd);
4524		else
4525			tp->pred_flags = 0;
4526
4527		if (!sock_flag(sk, SOCK_DEAD)) {
4528			sk->sk_state_change(sk);
4529			sk_wake_async(sk, 0, POLL_OUT);
4530		}
4531
4532		if (sk->sk_write_pending ||
4533		    icsk->icsk_accept_queue.rskq_defer_accept ||
4534		    icsk->icsk_ack.pingpong) {
4535			/* Save one ACK. Data will be ready after
4536			 * several ticks, if write_pending is set.
4537			 *
4538			 * It may be deleted, but with this feature tcpdumps
4539			 * look so _wonderfully_ clever, that I was not able
4540			 * to stand against the temptation 8)     --ANK
4541			 */
4542			inet_csk_schedule_ack(sk);
4543			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
4544			icsk->icsk_ack.ato	 = TCP_ATO_MIN;
4545			tcp_incr_quickack(sk);
4546			tcp_enter_quickack_mode(sk);
4547			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
4548						  TCP_DELACK_MAX, TCP_RTO_MAX);
4549
4550discard:
4551			__kfree_skb(skb);
4552			return 0;
4553		} else {
4554			tcp_send_ack(sk);
4555		}
4556		return -1;
4557	}
4558
4559	/* No ACK in the segment */
4560
4561	if (th->rst) {
4562		/* rfc793:
4563		 * "If the RST bit is set
4564		 *
4565		 *      Otherwise (no ACK) drop the segment and return."
4566		 */
4567
4568		goto discard_and_undo;
4569	}
4570
4571	/* PAWS check. */
4572	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
4573		goto discard_and_undo;
4574
4575	if (th->syn) {
4576		/* We see SYN without ACK. It is attempt of
4577		 * simultaneous connect with crossed SYNs.
4578		 * Particularly, it can be connect to self.
4579		 */
4580		tcp_set_state(sk, TCP_SYN_RECV);
4581
4582		if (tp->rx_opt.saw_tstamp) {
4583			tp->rx_opt.tstamp_ok = 1;
4584			tcp_store_ts_recent(tp);
4585			tp->tcp_header_len =
4586				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4587		} else {
4588			tp->tcp_header_len = sizeof(struct tcphdr);
4589		}
4590
4591		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4592		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4593
4594		/* RFC1323: The window in SYN & SYN/ACK segments is
4595		 * never scaled.
4596		 */
4597		tp->snd_wnd    = ntohs(th->window);
4598		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
4599		tp->max_window = tp->snd_wnd;
4600
4601		TCP_ECN_rcv_syn(tp, th);
4602
4603		tcp_mtup_init(sk);
4604		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4605		tcp_initialize_rcv_mss(sk);
4606
4607
4608		tcp_send_synack(sk);
4609		goto discard;
4610	}
4611	/* "fifth, if neither of the SYN or RST bits is set then
4612	 * drop the segment and return."
4613	 */
4614
4615discard_and_undo:
4616	tcp_clear_options(&tp->rx_opt);
4617	tp->rx_opt.mss_clamp = saved_clamp;
4618	goto discard;
4619
4620reset_and_undo:
4621	tcp_clear_options(&tp->rx_opt);
4622	tp->rx_opt.mss_clamp = saved_clamp;
4623	return 1;
4624}
4625
4626
4627/*
4628 *	This function implements the receiving procedure of RFC 793 for
4629 *	all states except ESTABLISHED and TIME_WAIT.
4630 *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
4631 *	address independent.
4632 */
4633
4634int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
4635			  struct tcphdr *th, unsigned len)
4636{
4637	struct tcp_sock *tp = tcp_sk(sk);
4638	struct inet_connection_sock *icsk = inet_csk(sk);
4639	int queued = 0;
4640
4641	tp->rx_opt.saw_tstamp = 0;
4642
4643	switch (sk->sk_state) {
4644	case TCP_CLOSE:
4645		goto discard;
4646
4647	case TCP_LISTEN:
4648		if (th->ack)
4649			return 1;
4650
4651		if (th->rst)
4652			goto discard;
4653
4654		if (th->syn) {
4655			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
4656				return 1;
4657
4658			/* Now we have several options: In theory there is
4659			 * nothing else in the frame. KA9Q has an option to
4660			 * send data with the syn, BSD accepts data with the
4661			 * syn up to the [to be] advertised window and
4662			 * Solaris 2.1 gives you a protocol error. For now
4663			 * we just ignore it, that fits the spec precisely
4664			 * and avoids incompatibilities. It would be nice in
4665			 * future to drop through and process the data.
4666			 *
4667			 * Now that TTCP is starting to be used we ought to
4668			 * queue this data.
4669			 * But, this leaves one open to an easy denial of
4670			 * service attack, and SYN cookies can't defend
4671			 * against this problem. So, we drop the data
4672			 * in the interest of security over speed unless
4673			 * it's still in use.
4674			 */
4675			kfree_skb(skb);
4676			return 0;
4677		}
4678		goto discard;
4679
4680	case TCP_SYN_SENT:
4681		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
4682		if (queued >= 0)
4683			return queued;
4684
4685		/* Do step6 onward by hand. */
4686		tcp_urg(sk, skb, th);
4687		__kfree_skb(skb);
4688		tcp_data_snd_check(sk);
4689		return 0;
4690	}
4691
4692	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4693	    tcp_paws_discard(sk, skb)) {
4694		if (!th->rst) {
4695			NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4696			tcp_send_dupack(sk, skb);
4697			goto discard;
4698		}
4699		/* Reset is accepted even if it did not pass PAWS. */
4700	}
4701
4702	/* step 1: check sequence number */
4703	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4704		if (!th->rst)
4705			tcp_send_dupack(sk, skb);
4706		goto discard;
4707	}
4708
4709	/* step 2: check RST bit */
4710	if (th->rst) {
4711		tcp_reset(sk);
4712		goto discard;
4713	}
4714
4715	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4716
4717	/* step 3: check security and precedence [ignored] */
4718
4719	/*	step 4:
4720	 *
4721	 *	Check for a SYN in window.
4722	 */
4723	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4724		NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4725		tcp_reset(sk);
4726		return 1;
4727	}
4728
4729	/* step 5: check the ACK field */
4730	if (th->ack) {
4731		int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
4732
4733		switch (sk->sk_state) {
4734		case TCP_SYN_RECV:
4735			if (acceptable) {
4736				tp->copied_seq = tp->rcv_nxt;
4737				smp_mb();
4738				tcp_set_state(sk, TCP_ESTABLISHED);
4739				sk->sk_state_change(sk);
4740
4741				/* Note, that this wakeup is only for marginal
4742				 * crossed SYN case. Passively open sockets
4743				 * are not waked up, because sk->sk_sleep ==
4744				 * NULL and sk->sk_socket == NULL.
4745				 */
4746				if (sk->sk_socket) {
4747					sk_wake_async(sk,0,POLL_OUT);
4748				}
4749
4750				tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
4751				tp->snd_wnd = ntohs(th->window) <<
4752					      tp->rx_opt.snd_wscale;
4753				tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
4754					    TCP_SKB_CB(skb)->seq);
4755
4756				/* tcp_ack considers this ACK as duplicate
4757				 * and does not calculate rtt.
4758				 * Fix it at least with timestamps.
4759				 */
4760				if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4761				    !tp->srtt)
4762					tcp_ack_saw_tstamp(sk, 0);
4763
4764				if (tp->rx_opt.tstamp_ok)
4765					tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4766
4767				/* Make sure socket is routed, for
4768				 * correct metrics.
4769				 */
4770				icsk->icsk_af_ops->rebuild_header(sk);
4771
4772				tcp_init_metrics(sk);
4773
4774				tcp_init_congestion_control(sk);
4775
4776				/* Prevent spurious tcp_cwnd_restart() on
4777				 * first data packet.
4778				 */
4779				tp->lsndtime = tcp_time_stamp;
4780
4781				tcp_mtup_init(sk);
4782				tcp_initialize_rcv_mss(sk);
4783				tcp_init_buffer_space(sk);
4784				tcp_fast_path_on(tp);
4785			} else {
4786				return 1;
4787			}
4788			break;
4789
4790		case TCP_FIN_WAIT1:
4791			if (tp->snd_una == tp->write_seq) {
4792				tcp_set_state(sk, TCP_FIN_WAIT2);
4793				sk->sk_shutdown |= SEND_SHUTDOWN;
4794				dst_confirm(sk->sk_dst_cache);
4795
4796				if (!sock_flag(sk, SOCK_DEAD))
4797					/* Wake up lingering close() */
4798					sk->sk_state_change(sk);
4799				else {
4800					int tmo;
4801
4802					if (tp->linger2 < 0 ||
4803					    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4804					     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
4805						tcp_done(sk);
4806						NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4807						return 1;
4808					}
4809
4810					tmo = tcp_fin_time(sk);
4811					if (tmo > TCP_TIMEWAIT_LEN) {
4812						inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
4813					} else if (th->fin || sock_owned_by_user(sk)) {
4814						/* Bad case. We could lose such FIN otherwise.
4815						 * It is not a big problem, but it looks confusing
4816						 * and not so rare event. We still can lose it now,
4817						 * if it spins in bh_lock_sock(), but it is really
4818						 * marginal case.
4819						 */
4820						inet_csk_reset_keepalive_timer(sk, tmo);
4821					} else {
4822						tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
4823						goto discard;
4824					}
4825				}
4826			}
4827			break;
4828
4829		case TCP_CLOSING:
4830			if (tp->snd_una == tp->write_seq) {
4831				tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4832				goto discard;
4833			}
4834			break;
4835
4836		case TCP_LAST_ACK:
4837			if (tp->snd_una == tp->write_seq) {
4838				tcp_update_metrics(sk);
4839				tcp_done(sk);
4840				goto discard;
4841			}
4842			break;
4843		}
4844	} else
4845		goto discard;
4846
4847	/* step 6: check the URG bit */
4848	tcp_urg(sk, skb, th);
4849
4850	/* step 7: process the segment text */
4851	switch (sk->sk_state) {
4852	case TCP_CLOSE_WAIT:
4853	case TCP_CLOSING:
4854	case TCP_LAST_ACK:
4855		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4856			break;
4857	case TCP_FIN_WAIT1:
4858	case TCP_FIN_WAIT2:
4859		/* RFC 793 says to queue data in these states,
4860		 * RFC 1122 says we MUST send a reset.
4861		 * BSD 4.4 also does reset.
4862		 */
4863		if (sk->sk_shutdown & RCV_SHUTDOWN) {
4864			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4865			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
4866				NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4867				tcp_reset(sk);
4868				return 1;
4869			}
4870		}
4871		/* Fall through */
4872	case TCP_ESTABLISHED:
4873		tcp_data_queue(sk, skb);
4874		queued = 1;
4875		break;
4876	}
4877
4878	/* tcp_data could move socket to TIME-WAIT */
4879	if (sk->sk_state != TCP_CLOSE) {
4880		tcp_data_snd_check(sk);
4881		tcp_ack_snd_check(sk);
4882	}
4883
4884	if (!queued) {
4885discard:
4886		__kfree_skb(skb);
4887	}
4888	return 0;
4889}
4890
4891EXPORT_SYMBOL(sysctl_tcp_ecn);
4892EXPORT_SYMBOL(sysctl_tcp_reordering);
4893EXPORT_SYMBOL(tcp_parse_options);
4894EXPORT_SYMBOL(tcp_rcv_established);
4895EXPORT_SYMBOL(tcp_rcv_state_process);
4896EXPORT_SYMBOL(tcp_initialize_rcv_mss);
4897