1/*
2 * file.c - NTFS kernel file operations.  Part of the Linux-NTFS project.
3 *
4 * Copyright (c) 2001-2006 Anton Altaparmakov
5 *
6 * This program/include file is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as published
8 * by the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program/include file is distributed in the hope that it will be
12 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
13 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program (in the main directory of the Linux-NTFS
18 * distribution in the file COPYING); if not, write to the Free Software
19 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
20 */
21
22#include <linux/buffer_head.h>
23#include <linux/pagemap.h>
24#include <linux/pagevec.h>
25#include <linux/sched.h>
26#include <linux/swap.h>
27#include <linux/uio.h>
28#include <linux/writeback.h>
29#include <linux/sched.h>
30
31#include <asm/page.h>
32#include <asm/uaccess.h>
33
34#include "attrib.h"
35#include "bitmap.h"
36#include "inode.h"
37#include "debug.h"
38#include "lcnalloc.h"
39#include "malloc.h"
40#include "mft.h"
41#include "ntfs.h"
42
43/**
44 * ntfs_file_open - called when an inode is about to be opened
45 * @vi:		inode to be opened
46 * @filp:	file structure describing the inode
47 *
48 * Limit file size to the page cache limit on architectures where unsigned long
49 * is 32-bits. This is the most we can do for now without overflowing the page
50 * cache page index. Doing it this way means we don't run into problems because
51 * of existing too large files. It would be better to allow the user to read
52 * the beginning of the file but I doubt very much anyone is going to hit this
53 * check on a 32-bit architecture, so there is no point in adding the extra
54 * complexity required to support this.
55 *
56 * On 64-bit architectures, the check is hopefully optimized away by the
57 * compiler.
58 *
59 * After the check passes, just call generic_file_open() to do its work.
60 */
61static int ntfs_file_open(struct inode *vi, struct file *filp)
62{
63	if (sizeof(unsigned long) < 8) {
64		if (i_size_read(vi) > MAX_LFS_FILESIZE)
65			return -EFBIG;
66	}
67	return generic_file_open(vi, filp);
68}
69
70#ifdef NTFS_RW
71
72/**
73 * ntfs_attr_extend_initialized - extend the initialized size of an attribute
74 * @ni:			ntfs inode of the attribute to extend
75 * @new_init_size:	requested new initialized size in bytes
76 * @cached_page:	store any allocated but unused page here
77 * @lru_pvec:		lru-buffering pagevec of the caller
78 *
79 * Extend the initialized size of an attribute described by the ntfs inode @ni
80 * to @new_init_size bytes.  This involves zeroing any non-sparse space between
81 * the old initialized size and @new_init_size both in the page cache and on
82 * disk (if relevant complete pages are already uptodate in the page cache then
83 * these are simply marked dirty).
84 *
85 * As a side-effect, the file size (vfs inode->i_size) may be incremented as,
86 * in the resident attribute case, it is tied to the initialized size and, in
87 * the non-resident attribute case, it may not fall below the initialized size.
88 *
89 * Note that if the attribute is resident, we do not need to touch the page
90 * cache at all.  This is because if the page cache page is not uptodate we
91 * bring it uptodate later, when doing the write to the mft record since we
92 * then already have the page mapped.  And if the page is uptodate, the
93 * non-initialized region will already have been zeroed when the page was
94 * brought uptodate and the region may in fact already have been overwritten
95 * with new data via mmap() based writes, so we cannot just zero it.  And since
96 * POSIX specifies that the behaviour of resizing a file whilst it is mmap()ped
97 * is unspecified, we choose not to do zeroing and thus we do not need to touch
98 * the page at all.  For a more detailed explanation see ntfs_truncate() in
99 * fs/ntfs/inode.c.
100 *
101 * @cached_page and @lru_pvec are just optimizations for dealing with multiple
102 * pages.
103 *
104 * Return 0 on success and -errno on error.  In the case that an error is
105 * encountered it is possible that the initialized size will already have been
106 * incremented some way towards @new_init_size but it is guaranteed that if
107 * this is the case, the necessary zeroing will also have happened and that all
108 * metadata is self-consistent.
109 *
110 * Locking: i_mutex on the vfs inode corrseponsind to the ntfs inode @ni must be
111 *	    held by the caller.
112 */
113static int ntfs_attr_extend_initialized(ntfs_inode *ni, const s64 new_init_size,
114		struct page **cached_page, struct pagevec *lru_pvec)
115{
116	s64 old_init_size;
117	loff_t old_i_size;
118	pgoff_t index, end_index;
119	unsigned long flags;
120	struct inode *vi = VFS_I(ni);
121	ntfs_inode *base_ni;
122	MFT_RECORD *m = NULL;
123	ATTR_RECORD *a;
124	ntfs_attr_search_ctx *ctx = NULL;
125	struct address_space *mapping;
126	struct page *page = NULL;
127	u8 *kattr;
128	int err;
129	u32 attr_len;
130
131	read_lock_irqsave(&ni->size_lock, flags);
132	old_init_size = ni->initialized_size;
133	old_i_size = i_size_read(vi);
134	BUG_ON(new_init_size > ni->allocated_size);
135	read_unlock_irqrestore(&ni->size_lock, flags);
136	ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, "
137			"old_initialized_size 0x%llx, "
138			"new_initialized_size 0x%llx, i_size 0x%llx.",
139			vi->i_ino, (unsigned)le32_to_cpu(ni->type),
140			(unsigned long long)old_init_size,
141			(unsigned long long)new_init_size, old_i_size);
142	if (!NInoAttr(ni))
143		base_ni = ni;
144	else
145		base_ni = ni->ext.base_ntfs_ino;
146	/* Use goto to reduce indentation and we need the label below anyway. */
147	if (NInoNonResident(ni))
148		goto do_non_resident_extend;
149	BUG_ON(old_init_size != old_i_size);
150	m = map_mft_record(base_ni);
151	if (IS_ERR(m)) {
152		err = PTR_ERR(m);
153		m = NULL;
154		goto err_out;
155	}
156	ctx = ntfs_attr_get_search_ctx(base_ni, m);
157	if (unlikely(!ctx)) {
158		err = -ENOMEM;
159		goto err_out;
160	}
161	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
162			CASE_SENSITIVE, 0, NULL, 0, ctx);
163	if (unlikely(err)) {
164		if (err == -ENOENT)
165			err = -EIO;
166		goto err_out;
167	}
168	m = ctx->mrec;
169	a = ctx->attr;
170	BUG_ON(a->non_resident);
171	/* The total length of the attribute value. */
172	attr_len = le32_to_cpu(a->data.resident.value_length);
173	BUG_ON(old_i_size != (loff_t)attr_len);
174	/*
175	 * Do the zeroing in the mft record and update the attribute size in
176	 * the mft record.
177	 */
178	kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset);
179	memset(kattr + attr_len, 0, new_init_size - attr_len);
180	a->data.resident.value_length = cpu_to_le32((u32)new_init_size);
181	/* Finally, update the sizes in the vfs and ntfs inodes. */
182	write_lock_irqsave(&ni->size_lock, flags);
183	i_size_write(vi, new_init_size);
184	ni->initialized_size = new_init_size;
185	write_unlock_irqrestore(&ni->size_lock, flags);
186	goto done;
187do_non_resident_extend:
188	/*
189	 * If the new initialized size @new_init_size exceeds the current file
190	 * size (vfs inode->i_size), we need to extend the file size to the
191	 * new initialized size.
192	 */
193	if (new_init_size > old_i_size) {
194		m = map_mft_record(base_ni);
195		if (IS_ERR(m)) {
196			err = PTR_ERR(m);
197			m = NULL;
198			goto err_out;
199		}
200		ctx = ntfs_attr_get_search_ctx(base_ni, m);
201		if (unlikely(!ctx)) {
202			err = -ENOMEM;
203			goto err_out;
204		}
205		err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
206				CASE_SENSITIVE, 0, NULL, 0, ctx);
207		if (unlikely(err)) {
208			if (err == -ENOENT)
209				err = -EIO;
210			goto err_out;
211		}
212		m = ctx->mrec;
213		a = ctx->attr;
214		BUG_ON(!a->non_resident);
215		BUG_ON(old_i_size != (loff_t)
216				sle64_to_cpu(a->data.non_resident.data_size));
217		a->data.non_resident.data_size = cpu_to_sle64(new_init_size);
218		flush_dcache_mft_record_page(ctx->ntfs_ino);
219		mark_mft_record_dirty(ctx->ntfs_ino);
220		/* Update the file size in the vfs inode. */
221		i_size_write(vi, new_init_size);
222		ntfs_attr_put_search_ctx(ctx);
223		ctx = NULL;
224		unmap_mft_record(base_ni);
225		m = NULL;
226	}
227	mapping = vi->i_mapping;
228	index = old_init_size >> PAGE_CACHE_SHIFT;
229	end_index = (new_init_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
230	do {
231		/*
232		 * Read the page.  If the page is not present, this will zero
233		 * the uninitialized regions for us.
234		 */
235		page = read_mapping_page(mapping, index, NULL);
236		if (IS_ERR(page)) {
237			err = PTR_ERR(page);
238			goto init_err_out;
239		}
240		if (unlikely(PageError(page))) {
241			page_cache_release(page);
242			err = -EIO;
243			goto init_err_out;
244		}
245		/*
246		 * Update the initialized size in the ntfs inode.  This is
247		 * enough to make ntfs_writepage() work.
248		 */
249		write_lock_irqsave(&ni->size_lock, flags);
250		ni->initialized_size = (s64)(index + 1) << PAGE_CACHE_SHIFT;
251		if (ni->initialized_size > new_init_size)
252			ni->initialized_size = new_init_size;
253		write_unlock_irqrestore(&ni->size_lock, flags);
254		/* Set the page dirty so it gets written out. */
255		set_page_dirty(page);
256		page_cache_release(page);
257		/*
258		 * Play nice with the vm and the rest of the system.  This is
259		 * very much needed as we can potentially be modifying the
260		 * initialised size from a very small value to a really huge
261		 * value, e.g.
262		 *	f = open(somefile, O_TRUNC);
263		 *	truncate(f, 10GiB);
264		 *	seek(f, 10GiB);
265		 *	write(f, 1);
266		 * And this would mean we would be marking dirty hundreds of
267		 * thousands of pages or as in the above example more than
268		 * two and a half million pages!
269		 *
270		 * TODO: For sparse pages could optimize this workload by using
271		 * the FsMisc / MiscFs page bit as a "PageIsSparse" bit.  This
272		 * would be set in readpage for sparse pages and here we would
273		 * not need to mark dirty any pages which have this bit set.
274		 * The only caveat is that we have to clear the bit everywhere
275		 * where we allocate any clusters that lie in the page or that
276		 * contain the page.
277		 *
278		 * TODO: An even greater optimization would be for us to only
279		 * call readpage() on pages which are not in sparse regions as
280		 * determined from the runlist.  This would greatly reduce the
281		 * number of pages we read and make dirty in the case of sparse
282		 * files.
283		 */
284		balance_dirty_pages_ratelimited(mapping);
285		cond_resched();
286	} while (++index < end_index);
287	read_lock_irqsave(&ni->size_lock, flags);
288	BUG_ON(ni->initialized_size != new_init_size);
289	read_unlock_irqrestore(&ni->size_lock, flags);
290	/* Now bring in sync the initialized_size in the mft record. */
291	m = map_mft_record(base_ni);
292	if (IS_ERR(m)) {
293		err = PTR_ERR(m);
294		m = NULL;
295		goto init_err_out;
296	}
297	ctx = ntfs_attr_get_search_ctx(base_ni, m);
298	if (unlikely(!ctx)) {
299		err = -ENOMEM;
300		goto init_err_out;
301	}
302	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
303			CASE_SENSITIVE, 0, NULL, 0, ctx);
304	if (unlikely(err)) {
305		if (err == -ENOENT)
306			err = -EIO;
307		goto init_err_out;
308	}
309	m = ctx->mrec;
310	a = ctx->attr;
311	BUG_ON(!a->non_resident);
312	a->data.non_resident.initialized_size = cpu_to_sle64(new_init_size);
313done:
314	flush_dcache_mft_record_page(ctx->ntfs_ino);
315	mark_mft_record_dirty(ctx->ntfs_ino);
316	if (ctx)
317		ntfs_attr_put_search_ctx(ctx);
318	if (m)
319		unmap_mft_record(base_ni);
320	ntfs_debug("Done, initialized_size 0x%llx, i_size 0x%llx.",
321			(unsigned long long)new_init_size, i_size_read(vi));
322	return 0;
323init_err_out:
324	write_lock_irqsave(&ni->size_lock, flags);
325	ni->initialized_size = old_init_size;
326	write_unlock_irqrestore(&ni->size_lock, flags);
327err_out:
328	if (ctx)
329		ntfs_attr_put_search_ctx(ctx);
330	if (m)
331		unmap_mft_record(base_ni);
332	ntfs_debug("Failed.  Returning error code %i.", err);
333	return err;
334}
335
336/**
337 * ntfs_fault_in_pages_readable -
338 *
339 * Fault a number of userspace pages into pagetables.
340 *
341 * Unlike include/linux/pagemap.h::fault_in_pages_readable(), this one copes
342 * with more than two userspace pages as well as handling the single page case
343 * elegantly.
344 *
345 * If you find this difficult to understand, then think of the while loop being
346 * the following code, except that we do without the integer variable ret:
347 *
348 *	do {
349 *		ret = __get_user(c, uaddr);
350 *		uaddr += PAGE_SIZE;
351 *	} while (!ret && uaddr < end);
352 *
353 * Note, the final __get_user() may well run out-of-bounds of the user buffer,
354 * but _not_ out-of-bounds of the page the user buffer belongs to, and since
355 * this is only a read and not a write, and since it is still in the same page,
356 * it should not matter and this makes the code much simpler.
357 */
358static inline void ntfs_fault_in_pages_readable(const char __user *uaddr,
359		int bytes)
360{
361	const char __user *end;
362	volatile char c;
363
364	/* Set @end to the first byte outside the last page we care about. */
365	end = (const char __user*)PAGE_ALIGN((ptrdiff_t __user)uaddr + bytes);
366
367	while (!__get_user(c, uaddr) && (uaddr += PAGE_SIZE, uaddr < end))
368		;
369}
370
371/**
372 * ntfs_fault_in_pages_readable_iovec -
373 *
374 * Same as ntfs_fault_in_pages_readable() but operates on an array of iovecs.
375 */
376static inline void ntfs_fault_in_pages_readable_iovec(const struct iovec *iov,
377		size_t iov_ofs, int bytes)
378{
379	do {
380		const char __user *buf;
381		unsigned len;
382
383		buf = iov->iov_base + iov_ofs;
384		len = iov->iov_len - iov_ofs;
385		if (len > bytes)
386			len = bytes;
387		ntfs_fault_in_pages_readable(buf, len);
388		bytes -= len;
389		iov++;
390		iov_ofs = 0;
391	} while (bytes);
392}
393
394/**
395 * __ntfs_grab_cache_pages - obtain a number of locked pages
396 * @mapping:	address space mapping from which to obtain page cache pages
397 * @index:	starting index in @mapping at which to begin obtaining pages
398 * @nr_pages:	number of page cache pages to obtain
399 * @pages:	array of pages in which to return the obtained page cache pages
400 * @cached_page: allocated but as yet unused page
401 * @lru_pvec:	lru-buffering pagevec of caller
402 *
403 * Obtain @nr_pages locked page cache pages from the mapping @maping and
404 * starting at index @index.
405 *
406 * If a page is newly created, increment its refcount and add it to the
407 * caller's lru-buffering pagevec @lru_pvec.
408 *
409 * This is the same as mm/filemap.c::__grab_cache_page(), except that @nr_pages
410 * are obtained at once instead of just one page and that 0 is returned on
411 * success and -errno on error.
412 *
413 * Note, the page locks are obtained in ascending page index order.
414 */
415static inline int __ntfs_grab_cache_pages(struct address_space *mapping,
416		pgoff_t index, const unsigned nr_pages, struct page **pages,
417		struct page **cached_page, struct pagevec *lru_pvec)
418{
419	int err, nr;
420
421	BUG_ON(!nr_pages);
422	err = nr = 0;
423	do {
424		pages[nr] = find_lock_page(mapping, index);
425		if (!pages[nr]) {
426			if (!*cached_page) {
427				*cached_page = page_cache_alloc(mapping);
428				if (unlikely(!*cached_page)) {
429					err = -ENOMEM;
430					goto err_out;
431				}
432			}
433			err = add_to_page_cache(*cached_page, mapping, index,
434					GFP_KERNEL);
435			if (unlikely(err)) {
436				if (err == -EEXIST)
437					continue;
438				goto err_out;
439			}
440			pages[nr] = *cached_page;
441			page_cache_get(*cached_page);
442			if (unlikely(!pagevec_add(lru_pvec, *cached_page)))
443				__pagevec_lru_add(lru_pvec);
444			*cached_page = NULL;
445		}
446		index++;
447		nr++;
448	} while (nr < nr_pages);
449out:
450	return err;
451err_out:
452	while (nr > 0) {
453		unlock_page(pages[--nr]);
454		page_cache_release(pages[nr]);
455	}
456	goto out;
457}
458
459static inline int ntfs_submit_bh_for_read(struct buffer_head *bh)
460{
461	lock_buffer(bh);
462	get_bh(bh);
463	bh->b_end_io = end_buffer_read_sync;
464	return submit_bh(READ, bh);
465}
466
467/**
468 * ntfs_prepare_pages_for_non_resident_write - prepare pages for receiving data
469 * @pages:	array of destination pages
470 * @nr_pages:	number of pages in @pages
471 * @pos:	byte position in file at which the write begins
472 * @bytes:	number of bytes to be written
473 *
474 * This is called for non-resident attributes from ntfs_file_buffered_write()
475 * with i_mutex held on the inode (@pages[0]->mapping->host).  There are
476 * @nr_pages pages in @pages which are locked but not kmap()ped.  The source
477 * data has not yet been copied into the @pages.
478 *
479 * Need to fill any holes with actual clusters, allocate buffers if necessary,
480 * ensure all the buffers are mapped, and bring uptodate any buffers that are
481 * only partially being written to.
482 *
483 * If @nr_pages is greater than one, we are guaranteed that the cluster size is
484 * greater than PAGE_CACHE_SIZE, that all pages in @pages are entirely inside
485 * the same cluster and that they are the entirety of that cluster, and that
486 * the cluster is sparse, i.e. we need to allocate a cluster to fill the hole.
487 *
488 * i_size is not to be modified yet.
489 *
490 * Return 0 on success or -errno on error.
491 */
492static int ntfs_prepare_pages_for_non_resident_write(struct page **pages,
493		unsigned nr_pages, s64 pos, size_t bytes)
494{
495	VCN vcn, highest_vcn = 0, cpos, cend, bh_cpos, bh_cend;
496	LCN lcn;
497	s64 bh_pos, vcn_len, end, initialized_size;
498	sector_t lcn_block;
499	struct page *page;
500	struct inode *vi;
501	ntfs_inode *ni, *base_ni = NULL;
502	ntfs_volume *vol;
503	runlist_element *rl, *rl2;
504	struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
505	ntfs_attr_search_ctx *ctx = NULL;
506	MFT_RECORD *m = NULL;
507	ATTR_RECORD *a = NULL;
508	unsigned long flags;
509	u32 attr_rec_len = 0;
510	unsigned blocksize, u;
511	int err, mp_size;
512	bool rl_write_locked, was_hole, is_retry;
513	unsigned char blocksize_bits;
514	struct {
515		u8 runlist_merged:1;
516		u8 mft_attr_mapped:1;
517		u8 mp_rebuilt:1;
518		u8 attr_switched:1;
519	} status = { 0, 0, 0, 0 };
520
521	BUG_ON(!nr_pages);
522	BUG_ON(!pages);
523	BUG_ON(!*pages);
524	vi = pages[0]->mapping->host;
525	ni = NTFS_I(vi);
526	vol = ni->vol;
527	ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page "
528			"index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.",
529			vi->i_ino, ni->type, pages[0]->index, nr_pages,
530			(long long)pos, bytes);
531	blocksize = vol->sb->s_blocksize;
532	blocksize_bits = vol->sb->s_blocksize_bits;
533	u = 0;
534	do {
535		struct page *page = pages[u];
536		/*
537		 * create_empty_buffers() will create uptodate/dirty buffers if
538		 * the page is uptodate/dirty.
539		 */
540		if (!page_has_buffers(page)) {
541			create_empty_buffers(page, blocksize, 0);
542			if (unlikely(!page_has_buffers(page)))
543				return -ENOMEM;
544		}
545	} while (++u < nr_pages);
546	rl_write_locked = false;
547	rl = NULL;
548	err = 0;
549	vcn = lcn = -1;
550	vcn_len = 0;
551	lcn_block = -1;
552	was_hole = false;
553	cpos = pos >> vol->cluster_size_bits;
554	end = pos + bytes;
555	cend = (end + vol->cluster_size - 1) >> vol->cluster_size_bits;
556	/*
557	 * Loop over each page and for each page over each buffer.  Use goto to
558	 * reduce indentation.
559	 */
560	u = 0;
561do_next_page:
562	page = pages[u];
563	bh_pos = (s64)page->index << PAGE_CACHE_SHIFT;
564	bh = head = page_buffers(page);
565	do {
566		VCN cdelta;
567		s64 bh_end;
568		unsigned bh_cofs;
569
570		/* Clear buffer_new on all buffers to reinitialise state. */
571		if (buffer_new(bh))
572			clear_buffer_new(bh);
573		bh_end = bh_pos + blocksize;
574		bh_cpos = bh_pos >> vol->cluster_size_bits;
575		bh_cofs = bh_pos & vol->cluster_size_mask;
576		if (buffer_mapped(bh)) {
577			/*
578			 * The buffer is already mapped.  If it is uptodate,
579			 * ignore it.
580			 */
581			if (buffer_uptodate(bh))
582				continue;
583			/*
584			 * The buffer is not uptodate.  If the page is uptodate
585			 * set the buffer uptodate and otherwise ignore it.
586			 */
587			if (PageUptodate(page)) {
588				set_buffer_uptodate(bh);
589				continue;
590			}
591			/*
592			 * Neither the page nor the buffer are uptodate.  If
593			 * the buffer is only partially being written to, we
594			 * need to read it in before the write, i.e. now.
595			 */
596			if ((bh_pos < pos && bh_end > pos) ||
597					(bh_pos < end && bh_end > end)) {
598				/*
599				 * If the buffer is fully or partially within
600				 * the initialized size, do an actual read.
601				 * Otherwise, simply zero the buffer.
602				 */
603				read_lock_irqsave(&ni->size_lock, flags);
604				initialized_size = ni->initialized_size;
605				read_unlock_irqrestore(&ni->size_lock, flags);
606				if (bh_pos < initialized_size) {
607					ntfs_submit_bh_for_read(bh);
608					*wait_bh++ = bh;
609				} else {
610					zero_user_page(page, bh_offset(bh),
611							blocksize, KM_USER0);
612					set_buffer_uptodate(bh);
613				}
614			}
615			continue;
616		}
617		/* Unmapped buffer.  Need to map it. */
618		bh->b_bdev = vol->sb->s_bdev;
619		/*
620		 * If the current buffer is in the same clusters as the map
621		 * cache, there is no need to check the runlist again.  The
622		 * map cache is made up of @vcn, which is the first cached file
623		 * cluster, @vcn_len which is the number of cached file
624		 * clusters, @lcn is the device cluster corresponding to @vcn,
625		 * and @lcn_block is the block number corresponding to @lcn.
626		 */
627		cdelta = bh_cpos - vcn;
628		if (likely(!cdelta || (cdelta > 0 && cdelta < vcn_len))) {
629map_buffer_cached:
630			BUG_ON(lcn < 0);
631			bh->b_blocknr = lcn_block +
632					(cdelta << (vol->cluster_size_bits -
633					blocksize_bits)) +
634					(bh_cofs >> blocksize_bits);
635			set_buffer_mapped(bh);
636			/*
637			 * If the page is uptodate so is the buffer.  If the
638			 * buffer is fully outside the write, we ignore it if
639			 * it was already allocated and we mark it dirty so it
640			 * gets written out if we allocated it.  On the other
641			 * hand, if we allocated the buffer but we are not
642			 * marking it dirty we set buffer_new so we can do
643			 * error recovery.
644			 */
645			if (PageUptodate(page)) {
646				if (!buffer_uptodate(bh))
647					set_buffer_uptodate(bh);
648				if (unlikely(was_hole)) {
649					/* We allocated the buffer. */
650					unmap_underlying_metadata(bh->b_bdev,
651							bh->b_blocknr);
652					if (bh_end <= pos || bh_pos >= end)
653						mark_buffer_dirty(bh);
654					else
655						set_buffer_new(bh);
656				}
657				continue;
658			}
659			/* Page is _not_ uptodate. */
660			if (likely(!was_hole)) {
661				/*
662				 * Buffer was already allocated.  If it is not
663				 * uptodate and is only partially being written
664				 * to, we need to read it in before the write,
665				 * i.e. now.
666				 */
667				if (!buffer_uptodate(bh) && bh_pos < end &&
668						bh_end > pos &&
669						(bh_pos < pos ||
670						bh_end > end)) {
671					/*
672					 * If the buffer is fully or partially
673					 * within the initialized size, do an
674					 * actual read.  Otherwise, simply zero
675					 * the buffer.
676					 */
677					read_lock_irqsave(&ni->size_lock,
678							flags);
679					initialized_size = ni->initialized_size;
680					read_unlock_irqrestore(&ni->size_lock,
681							flags);
682					if (bh_pos < initialized_size) {
683						ntfs_submit_bh_for_read(bh);
684						*wait_bh++ = bh;
685					} else {
686						zero_user_page(page,
687							bh_offset(bh),
688							blocksize, KM_USER0);
689						set_buffer_uptodate(bh);
690					}
691				}
692				continue;
693			}
694			/* We allocated the buffer. */
695			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
696			/*
697			 * If the buffer is fully outside the write, zero it,
698			 * set it uptodate, and mark it dirty so it gets
699			 * written out.  If it is partially being written to,
700			 * zero region surrounding the write but leave it to
701			 * commit write to do anything else.  Finally, if the
702			 * buffer is fully being overwritten, do nothing.
703			 */
704			if (bh_end <= pos || bh_pos >= end) {
705				if (!buffer_uptodate(bh)) {
706					zero_user_page(page, bh_offset(bh),
707							blocksize, KM_USER0);
708					set_buffer_uptodate(bh);
709				}
710				mark_buffer_dirty(bh);
711				continue;
712			}
713			set_buffer_new(bh);
714			if (!buffer_uptodate(bh) &&
715					(bh_pos < pos || bh_end > end)) {
716				u8 *kaddr;
717				unsigned pofs;
718
719				kaddr = kmap_atomic(page, KM_USER0);
720				if (bh_pos < pos) {
721					pofs = bh_pos & ~PAGE_CACHE_MASK;
722					memset(kaddr + pofs, 0, pos - bh_pos);
723				}
724				if (bh_end > end) {
725					pofs = end & ~PAGE_CACHE_MASK;
726					memset(kaddr + pofs, 0, bh_end - end);
727				}
728				kunmap_atomic(kaddr, KM_USER0);
729				flush_dcache_page(page);
730			}
731			continue;
732		}
733		/*
734		 * Slow path: this is the first buffer in the cluster.  If it
735		 * is outside allocated size and is not uptodate, zero it and
736		 * set it uptodate.
737		 */
738		read_lock_irqsave(&ni->size_lock, flags);
739		initialized_size = ni->allocated_size;
740		read_unlock_irqrestore(&ni->size_lock, flags);
741		if (bh_pos > initialized_size) {
742			if (PageUptodate(page)) {
743				if (!buffer_uptodate(bh))
744					set_buffer_uptodate(bh);
745			} else if (!buffer_uptodate(bh)) {
746				zero_user_page(page, bh_offset(bh), blocksize,
747						KM_USER0);
748				set_buffer_uptodate(bh);
749			}
750			continue;
751		}
752		is_retry = false;
753		if (!rl) {
754			down_read(&ni->runlist.lock);
755retry_remap:
756			rl = ni->runlist.rl;
757		}
758		if (likely(rl != NULL)) {
759			/* Seek to element containing target cluster. */
760			while (rl->length && rl[1].vcn <= bh_cpos)
761				rl++;
762			lcn = ntfs_rl_vcn_to_lcn(rl, bh_cpos);
763			if (likely(lcn >= 0)) {
764				/*
765				 * Successful remap, setup the map cache and
766				 * use that to deal with the buffer.
767				 */
768				was_hole = false;
769				vcn = bh_cpos;
770				vcn_len = rl[1].vcn - vcn;
771				lcn_block = lcn << (vol->cluster_size_bits -
772						blocksize_bits);
773				cdelta = 0;
774				/*
775				 * If the number of remaining clusters touched
776				 * by the write is smaller or equal to the
777				 * number of cached clusters, unlock the
778				 * runlist as the map cache will be used from
779				 * now on.
780				 */
781				if (likely(vcn + vcn_len >= cend)) {
782					if (rl_write_locked) {
783						up_write(&ni->runlist.lock);
784						rl_write_locked = false;
785					} else
786						up_read(&ni->runlist.lock);
787					rl = NULL;
788				}
789				goto map_buffer_cached;
790			}
791		} else
792			lcn = LCN_RL_NOT_MAPPED;
793		/*
794		 * If it is not a hole and not out of bounds, the runlist is
795		 * probably unmapped so try to map it now.
796		 */
797		if (unlikely(lcn != LCN_HOLE && lcn != LCN_ENOENT)) {
798			if (likely(!is_retry && lcn == LCN_RL_NOT_MAPPED)) {
799				/* Attempt to map runlist. */
800				if (!rl_write_locked) {
801					/*
802					 * We need the runlist locked for
803					 * writing, so if it is locked for
804					 * reading relock it now and retry in
805					 * case it changed whilst we dropped
806					 * the lock.
807					 */
808					up_read(&ni->runlist.lock);
809					down_write(&ni->runlist.lock);
810					rl_write_locked = true;
811					goto retry_remap;
812				}
813				err = ntfs_map_runlist_nolock(ni, bh_cpos,
814						NULL);
815				if (likely(!err)) {
816					is_retry = true;
817					goto retry_remap;
818				}
819				/*
820				 * If @vcn is out of bounds, pretend @lcn is
821				 * LCN_ENOENT.  As long as the buffer is out
822				 * of bounds this will work fine.
823				 */
824				if (err == -ENOENT) {
825					lcn = LCN_ENOENT;
826					err = 0;
827					goto rl_not_mapped_enoent;
828				}
829			} else
830				err = -EIO;
831			/* Failed to map the buffer, even after retrying. */
832			bh->b_blocknr = -1;
833			ntfs_error(vol->sb, "Failed to write to inode 0x%lx, "
834					"attribute type 0x%x, vcn 0x%llx, "
835					"vcn offset 0x%x, because its "
836					"location on disk could not be "
837					"determined%s (error code %i).",
838					ni->mft_no, ni->type,
839					(unsigned long long)bh_cpos,
840					(unsigned)bh_pos &
841					vol->cluster_size_mask,
842					is_retry ? " even after retrying" : "",
843					err);
844			break;
845		}
846rl_not_mapped_enoent:
847		/*
848		 * The buffer is in a hole or out of bounds.  We need to fill
849		 * the hole, unless the buffer is in a cluster which is not
850		 * touched by the write, in which case we just leave the buffer
851		 * unmapped.  This can only happen when the cluster size is
852		 * less than the page cache size.
853		 */
854		if (unlikely(vol->cluster_size < PAGE_CACHE_SIZE)) {
855			bh_cend = (bh_end + vol->cluster_size - 1) >>
856					vol->cluster_size_bits;
857			if ((bh_cend <= cpos || bh_cpos >= cend)) {
858				bh->b_blocknr = -1;
859				/*
860				 * If the buffer is uptodate we skip it.  If it
861				 * is not but the page is uptodate, we can set
862				 * the buffer uptodate.  If the page is not
863				 * uptodate, we can clear the buffer and set it
864				 * uptodate.  Whether this is worthwhile is
865				 * debatable and this could be removed.
866				 */
867				if (PageUptodate(page)) {
868					if (!buffer_uptodate(bh))
869						set_buffer_uptodate(bh);
870				} else if (!buffer_uptodate(bh)) {
871					zero_user_page(page, bh_offset(bh),
872							blocksize, KM_USER0);
873					set_buffer_uptodate(bh);
874				}
875				continue;
876			}
877		}
878		/*
879		 * Out of bounds buffer is invalid if it was not really out of
880		 * bounds.
881		 */
882		BUG_ON(lcn != LCN_HOLE);
883		/*
884		 * We need the runlist locked for writing, so if it is locked
885		 * for reading relock it now and retry in case it changed
886		 * whilst we dropped the lock.
887		 */
888		BUG_ON(!rl);
889		if (!rl_write_locked) {
890			up_read(&ni->runlist.lock);
891			down_write(&ni->runlist.lock);
892			rl_write_locked = true;
893			goto retry_remap;
894		}
895		/* Find the previous last allocated cluster. */
896		BUG_ON(rl->lcn != LCN_HOLE);
897		lcn = -1;
898		rl2 = rl;
899		while (--rl2 >= ni->runlist.rl) {
900			if (rl2->lcn >= 0) {
901				lcn = rl2->lcn + rl2->length;
902				break;
903			}
904		}
905		rl2 = ntfs_cluster_alloc(vol, bh_cpos, 1, lcn, DATA_ZONE,
906				false);
907		if (IS_ERR(rl2)) {
908			err = PTR_ERR(rl2);
909			ntfs_debug("Failed to allocate cluster, error code %i.",
910					err);
911			break;
912		}
913		lcn = rl2->lcn;
914		rl = ntfs_runlists_merge(ni->runlist.rl, rl2);
915		if (IS_ERR(rl)) {
916			err = PTR_ERR(rl);
917			if (err != -ENOMEM)
918				err = -EIO;
919			if (ntfs_cluster_free_from_rl(vol, rl2)) {
920				ntfs_error(vol->sb, "Failed to release "
921						"allocated cluster in error "
922						"code path.  Run chkdsk to "
923						"recover the lost cluster.");
924				NVolSetErrors(vol);
925			}
926			ntfs_free(rl2);
927			break;
928		}
929		ni->runlist.rl = rl;
930		status.runlist_merged = 1;
931		ntfs_debug("Allocated cluster, lcn 0x%llx.",
932				(unsigned long long)lcn);
933		/* Map and lock the mft record and get the attribute record. */
934		if (!NInoAttr(ni))
935			base_ni = ni;
936		else
937			base_ni = ni->ext.base_ntfs_ino;
938		m = map_mft_record(base_ni);
939		if (IS_ERR(m)) {
940			err = PTR_ERR(m);
941			break;
942		}
943		ctx = ntfs_attr_get_search_ctx(base_ni, m);
944		if (unlikely(!ctx)) {
945			err = -ENOMEM;
946			unmap_mft_record(base_ni);
947			break;
948		}
949		status.mft_attr_mapped = 1;
950		err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
951				CASE_SENSITIVE, bh_cpos, NULL, 0, ctx);
952		if (unlikely(err)) {
953			if (err == -ENOENT)
954				err = -EIO;
955			break;
956		}
957		m = ctx->mrec;
958		a = ctx->attr;
959		/*
960		 * Find the runlist element with which the attribute extent
961		 * starts.  Note, we cannot use the _attr_ version because we
962		 * have mapped the mft record.  That is ok because we know the
963		 * runlist fragment must be mapped already to have ever gotten
964		 * here, so we can just use the _rl_ version.
965		 */
966		vcn = sle64_to_cpu(a->data.non_resident.lowest_vcn);
967		rl2 = ntfs_rl_find_vcn_nolock(rl, vcn);
968		BUG_ON(!rl2);
969		BUG_ON(!rl2->length);
970		BUG_ON(rl2->lcn < LCN_HOLE);
971		highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
972		/*
973		 * If @highest_vcn is zero, calculate the real highest_vcn
974		 * (which can really be zero).
975		 */
976		if (!highest_vcn)
977			highest_vcn = (sle64_to_cpu(
978					a->data.non_resident.allocated_size) >>
979					vol->cluster_size_bits) - 1;
980		/*
981		 * Determine the size of the mapping pairs array for the new
982		 * extent, i.e. the old extent with the hole filled.
983		 */
984		mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, vcn,
985				highest_vcn);
986		if (unlikely(mp_size <= 0)) {
987			if (!(err = mp_size))
988				err = -EIO;
989			ntfs_debug("Failed to get size for mapping pairs "
990					"array, error code %i.", err);
991			break;
992		}
993		/*
994		 * Resize the attribute record to fit the new mapping pairs
995		 * array.
996		 */
997		attr_rec_len = le32_to_cpu(a->length);
998		err = ntfs_attr_record_resize(m, a, mp_size + le16_to_cpu(
999				a->data.non_resident.mapping_pairs_offset));
1000		if (unlikely(err)) {
1001			BUG_ON(err != -ENOSPC);
1002			// TODO: Deal with this by using the current attribute
1003			// and fill it with as much of the mapping pairs
1004			// array as possible.  Then loop over each attribute
1005			// extent rewriting the mapping pairs arrays as we go
1006			// along and if when we reach the end we have not
1007			// enough space, try to resize the last attribute
1008			// extent and if even that fails, add a new attribute
1009			// extent.
1010			// We could also try to resize at each step in the hope
1011			// that we will not need to rewrite every single extent.
1012			// Note, we may need to decompress some extents to fill
1013			// the runlist as we are walking the extents...
1014			ntfs_error(vol->sb, "Not enough space in the mft "
1015					"record for the extended attribute "
1016					"record.  This case is not "
1017					"implemented yet.");
1018			err = -EOPNOTSUPP;
1019			break ;
1020		}
1021		status.mp_rebuilt = 1;
1022		/*
1023		 * Generate the mapping pairs array directly into the attribute
1024		 * record.
1025		 */
1026		err = ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu(
1027				a->data.non_resident.mapping_pairs_offset),
1028				mp_size, rl2, vcn, highest_vcn, NULL);
1029		if (unlikely(err)) {
1030			ntfs_error(vol->sb, "Cannot fill hole in inode 0x%lx, "
1031					"attribute type 0x%x, because building "
1032					"the mapping pairs failed with error "
1033					"code %i.", vi->i_ino,
1034					(unsigned)le32_to_cpu(ni->type), err);
1035			err = -EIO;
1036			break;
1037		}
1038		/* Update the highest_vcn but only if it was not set. */
1039		if (unlikely(!a->data.non_resident.highest_vcn))
1040			a->data.non_resident.highest_vcn =
1041					cpu_to_sle64(highest_vcn);
1042		/*
1043		 * If the attribute is sparse/compressed, update the compressed
1044		 * size in the ntfs_inode structure and the attribute record.
1045		 */
1046		if (likely(NInoSparse(ni) || NInoCompressed(ni))) {
1047			/*
1048			 * If we are not in the first attribute extent, switch
1049			 * to it, but first ensure the changes will make it to
1050			 * disk later.
1051			 */
1052			if (a->data.non_resident.lowest_vcn) {
1053				flush_dcache_mft_record_page(ctx->ntfs_ino);
1054				mark_mft_record_dirty(ctx->ntfs_ino);
1055				ntfs_attr_reinit_search_ctx(ctx);
1056				err = ntfs_attr_lookup(ni->type, ni->name,
1057						ni->name_len, CASE_SENSITIVE,
1058						0, NULL, 0, ctx);
1059				if (unlikely(err)) {
1060					status.attr_switched = 1;
1061					break;
1062				}
1063				/* @m is not used any more so do not set it. */
1064				a = ctx->attr;
1065			}
1066			write_lock_irqsave(&ni->size_lock, flags);
1067			ni->itype.compressed.size += vol->cluster_size;
1068			a->data.non_resident.compressed_size =
1069					cpu_to_sle64(ni->itype.compressed.size);
1070			write_unlock_irqrestore(&ni->size_lock, flags);
1071		}
1072		/* Ensure the changes make it to disk. */
1073		flush_dcache_mft_record_page(ctx->ntfs_ino);
1074		mark_mft_record_dirty(ctx->ntfs_ino);
1075		ntfs_attr_put_search_ctx(ctx);
1076		unmap_mft_record(base_ni);
1077		/* Successfully filled the hole. */
1078		status.runlist_merged = 0;
1079		status.mft_attr_mapped = 0;
1080		status.mp_rebuilt = 0;
1081		/* Setup the map cache and use that to deal with the buffer. */
1082		was_hole = true;
1083		vcn = bh_cpos;
1084		vcn_len = 1;
1085		lcn_block = lcn << (vol->cluster_size_bits - blocksize_bits);
1086		cdelta = 0;
1087		/*
1088		 * If the number of remaining clusters in the @pages is smaller
1089		 * or equal to the number of cached clusters, unlock the
1090		 * runlist as the map cache will be used from now on.
1091		 */
1092		if (likely(vcn + vcn_len >= cend)) {
1093			up_write(&ni->runlist.lock);
1094			rl_write_locked = false;
1095			rl = NULL;
1096		}
1097		goto map_buffer_cached;
1098	} while (bh_pos += blocksize, (bh = bh->b_this_page) != head);
1099	/* If there are no errors, do the next page. */
1100	if (likely(!err && ++u < nr_pages))
1101		goto do_next_page;
1102	/* If there are no errors, release the runlist lock if we took it. */
1103	if (likely(!err)) {
1104		if (unlikely(rl_write_locked)) {
1105			up_write(&ni->runlist.lock);
1106			rl_write_locked = false;
1107		} else if (unlikely(rl))
1108			up_read(&ni->runlist.lock);
1109		rl = NULL;
1110	}
1111	/* If we issued read requests, let them complete. */
1112	read_lock_irqsave(&ni->size_lock, flags);
1113	initialized_size = ni->initialized_size;
1114	read_unlock_irqrestore(&ni->size_lock, flags);
1115	while (wait_bh > wait) {
1116		bh = *--wait_bh;
1117		wait_on_buffer(bh);
1118		if (likely(buffer_uptodate(bh))) {
1119			page = bh->b_page;
1120			bh_pos = ((s64)page->index << PAGE_CACHE_SHIFT) +
1121					bh_offset(bh);
1122			/*
1123			 * If the buffer overflows the initialized size, need
1124			 * to zero the overflowing region.
1125			 */
1126			if (unlikely(bh_pos + blocksize > initialized_size)) {
1127				int ofs = 0;
1128
1129				if (likely(bh_pos < initialized_size))
1130					ofs = initialized_size - bh_pos;
1131				zero_user_page(page, bh_offset(bh) + ofs,
1132						blocksize - ofs, KM_USER0);
1133			}
1134		} else /* if (unlikely(!buffer_uptodate(bh))) */
1135			err = -EIO;
1136	}
1137	if (likely(!err)) {
1138		/* Clear buffer_new on all buffers. */
1139		u = 0;
1140		do {
1141			bh = head = page_buffers(pages[u]);
1142			do {
1143				if (buffer_new(bh))
1144					clear_buffer_new(bh);
1145			} while ((bh = bh->b_this_page) != head);
1146		} while (++u < nr_pages);
1147		ntfs_debug("Done.");
1148		return err;
1149	}
1150	if (status.attr_switched) {
1151		/* Get back to the attribute extent we modified. */
1152		ntfs_attr_reinit_search_ctx(ctx);
1153		if (ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1154				CASE_SENSITIVE, bh_cpos, NULL, 0, ctx)) {
1155			ntfs_error(vol->sb, "Failed to find required "
1156					"attribute extent of attribute in "
1157					"error code path.  Run chkdsk to "
1158					"recover.");
1159			write_lock_irqsave(&ni->size_lock, flags);
1160			ni->itype.compressed.size += vol->cluster_size;
1161			write_unlock_irqrestore(&ni->size_lock, flags);
1162			flush_dcache_mft_record_page(ctx->ntfs_ino);
1163			mark_mft_record_dirty(ctx->ntfs_ino);
1164			/*
1165			 * The only thing that is now wrong is the compressed
1166			 * size of the base attribute extent which chkdsk
1167			 * should be able to fix.
1168			 */
1169			NVolSetErrors(vol);
1170		} else {
1171			m = ctx->mrec;
1172			a = ctx->attr;
1173			status.attr_switched = 0;
1174		}
1175	}
1176	/*
1177	 * If the runlist has been modified, need to restore it by punching a
1178	 * hole into it and we then need to deallocate the on-disk cluster as
1179	 * well.  Note, we only modify the runlist if we are able to generate a
1180	 * new mapping pairs array, i.e. only when the mapped attribute extent
1181	 * is not switched.
1182	 */
1183	if (status.runlist_merged && !status.attr_switched) {
1184		BUG_ON(!rl_write_locked);
1185		/* Make the file cluster we allocated sparse in the runlist. */
1186		if (ntfs_rl_punch_nolock(vol, &ni->runlist, bh_cpos, 1)) {
1187			ntfs_error(vol->sb, "Failed to punch hole into "
1188					"attribute runlist in error code "
1189					"path.  Run chkdsk to recover the "
1190					"lost cluster.");
1191			NVolSetErrors(vol);
1192		} else /* if (success) */ {
1193			status.runlist_merged = 0;
1194			/*
1195			 * Deallocate the on-disk cluster we allocated but only
1196			 * if we succeeded in punching its vcn out of the
1197			 * runlist.
1198			 */
1199			down_write(&vol->lcnbmp_lock);
1200			if (ntfs_bitmap_clear_bit(vol->lcnbmp_ino, lcn)) {
1201				ntfs_error(vol->sb, "Failed to release "
1202						"allocated cluster in error "
1203						"code path.  Run chkdsk to "
1204						"recover the lost cluster.");
1205				NVolSetErrors(vol);
1206			}
1207			up_write(&vol->lcnbmp_lock);
1208		}
1209	}
1210	/*
1211	 * Resize the attribute record to its old size and rebuild the mapping
1212	 * pairs array.  Note, we only can do this if the runlist has been
1213	 * restored to its old state which also implies that the mapped
1214	 * attribute extent is not switched.
1215	 */
1216	if (status.mp_rebuilt && !status.runlist_merged) {
1217		if (ntfs_attr_record_resize(m, a, attr_rec_len)) {
1218			ntfs_error(vol->sb, "Failed to restore attribute "
1219					"record in error code path.  Run "
1220					"chkdsk to recover.");
1221			NVolSetErrors(vol);
1222		} else /* if (success) */ {
1223			if (ntfs_mapping_pairs_build(vol, (u8*)a +
1224					le16_to_cpu(a->data.non_resident.
1225					mapping_pairs_offset), attr_rec_len -
1226					le16_to_cpu(a->data.non_resident.
1227					mapping_pairs_offset), ni->runlist.rl,
1228					vcn, highest_vcn, NULL)) {
1229				ntfs_error(vol->sb, "Failed to restore "
1230						"mapping pairs array in error "
1231						"code path.  Run chkdsk to "
1232						"recover.");
1233				NVolSetErrors(vol);
1234			}
1235			flush_dcache_mft_record_page(ctx->ntfs_ino);
1236			mark_mft_record_dirty(ctx->ntfs_ino);
1237		}
1238	}
1239	/* Release the mft record and the attribute. */
1240	if (status.mft_attr_mapped) {
1241		ntfs_attr_put_search_ctx(ctx);
1242		unmap_mft_record(base_ni);
1243	}
1244	/* Release the runlist lock. */
1245	if (rl_write_locked)
1246		up_write(&ni->runlist.lock);
1247	else if (rl)
1248		up_read(&ni->runlist.lock);
1249	/*
1250	 * Zero out any newly allocated blocks to avoid exposing stale data.
1251	 * If BH_New is set, we know that the block was newly allocated above
1252	 * and that it has not been fully zeroed and marked dirty yet.
1253	 */
1254	nr_pages = u;
1255	u = 0;
1256	end = bh_cpos << vol->cluster_size_bits;
1257	do {
1258		page = pages[u];
1259		bh = head = page_buffers(page);
1260		do {
1261			if (u == nr_pages &&
1262					((s64)page->index << PAGE_CACHE_SHIFT) +
1263					bh_offset(bh) >= end)
1264				break;
1265			if (!buffer_new(bh))
1266				continue;
1267			clear_buffer_new(bh);
1268			if (!buffer_uptodate(bh)) {
1269				if (PageUptodate(page))
1270					set_buffer_uptodate(bh);
1271				else {
1272					zero_user_page(page, bh_offset(bh),
1273							blocksize, KM_USER0);
1274					set_buffer_uptodate(bh);
1275				}
1276			}
1277			mark_buffer_dirty(bh);
1278		} while ((bh = bh->b_this_page) != head);
1279	} while (++u <= nr_pages);
1280	ntfs_error(vol->sb, "Failed.  Returning error code %i.", err);
1281	return err;
1282}
1283
1284/*
1285 * Copy as much as we can into the pages and return the number of bytes which
1286 * were sucessfully copied.  If a fault is encountered then clear the pages
1287 * out to (ofs + bytes) and return the number of bytes which were copied.
1288 */
1289static inline size_t ntfs_copy_from_user(struct page **pages,
1290		unsigned nr_pages, unsigned ofs, const char __user *buf,
1291		size_t bytes)
1292{
1293	struct page **last_page = pages + nr_pages;
1294	char *kaddr;
1295	size_t total = 0;
1296	unsigned len;
1297	int left;
1298
1299	do {
1300		len = PAGE_CACHE_SIZE - ofs;
1301		if (len > bytes)
1302			len = bytes;
1303		kaddr = kmap_atomic(*pages, KM_USER0);
1304		left = __copy_from_user_inatomic(kaddr + ofs, buf, len);
1305		kunmap_atomic(kaddr, KM_USER0);
1306		if (unlikely(left)) {
1307			/* Do it the slow way. */
1308			kaddr = kmap(*pages);
1309			left = __copy_from_user(kaddr + ofs, buf, len);
1310			kunmap(*pages);
1311			if (unlikely(left))
1312				goto err_out;
1313		}
1314		total += len;
1315		bytes -= len;
1316		if (!bytes)
1317			break;
1318		buf += len;
1319		ofs = 0;
1320	} while (++pages < last_page);
1321out:
1322	return total;
1323err_out:
1324	total += len - left;
1325	/* Zero the rest of the target like __copy_from_user(). */
1326	while (++pages < last_page) {
1327		bytes -= len;
1328		if (!bytes)
1329			break;
1330		len = PAGE_CACHE_SIZE;
1331		if (len > bytes)
1332			len = bytes;
1333		zero_user_page(*pages, 0, len, KM_USER0);
1334	}
1335	goto out;
1336}
1337
1338static size_t __ntfs_copy_from_user_iovec_inatomic(char *vaddr,
1339		const struct iovec *iov, size_t iov_ofs, size_t bytes)
1340{
1341	size_t total = 0;
1342
1343	while (1) {
1344		const char __user *buf = iov->iov_base + iov_ofs;
1345		unsigned len;
1346		size_t left;
1347
1348		len = iov->iov_len - iov_ofs;
1349		if (len > bytes)
1350			len = bytes;
1351		left = __copy_from_user_inatomic(vaddr, buf, len);
1352		total += len;
1353		bytes -= len;
1354		vaddr += len;
1355		if (unlikely(left)) {
1356			total -= left;
1357			break;
1358		}
1359		if (!bytes)
1360			break;
1361		iov++;
1362		iov_ofs = 0;
1363	}
1364	return total;
1365}
1366
1367static inline void ntfs_set_next_iovec(const struct iovec **iovp,
1368		size_t *iov_ofsp, size_t bytes)
1369{
1370	const struct iovec *iov = *iovp;
1371	size_t iov_ofs = *iov_ofsp;
1372
1373	while (bytes) {
1374		unsigned len;
1375
1376		len = iov->iov_len - iov_ofs;
1377		if (len > bytes)
1378			len = bytes;
1379		bytes -= len;
1380		iov_ofs += len;
1381		if (iov->iov_len == iov_ofs) {
1382			iov++;
1383			iov_ofs = 0;
1384		}
1385	}
1386	*iovp = iov;
1387	*iov_ofsp = iov_ofs;
1388}
1389
1390/*
1391 * This has the same side-effects and return value as ntfs_copy_from_user().
1392 * The difference is that on a fault we need to memset the remainder of the
1393 * pages (out to offset + bytes), to emulate ntfs_copy_from_user()'s
1394 * single-segment behaviour.
1395 *
1396 * We call the same helper (__ntfs_copy_from_user_iovec_inatomic()) both
1397 * when atomic and when not atomic.  This is ok because
1398 * __ntfs_copy_from_user_iovec_inatomic() calls __copy_from_user_inatomic()
1399 * and it is ok to call this when non-atomic.
1400 * Infact, the only difference between __copy_from_user_inatomic() and
1401 * __copy_from_user() is that the latter calls might_sleep() and the former
1402 * should not zero the tail of the buffer on error.  And on many
1403 * architectures __copy_from_user_inatomic() is just defined to
1404 * __copy_from_user() so it makes no difference at all on those architectures.
1405 */
1406static inline size_t ntfs_copy_from_user_iovec(struct page **pages,
1407		unsigned nr_pages, unsigned ofs, const struct iovec **iov,
1408		size_t *iov_ofs, size_t bytes)
1409{
1410	struct page **last_page = pages + nr_pages;
1411	char *kaddr;
1412	size_t copied, len, total = 0;
1413
1414	do {
1415		len = PAGE_CACHE_SIZE - ofs;
1416		if (len > bytes)
1417			len = bytes;
1418		kaddr = kmap_atomic(*pages, KM_USER0);
1419		copied = __ntfs_copy_from_user_iovec_inatomic(kaddr + ofs,
1420				*iov, *iov_ofs, len);
1421		kunmap_atomic(kaddr, KM_USER0);
1422		if (unlikely(copied != len)) {
1423			/* Do it the slow way. */
1424			kaddr = kmap(*pages);
1425			copied = __ntfs_copy_from_user_iovec_inatomic(kaddr + ofs,
1426					*iov, *iov_ofs, len);
1427			/*
1428			 * Zero the rest of the target like __copy_from_user().
1429			 */
1430			memset(kaddr + ofs + copied, 0, len - copied);
1431			kunmap(*pages);
1432			if (unlikely(copied != len))
1433				goto err_out;
1434		}
1435		total += len;
1436		bytes -= len;
1437		if (!bytes)
1438			break;
1439		ntfs_set_next_iovec(iov, iov_ofs, len);
1440		ofs = 0;
1441	} while (++pages < last_page);
1442out:
1443	return total;
1444err_out:
1445	total += copied;
1446	/* Zero the rest of the target like __copy_from_user(). */
1447	while (++pages < last_page) {
1448		bytes -= len;
1449		if (!bytes)
1450			break;
1451		len = PAGE_CACHE_SIZE;
1452		if (len > bytes)
1453			len = bytes;
1454		zero_user_page(*pages, 0, len, KM_USER0);
1455	}
1456	goto out;
1457}
1458
1459static inline void ntfs_flush_dcache_pages(struct page **pages,
1460		unsigned nr_pages)
1461{
1462	BUG_ON(!nr_pages);
1463	/*
1464	 * Warning: Do not do the decrement at the same time as the call to
1465	 * flush_dcache_page() because it is a NULL macro on i386 and hence the
1466	 * decrement never happens so the loop never terminates.
1467	 */
1468	do {
1469		--nr_pages;
1470		flush_dcache_page(pages[nr_pages]);
1471	} while (nr_pages > 0);
1472}
1473
1474/**
1475 * ntfs_commit_pages_after_non_resident_write - commit the received data
1476 * @pages:	array of destination pages
1477 * @nr_pages:	number of pages in @pages
1478 * @pos:	byte position in file at which the write begins
1479 * @bytes:	number of bytes to be written
1480 *
1481 * See description of ntfs_commit_pages_after_write(), below.
1482 */
1483static inline int ntfs_commit_pages_after_non_resident_write(
1484		struct page **pages, const unsigned nr_pages,
1485		s64 pos, size_t bytes)
1486{
1487	s64 end, initialized_size;
1488	struct inode *vi;
1489	ntfs_inode *ni, *base_ni;
1490	struct buffer_head *bh, *head;
1491	ntfs_attr_search_ctx *ctx;
1492	MFT_RECORD *m;
1493	ATTR_RECORD *a;
1494	unsigned long flags;
1495	unsigned blocksize, u;
1496	int err;
1497
1498	vi = pages[0]->mapping->host;
1499	ni = NTFS_I(vi);
1500	blocksize = vi->i_sb->s_blocksize;
1501	end = pos + bytes;
1502	u = 0;
1503	do {
1504		s64 bh_pos;
1505		struct page *page;
1506		bool partial;
1507
1508		page = pages[u];
1509		bh_pos = (s64)page->index << PAGE_CACHE_SHIFT;
1510		bh = head = page_buffers(page);
1511		partial = false;
1512		do {
1513			s64 bh_end;
1514
1515			bh_end = bh_pos + blocksize;
1516			if (bh_end <= pos || bh_pos >= end) {
1517				if (!buffer_uptodate(bh))
1518					partial = true;
1519			} else {
1520				set_buffer_uptodate(bh);
1521				mark_buffer_dirty(bh);
1522			}
1523		} while (bh_pos += blocksize, (bh = bh->b_this_page) != head);
1524		/*
1525		 * If all buffers are now uptodate but the page is not, set the
1526		 * page uptodate.
1527		 */
1528		if (!partial && !PageUptodate(page))
1529			SetPageUptodate(page);
1530	} while (++u < nr_pages);
1531	/*
1532	 * Finally, if we do not need to update initialized_size or i_size we
1533	 * are finished.
1534	 */
1535	read_lock_irqsave(&ni->size_lock, flags);
1536	initialized_size = ni->initialized_size;
1537	read_unlock_irqrestore(&ni->size_lock, flags);
1538	if (end <= initialized_size) {
1539		ntfs_debug("Done.");
1540		return 0;
1541	}
1542	/*
1543	 * Update initialized_size/i_size as appropriate, both in the inode and
1544	 * the mft record.
1545	 */
1546	if (!NInoAttr(ni))
1547		base_ni = ni;
1548	else
1549		base_ni = ni->ext.base_ntfs_ino;
1550	/* Map, pin, and lock the mft record. */
1551	m = map_mft_record(base_ni);
1552	if (IS_ERR(m)) {
1553		err = PTR_ERR(m);
1554		m = NULL;
1555		ctx = NULL;
1556		goto err_out;
1557	}
1558	BUG_ON(!NInoNonResident(ni));
1559	ctx = ntfs_attr_get_search_ctx(base_ni, m);
1560	if (unlikely(!ctx)) {
1561		err = -ENOMEM;
1562		goto err_out;
1563	}
1564	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1565			CASE_SENSITIVE, 0, NULL, 0, ctx);
1566	if (unlikely(err)) {
1567		if (err == -ENOENT)
1568			err = -EIO;
1569		goto err_out;
1570	}
1571	a = ctx->attr;
1572	BUG_ON(!a->non_resident);
1573	write_lock_irqsave(&ni->size_lock, flags);
1574	BUG_ON(end > ni->allocated_size);
1575	ni->initialized_size = end;
1576	a->data.non_resident.initialized_size = cpu_to_sle64(end);
1577	if (end > i_size_read(vi)) {
1578		i_size_write(vi, end);
1579		a->data.non_resident.data_size =
1580				a->data.non_resident.initialized_size;
1581	}
1582	write_unlock_irqrestore(&ni->size_lock, flags);
1583	/* Mark the mft record dirty, so it gets written back. */
1584	flush_dcache_mft_record_page(ctx->ntfs_ino);
1585	mark_mft_record_dirty(ctx->ntfs_ino);
1586	ntfs_attr_put_search_ctx(ctx);
1587	unmap_mft_record(base_ni);
1588	ntfs_debug("Done.");
1589	return 0;
1590err_out:
1591	if (ctx)
1592		ntfs_attr_put_search_ctx(ctx);
1593	if (m)
1594		unmap_mft_record(base_ni);
1595	ntfs_error(vi->i_sb, "Failed to update initialized_size/i_size (error "
1596			"code %i).", err);
1597	if (err != -ENOMEM)
1598		NVolSetErrors(ni->vol);
1599	return err;
1600}
1601
1602/**
1603 * ntfs_commit_pages_after_write - commit the received data
1604 * @pages:	array of destination pages
1605 * @nr_pages:	number of pages in @pages
1606 * @pos:	byte position in file at which the write begins
1607 * @bytes:	number of bytes to be written
1608 *
1609 * This is called from ntfs_file_buffered_write() with i_mutex held on the inode
1610 * (@pages[0]->mapping->host).  There are @nr_pages pages in @pages which are
1611 * locked but not kmap()ped.  The source data has already been copied into the
1612 * @page.  ntfs_prepare_pages_for_non_resident_write() has been called before
1613 * the data was copied (for non-resident attributes only) and it returned
1614 * success.
1615 *
1616 * Need to set uptodate and mark dirty all buffers within the boundary of the
1617 * write.  If all buffers in a page are uptodate we set the page uptodate, too.
1618 *
1619 * Setting the buffers dirty ensures that they get written out later when
1620 * ntfs_writepage() is invoked by the VM.
1621 *
1622 * Finally, we need to update i_size and initialized_size as appropriate both
1623 * in the inode and the mft record.
1624 *
1625 * This is modelled after fs/buffer.c::generic_commit_write(), which marks
1626 * buffers uptodate and dirty, sets the page uptodate if all buffers in the
1627 * page are uptodate, and updates i_size if the end of io is beyond i_size.  In
1628 * that case, it also marks the inode dirty.
1629 *
1630 * If things have gone as outlined in
1631 * ntfs_prepare_pages_for_non_resident_write(), we do not need to do any page
1632 * content modifications here for non-resident attributes.  For resident
1633 * attributes we need to do the uptodate bringing here which we combine with
1634 * the copying into the mft record which means we save one atomic kmap.
1635 *
1636 * Return 0 on success or -errno on error.
1637 */
1638static int ntfs_commit_pages_after_write(struct page **pages,
1639		const unsigned nr_pages, s64 pos, size_t bytes)
1640{
1641	s64 end, initialized_size;
1642	loff_t i_size;
1643	struct inode *vi;
1644	ntfs_inode *ni, *base_ni;
1645	struct page *page;
1646	ntfs_attr_search_ctx *ctx;
1647	MFT_RECORD *m;
1648	ATTR_RECORD *a;
1649	char *kattr, *kaddr;
1650	unsigned long flags;
1651	u32 attr_len;
1652	int err;
1653
1654	BUG_ON(!nr_pages);
1655	BUG_ON(!pages);
1656	page = pages[0];
1657	BUG_ON(!page);
1658	vi = page->mapping->host;
1659	ni = NTFS_I(vi);
1660	ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page "
1661			"index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.",
1662			vi->i_ino, ni->type, page->index, nr_pages,
1663			(long long)pos, bytes);
1664	if (NInoNonResident(ni))
1665		return ntfs_commit_pages_after_non_resident_write(pages,
1666				nr_pages, pos, bytes);
1667	BUG_ON(nr_pages > 1);
1668	/*
1669	 * Attribute is resident, implying it is not compressed, encrypted, or
1670	 * sparse.
1671	 */
1672	if (!NInoAttr(ni))
1673		base_ni = ni;
1674	else
1675		base_ni = ni->ext.base_ntfs_ino;
1676	BUG_ON(NInoNonResident(ni));
1677	/* Map, pin, and lock the mft record. */
1678	m = map_mft_record(base_ni);
1679	if (IS_ERR(m)) {
1680		err = PTR_ERR(m);
1681		m = NULL;
1682		ctx = NULL;
1683		goto err_out;
1684	}
1685	ctx = ntfs_attr_get_search_ctx(base_ni, m);
1686	if (unlikely(!ctx)) {
1687		err = -ENOMEM;
1688		goto err_out;
1689	}
1690	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1691			CASE_SENSITIVE, 0, NULL, 0, ctx);
1692	if (unlikely(err)) {
1693		if (err == -ENOENT)
1694			err = -EIO;
1695		goto err_out;
1696	}
1697	a = ctx->attr;
1698	BUG_ON(a->non_resident);
1699	/* The total length of the attribute value. */
1700	attr_len = le32_to_cpu(a->data.resident.value_length);
1701	i_size = i_size_read(vi);
1702	BUG_ON(attr_len != i_size);
1703	BUG_ON(pos > attr_len);
1704	end = pos + bytes;
1705	BUG_ON(end > le32_to_cpu(a->length) -
1706			le16_to_cpu(a->data.resident.value_offset));
1707	kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset);
1708	kaddr = kmap_atomic(page, KM_USER0);
1709	/* Copy the received data from the page to the mft record. */
1710	memcpy(kattr + pos, kaddr + pos, bytes);
1711	/* Update the attribute length if necessary. */
1712	if (end > attr_len) {
1713		attr_len = end;
1714		a->data.resident.value_length = cpu_to_le32(attr_len);
1715	}
1716	/*
1717	 * If the page is not uptodate, bring the out of bounds area(s)
1718	 * uptodate by copying data from the mft record to the page.
1719	 */
1720	if (!PageUptodate(page)) {
1721		if (pos > 0)
1722			memcpy(kaddr, kattr, pos);
1723		if (end < attr_len)
1724			memcpy(kaddr + end, kattr + end, attr_len - end);
1725		/* Zero the region outside the end of the attribute value. */
1726		memset(kaddr + attr_len, 0, PAGE_CACHE_SIZE - attr_len);
1727		flush_dcache_page(page);
1728		SetPageUptodate(page);
1729	}
1730	kunmap_atomic(kaddr, KM_USER0);
1731	/* Update initialized_size/i_size if necessary. */
1732	read_lock_irqsave(&ni->size_lock, flags);
1733	initialized_size = ni->initialized_size;
1734	BUG_ON(end > ni->allocated_size);
1735	read_unlock_irqrestore(&ni->size_lock, flags);
1736	BUG_ON(initialized_size != i_size);
1737	if (end > initialized_size) {
1738		unsigned long flags;
1739
1740		write_lock_irqsave(&ni->size_lock, flags);
1741		ni->initialized_size = end;
1742		i_size_write(vi, end);
1743		write_unlock_irqrestore(&ni->size_lock, flags);
1744	}
1745	/* Mark the mft record dirty, so it gets written back. */
1746	flush_dcache_mft_record_page(ctx->ntfs_ino);
1747	mark_mft_record_dirty(ctx->ntfs_ino);
1748	ntfs_attr_put_search_ctx(ctx);
1749	unmap_mft_record(base_ni);
1750	ntfs_debug("Done.");
1751	return 0;
1752err_out:
1753	if (err == -ENOMEM) {
1754		ntfs_warning(vi->i_sb, "Error allocating memory required to "
1755				"commit the write.");
1756		if (PageUptodate(page)) {
1757			ntfs_warning(vi->i_sb, "Page is uptodate, setting "
1758					"dirty so the write will be retried "
1759					"later on by the VM.");
1760			/*
1761			 * Put the page on mapping->dirty_pages, but leave its
1762			 * buffers' dirty state as-is.
1763			 */
1764			__set_page_dirty_nobuffers(page);
1765			err = 0;
1766		} else
1767			ntfs_error(vi->i_sb, "Page is not uptodate.  Written "
1768					"data has been lost.");
1769	} else {
1770		ntfs_error(vi->i_sb, "Resident attribute commit write failed "
1771				"with error %i.", err);
1772		NVolSetErrors(ni->vol);
1773	}
1774	if (ctx)
1775		ntfs_attr_put_search_ctx(ctx);
1776	if (m)
1777		unmap_mft_record(base_ni);
1778	return err;
1779}
1780
1781/**
1782 * ntfs_file_buffered_write -
1783 *
1784 * Locking: The vfs is holding ->i_mutex on the inode.
1785 */
1786static ssize_t ntfs_file_buffered_write(struct kiocb *iocb,
1787		const struct iovec *iov, unsigned long nr_segs,
1788		loff_t pos, loff_t *ppos, size_t count)
1789{
1790	struct file *file = iocb->ki_filp;
1791	struct address_space *mapping = file->f_mapping;
1792	struct inode *vi = mapping->host;
1793	ntfs_inode *ni = NTFS_I(vi);
1794	ntfs_volume *vol = ni->vol;
1795	struct page *pages[NTFS_MAX_PAGES_PER_CLUSTER];
1796	struct page *cached_page = NULL;
1797	char __user *buf = NULL;
1798	s64 end, ll;
1799	VCN last_vcn;
1800	LCN lcn;
1801	unsigned long flags;
1802	size_t bytes, iov_ofs = 0;	/* Offset in the current iovec. */
1803	ssize_t status, written;
1804	unsigned nr_pages;
1805	int err;
1806	struct pagevec lru_pvec;
1807
1808	ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, "
1809			"pos 0x%llx, count 0x%lx.",
1810			vi->i_ino, (unsigned)le32_to_cpu(ni->type),
1811			(unsigned long long)pos, (unsigned long)count);
1812	if (unlikely(!count))
1813		return 0;
1814	BUG_ON(NInoMstProtected(ni));
1815	/*
1816	 * If the attribute is not an index root and it is encrypted or
1817	 * compressed, we cannot write to it yet.  Note we need to check for
1818	 * AT_INDEX_ALLOCATION since this is the type of both directory and
1819	 * index inodes.
1820	 */
1821	if (ni->type != AT_INDEX_ALLOCATION) {
1822		/* If file is encrypted, deny access, just like NT4. */
1823		if (NInoEncrypted(ni)) {
1824			/*
1825			 * Reminder for later: Encrypted files are _always_
1826			 * non-resident so that the content can always be
1827			 * encrypted.
1828			 */
1829			ntfs_debug("Denying write access to encrypted file.");
1830			return -EACCES;
1831		}
1832		if (NInoCompressed(ni)) {
1833			/* Only unnamed $DATA attribute can be compressed. */
1834			BUG_ON(ni->type != AT_DATA);
1835			BUG_ON(ni->name_len);
1836			/*
1837			 * Reminder for later: If resident, the data is not
1838			 * actually compressed.  Only on the switch to non-
1839			 * resident does compression kick in.  This is in
1840			 * contrast to encrypted files (see above).
1841			 */
1842			ntfs_error(vi->i_sb, "Writing to compressed files is "
1843					"not implemented yet.  Sorry.");
1844			return -EOPNOTSUPP;
1845		}
1846	}
1847	/*
1848	 * If a previous ntfs_truncate() failed, repeat it and abort if it
1849	 * fails again.
1850	 */
1851	if (unlikely(NInoTruncateFailed(ni))) {
1852		down_write(&vi->i_alloc_sem);
1853		err = ntfs_truncate(vi);
1854		up_write(&vi->i_alloc_sem);
1855		if (err || NInoTruncateFailed(ni)) {
1856			if (!err)
1857				err = -EIO;
1858			ntfs_error(vol->sb, "Cannot perform write to inode "
1859					"0x%lx, attribute type 0x%x, because "
1860					"ntfs_truncate() failed (error code "
1861					"%i).", vi->i_ino,
1862					(unsigned)le32_to_cpu(ni->type), err);
1863			return err;
1864		}
1865	}
1866	/* The first byte after the write. */
1867	end = pos + count;
1868	/*
1869	 * If the write goes beyond the allocated size, extend the allocation
1870	 * to cover the whole of the write, rounded up to the nearest cluster.
1871	 */
1872	read_lock_irqsave(&ni->size_lock, flags);
1873	ll = ni->allocated_size;
1874	read_unlock_irqrestore(&ni->size_lock, flags);
1875	if (end > ll) {
1876		/* Extend the allocation without changing the data size. */
1877		ll = ntfs_attr_extend_allocation(ni, end, -1, pos);
1878		if (likely(ll >= 0)) {
1879			BUG_ON(pos >= ll);
1880			/* If the extension was partial truncate the write. */
1881			if (end > ll) {
1882				ntfs_debug("Truncating write to inode 0x%lx, "
1883						"attribute type 0x%x, because "
1884						"the allocation was only "
1885						"partially extended.",
1886						vi->i_ino, (unsigned)
1887						le32_to_cpu(ni->type));
1888				end = ll;
1889				count = ll - pos;
1890			}
1891		} else {
1892			err = ll;
1893			read_lock_irqsave(&ni->size_lock, flags);
1894			ll = ni->allocated_size;
1895			read_unlock_irqrestore(&ni->size_lock, flags);
1896			/* Perform a partial write if possible or fail. */
1897			if (pos < ll) {
1898				ntfs_debug("Truncating write to inode 0x%lx, "
1899						"attribute type 0x%x, because "
1900						"extending the allocation "
1901						"failed (error code %i).",
1902						vi->i_ino, (unsigned)
1903						le32_to_cpu(ni->type), err);
1904				end = ll;
1905				count = ll - pos;
1906			} else {
1907				ntfs_error(vol->sb, "Cannot perform write to "
1908						"inode 0x%lx, attribute type "
1909						"0x%x, because extending the "
1910						"allocation failed (error "
1911						"code %i).", vi->i_ino,
1912						(unsigned)
1913						le32_to_cpu(ni->type), err);
1914				return err;
1915			}
1916		}
1917	}
1918	pagevec_init(&lru_pvec, 0);
1919	written = 0;
1920	/*
1921	 * If the write starts beyond the initialized size, extend it up to the
1922	 * beginning of the write and initialize all non-sparse space between
1923	 * the old initialized size and the new one.  This automatically also
1924	 * increments the vfs inode->i_size to keep it above or equal to the
1925	 * initialized_size.
1926	 */
1927	read_lock_irqsave(&ni->size_lock, flags);
1928	ll = ni->initialized_size;
1929	read_unlock_irqrestore(&ni->size_lock, flags);
1930	if (pos > ll) {
1931		err = ntfs_attr_extend_initialized(ni, pos, &cached_page,
1932				&lru_pvec);
1933		if (err < 0) {
1934			ntfs_error(vol->sb, "Cannot perform write to inode "
1935					"0x%lx, attribute type 0x%x, because "
1936					"extending the initialized size "
1937					"failed (error code %i).", vi->i_ino,
1938					(unsigned)le32_to_cpu(ni->type), err);
1939			status = err;
1940			goto err_out;
1941		}
1942	}
1943	/*
1944	 * Determine the number of pages per cluster for non-resident
1945	 * attributes.
1946	 */
1947	nr_pages = 1;
1948	if (vol->cluster_size > PAGE_CACHE_SIZE && NInoNonResident(ni))
1949		nr_pages = vol->cluster_size >> PAGE_CACHE_SHIFT;
1950	/* Finally, perform the actual write. */
1951	last_vcn = -1;
1952	if (likely(nr_segs == 1))
1953		buf = iov->iov_base;
1954	do {
1955		VCN vcn;
1956		pgoff_t idx, start_idx;
1957		unsigned ofs, do_pages, u;
1958		size_t copied;
1959
1960		start_idx = idx = pos >> PAGE_CACHE_SHIFT;
1961		ofs = pos & ~PAGE_CACHE_MASK;
1962		bytes = PAGE_CACHE_SIZE - ofs;
1963		do_pages = 1;
1964		if (nr_pages > 1) {
1965			vcn = pos >> vol->cluster_size_bits;
1966			if (vcn != last_vcn) {
1967				last_vcn = vcn;
1968				/*
1969				 * Get the lcn of the vcn the write is in.  If
1970				 * it is a hole, need to lock down all pages in
1971				 * the cluster.
1972				 */
1973				down_read(&ni->runlist.lock);
1974				lcn = ntfs_attr_vcn_to_lcn_nolock(ni, pos >>
1975						vol->cluster_size_bits, false);
1976				up_read(&ni->runlist.lock);
1977				if (unlikely(lcn < LCN_HOLE)) {
1978					status = -EIO;
1979					if (lcn == LCN_ENOMEM)
1980						status = -ENOMEM;
1981					else
1982						ntfs_error(vol->sb, "Cannot "
1983							"perform write to "
1984							"inode 0x%lx, "
1985							"attribute type 0x%x, "
1986							"because the attribute "
1987							"is corrupt.",
1988							vi->i_ino, (unsigned)
1989							le32_to_cpu(ni->type));
1990					break;
1991				}
1992				if (lcn == LCN_HOLE) {
1993					start_idx = (pos & ~(s64)
1994							vol->cluster_size_mask)
1995							>> PAGE_CACHE_SHIFT;
1996					bytes = vol->cluster_size - (pos &
1997							vol->cluster_size_mask);
1998					do_pages = nr_pages;
1999				}
2000			}
2001		}
2002		if (bytes > count)
2003			bytes = count;
2004		/*
2005		 * Bring in the user page(s) that we will copy from _first_.
2006		 * Otherwise there is a nasty deadlock on copying from the same
2007		 * page(s) as we are writing to, without it/them being marked
2008		 * up-to-date.  Note, at present there is nothing to stop the
2009		 * pages being swapped out between us bringing them into memory
2010		 * and doing the actual copying.
2011		 */
2012		if (likely(nr_segs == 1))
2013			ntfs_fault_in_pages_readable(buf, bytes);
2014		else
2015			ntfs_fault_in_pages_readable_iovec(iov, iov_ofs, bytes);
2016		/* Get and lock @do_pages starting at index @start_idx. */
2017		status = __ntfs_grab_cache_pages(mapping, start_idx, do_pages,
2018				pages, &cached_page, &lru_pvec);
2019		if (unlikely(status))
2020			break;
2021		/*
2022		 * For non-resident attributes, we need to fill any holes with
2023		 * actual clusters and ensure all bufferes are mapped.  We also
2024		 * need to bring uptodate any buffers that are only partially
2025		 * being written to.
2026		 */
2027		if (NInoNonResident(ni)) {
2028			status = ntfs_prepare_pages_for_non_resident_write(
2029					pages, do_pages, pos, bytes);
2030			if (unlikely(status)) {
2031				loff_t i_size;
2032
2033				do {
2034					unlock_page(pages[--do_pages]);
2035					page_cache_release(pages[do_pages]);
2036				} while (do_pages);
2037				/*
2038				 * The write preparation may have instantiated
2039				 * allocated space outside i_size.  Trim this
2040				 * off again.  We can ignore any errors in this
2041				 * case as we will just be waisting a bit of
2042				 * allocated space, which is not a disaster.
2043				 */
2044				i_size = i_size_read(vi);
2045				if (pos + bytes > i_size)
2046					vmtruncate(vi, i_size);
2047				break;
2048			}
2049		}
2050		u = (pos >> PAGE_CACHE_SHIFT) - pages[0]->index;
2051		if (likely(nr_segs == 1)) {
2052			copied = ntfs_copy_from_user(pages + u, do_pages - u,
2053					ofs, buf, bytes);
2054			buf += copied;
2055		} else
2056			copied = ntfs_copy_from_user_iovec(pages + u,
2057					do_pages - u, ofs, &iov, &iov_ofs,
2058					bytes);
2059		ntfs_flush_dcache_pages(pages + u, do_pages - u);
2060		status = ntfs_commit_pages_after_write(pages, do_pages, pos,
2061				bytes);
2062		if (likely(!status)) {
2063			written += copied;
2064			count -= copied;
2065			pos += copied;
2066			if (unlikely(copied != bytes))
2067				status = -EFAULT;
2068		}
2069		do {
2070			unlock_page(pages[--do_pages]);
2071			mark_page_accessed(pages[do_pages]);
2072			page_cache_release(pages[do_pages]);
2073		} while (do_pages);
2074		if (unlikely(status))
2075			break;
2076		balance_dirty_pages_ratelimited(mapping);
2077		cond_resched();
2078	} while (count);
2079err_out:
2080	*ppos = pos;
2081	if (cached_page)
2082		page_cache_release(cached_page);
2083	/* For now, when the user asks for O_SYNC, we actually give O_DSYNC. */
2084	if (likely(!status)) {
2085		if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(vi))) {
2086			if (!mapping->a_ops->writepage || !is_sync_kiocb(iocb))
2087				status = generic_osync_inode(vi, mapping,
2088						OSYNC_METADATA|OSYNC_DATA);
2089		}
2090  	}
2091	pagevec_lru_add(&lru_pvec);
2092	ntfs_debug("Done.  Returning %s (written 0x%lx, status %li).",
2093			written ? "written" : "status", (unsigned long)written,
2094			(long)status);
2095	return written ? written : status;
2096}
2097
2098/**
2099 * ntfs_file_aio_write_nolock -
2100 */
2101static ssize_t ntfs_file_aio_write_nolock(struct kiocb *iocb,
2102		const struct iovec *iov, unsigned long nr_segs, loff_t *ppos)
2103{
2104	struct file *file = iocb->ki_filp;
2105	struct address_space *mapping = file->f_mapping;
2106	struct inode *inode = mapping->host;
2107	loff_t pos;
2108	size_t count;		/* after file limit checks */
2109	ssize_t written, err;
2110
2111	count = 0;
2112	err = generic_segment_checks(iov, &nr_segs, &count, VERIFY_READ);
2113	if (err)
2114		return err;
2115	pos = *ppos;
2116	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2117	/* We can write back this queue in page reclaim. */
2118	current->backing_dev_info = mapping->backing_dev_info;
2119	written = 0;
2120	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2121	if (err)
2122		goto out;
2123	if (!count)
2124		goto out;
2125	err = remove_suid(file->f_path.dentry);
2126	if (err)
2127		goto out;
2128	file_update_time(file);
2129	written = ntfs_file_buffered_write(iocb, iov, nr_segs, pos, ppos,
2130			count);
2131out:
2132	current->backing_dev_info = NULL;
2133	return written ? written : err;
2134}
2135
2136/**
2137 * ntfs_file_aio_write -
2138 */
2139static ssize_t ntfs_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2140		unsigned long nr_segs, loff_t pos)
2141{
2142	struct file *file = iocb->ki_filp;
2143	struct address_space *mapping = file->f_mapping;
2144	struct inode *inode = mapping->host;
2145	ssize_t ret;
2146
2147	BUG_ON(iocb->ki_pos != pos);
2148
2149	mutex_lock(&inode->i_mutex);
2150	ret = ntfs_file_aio_write_nolock(iocb, iov, nr_segs, &iocb->ki_pos);
2151	mutex_unlock(&inode->i_mutex);
2152	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2153		int err = sync_page_range(inode, mapping, pos, ret);
2154		if (err < 0)
2155			ret = err;
2156	}
2157	return ret;
2158}
2159
2160/**
2161 * ntfs_file_writev -
2162 *
2163 * Basically the same as generic_file_writev() except that it ends up calling
2164 * ntfs_file_aio_write_nolock() instead of __generic_file_aio_write_nolock().
2165 */
2166static ssize_t ntfs_file_writev(struct file *file, const struct iovec *iov,
2167		unsigned long nr_segs, loff_t *ppos)
2168{
2169	struct address_space *mapping = file->f_mapping;
2170	struct inode *inode = mapping->host;
2171	struct kiocb kiocb;
2172	ssize_t ret;
2173
2174	mutex_lock(&inode->i_mutex);
2175	init_sync_kiocb(&kiocb, file);
2176	ret = ntfs_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos);
2177	if (ret == -EIOCBQUEUED)
2178		ret = wait_on_sync_kiocb(&kiocb);
2179	mutex_unlock(&inode->i_mutex);
2180	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2181		int err = sync_page_range(inode, mapping, *ppos - ret, ret);
2182		if (err < 0)
2183			ret = err;
2184	}
2185	return ret;
2186}
2187
2188/**
2189 * ntfs_file_write - simple wrapper for ntfs_file_writev()
2190 */
2191static ssize_t ntfs_file_write(struct file *file, const char __user *buf,
2192		size_t count, loff_t *ppos)
2193{
2194	struct iovec local_iov = { .iov_base = (void __user *)buf,
2195				   .iov_len = count };
2196
2197	return ntfs_file_writev(file, &local_iov, 1, ppos);
2198}
2199
2200/**
2201 * ntfs_file_fsync - sync a file to disk
2202 * @filp:	file to be synced
2203 * @dentry:	dentry describing the file to sync
2204 * @datasync:	if non-zero only flush user data and not metadata
2205 *
2206 * Data integrity sync of a file to disk.  Used for fsync, fdatasync, and msync
2207 * system calls.  This function is inspired by fs/buffer.c::file_fsync().
2208 *
2209 * If @datasync is false, write the mft record and all associated extent mft
2210 * records as well as the $DATA attribute and then sync the block device.
2211 *
2212 * If @datasync is true and the attribute is non-resident, we skip the writing
2213 * of the mft record and all associated extent mft records (this might still
2214 * happen due to the write_inode_now() call).
2215 *
2216 * Also, if @datasync is true, we do not wait on the inode to be written out
2217 * but we always wait on the page cache pages to be written out.
2218 *
2219 * Note: In the past @filp could be NULL so we ignore it as we don't need it
2220 * anyway.
2221 *
2222 * Locking: Caller must hold i_mutex on the inode.
2223 *
2224 * TODO: We should probably also write all attribute/index inodes associated
2225 * with this inode but since we have no simple way of getting to them we ignore
2226 * this problem for now.
2227 */
2228static int ntfs_file_fsync(struct file *filp, struct dentry *dentry,
2229		int datasync)
2230{
2231	struct inode *vi = dentry->d_inode;
2232	int err, ret = 0;
2233
2234	ntfs_debug("Entering for inode 0x%lx.", vi->i_ino);
2235	BUG_ON(S_ISDIR(vi->i_mode));
2236	if (!datasync || !NInoNonResident(NTFS_I(vi)))
2237		ret = ntfs_write_inode(vi, 1);
2238	write_inode_now(vi, !datasync);
2239	/*
2240	 * NOTE: If we were to use mapping->private_list (see ext2 and
2241	 * fs/buffer.c) for dirty blocks then we could optimize the below to be
2242	 * sync_mapping_buffers(vi->i_mapping).
2243	 */
2244	err = sync_blockdev(vi->i_sb->s_bdev);
2245	if (unlikely(err && !ret))
2246		ret = err;
2247	if (likely(!ret))
2248		ntfs_debug("Done.");
2249	else
2250		ntfs_warning(vi->i_sb, "Failed to f%ssync inode 0x%lx.  Error "
2251				"%u.", datasync ? "data" : "", vi->i_ino, -ret);
2252	return ret;
2253}
2254
2255#endif /* NTFS_RW */
2256
2257const struct file_operations ntfs_file_ops = {
2258	.llseek		= generic_file_llseek,	 /* Seek inside file. */
2259	.read		= do_sync_read,		 /* Read from file. */
2260	.aio_read	= generic_file_aio_read, /* Async read from file. */
2261#ifdef NTFS_RW
2262	.write		= ntfs_file_write,	 /* Write to file. */
2263	.aio_write	= ntfs_file_aio_write,	 /* Async write to file. */
2264	/*.release	= ,*/			 /* Last file is closed.  See
2265						    fs/ext2/file.c::
2266						    ext2_release_file() for
2267						    how to use this to discard
2268						    preallocated space for
2269						    write opened files. */
2270	.fsync		= ntfs_file_fsync,	 /* Sync a file to disk. */
2271	/*.aio_fsync	= ,*/			 /* Sync all outstanding async
2272						    i/o operations on a
2273						    kiocb. */
2274#endif /* NTFS_RW */
2275	/*.ioctl	= ,*/			 /* Perform function on the
2276						    mounted filesystem. */
2277	.mmap		= generic_file_mmap,	 /* Mmap file. */
2278	.open		= ntfs_file_open,	 /* Open file. */
2279	.sendfile	= generic_file_sendfile, /* Zero-copy data send with
2280						    the data source being on
2281						    the ntfs partition.  We do
2282						    not need to care about the
2283						    data destination. */
2284	/*.sendpage	= ,*/			 /* Zero-copy data send with
2285						    the data destination being
2286						    on the ntfs partition.  We
2287						    do not need to care about
2288						    the data source. */
2289};
2290
2291const struct inode_operations ntfs_file_inode_ops = {
2292#ifdef NTFS_RW
2293	.truncate	= ntfs_truncate_vfs,
2294	.setattr	= ntfs_setattr,
2295#endif /* NTFS_RW */
2296};
2297
2298const struct file_operations ntfs_empty_file_ops = {};
2299
2300const struct inode_operations ntfs_empty_inode_ops = {};
2301